1
|
Rossine F, Sanchez C, Eaton D, Paulsson J, Baym M. Intracellular competition shapes plasmid population dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639193. [PMID: 40027608 PMCID: PMC11870584 DOI: 10.1101/2025.02.19.639193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Conflicts between levels of biological organization are central to evolution, from populations of multicellular organisms to selfish genetic elements in microbes. Plasmids are extrachromosomal, self-replicating genetic elements that underlie much of the evolutionary flexibility of bacteria. Evolving plasmids face selective pressures on their hosts, but also compete within the cell for replication, making them an ideal system for studying the joint dynamics of multilevel selection. While theory indicates that within-cell selection should matter for plasmid evolution, experimental measurement of within-cell plasmid fitness and its consequences has remained elusive. Here we measure the within-cell fitness of competing plasmids and characterize drift and selective dynamics. We achieve this by the controlled splitting of synthetic plasmid dimers to create balanced competition experiments. We find that incompatible plasmids co-occur for longer than expected due to methylation-based plasmid eclipsing. During this period of co-occurrence, less transcriptionally active plasmids display a within-cell selective advantage over their competing plasmids, leading to preferential fixation of silent plasmids. When the transcribed gene is beneficial to the cell, for example an antibiotic resistance gene, there is a cell-plasmid fitness tradeoff mediated by the dominance of the beneficial trait. Surprisingly, more dominant plasmid-encoded traits are less likely to fix but more likely to initially invade than less dominant traits. Taken together, our results show that plasmid evolution is driven by dynamics at two levels, with a transient, but critical, contribution of within-cell fitness.
Collapse
Affiliation(s)
- Fernando Rossine
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Carlos Sanchez
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Daniel Eaton
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Zhou X, Yi S, Kuang D, Shi C, Qu C. Analysis of Efflux Pump Contributions and Plasmid-Mediated Genetic Determinants in Ciprofloxacin-Resistant Salmonella. Pathogens 2024; 13:1126. [PMID: 39770385 PMCID: PMC11676056 DOI: 10.3390/pathogens13121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed to explore the interactions among genetic determinants influencing ciprofloxacin resistance in Salmonella. Treatment with PAβN, an efflux pump inhibitor, resulted in a 4-32-fold reduction in the minimum inhibitory concentration (MIC) across all 18 ciprofloxacin-resistant Salmonella isolates. Notably, isolates without point mutations reverted from resistance to sensitivity. The efflux pump played a crucial role in resistance development, particularly in serovar Enteritidis, where PAβN treatment caused a more significant MIC reduction (16-32-fold) in five strains carrying the GyrA (Asp87Tyr) mutation, which initially exhibited high MICs (8 μg/mL). Several resistance genes were identified on transferable plasmids: oqxAB and aac(6')-Ib-cr were associated with IncF plasmids in S. Enteritidis, IncA/C plasmids in S. Typhimurium, and IncHI2 plasmids in S. Virchow. Additionally, qnrS1 and/or qepA were carried by IncA/C plasmids in S. Thompson. Whole-genome sequencing revealed the presence of an oqxAB module integrated into the chromosomal DNA of S. Derby. Although the MICs of ciprofloxacin in transconjugants and transformants remained low (1-4 μg/mL), they exceeded the clinical breakpoint for susceptibility. These findings highlight the synergistic impact of efflux pumps and plasmid-mediated resistance mechanisms, contributing to the increasing prevalence of ciprofloxacin resistance and posing a significant threat to food safety.
Collapse
Affiliation(s)
- Xiujuan Zhou
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China (C.S.)
| | - Shanrong Yi
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China (C.S.)
| | - Dai Kuang
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China (C.S.)
| | - Chunlei Shi
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China (C.S.)
| | - Chunbo Qu
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| |
Collapse
|
3
|
Liu Y, Qiao Z, Ma Y, Wang M, Hu G, Li E. Molecular characterization of the tet (M)-carrying transposon Tn 7124 and plasmids in Escherichia coli isolates recovered from swine. Front Vet Sci 2024; 11:1430398. [PMID: 39507219 PMCID: PMC11539080 DOI: 10.3389/fvets.2024.1430398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Here, we report the genetic features and evolutionary mechanisms of two tet (M)-bearing plasmids (pTA2 and pTA7) recovered from swine Escherichia coli isolates. The genetic profiles of pTA2 and pTA7 and corresponding transconjugants were accessed by S1 nuclease pulsed-field gel electrophoresis and Southern hybridization, followed by whole genome sequencing and bioinformatics analysis. The biological influences of pTA2 and pTA7 were determined by stability and direct competition assays. Both pTA7 and pTA2 had the IncR backbone sequences but differed in the multidrug resistance region (MDR). The MDR of pTA2 consisted of sul3, tet (M), qnrS1, bleO, oqxAB, floR, aadA1, cmlA1, aadA2, and tet (A)-tetR (A) in addition to 22 insertion sequences. Notably, pTA2 carried the novel complex Tn7124 (IS26-ctp-lp-tet (M)-hp-IS406tnp-IntI4-IS26) harboring tet (M). The fragment carrying tet (M) (IS26-ctp-lp-tet (M)-IS406 tnp-ctp-aadA1-cmlA1-aadA2-dfrA12-IntI1), named Tn6942-like, and the two resistance modules ISVsa3-VirD2-floR-lysR and tet (A)-tetR (A) were located in the MDR of pTA7. Both pTA2 and pTA7 were highly stable in E. coli DH5α cells with no fitness cost to the host or disadvantage in growth competition. These results indicate that transposons carrying tet (M) continuously integrate via mediation with an insertion sequence, which accelerates the transmission of tet (M) in E. coli isolates through integration of other drug-resistant genes, thereby posing a potential serious threat to the efficacy of clinical treatment.
Collapse
Affiliation(s)
- Yingying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Yan Ma
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Mingcheng Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Gongzheng Hu
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| |
Collapse
|
4
|
Das S, Mallick A, Barik M, Sarkar S, Saha P. The emergence of clonally diverse carbapenem-resistant Enterobacter cloacae complex in West Bengal, India: a dockyard of β-lactamases periling nosocomial infections. Int Microbiol 2024; 27:1023-1033. [PMID: 37985632 DOI: 10.1007/s10123-023-00451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Carbapenem-resistant Enterobacter cloacae complex (CRECC) constitutes a global public health threat challenging clinical treatment and infection control, especially in low- and middle-income countries such as India. We analyzed the antimicrobial susceptibility, major β-lactamase genes, plasmid profiles, and genetic relatedness to understand the molecular epidemiology of CRECC clinical isolates (n = 44) in West Bengal, India, during 2021-2022. The majority (> 55%) of the isolates were resistant to fluoroquinolones, aminoglycosides, and co-trimoxazole, even > 20% for tigecycline and > 35% were extensively drug-resistant. Co-β-lactamase production was categorized into twenty-seven types, importantly NDM (84%), OXA-48 (40%), TEM (61%), CTX-M (46%), OXA-1 (55%), and MIR (27%). The NDM-1 and OXA-181 were major variants with the first observations of NDM-24 and -29 variants in India. Wide-range of plasmids (2 to > 212 kb) were harbored by the β-lactamase-producing isolates: small (91%), medium (27%), large (9%), and mega (71%). IncX3, ColE1, and HI2 were noted in about 30% of isolates, while IncF and R were carried by < 20% of isolates. The clonally diverse CRECC isolates were noted to cause cross-infections, especially at superficial site, bloodstream, and urinary-tract. This is the first molecular surveillance on CRECC in India. The study isolates serve as the dockyard of NDM, TEM, and CTX-M harboring a wide range of plasmids. The outcomes of the study may strengthen local and national policies for infection prevention and control practices, clarifying the genetic diversity among CRECC. Extensive genomic study may further intersect the relationships between these different plasmids, especially with their sizes, types, and antibiotic resistance markers.
Collapse
Affiliation(s)
- Surojit Das
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Abhi Mallick
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Mili Barik
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Soma Sarkar
- Department of Microbiology at Nil Ratan Sirkar Medical College Hospital, Kolkata, West Bengal, India
- Department of Microbiology at Infectious Diseases & Beleghata General Hospital, Kolkata, West Bengal, India
| | - Puranjoy Saha
- Department of Microbiology, Malda Medical College and Hospital, Malda, West Bengal, India
| |
Collapse
|
5
|
Vázquez X, Fernández J, Heinisch JJ, Rodicio R, Rodicio MR. Insights into the Evolution of IncR Plasmids Found in the Southern European Clone of the Monophasic Variant of Salmonella enterica Serovar Typhimurium. Antibiotics (Basel) 2024; 13:314. [PMID: 38666990 PMCID: PMC11047700 DOI: 10.3390/antibiotics13040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
Salmonella enterica subspecies enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium which has emerged as a world-wide distributed pathogen in the last decades. Several clones have been identified within this variant, the European clone, the Spanish clone, the Southern European clone and the U.S./American clone. The present study focused on isolates of the Southern European clone that were obtained from clinical samples at Spanish hospitals. The selected isolates were multidrug resistant, with most resistance genes residing on IncR plasmids that also carried virulence genes. These plasmids had a mosaic structure, comprising a highly reduced IncR backbone, which has acquired a large amount of exogenous DNA mostly derived from pSLT and IncI1-I(alfa) plasmids. Although composed of approximately the same elements, the investigated plasmids displayed a high diversity, consistent with active evolution driven by a wealth of mobile genetic elements. They comprise multiple intact or truncated insertion sequences, transposons, pseudo-compound transposons and integrons. Particularly relevant was the role of IS26 (with six to nine copies per plasmid) in generating insertions, deletions and inversions, with many of the rearrangements uncovered by tracking the patterns of eight bp target site duplications. Most of the resistance genes detected in the analyzed isolates have been previously associated with the Southern European clone. However, erm(B), lnu(G) and blaTEM-1B are novel, with the last two carried by a second resistance plasmid found in one of the IncR-positive isolates. Thus, evolution of resistance in the Southern European clone is not only mediated by diversification of the IncR plasmids, but also through acquisition of additional plasmids. All isolates investigated in the present study have the large deletion affecting the fljBA region previously found to justify the monophasic phenotype in the Southern European and U.S./American clones. An SNP-based phylogenetic analysis revealed the close relationship amongst our isolates, and support that those sharing the large fljBA deletion could be more heterogeneous than previously anticipated.
Collapse
Affiliation(s)
- Xenia Vázquez
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain; (X.V.); (J.F.)
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Javier Fernández
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain; (X.V.); (J.F.)
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, 30627 Madrid, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, 33001 Oviedo, Spain
| | - Jürgen J. Heinisch
- Department of Genetics, Faculty of Biology and Chemistry, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany;
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - M. Rosario Rodicio
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain; (X.V.); (J.F.)
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
6
|
Benevides VP, Saraiva MMS, Nascimento CF, Delgado-Suárez EJ, Oliveira CJB, Silva SR, Miranda VFO, Christensen H, Olsen JE, Berchieri Junior A. Genomic Features and Phylogenetic Analysis of Antimicrobial-Resistant Salmonella Mbandaka ST413 Strains. Microorganisms 2024; 12:312. [PMID: 38399716 PMCID: PMC10893270 DOI: 10.3390/microorganisms12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, Salmonella enterica subsp. enterica serovar Mbandaka (S. Mbandaka) has been increasingly isolated from laying hens and shell eggs around the world. Moreover, this serovar has been identified as the causative agent of several salmonellosis outbreaks in humans. Surprisingly, little is known about the characteristics of this emerging serovar, and therefore, we investigated antimicrobial resistance, virulence, and prophage genes of six selected Brazilian strains of Salmonella Mbandaka using Whole Genome Sequencing (WGS). Multi-locus sequence typing revealed that the tested strains belong to Sequence Type 413 (ST413), which has been linked to recent multi-country salmonellosis outbreaks in Europe. A total of nine resistance genes were detected, and the most frequent ones were aac(6')-Iaa, sul1, qacE, blaOXA-129, tet(B), and aadA1. A point mutation in ParC at the 57th position (threonine → serine) associated with quinolone resistance was present in all investigated genomes. A 112,960 bp IncHI2A plasmid was mapped in 4/6 strains. This plasmid harboured tetracycline (tetACDR) and mercury (mer) resistance genes, genes contributing to conjugative transfer, and genes involved in plasmid maintenance. Most strains (four/six) carried Salmonella genomic island 1 (SGI1). All S. Mbandaka genomes carried seven pathogenicity islands (SPIs) involved in intracellular survival and virulence: SPIs 1-5, 9, and C63PI. The virulence genes csgC, fimY, tcfA, sscA, (two/six), and ssaS (one/six) were absent in some of the genomes; conversely, fimA, prgH, and mgtC were present in all of them. Five Salmonella bacteriophage sequences (with homology to Escherichia phage phiV10, Enterobacteria phage Fels-2, Enterobacteria phage HK542, Enterobacteria phage ST64T, Salmonella phage SW9) were identified, with protein counts between 31 and 54, genome lengths of 24.7 bp and 47.7 bp, and average GC content of 51.25%. In the phylogenetic analysis, the genomes of strains isolated from poultry in Brazil clustered into well-supported clades with a heterogeneous distribution, primarily associated with strains isolated from humans and food. The phylogenetic relationship of Brazilian S. Mbandaka suggests the presence of strains with high epidemiological significance and the potential to be linked to foodborne outbreaks. Overall, our results show that isolated strains of S. Mbandaka are multidrug-resistant and encode a rather conserved virulence machinery, which is an epidemiological hallmark of Salmonella strains that have successfully disseminated both regionally and globally.
Collapse
Affiliation(s)
- Valdinete P Benevides
- Postgraduate Program in Agricultural Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Mauro M S Saraiva
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Camila F Nascimento
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Enrique J Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celso J B Oliveira
- Center for Agricultural Sciences, Department of Animal Science, Federal University of Paraiba (CCA/UFPB), Areia 58051-900, Brazil
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH 43210, USA
| | - Saura R Silva
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Vitor F O Miranda
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| |
Collapse
|
7
|
Qi Y, Xue JZ, Li SS, Elken EM, Haqmal MA, Li XS, Xu GY, Kong LC, Ma HX. Analysis of an IncR plasmid carried by carbapenem-resistant Klebsiella pneumoniae: A survey of swine Klebsiella pneumoniae in Jilin Province. J Glob Antimicrob Resist 2023; 34:83-90. [PMID: 37210003 DOI: 10.1016/j.jgar.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023] Open
Abstract
OBJECTIVES This study was conducted in Jilin Province to investigate the mechanism involved in the antibiotic resistance and pathogenicity of Klebsiella pneumoniae. METHODS Lung samples were collected from large-scale pig farms in Jilin Province. Antimicrobial susceptibility and mouse lethality assays were carried out. K. pneumoniae isolate JP20, with high virulence and antibiotic resistance, was chosen for whole-genome sequencing. The complete sequence of its genome was annotated, and the virulence and antibiotic resistance mechanism were analysed. RESULTS A total of 32 K. pneumoniae strains were isolated and tested for antibiotic resistance and pathogenicity. Among them, the JP20 strain showed high levels of resistance to all tested antimicrobial agents and strong pathogenicity in mice (lethal dose of 1.35 × 1011 CFU/mL). Sequencing of the multidrug-resistant and highly virulent K. pneumoniae JP20 strain revealed that the antibiotic resistance genes were mainly carried by an IncR plasmid. We speculate that extended-spectrum β-lactamases and loss of outer membrane porin OmpK36 play an important role in carbapenem antibiotic resistance. This plasmid contains a mosaic structure consisting of a large number of mobile elements. CONCLUSION Through genome-wide analysis, we found that an lncR plasmid carried by the JP20 strain may have evolved in pig farms, possibly leading to multidrug resistance in the JP20 strain. It is speculated that the antibiotic resistance of K. pneumoniae in pig farms is mainly mediated by mobile elements (insertion sequences, transposons, and plasmids). These data provide a basis for monitoring the antibiotic resistance of K. pneumoniae and lay a foundation for an improved understanding of the genomic characteristics and antibiotic resistance mechanism of K. pneumoniae.
Collapse
Affiliation(s)
- Yu Qi
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun-Ze Xue
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shuang-Shuang Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Emad Mohammed Elken
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China; Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt
| | - M Aman Haqmal
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xue-Song Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guan-Yi Xu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling-Cong Kong
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China.
| | - Hong-Xia Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China; The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
8
|
dos Santos AMP, Panzenhagen P, Ferrari RG, de Jesus ACS, Portes AB, Ochioni AC, Rodrigues DDP, Conte-Junior CA. Genomic Characterization of Salmonella Isangi: A Global Perspective of a Rare Serovar. Antibiotics (Basel) 2023; 12:1309. [PMID: 37627729 PMCID: PMC10451742 DOI: 10.3390/antibiotics12081309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Salmonella Isangi is an infrequent serovar that has recently been reported in several countries due to nosocomial infections. A considerable number of reports indicate Salmonella Isangi multidrug resistance, especially to cephalosporins, which could potentially pose a risk to public health worldwide. Genomic analysis is an excellent tool for monitoring the emergence of microorganisms and related factors. In this context, the aim of this study was to carry out a genomic analysis of Salmonella Isangi isolated from poultry in Brazil, and to compare it with the available genomes from the Pathogen Detection database and Sequence Read Archive. A total of 142 genomes isolated from 11 different countries were investigated. A broad distribution of extended-spectrum beta-lactamase (ESBL) genes was identified in the Salmonella Isangi genomes examined (blaCTX-M-15, blaCTX-M-2, blaDHA-1, blaNDM-1, blaOXA-10, blaOXA-1, blaOXA-48, blaSCO-1, blaSHV-5, blaTEM-131, blaTEM-1B), primarily in South Africa. Resistome analysis revealed predicted resistance to aminoglycoside, sulfonamide, macrolide, tetracycline, trimethoprim, phenicol, chloramphenicol, and quaternary ammonium. Additionally, PMQR (plasmid-mediated quinolone resistance) genes qnr19, qnrB1, and qnrS1 were identified, along with point mutations in the genes gyrAD87N, gyrAS83F, and gyrBS464F, which confer resistance to ciprofloxacin and nalidixic acid. With regard to plasmids, we identified 17 different incompatibility groups, including IncC, Col(pHAD28), IncHI2, IncHI2A, IncM2, ColpVC, Col(Ye4449), Col156, IncR, IncI1(Alpha), IncFIB (pTU3), Col(B5512), IncQ1, IncL, IncN, IncFIB(pHCM2), and IncFIB (pN55391). Phylogenetic analysis revealed five clusters grouped by sequence type and antimicrobial gene distribution. The study highlights the need for monitoring rare serovars that may become emergent due to multidrug resistance.
Collapse
Affiliation(s)
- Anamaria Mota Pereira dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230-340, RJ, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Rafaela G. Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Carolina S. de Jesus
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230-340, RJ, Brazil
| | - Alan Clavelland Ochioni
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230-340, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
9
|
Bispo dos Santos S, Fernandez Alarcon M, Ballaben AS, Harakava R, Galetti R, Guimarães MC, Natori MM, Takahashi LS, Ildefonso R, Rozas-Serri M. First Report of Aeromonas veronii as an Emerging Bacterial Pathogen of Farmed Nile Tilapia ( Oreochromis niloticus) in Brazil. Pathogens 2023; 12:1020. [PMID: 37623980 PMCID: PMC10459805 DOI: 10.3390/pathogens12081020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Brazil is one of the world's leading producers of Nile tilapia, Oreochromis niloticus. However, the industry faces a major challenge in terms of infectious diseases, as at least five new pathogens have been formally described in the last five years. Aeromonas species are Gram-negative anaerobic bacteria that are often described as fish pathogens causing Motile Aeromonas Septicemia (MAS). In late December 2022, an epidemic outbreak was reported in farmed Nile tilapia in the state of São Paulo, Brazil, characterized by clinical signs and gross pathology suggestive of MAS. The objective of this study was to isolate, identify, and characterize in vitro and in vivo the causative agent of this epidemic outbreak. The bacterial isolates were identified as Aeromonas veronii based on the homology of 16S rRNA (99.9%), gyrB (98.9%), and the rpoB gene (99.1%). A. veronii showed susceptibility only to florfenicol, while it was resistant to the other three antimicrobials tested, oxytetracycline, enrofloxacin, and amoxicillin. The lowest florfenicol concentration capable of inhibiting bacterial growth was ≤0.5 µg/mL. The phenotypic resistance of the A. veronii isolate observed for quinolones and tetracycline was genetically confirmed by the presence of the qnrS2 (colE plasmid) and tetA antibiotic-resistant genes, respectively. A. veronii isolate was highly pathogenic in juvenile Nile tilapia tested in vivo, showing a mortality rate ranging from 3 to 100% in the lowest (1.2 × 104) and highest (1.2 × 108) bacterial dose groups, respectively. To our knowledge, this study would constitute the first report of highly pathogenic and multidrug-resistant A. veronii associated with outbreaks and high mortality rates in tilapia farmed in commercial net cages in Brazil.
Collapse
Affiliation(s)
- Sandie Bispo dos Santos
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Miguel Fernandez Alarcon
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Anelise Stella Ballaben
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-020, Brazil;
| | | | - Renata Galetti
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Mateus Cardoso Guimarães
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Mariene Miyoko Natori
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Leonardo Susumu Takahashi
- Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas, Universidade Estadual Paulista, Dracena, São Paulo 17900-000, Brazil;
| | - Ricardo Ildefonso
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
- Pathovet Labs, Puerto Montt 5550000, Chile
| | - Marco Rozas-Serri
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
- Pathovet Labs, Puerto Montt 5550000, Chile
| |
Collapse
|
10
|
Ripon RK, Motahara U, Ahmed A, Devnath N, Mahua FA, Hashem RB, Ishadi KS, Alam A, Sujan MSH, Sarker MS. Exploring the prevalence of antibiotic resistance patterns and drivers of antibiotics resistance of Salmonella in livestock and poultry-derived foods: a systematic review and meta-analysis in Bangladesh from 2000 to 2022. JAC Antimicrob Resist 2023; 5:dlad059. [PMID: 37265988 PMCID: PMC10230569 DOI: 10.1093/jacamr/dlad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/19/2023] [Indexed: 06/03/2023] Open
Abstract
Background Antimicrobial resistance (AMR) is a severe public health problem that Bangladeshis are dealing with nowadays. However, we wanted to investigate the pooled prevalence of Salmonella and AMR in Salmonella strains isolated from livestock- and poultry-derived foods between 1 January 2000 and 31 August 2022. Methods The metafor and metareg packages in the R programming language were used to conduct all analyses. We used a random-effect or fixed-effect model for pooled prevalence of Salmonella and AMR to Salmonella, depending on the heterogeneity test for each antibiotic. The heterogeneity was examined using stratified analyses, the meta-regression approach and sensitivity analysis. Results The combined prevalence of Salmonella in livestock and poultry-derived food in Bangladesh is 37%, according to the 12-research considered (95% CI: 23%-52%). According to subgroup analysis, neomycin had the lowest prevalence of resistance (4%, 95% CI: 1%-13%), whereas tetracycline had the highest prevalence of resistance (81%, 95% CI: 53%-98%). According to univariate meta-analysis and correlation analysis, the prevalence of Salmonella increased with the study period (β = 0.0179; 95% CI: 0.0059-0.0298, P = 0.0034; R2 = 46.11%) and without this, none of aforementioned variables was significantly associated with the detected heterogeneity and there was a positive relationship (r = 0.692, P = 0.001) between the Salmonella prevalence and study period. Conclusions AMR is rising alarmingly in Bangladesh by livestock-derived food consumption. However, monitoring and evaluating antibiotic sensitivity trends and developing effective antibiotic regimens may improve Salmonella infection inhibition and control in Bangladesh. Policymakers should be concerned about food handling practices. Doctors should be concerned when using prescribing antibiotics.
Collapse
Affiliation(s)
| | - Umma Motahara
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Ayesha Ahmed
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Nishrita Devnath
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Fatema Akter Mahua
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Rubaiya Binthe Hashem
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Kifayat Sadmam Ishadi
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Adiba Alam
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Safaet Hossain Sujan
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Samun Sarker
- Antimicrobial Resistance Action Center (ARAC), Bangladesh Livestock Research Institute (BLRI), Savar, Dhaka, Bangladesh
| |
Collapse
|
11
|
Negeri AA, Mamo H, Gahlot DK, Gurung JM, Seyoum ET, Francis MS. Characterization of plasmids carrying bla CTX-M genes among extra-intestinal Escherichia coli clinical isolates in Ethiopia. Sci Rep 2023; 13:8595. [PMID: 37237011 DOI: 10.1038/s41598-023-35402-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
CTX-Ms are encoded by blaCTX-M genes and are widely distributed extended-spectrum β-lactamases (ESBLs). They are the most important antimicrobial resistance (AMR) mechanism to β-lactam antibiotics in the Enterobacteriaceae. However, the role of transmissible AMR plasmids in the dissemination of blaCTX-M genes has scarcely been studied in Africa where the burden of AMR is high and rapidly spreading. In this study, AMR plasmid transmissibility, replicon types and addiction systems were analysed in CTX-M-producing Escherichia coli clinical isolates in Ethiopia with a goal to provide molecular insight into mechanisms underlying such high prevalence and rapid dissemination. Of 100 CTX-Ms-producing isolates obtained from urine (84), pus (10) and blood (6) from four geographically distinct healthcare settings, 75% carried transmissible plasmids encoding for CTX-Ms, with CTX-M-15 being predominant (n = 51). Single IncF plasmids with the combination of F-FIA-FIB (n = 17) carried the bulk of blaCTX-M-15 genes. In addition, IncF plasmids were associated with multiple addiction systems, ISEcp1 and various resistance phenotypes for non-cephalosporin antibiotics. Moreover, IncF plasmid carriage is associated with the international pandemic E. coli ST131 lineage. Furthermore, several CTX-M encoding plasmids were associated with serum survival of the strains, but less so with biofilm formation. Hence, both horizontal gene transfer and clonal expansion may contribute to the rapid and widespread distribution of blaCTX-M genes among E. coli populations in Ethiopian clinical settings. This information is relevant for local epidemiology and surveillance, but also for global understanding of the successful dissemination of AMR gene carrying plasmids.
Collapse
Affiliation(s)
- Abebe Aseffa Negeri
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dharmender K Gahlot
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Eyasu Tigabu Seyoum
- Global One Health Initiative of the Ohio State University, East African Regional Office, Addis Ababa, Ethiopia
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
12
|
Drk S, Puljko A, Dželalija M, Udiković-Kolić N. Characterization of Third Generation Cephalosporin- and Carbapenem-Resistant Aeromonas Isolates from Municipal and Hospital Wastewater. Antibiotics (Basel) 2023; 12:antibiotics12030513. [PMID: 36978380 PMCID: PMC10044312 DOI: 10.3390/antibiotics12030513] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the greatest threats to global health, and Aeromonas species have the potential to spread AR in the aquatic environment. The spread of resistance to antibiotics important to human health, such as third-generation cephalosporins (3GCs) and carbapenems, is of great concern. We isolated and identified 15 cefotaxime (3GC)- and 51 carbapenem-resistant Aeromonas spp. from untreated hospital and treated municipal wastewater in January 2020. The most common species were Aeromonas caviae (58%), A. hydrophila (17%), A. media (11%), and A. veronii (11%). Almost all isolates exhibited a multidrug-resistant phenotype and harboured a diverse plasmidome, with the plasmid replicons ColE, IncU, and IncR being the most frequently detected. The most prevalent carbapenemase gene was the plasmid-associated blaKPC-2 and, for the first time, the blaVIM-2, blaOXA-48, and blaIMP-13 genes were identified in Aeromonas spp. Among the 3GC-resistant isolates, the blaGES-5 and blaMOX genes were the most prevalent. Of the 10 isolates examined, three were capable of transferring carbapenem resistance to susceptible recipient E. coli. Our results suggest that conventionally treated municipal and untreated hospital wastewater is a reservoir for 3GC- and carbapenem-resistant, potentially harmful Aeromonas spp. that can be introduced into aquatic systems and pose a threat to both the environment and public health.
Collapse
Affiliation(s)
- Sara Drk
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
13
|
Wang X, Zhao J, Ji F, Wang M, Wu B, Qin J, Dong G, Zhao R, Wang C. Genomic Characteristics and Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Strains Carried by Wild Birds. Microbiol Spectr 2023; 11:e0269122. [PMID: 36840587 PMCID: PMC10101063 DOI: 10.1128/spectrum.02691-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/04/2023] [Indexed: 02/24/2023] Open
Abstract
This study aimed to explore the relationship between wild birds and the transmission of multidrug-resistant strains. Klebsiella pneumoniae was isolated from fresh feces of captured wild birds and assessed by the broth microdilution method and comparative genomics. Four Klebsiella pneumoniae isolates showed different resistance phenotypes; S90-2 and S141 were both resistant to ampicillin, cefuroxime, and cefazolin, while M911-1 and S130-1 were sensitive to most of the 14 antibiotics tested. S90-2 belongs to sequence type 629 (ST629), and its genome includes 30 resistance genes, including blaCTX-M-14 and blaSHV-11, while its plasmid pS90-2.3 (IncR) carries qacEdelta1, sul1, and aph(3')-Ib. S141 belongs to ST1662, and its genome includes a total of 27 resistance genes, including blaSHV-217. M911-1 is a new ST, carrying blaSHV-1 and fosA6, and its plasmid pM911-1.1 (novel) carries qnrS1, blaLAP-2, and tet(A). S130-1 belongs to ST3753, carrying blaSHV-11 and fosA6, and its plasmid pS130-1 [IncFIB(K)] carries only one resistance gene, tet(A). pM911-1.1 and pS90-2.3 do not have conjugative transfer ability, but their resistance gene fragments are derived from multiple homologous Enterobacteriaceae strain chromosomes or plasmids, and the formation of resistance gene fragments (multidrug resistance region) involves interactions between multiple mobile element genes, resulting in a complex and diverse resistance plasmid structure. The homologous plasmids related to pM911-1.1 and pS90-2.3 were mainly from isolated human-infecting bacteria in China, namely, K. pneumoniae and Escherichia coli. The multidrug-resistant K. pneumoniae isolates carried by wild birds in this study had drug resistance phenotypes conferred primarily by multidrug resistance plasmids that were closely related to human-infecting bacteria. IMPORTANCE Little is known about the pathogenic microorganisms carried by wild animals. This study found that the multidrug resistance phenotype of Klebsiella pneumoniae isolates carried by wild birds was mainly attributed to multidrug resistance plasmids, and these multidrug resistance plasmids from wild birds were closely related to human-infecting bacteria. Wild bird habitats overlap to a great extent with human and livestock habitats, which further increases the potential for horizontal transfer of multidrug-resistant bacteria among humans, animals, and the environment. Therefore, wild birds, as potential transmission hosts of multidrug-resistant bacteria, should be given attention and monitored.
Collapse
Affiliation(s)
- Xue Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Jianan Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Fang Ji
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Meng Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Bin Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Jianhua Qin
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Guoying Dong
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Ruili Zhao
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Chengmin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| |
Collapse
|
14
|
Hu Y, Zhang W, Shen X, Qu Q, Li X, Chen R, Wang Z, Ma R, Xiong Z, Wang Y, Wang P. Tandem Repeat of bla NDM-1 and Clonal Dissemination of a fosA3 and bla KPC-2 Co-Carrying IncR-F33: A-: B- Plasmid in Klebsiella pneumoniae Isolates Collected in a Southwest Hospital in China, 2010-2013. Infect Drug Resist 2022; 15:7431-7447. [PMID: 36544990 PMCID: PMC9762261 DOI: 10.2147/idr.s391144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Carbapenem-resistant Klebsiella pneumoniae (CRKP) has been widespread in coastal cities of eastern China since 2009. However, how CRKP spreads and evolves in southwest China is unclear. Aim We investigated the genetic characteristics and dissemination mechanisms of carbapenemase genes in forty-one non-repetitive CRKP isolates collected from a southwest hospital, Kunming, Yunnan, during 2010-2013. Methodology Drug susceptibilities were analyzed by using VITEK 2 compact system. Genetic relationships were ascertained based on multilocus sequence typing (MLST) and Pulsed-field gel electrophoresis (PFGE) analysis. Genetic backgrounds of bla KPC-2 and bla NDM-1 were revealed by DNA walking and high-throughput sequencing. Results All isolates were highly resistant to common antibiotics except for tigecycline. In total, 34 bla KPC-2, 3 bla NDM-1, 1 bla IMP-4 and 3 bla IMP-26 genes were identified and KP67 plasmid 1 co-harbored bla NDM-1 and bla IMP-26. Five sequence types, namely ST11, ST290, ST340, ST395 and ST437, were recognized by MLST. Surprisingly, bla KPC-2 was only detected in ST11 strains. We described a clonal dissemination of fosA3-positive IncR-IncF33:A-:B- multireplicon plasmid carrying the gene cassettes IS26-ΔTn3-ISKpn27-bla KPC-2-ΔISKpn6-korC-klcA-ΔrepB-Tn1721 in all ST11 isolates. Three bla NDM-1 positive isolates belonged to three different ST types and their bla NDM-1 genetic backgrounds were also distinct. Interestingly, the flanking regions of bla NDM-1 in KP67 and KP72 were duplicated into one to five copies in a form of tandem repeat by the transposition of IS91 like element. The bla NDM-1 of KP82 was carried on a common IncX3 plasmid. Conclusion This study described the early epidemiological characteristics of bla KPC-2/bla NDM-1-carrying CRKP, and reported a new tandem repeat pattern of bla NDM-1 cluster in Yunnan. These findings extend our knowledge on the carbapenemase gene evolutions.
Collapse
Affiliation(s)
- Ying Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Wei Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xiufen Shen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Qiaoli Qu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Xiao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - Rucai Chen
- Department of Key Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhuo Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Run Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zaikun Xiong
- Department of Key Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yuming Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China,Correspondence: Yuming Wang, Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China, Tel +86 13708406058, Fax +86-0871-65334416, Email
| | - Pengfei Wang
- Department of Key Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China,Pengfei Wang, Department of Key Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China, Tel +86 15288453604, Email
| |
Collapse
|
15
|
Identification and Characterisation of pST1023 A Mosaic, Multidrug-Resistant and Mobilisable IncR Plasmid. Microorganisms 2022; 10:microorganisms10081592. [PMID: 36014010 PMCID: PMC9412624 DOI: 10.3390/microorganisms10081592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
We report the identification and characterisation of a mosaic, multidrug-resistant and mobilisable IncR plasmid (pST1023) detected in Salmonella ST1023, a monophasic variant 4,[5],12:i: strain of widespread pandemic lineage, reported as a Southern European clone. pST1023 contains exogenous DNA regions, principally gained from pSLT-derivatives and IncI1 plasmids. Acquisition from IncI1 included oriT and nikAB and these conferred the ability to be mobilisable in the presence of a helper plasmid, as we demonstrated with the conjugative plasmids pST1007-1D (IncFII) or pVC1035 (IncC). A sul3-associated class 1 integron, conferring resistance to aminoglycosides, chloramphenicol and trimethoprim-sulphonamides, was also embedded in the acquired IncI1 DNA segment. pST1023 also harboured an additional site-specific recombination system (rfsF/rsdB) and IS elements of the IS1, IS5 (IS903 group) and IS6 families. Four of the six IS26 elements present constituted two pseudo-compound-transposons, named PCT-sil and PCT-Tn10 (identified here for the first time). The study further highlighted the mosaic genetic architecture and the clinical importance of IncR plasmids. Moreover, it provides the first experimental data on the ability of IncR plasmids to be mobilised and their potential role in the horizontal spread of antimicrobial-resistant genes.
Collapse
|
16
|
Darphorn TS, Brul S, Ter Kuile BH. Genetic editing of multi-resistance plasmids in Escherichia coli isolated from meat during transfer. Plasmid 2022; 122:102640. [PMID: 35870604 DOI: 10.1016/j.plasmid.2022.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Resistance plasmids mediate the rapid spread of antimicrobial resistance, which poses a threat to veterinary and human healthcare. This study addresses the question whether resistance plasmids from Escherichia coli isolated from foodstuffs always transfer unchanged to recipient E. coli cells, or that genetic editing can occur. Strains containing between one and five different plasmids were co-incubated with a standard recipient strain. Plasmids isolated from transconjugant strains were sequenced using short and long read technologies and compared to the original plasmids from the donor strains. After one hour of co-incubation only a single plasmid was transferred from donor to recipient strains. If the donor possessed several plasmids, longer co-incubation resulted in multiple plasmids being transferred. Transferred plasmids showed mutations, mostly in mobile genetic elements, in the conjugative transfer gene pilV and in genes involved in plasmid maintenance. In one transconjugant, a resistance cluster encoding tetracycline resistance was acquired by the IncI1 plasmid from the IncX1 plasmid that was also present in the donor strain, but that was not transferred. A single plasmid transferred twelve times back and forth between E. coli strains resulted in a fully conserved plasmid with no mutations, apart from repetitive rearrangements of pilV from and back to its original conformation in the donor strain. The overall outcome suggests that some genetic mutations and rearrangements can occur during plasmid transfer. The possibility of such mutations should be taken into consideration in epidemiological research aimed at attribution of resistance to specific sources.
Collapse
Affiliation(s)
- Tania S Darphorn
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Darphorn TS, Koenders-van Sintanneland BB, Grootemaat AE, van der Wel NN, Brul S, ter Kuile BH. Transfer dynamics of multi-resistance plasmids in Escherichia coli isolated from meat. PLoS One 2022; 17:e0270205. [PMID: 35797379 PMCID: PMC9262221 DOI: 10.1371/journal.pone.0270205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/06/2022] [Indexed: 12/31/2022] Open
Abstract
Resistance plasmids are crucial for the transfer of antimicrobial resistance and thus form a matter of concern for veterinary and human healthcare. To study plasmid transfer, foodborne Escherichia coli isolates harboring one to five known plasmids were co-incubated with a general recipient strain. Plasmid transfer rates under standardized conditions varied by a factor of almost 106, depending on the recipient/donor strain combination. After 1 hour transconjugants never accounted for more than 3% of the total number of cells. Transconjugants were formed from 14 donors within 1 hour of co-incubation, but in the case of 3 donors 24 hours were needed. Transfer rates were also measured during longer co-incubation, between different species and during repeated back and forth transfer. Longer co-incubation resulted in the transfer of more types of resistance. Maximum growth rates of donor strains varied by a factor of 3. Donor strains often had higher growth rates than the corresponding transconjugants, which grew at the same rate as or slightly faster than the recipient. Hence, possessing one or more plasmids does not seem to burden the harboring strain metabolically. Transfer was species specific and repeated transfer of one plasmid did not result in different transfer rates over time. Transmission Electron microcopy was used to analyze the morphology of the connection between co-incubated strains. Connection by more pili between the cells resulted in better aggregate formation and corresponded with higher transfer rates.
Collapse
Affiliation(s)
- Tania S. Darphorn
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Belinda B. Koenders-van Sintanneland
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita E. Grootemaat
- Department of Cell Biology and Histology, Electron Microscopy Centre Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Nicole N. van der Wel
- Department of Cell Biology and Histology, Electron Microscopy Centre Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands
| |
Collapse
|
18
|
Ballaben AS, Galetti R, Ferreira JC, Paziani MH, Kress MRVZ, Garcia DDO, Silva PD, Doi Y, Darini ALC, Andrade LN. Different virulence genetic context of multidrug-resistant CTX-M- and KPC-producing Klebsiella pneumoniae isolated from cerebrospinal fluid. Diagn Microbiol Infect Dis 2022; 104:115784. [DOI: 10.1016/j.diagmicrobio.2022.115784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
|
19
|
Abderrahim A, Djahmi N, Loucif L, Nedjai S, Chelaghma W, Gameci-Kirane D, Dekhil M, Lavigne JP, Pantel A. Dissemination of OXA-48- and NDM-1-Producing Enterobacterales Isolates in an Algerian Hospital. Antibiotics (Basel) 2022; 11:antibiotics11060750. [PMID: 35740155 PMCID: PMC9220339 DOI: 10.3390/antibiotics11060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Multidrug-resistant (MDR) Enterobacterales remain an increasing problem in Algeria, notably due to the emergence of carbapenemase producers. We investigated the molecular characteristics of carbapenem-resistant Enterobacterales isolates recovered from outpatients and inpatients in Eastern Algeria. Non-repetitive Enterobacterales with reduced susceptibility to carbapenems were consecutively collected from clinical specimens in Annaba University Hospital (Algeria) between April 2016 and December 2018. Isolates were characterized with regard to antibiotic resistance, resistome and virulome content, clonality, and plasmid support. Of the 168 isolates analyzed, 29 (17.3%) were carbapenemase producers and identified as K. pneumoniae (n = 23), E. coli (n = 5), and E. cloacae (n = 1). blaOXA-48 was the most prevalent carbapenemase-encoding gene (n = 26/29), followed by blaNDM-1 gene (n = 3/29). K. pneumoniae isolates harbored some virulence traits (entB, ugeF, ureA, mrkD, fimH), whereas E. coli had a commensal origin (E, A, and B1). Clonality analysis revealed clonal expansions of ST101 K. pneumoniae and ST758 E. coli. Plasmid analysis showed a large diversity of incompatibility groups, with a predominance of IncM (n = 26, 89.7%). A global dissemination of OXA-48-producing Enterobacterales in the Algerian hospital but also the detection of NDM-1-producing E. coli in community settings were observed. The importance of this diffusion must be absolutely investigated and controlled.
Collapse
Affiliation(s)
- Amel Abderrahim
- Département de Biochimie, Faculté des Sciences, Université Badji Mokhtar Annaba, Annaba 23000, Algeria; (A.A.); (D.G.-K.)
| | - Nassima Djahmi
- Laboratoire de Microbiologie, CHU Ibn Rochd, Annaba 23000, Algeria; (N.D.); (S.N.); (M.D.)
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna 05000, Algeria;
| | - Sabrina Nedjai
- Laboratoire de Microbiologie, CHU Ibn Rochd, Annaba 23000, Algeria; (N.D.); (S.N.); (M.D.)
| | - Widad Chelaghma
- Laboratoire de Microbiologie Appliquée à l’Agroalimentaire au Biomédical et à l’Environnement, Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l’Univers, Université Abou Bekr Belkaid, Tlemcen 13000, Algeria;
| | - Djamila Gameci-Kirane
- Département de Biochimie, Faculté des Sciences, Université Badji Mokhtar Annaba, Annaba 23000, Algeria; (A.A.); (D.G.-K.)
| | - Mazouz Dekhil
- Laboratoire de Microbiologie, CHU Ibn Rochd, Annaba 23000, Algeria; (N.D.); (S.N.); (M.D.)
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France;
- Correspondence: ; Tel.: +33-466-683-202
| | - Alix Pantel
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France;
| |
Collapse
|
20
|
Sallem N, Hammami A, Mnif B. Trends in human intestinal carriage of ESBL- and carbapenemase-producing Enterobacterales among food handlers in Tunisia: emergence of C1-M27-ST131 subclades, blaOXA-48 and blaNDM. J Antimicrob Chemother 2022; 77:2142-2152. [PMID: 35640660 DOI: 10.1093/jac/dkac167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/06/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES To determine the prevalence of community intestinal carriage of ESBL-producing Enterobacterales (ESBL-E), acquired-AmpC-producing Enterobacterales (aAmpC-E) and carbapenemase-producing Enterobacterales (CPE) in Tunisia. METHODS From November 2012 to September 2017, stool samples from food handlers in Sfax, Tunisia, were screened for ESBL-E, AmpC-E and CPE using antibiotic-containing media. The genes encoding these β-lactamases were characterized by PCR, sequencing, and transfer assays. ST131 clonal groups were detected by PCR and characterized for antibiotic resistance, virulence genes and PFGE patterns. RESULTS Of 2135 participants, ESBL-E, aAmpC-E, and CPE carriage were detected in 419 (19.63%), 35 (1.63%) and 7 (0.33%) participants, respectively. CTX-M-15 (60%), CTX-M-1 (16.8%) and CTX-M-27 (12.8%) were the most common ESBL determinants. The ESBL-E carriage was significantly higher in summer (33%) and autumn (25.7%) than in winter (12.1%) and spring (11.4%). ST131 was detected in 50 (13.2%) of the 378 ESBL-producing Escherichia coli isolates; most of them (35; 70%) belonged to subclade C1 (cluster C1-M27: 23 isolates, 46%; cluster C1-non-M27: 12 isolates, 24%) followed by those belonging to subclade C2 (11; 22%). Although subclade C2 isolates, all harbouring blaCTX-M-15, had the highest resistance rates and virulence factor and addiction system scores, the subclade C1 isolates, mainly harbouring blaCTX-M-27 (94%), were predominant since 2015. The most frequently detected carbapenemase-encoding gene was blaOXA-48-like (85%) and acquired AmpC-encoding genes were blaDHA-1 (54%) and blaCMY-2 (46%). CONCLUSIONS This is the first large Tunisian study to reveal a high faecal ESBL carriage rate, a low CPE carriage rate, and the predominance of CTX-M-27-producing subclade C1 among faecal ESBL-ST131 isolates in the Tunisian community.
Collapse
Affiliation(s)
- Nesrine Sallem
- Habib Bourguiba University Hospital, Research Laboratory Microorganisms and Human Disease, University of Sfax, Route El Ain Km 0.5, 3029, Sfax, Tunisia
| | - Adnene Hammami
- Habib Bourguiba University Hospital, Research Laboratory Microorganisms and Human Disease, University of Sfax, Route El Ain Km 0.5, 3029, Sfax, Tunisia.,Faculty of Medicine Sfax, Laboratory of Microbiology, University of Sfax, Avenue Majida Boulila, 3027, Sfax, Tunisia
| | - Basma Mnif
- Habib Bourguiba University Hospital, Research Laboratory Microorganisms and Human Disease, University of Sfax, Route El Ain Km 0.5, 3029, Sfax, Tunisia.,Faculty of Medicine Sfax, Laboratory of Microbiology, University of Sfax, Avenue Majida Boulila, 3027, Sfax, Tunisia
| |
Collapse
|
21
|
Teixeira P, Pinto N, Henriques I, Tacão M. KPC-3-, GES-5-, and VIM-1-Producing Enterobacterales Isolated from Urban Ponds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105848. [PMID: 35627386 PMCID: PMC9141432 DOI: 10.3390/ijerph19105848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
Carbapenems are antibiotics of pivotal importance in human medicine, the efficacy of which is threatened by the increasing prevalence of carbapenem-resistant Enterobacterales (CRE). Urban ponds may be reservoirs of CRE, although this hypothesis has been poorly explored. We assessed the proportion of CRE in urban ponds over a one-year period and retrieved 23 isolates. These were submitted to BOX-PCR, PFGE, 16S rDNA sequencing, antibiotic susceptibility tests, detection of carbapenemase-encoding genes, and conjugation assays. Isolates were affiliated with Klebsiella (n = 1), Raoultella (n = 11), Citrobacter (n = 8), and Enterobacter (n = 3). Carbapenemase-encoding genes were detected in 21 isolates: blaKPC (n = 20), blaGES-5 (n = 6), and blaVIM (n = 1), with 7 isolates carrying two carbapenemase genes. Clonal isolates were collected from different ponds and in different campaigns. Citrobacter F6, Raoultella N9, and Enterobacter N10 were predicted as pathogens from whole-genome sequence analysis, which also revealed the presence of several resistance genes and mobile genetic elements. We found that blaKPC-3 was located on Tn4401b (Citrobacter F6 and Enterobacter N10) or Tn4401d (Raoultella N9). The former was part of an IncFIA-FII pBK30683-like plasmid. In addition, blaGES-5 was in a class 3 integron, either chromosomal (Raoultella N9) or plasmidic (Enterobacter N10). Our findings confirmed the role of urban ponds as reservoirs and dispersal sites for CRE.
Collapse
Affiliation(s)
- Pedro Teixeira
- CESAM (Centre for Marine and Environmental Studies), University of Aveiro, 3810-193 Aveiro, Portugal; (P.T.); (M.T.)
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Nuno Pinto
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Isabel Henriques
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
- Correspondence:
| | - Marta Tacão
- CESAM (Centre for Marine and Environmental Studies), University of Aveiro, 3810-193 Aveiro, Portugal; (P.T.); (M.T.)
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
22
|
Nanofiltration as an Efficient Tertiary Wastewater Treatment: Elimination of Total Bacteria and Antibiotic Resistance Genes from the Discharged Effluent of a Full-Scale Wastewater Treatment Plant. Antibiotics (Basel) 2022; 11:antibiotics11050630. [PMID: 35625274 PMCID: PMC9137456 DOI: 10.3390/antibiotics11050630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Wastewater reuse for agricultural irrigation still raises important public health issues regarding its safety, due to the increasing presence of emerging contaminants, such as antibiotic resistant bacteria and genes, in the treated effluents. In this paper, the potential for a commercial Desal 5 DK nanofiltration membrane to be used as a tertiary treatment in the wastewater treatment plants for a more effective elimination of these pollutants from the produced effluents was assessed on laboratory scale, using a stainless steel cross-flow cell. The obtained results showed high concentrations of total bacteria and target carbapenem and (fluoro)quinolone resistance genes (blaKPC, blaOXA-48, blaNDM, blaIMP, blaVIM, qnrA, qnrB and qnrS) not only in the discharged, but also in the reused, effluent samples, which suggests that their use may not be entirely safe. Nevertheless, the applied nanofiltration treatment achieved removal rates superior to 98% for the total bacteria and 99.99% for all the target resistance genes present in both DNA and extracellular DNA fractions, with no significant differences for these microbiological parameters between the nanofiltered and the control tap water samples. Although additional studies are still needed to fully optimize the entire process, the use of nanofiltration membranes seems to be a promising solution to substantially increase the quality of the treated wastewater effluents.
Collapse
|
23
|
Algarni S, Ricke SC, Foley SL, Han J. The Dynamics of the Antimicrobial Resistance Mobilome of Salmonella enterica and Related Enteric Bacteria. Front Microbiol 2022; 13:859854. [PMID: 35432284 PMCID: PMC9008345 DOI: 10.3389/fmicb.2022.859854] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
The foodborne pathogen Salmonella enterica is considered a global public health risk. Salmonella enterica isolates can develop resistance to several antimicrobial drugs due to the rapid spread of antimicrobial resistance (AMR) genes, thus increasing the impact on hospitalization and treatment costs, as well as the healthcare system. Mobile genetic elements (MGEs) play key roles in the dissemination of AMR genes in S. enterica isolates. Multiple phenotypic and molecular techniques have been utilized to better understand the biology and epidemiology of plasmids including DNA sequence analyses, whole genome sequencing (WGS), incompatibility typing, and conjugation studies of plasmids from S. enterica and related species. Focusing on the dynamics of AMR genes is critical for identification and verification of emerging multidrug resistance. The aim of this review is to highlight the updated knowledge of AMR genes in the mobilome of Salmonella and related enteric bacteria. The mobilome is a term defined as all MGEs, including plasmids, transposons, insertion sequences (ISs), gene cassettes, integrons, and resistance islands, that contribute to the potential spread of genes in an organism, including S. enterica isolates and related species, which are the focus of this review.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Steven L. Foley
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Jing Han
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- *Correspondence: Jing Han,
| |
Collapse
|
24
|
Plasmid-Mediated Quinolone Resistance (PMQR) in Two Clinical Strains of Salmonella enterica Serovar Corvallis. Microorganisms 2022; 10:microorganisms10030579. [PMID: 35336154 PMCID: PMC8953408 DOI: 10.3390/microorganisms10030579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Non-typhoid serovars of Salmonella enterica are one of the main causes of bacterial food-borne infections worldwide. For the treatment of severe cases of salmonellosis in adults, fluoroquinolones are amongst the drugs of choice. They are categorized by the World Health Organization (WHO) as “critically important with highest priority in human medicine”. In the present study, two clinical S. enterica serovar Corvallis isolates (HUA 5/18 and HUA 6/18) from a Spanish hospital, selected on the basis of fluoroquinolone resistance, were characterized. The MICs of ciprofloxacin, determined by E-test, were 0.5 and 0.75 µg/mL for HUA 5/18 and HUA 6/18, respectively, and both were also resistant to pefloxacin but susceptible to nalidixic acid. Whole genome sequencing (WGS) of the isolates was performed with Illumina platform, and different bioinformatics tools were used for sequence analysis. The two isolates belonged to ST1541, and had the Thr57Ser substitution in the ParC protein which is also found in ciprofloxacin susceptible isolates. However, they harbored identical ColE plasmids of 10 kb carrying the qnrS1 gene. In these plasmids, the gene was flanked by defective versions of IS2-like and ISKra4-like insertion sequences. HUA 5/18 and HUA 6/18 were also phenotypically resistant to streptomycin, sulfonamides and tetracycline, with the responsible genes: strA, strB, sul2 and tet(A) genes, being located on a IncQ1 plasmid. ColE plasmids with the qnrS1 gene are widely spread among multiple serovars of S. enterica from different samples and countries. These mobilizable plasmids are playing an important role in the worldwide spread of qnrS1. Thus, their detection in hospitals is a cause of concern which deserves further attention.
Collapse
|
25
|
Ben Sallem R, Laribi B, Arfaoui A, Ben Khelifa Melki S, Ouzari I, Ben Slama K, Naas T, Klibi N. Co-occurrence of genes encoding carbapenemase, ESBL, pAmpC, and Non-β-Lactam resistance among Klebsiella pneumonia and E. coli clinical isolates in Tunisia. Lett Appl Microbiol 2022; 74:729-740. [PMID: 35076956 DOI: 10.1111/lam.13658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to investigate the molecular mechanisms of carbapenem and colistin resistance in K. pneumoniae and E. coli isolates obtained from hospitalized patients in Carthagene International Hospital of Tunis. A total of 25 K. pneumoniae and 2 E. coli clinical isolates with reduced susceptibility to carbapenems were recovered. Susceptibility testing and phenotypic screening tests were carried out. ESBL, AmpC, carbapenemase, and other antibiotic resistance genes were sought by PCR-sequencing. The presence of plasmid-mediated colistin resistance genes (mcr-1-8) was examined by PCR and the nucleotide sequence of the mgrB gene was determined. The analysis of plasmid content was performed by PCR-Based Replicon Typing (PBRT). The clonality of isolates was assessed by PFGE and multilocus sequence typing (MLST). All of the isolates produced carbapenemase activity. They showed a great variation in the distribution of ESBL, AmpC, carbapenemase, and other plasmid-mediated resistance determinants. K. pneumoniae isolates carried blaNDM-1 (n=11), blaOXA-48 (n=11), blaNDM-1 + blaOXA-48 (n=1), blaNDM-1 + blaVIM-1 (n=1), blaOXA-204 (n=1), along with blaCTX-M , blaOXA , blaTEM , blaCMY , blaDHA and blaSHV genes variants on conjugative plasmid of IncL/M, IncR, IncFIIK , IncFIB, and IncHI1 types. Three sequence types ST101, ST307, and ST15 were identified. The mgrB alteration g109a (G37S) was detected in a single colistin-resistant, NDM-1 and OXA-48-coproducing K. pneumoniae isolate. The two E. coli isolates belonged to ST95, co-produced NDM-1 and CTX-M-15, and harbored plasmid of IncFII and IncFIB types. To our knowledge, this is the first report in Tunisia of NDM-1, OXA-48, and CTX-M-15 coexistence in colistin-resistant K. pneumoniae ST15.
Collapse
Affiliation(s)
- Rym Ben Sallem
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Bochra Laribi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | | | - Imen Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Karim Ben Slama
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Thierry Naas
- Bacteriology-Hygiene unit, Bicêtre Hospital, Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
26
|
Sugita K, Aoki K, Komori K, Nagasawa T, Ishii Y, Iwata S, Tateda K. Molecular Analysis of blaKPC-2-Harboring Plasmids: Tn 4401a Interplasmid Transposition and Tn 4401a-Carrying ColRNAI Plasmid Mobilization from Klebsiella pneumoniae to Citrobacter europaeus and Morganella morganii in a Single Patient. mSphere 2021; 6:e0085021. [PMID: 34730375 PMCID: PMC8565517 DOI: 10.1128/msphere.00850-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
The spread of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales is a public health concern. KPC-encoding blaKPC is predominantly spread by strains of a particular phylogenetic lineage, clonal group 258, but can also be spread by horizontal transfer of blaKPC-carrying plasmids. Here, we report the transfer of a blaKPC-2-harboring plasmid via mobilization from K. pneumoniae to Citrobacter freundii complex and Morganella morganii strains in a single patient. We performed draft whole-genome sequencing to analyze 20 carbapenemase-producing Enterobacterales strains (15 of K. pneumoniae, two of C. freundii complex, and three of M. morganii) and all K. pneumoniae strains using MiSeq and/or MinION isolated from a patient who was hospitalized in New York and Montreal before returning to Japan. All strains harbored blaKPC-2-containing Tn4401a. The 15 K. pneumoniae strains each belonged to sequence type 258 and harbored a Tn4401a-carrying multireplicon-type plasmid, IncN and IncR (IncN+R). Three of these K. pneumoniae strains also possessed a Tn4401a-carrying ColRNAI plasmid, suggesting that Tn4401a underwent interplasmid transposition. Of these three ColRNAI plasmids, two and one were identical to plasmids harbored by two Citrobacter europaeus and three M. morganii strains, respectively. The Tn4401a-carrying ColRNAI plasmids were each 23,753 bp long and incapable of conjugal transfer via their own genes alone, but they mobilized during the conjugal transfer of Tn4401a-carrying IncN+R plasmids in K. pneumoniae. Interplasmid transposition of Tn4401a from an IncN+R plasmid to a ColRNAI plasmid in K. pneumoniae and mobilization of Tn4401a-carrying ColRNAI plasmids contributed to the acquisition of blaKPC-2 in C. europaeus and M. morganii. IMPORTANCE Plasmid transfer plays an important role in the interspecies spread of carbapenemase genes, including the Klebsiella pneumoniae carbapenemase (KPC)-coding gene, blaKPC. We conducted whole-genome sequencing (WGS) analysis and transmission experiments to analyze blaKPC-2-carrying mobile genetic elements (MGEs) between the blaKPC-2-harboring K. pneumoniae, Citrobacter europaeus, and Morganella morganii strains isolated from a single patient. blaKPC-2 was contained within an MGE, Tn4401a. WGS of blaKPC-2-carrying K. pneumoniae, C. europaeus, and M. morganii strains isolated from one patient revealed that Tn4401a-carrying ColRNAI plasmids were generated by plasmid-to-plasmid transfer of Tn4401a from a multireplicon-type IncN and IncR (IncN+R) plasmid in K. pneumoniae strains. Tn4401a-carrying ColRNAI plasmids were incapable of conjugal transfer in C. europaeus and M. morganii but mobilized from K. pneumoniae to a recipient Escherichia coli strain during the conjugal transfer of Tn4401a-carrying IncN+R plasmid. Therefore, Tn4401a-carrying ColRNAI plasmids contributed to the acquisition of blaKPC-2 in C. europaeus and M. morganii.
Collapse
Affiliation(s)
- Kayoko Sugita
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kohji Komori
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Nagasawa
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Satoshi Iwata
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
- Department of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Lee S, Park N, Yun S, Hur E, Song J, Lee H, Kim Y, Ryu S. Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019. Gut Pathog 2021; 13:35. [PMID: 34074336 PMCID: PMC8167944 DOI: 10.1186/s13099-021-00431-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Non-typhoidal salmonellosis remains a pressing public health problem worldwide. Quinolones, particularly fluoroquinolones, are widely used to treat various infections, including non-typhoidal salmonellosis, which can be a serious illness. The emergence of fluoroquinolone-resistant Salmonella has resulted in treatment failure and high mortality rates. In this study, we estimated the presence of plasmid-mediated quinolone resistance (PMQR) genes in Salmonella enterica isolated from human salmonellosis patients in South Korea from 2016 to 2019. We evaluated the association of these genes with fluoroquinolone susceptibility. Antimicrobial susceptibility tests for Salmonella isolates were performed using the Vitek II system, and the minimum inhibitory concentrations (MIC) of ciprofloxacin and levofloxacin were determined using the E-test method. Plasmid-mediated quinolone resistance (PMQR) genes were detected by PCR amplification and quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes were analyzed following Sanger sequencing of the PCR products. Thirty-four Salmonella strains with reduced susceptibility to fluoroquinolones (ciprofloxacin MIC ≥ 0.125 µg/mL and levofloxacin MIC ≥ 0.25 µg/mL) were selected from 208 human clinical Salmonella isolates. Among them, 22 Salmonella strains harbored one PMQR gene (qnrA, qnrB, or qnrS), and three Salmonella strains carried two PMQR genes (qnrS and aac(6′)-Ib-cr or qnrA and qnrB). qnrS was the most common PMQR gene. Serotyping revealed that Salmonella 4,[5]12:i:- (32.4%, 11/34) and Salmonella Typhimurium (29.4%, 10/34) were the two most predominant serovars, and Multi-locus sequence typing (MLST) showed that ST19 and ST34 were the most frequent sequence types. In conclusion, qnr gene-positive Salmonella 4,[5],12:i:- and Salmonella Typhimurium were the main serovars responsible for reduced susceptibility to fluoroquinolones. Therefore, our findings suggest that PMQR-positive Salmonella strains, which can be isolated from various samples including human, food, and the environment, should be carefully monitored.
Collapse
Affiliation(s)
- Sohyun Lee
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Nanjoo Park
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea.,Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea
| | - Sujung Yun
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Eunseon Hur
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Jiwon Song
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Hanna Lee
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Yongsug Kim
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
28
|
Lu X, Zeng M, Zhang N, Wang M, Gu B, Li J, Jin H, Xiao W, Li Z, Zhao H, Zhou H, Li Z, Xu J, Xu X, Kan B. Prevalence of 16S rRNA Methylation Enzyme Gene armA in Salmonella From Outpatients and Food. Front Microbiol 2021; 12:663210. [PMID: 34113329 PMCID: PMC8186500 DOI: 10.3389/fmicb.2021.663210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
Salmonella is the primary cause of community-acquired foodborne infections, so its resistance to antimicrobials, such as aminoglycosides, is a public health issue. Of concern, aminoglycoside resistance in Salmonella is increasing rapidly. Here, we performed a retrospective study evaluating the prevalence of Salmonella harboring armA-mediated aminoglycoside resistance in community-acquired infections and in food or environmental sources. The prevalence rates of armA-harboring Salmonella strains were 1.1/1,000 (13/12,095) and 8.7/1,000 (32/3,687) in outpatient and food/environmental isolates, respectively. All the armA-harboring Salmonella strains were resistant to multiple drugs, including fluoroquinolone and/or extended-spectrum cephalosporins, and most (34/45) belonged to serovar Indiana. The armA gene of these strains were all carried on plasmids, which spanned five replicon types with IncHI2 being the dominant plasmid type. All the armA-carrying plasmids were transferable into Escherichia coli and Acinetobacter baumannii recipients. The conjugation experiment results revealed that the armA-harboring S. Indiana strains had a relatively higher ability to acquire armA-carrying plasmids. The low similarity of their pulsed field gel electrophoresis patterns indicates that the armA-harboring Salmonella strains were unlikely to have originated from a single epidemic clone, suggesting broad armA spread. Furthermore, the genetic backgrounds of armA-harboring Salmonella strains isolated from outpatients exhibited higher similarity to those isolated from poultry than to those isolated from swine, suggesting that poultry consumption maybe an infection source. These findings highlight an urgent need to monitor the prevalence and transmission of armA-harboring Salmonella, especially S. Indiana, to better understand the potential public health threat and prevent the further spread of these strains.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Mei Zeng
- Children's Hospital of Fudan University, Shanghai, China
| | - Ning Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Baoke Gu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiaqi Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Huiming Jin
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Wenjia Xiao
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhe Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jialiang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
29
|
Kurittu P, Khakipoor B, Brouwer MS, Heikinheimo A. Plasmids conferring resistance to extended-spectrum beta-lactamases including a rare IncN+IncR multireplicon carrying blaCTX-M-1 in Escherichia coli recovered from migrating barnacle geese ( Branta leucopsis). OPEN RESEARCH EUROPE 2021; 1:46. [PMID: 37645149 PMCID: PMC10446048 DOI: 10.12688/openreseurope.13529.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 08/31/2023]
Abstract
Background: Increasing antimicrobial resistance (AMR) is a global threat and wild migratory birds may act as mediators of resistant bacteria across country borders. Our objective was to study extended-spectrum beta-lactamase (ESBL) and plasmid-encoded AmpC (pAmpC) producing Escherichia coli in barnacle geese using whole genome sequencing (WGS) and to identify plasmids harboring bla genes. Methods: Barnacle geese feces (n=200) were collected during fall 2017 and spring 2018 from an urban area in Helsinki, Finland. ESBL/AmpC-producing E. coli were recovered from nine samples (4.5%) and isolates were subjected to WGS on both short- and long-read sequencers, enabling hybrid assembly and determination of the genomic location of bla genes. Results: A rare multireplicon IncN+IncR was recovered from one isolate carrying bla CTX-M-1 in addition to aadA2b, lnu(F), and qnrS1. Moreover, rarely detected IncY plasmids in two isolates were found to harbor multiple resistance genes in addition to the human-associated bla CTX-M-15. Poultry-associated bla CMY-2 was identified from the widely distributed IncI1 and IncK plasmids from four different isolates. One isolate harbored an IncI1 plasmid with bla CTX-M-1 and flor. A chromosomal point mutation in the AmpC promoter was identified in one of the isolates. WGS analysis showed isolates carried multiple resistance and virulence genes and harbored multiple different plasmid replicons in addition to bla-carrying plasmids. Conclusions: Our findings suggest that wild migratory birds serve as a limited source of ESBL/AmpC-producing E. coli and may act as disseminators of the epidemic plasmid types IncI1 and IncK but also rarely detected plasmid types carrying multidrug resistance. Human and livestock-associated ESBL enzyme types were recovered from samples, suggesting a potential for interspecies transmission. WGS offers a thorough method for studying AMR from different sources and should be implemented more widely in the future for AMR surveillance and detection. Understanding plasmid epidemiology is vital for efforts to mitigate global AMR spread.
Collapse
Affiliation(s)
- Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Banafsheh Khakipoor
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Laboratory and Research Division, Microbiology Unit, Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
30
|
Wang M, Fan Y, Liu P, Liu Y, Zhang J, Jiang Y, Zhou C, Yang L, Wang C, Qian C, Yuan C, Zhang S, Zhang X, Yin Z, Mu H, Du Y. Genomic insights into evolution of pathogenicity and resistance of multidrug-resistant Raoultella ornithinolytica WM1. Ann N Y Acad Sci 2021; 1497:74-90. [PMID: 33786847 DOI: 10.1111/nyas.14595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Raoultella ornithinolytica is a poorly understood opportunistic pathogen, and the underlying mechanisms of its multidrug resistance and pathogenicity have not yet been comprehensively investigated. The multidrug-resistant (MDR) strain WM1 was isolated from the blood of a male patient in Tianjin, China, in 2018. Here, we describe the complete genome and provide a genomic analysis of R. ornithinolytica WM1. The isolate was resistant to all tested antimicrobials except amikacin, tobramycin, and tigecycline. Two plasmids, pWM1-1 (IncHI5) and pWM1-2 (IncR), carried multidrug-resistance regions. A large antimicrobial resistance island region resided on pWM1-1 and exhibited mosaic structures resulting from the acquisition of complex integrations of variable regions, including genes conferring resistance to multiple classes of antimicrobials. Moreover, WM1 possessed virulence-related elements that encode several virulence factors, including type I fimbriae, Escherichia coli common pilus, type II and VI secretion systems, yersiniabactin, enterobactin, and surface polysaccharide, indicating pathogenic potential. Furthermore, the core genome phylogeny and pan-genome analyses revealed extensive genetic diversity. Our analysis indicates the need for stringent infection control, antimicrobial stewardship, periodic resistance monitoring, and rational medication to address potential threats posed by MDR R. ornithinolytica strains.
Collapse
Affiliation(s)
- Meng Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yu Fan
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300192, China
| | - Ping Liu
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yehua Liu
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jianlei Zhang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yan Jiang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Chunlei Zhou
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lei Yang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Ce Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Chengqian Qian
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300192, China
| | - Chao Yuan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Si Zhang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300192, China
| | - Xiaohang Zhang
- Novo Nordisk (China) Pharmaceuticals Co. Ltd, Tianjin, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
31
|
Darphorn TS, Bel K, Koenders-van Sint Anneland BB, Brul S, Ter Kuile BH. Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat. Sci Rep 2021; 11:2136. [PMID: 33483623 PMCID: PMC7822866 DOI: 10.1038/s41598-021-81683-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Resistance plasmids play a crucial role in the transfer of antimicrobial resistance from the veterinary sector to human healthcare. In this study plasmids from foodborne Escherichia coli isolates with a known (ES)BL or tetracycline resistance were sequenced entirely with short- and long-read technologies to obtain insight into their composition and to identify driving factors for spreading. Resistant foodborne E. coli isolates often contained several plasmids coding for resistance to various antimicrobials. Most plasmids were large and contained multiple resistance genes in addition to the selected resistance gene. The majority of plasmids belonged to the IncI, IncF and IncX incompatibility groups. Conserved and variable regions could be distinguished in each of the plasmid groups. Clusters containing resistance genes were located in the variable regions. Tetracycline and (extended spectrum) beta-lactamase resistance genes were each situated in separate clusters, but sulphonamide, macrolide and aminoglycoside formed one cluster and lincosamide and aminoglycoside another. In most plasmids, addiction systems were found to maintain presence in the cell.
Collapse
Affiliation(s)
- Tania S. Darphorn
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Keshia Bel
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Wageningen Food Safety Research, Wageningen University and Research, Postbus 230, 6700 AE Wageningen, The Netherlands
| | - Belinda B. Koenders-van Sint Anneland
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H. Ter Kuile
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands ,grid.435742.30000 0001 0726 7822Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands
| |
Collapse
|
32
|
Abstract
Plasmids identification and classification is an essential parameter in current bacterial typing. The most widely used PCR-based methods are the PCR-based replicon typing (PBRT) and the degenerate primer MOB typing (DPMT). PBRT targets the replicons on the plasmids and DPMT targets the relaxase genes. A finer resolution of phylogenetic relatedness can be obtained by plasmid multiLocus sequence typing available for the major plasmid types occurring in Enterobacteriaceae.
Collapse
|
33
|
Characterization of an IncR Plasmid with Two Copies of IS CR-Linked qnrB6 from ST 968 Klebsiella pneumoniae. Int J Genomics 2020; 2020:3484328. [PMID: 33299848 PMCID: PMC7707992 DOI: 10.1155/2020/3484328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
To characterize the molecular structure of IncR plasmid-related sequences, comparative genomic analysis was conducted using 261 IncR plasmid backbone-related sequences. Among the sequences, 257 were IncR plasmids including the multidrug-resistance IncR plasmid pR50-74 from Klebsiella pneumoniae strain R50 of this work, and the other four were from bacterial chromosomes. The IncR plasmids were derived from different bacterial genera or species, mainly Klebsiella pneumoniae (70.82%, 182/257), Escherichia coli (11.28%, 29/257), Enterobacter cloacae (7.00%, 18/257), and Citrobacter freundii (3.50%, 9/257). The bacterial chromosomes carrying IncR plasmid backbone sequences were derived from Proteus mirabilis AOUC-001 and Klebsiella pneumoniae KPN1344, among others. The IncR backbone sequence of P. mirabilis AOUC-001 chromosome shows the highest identity with that of pR50-74. Complex class 1 integrons carrying various copies of ISCR1-sdr-qnrB6-△qacE/sul1 (ISCR1-linked qnrB6 unit) were identified in IncR plasmids. In addition to two consecutive copies of qnrB6-qacE-sul1, the other resistance genes encoded on pR50-74 are all related to mobile genetic elements, such as IS1006, IS26, and the class 1 integron. This study provides a clear understanding of the mobility and plasticity of the IncR plasmid backbone sequence and emphasizes the important role of ISCR in the recruitment of multicopy resistance genes.
Collapse
|
34
|
McMillan EA, Jackson CR, Frye JG. Transferable Plasmids of Salmonella enterica Associated With Antibiotic Resistance Genes. Front Microbiol 2020; 11:562181. [PMID: 33133037 PMCID: PMC7578388 DOI: 10.3389/fmicb.2020.562181] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica is a common foodborne illness in the United States and globally. An increasing number of Salmonella infections are resistant to antibiotics, and many of the genes responsible for those resistances are carried by plasmids. Plasmids are important mediators of horizontal gene exchange, which could potentially increase the spread of antibiotic resistance (AR) genes. Twenty-eight different incompatibility groups of plasmids have been described in Enterobacteriaceae. Incompatibility groups differ in their accessory gene content, replication mechanisms, and their associations with Salmonella serotypes and animal sources. Plasmids also differ in their ability to conjugate or be mobilized, essential genes, and conditions required for transfer. It is important to understand the differences in gene content and transfer mechanisms to accurately determine the impact of plasmids on the dissemination and persistence of antibiotic resistance genes. This review will cover the most common plasmid incompatibility groups present in S. enterica with a focus on the transfer mechanisms and associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Elizabeth A McMillan
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
35
|
Antibiotic Resistance and Mobile Genetic Elements in Extensively Drug-Resistant Klebsiella pneumoniae Sequence Type 147 Recovered from Germany. Antibiotics (Basel) 2020; 9:antibiotics9100675. [PMID: 33028048 PMCID: PMC7600919 DOI: 10.3390/antibiotics9100675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Mobile genetic elements (MGEs), especially multidrug-resistance plasmids, are major vehicles for the dissemination of antimicrobial resistance determinants. Herein, we analyse the MGEs in three extensively drug-resistant (XDR) Klebsiella pneumoniae isolates from Germany. Whole genome sequencing (WGS) is performed using Illumina and MinION platforms followed by core-genome multi-locus sequence typing (MLST). The plasmid content is analysed by conjugation, S1-pulsed-field gel electrophoresis (S1-PFGE) and Southern blot experiments. The K. pneumoniae isolates belong to the international high-risk clone ST147 and form a cluster of closely related isolates. They harbour the blaOXA-181 carbapenemase on a ColKP3 plasmid, and 12 antibiotic resistance determinants on an multidrug-resistant (MDR) IncR plasmid with a recombinogenic nature and encoding a large number of insertion elements. The IncR plasmids within the three isolates share a high degree of homology, but present also genetic variations, such as inversion or deletion of genetic regions in close proximity to MGEs. In addition, six plasmids not harbouring any antibiotic resistance determinants are present in each isolate. Our study indicates that genetic variations can be observed within a cluster of closely related isolates, due to the dynamic nature of MGEs. The mobilome of the K. pneumoniae isolates combined with the emergence of the XDR ST147 high-risk clone have the potential to become a major challenge for global healthcare.
Collapse
|
36
|
Baraniak A, Machulska M, Żabicka D, Literacka E, Izdebski R, Urbanowicz P, Bojarska K, Herda M, Kozińska A, Hryniewicz W, Gniadkowski M. Towards endemicity: large-scale expansion of the NDM-1-producing Klebsiella pneumoniae ST11 lineage in Poland, 2015-16. J Antimicrob Chemother 2020; 74:3199-3204. [PMID: 31406993 DOI: 10.1093/jac/dkz315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES In 2015 and 2016 Poland recorded rapid proliferation of New Delhi MBL (NDM)-producing Enterobacterales, with at least 470 and 1780 cases, respectively. We addressed the roles of the Klebsiella pneumoniae ST11 NDM-1 outbreak genotype, already spreading in 2012-14, and of newly imported organisms in this increase. METHODS The study included 2136 NDM-positive isolates identified between April 2015 and December 2016, following transfer of patients with K. pneumoniae ST147 NDM-1 from Tunisia to Warsaw in March 2015. The isolates were screened by PCR mapping for variants of blaNDM-carrying Tn125-like elements. Selected isolates were typed by PFGE and MLST. NDM-encoding plasmids were analysed by nuclease S1/hybridization, transfer assays, PCR-based replicon typing and PCR mapping. RESULTS The organisms were mainly K. pneumoniae containing the Tn125A variant of the ST11 epidemic lineage (n = 2094; ∼98%). Their representatives were of the outbreak pulsotype and ST11, and produced NDM-1, encoded by specific IncFII (pKPX-1/pB-3002cz)-like plasmids. The isolates were recovered in 145 healthcare centres in 13/16 administrative regions, predominantly the Warsaw area. The 'Tunisian' genotype K. pneumoniae ST147 NDM-1 Tn125F comprised 18 isolates (0.8%) from eight institutions. The remaining 24 isolates, mostly K. pneumoniae and Escherichia coli of diverse STs, produced NDM-1 or NDM-5 specified by various Tn125 derivatives and plasmids. CONCLUSIONS The K. pneumoniae ST11 NDM-1 outbreak has dramatically expanded in Poland since 2012, which may bring about a countrywide endemic situation in the near future. In addition, the so-far limited K. pneumoniae ST147 NDM-1 outbreak plus multiple NDM imports from different countries were observed in 2015-16.
Collapse
Affiliation(s)
- A Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - M Machulska
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - E Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - K Bojarska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - M Herda
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - A Kozińska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | | |
Collapse
|
37
|
Ma Y, Xu X, Gao Y, Zhan Z, Xu C, Qu X, Chen Z, Bai J, Liao M, Zhang J. Antimicrobial resistance and molecular characterization of Salmonella enterica serovar Corvallis isolated from human patients and animal source foods in China. Int J Food Microbiol 2020; 335:108859. [PMID: 32947147 DOI: 10.1016/j.ijfoodmicro.2020.108859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/24/2020] [Accepted: 08/30/2020] [Indexed: 12/29/2022]
Abstract
In this study, 205 Salmonella enterica serovar Corvallis strains were obtained from humans and foods from Guangdong, Guangxi, and Shanghai in China from 2009 to 2017 to assess drug resistance and molecular epidemiology. These isolates displayed high rates of resistance to sulfisoxazole (94.15%) and tetracycline (77.56%). Surprisingly, the rate of resistance to ciprofloxacin reached 21.46%. Moreover, 63.9% of the strains displayed multidrug resistance. Detection of quinolone genes showed that 97.56% of the strains had single mutations (T57S) in parC. The plasmid-mediated quinolone resistance (PMQR) genes qnrS, aac(6')-Ib-cr, and qnrB, were also detected. The extended spectrum β-lactamase (ESBLS) gene that was most common among the isolates was blaTEM-1 (18.05%). These S. Corvallis isolates are the first to date, that have been reported to possess blaCTX-M-55 or blaNDM-5. Additionally, 95.61% of isolates were biofilm producers. The streptomycin resistance rate was higher in strong biofilm producers (87.50%) than in moderate (37.93%) and weak (26.49%) biofilm producers. Pulsed-field gel electrophoresis (PFGE) showed that some strains from different sources had the same genotype. These isolates may be transmitted to humans through food and therefore the monitoring of these isolates should be strengthened in China.
Collapse
Affiliation(s)
- Yeben Ma
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Lingnan Guangdong Laboratory of Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Gao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Lingnan Guangdong Laboratory of Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zeqiang Zhan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Lingnan Guangdong Laboratory of Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Lingnan Guangdong Laboratory of Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Lingnan Guangdong Laboratory of Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhengquan Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Lingnan Guangdong Laboratory of Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Bai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Lingnan Guangdong Laboratory of Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Lingnan Guangdong Laboratory of Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Lingnan Guangdong Laboratory of Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
38
|
High Level of Resistance to Antimicrobials and Heavy Metals in Multidrug-Resistant Pseudomonas sp. Isolated from Water Sources. Curr Microbiol 2020; 77:2694-2701. [DOI: 10.1007/s00284-020-02052-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/23/2020] [Indexed: 01/11/2023]
|
39
|
Dos Santos LDR, Furlan JPR, Ramos MS, Gallo IFL, de Freitas LVP, Stehling EG. Co-occurrence of mcr-1, mcr-3, mcr-7 and clinically relevant antimicrobial resistance genes in environmental and fecal samples. Arch Microbiol 2020; 202:1795-1800. [PMID: 32382766 DOI: 10.1007/s00203-020-01890-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Multidrug-resistant bacteria harboring different antimicrobial resistance genes (ARGs) have been detected worldwide. The association of plasmid-mediated colistin resistance genes (mcr-like) and other ARGs in bacteria isolated from animals is a huge concern worldwide. Therefore, this study aimed to investigate the presence of mcr-like genes and clinically relevant ARGs as well as plasmids in samples from a zoo. Fecal and environmental (soil and water) samples were collected from a zoo and the DNA of cultivable aerobic bacteria was extracted. ARGs were screened by PCR and the plasmids were detected using the PCR-based replicon typing method. A total of 74 amplicons from 27 ARGs [mcr-1, mcr-3, mcr-7.1, blaCTX-M-Gp1, blaCTX-M-Gp2, blaCTX-M-Gp9, blaVEB, blaPER, blaCMY, tetA, tetB, tetC, aadA, aac(6')-Ib, aph(3')-Ia, ant(2'')-Ia, qnrA, qnrB, qnrS, oqxA, oqxB, sul1, sul2, sul3, cmlA, mefAE, ermB] and 21 amplicons from eight plasmid families (IncY, ColE-like, IncFrepB, IncFIA, IncFIB, IncHI1, IncFIC, IncP) were detected. These findings reinforce that the zoo acts as a reservoir of clinically relevant ARGs, including mcr-like, and call attention to the monitoring studies in the zoo. Therefore, to the best of our knowledge, this is the first report of the world of mcr-1, mcr-3 and mcr-7.1 in environmental samples from the zoo.
Collapse
Affiliation(s)
- Lucas David Rodrigues Dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, 14040-903, Brasil
| | - João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, 14040-903, Brasil
| | - Micaela Santana Ramos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, 14040-903, Brasil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, 14040-903, Brasil
| | | | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, 14040-903, Brasil.
| |
Collapse
|
40
|
Furlan JPR, da Silva Ferreira ME, Stehling EG. Genetic Diversity of Multidrug-Resistant CMY-Producing Escherichia coli from Feces and Soil in a Small-Scale Pig Farm. Microb Drug Resist 2020; 26:1365-1371. [PMID: 32379997 DOI: 10.1089/mdr.2020.0090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diarrheagenic Escherichia coli cause diarrheal diseases, which are a public health concern and affect mainly developing countries. Multidrug-resistant (MDR) pathogens have been spreading in different sources, including animals and the environment. E. coli strains were obtained from a small-scale pig farm and 33 antimicrobials were tested. All strains were classified as MDR and harbored several antimicrobial resistance genes (ARGs) [blaCMY, blaOXA-1-like, blaSHV, tet(A), tet(B), aadA, aac(6')-Ib, aph(3')-Ia, sul1, sul2, sul3, floR, and cmlA] and plasmids. Besides, mutations in quinolone resistance-determining region of GyrA (Ser83Leu and Asp87Asn) and ParC (Glu84Asp) were detected. Among the MDR E. coli, nine strains (52%) presented diarrheagenic virulence genes, including genes related to Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), and enteroaggregative E. coli (EAEC). The pulsed-field gel electrophoresis results showed a high genetic diversity among the MDR E. coli strains. Multilocus sequence typing (MLST) analyses revealed different sequence types phylogenetically related to each other, including ST10 and ST56. Subtyping of MLST by fimH gene showed different fimH type. This study shows a high genetic diversity among MDR ARG-producing E. coli belonging to STEC, EIEC, and EAEC pathotypes obtained from a small-scale pig farm and contributes to the monitoring of antimicrobial-resistant pathogens worldwide, mainly in environmental samples, which are associated with One Health framework.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Márcia Eliana da Silva Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
41
|
Comparison of Commensal and Clinical Isolates for Diversity of Plasmids in Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.02064-19. [PMID: 32122890 DOI: 10.1128/aac.02064-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/24/2020] [Indexed: 01/23/2023] Open
Abstract
In this study, the plasmid content of clinical and commensal strains was analyzed and compared. The replicon profile was similar in both populations, except for L, M, A/C, and N (detected only in clinical strains) and HI1 (only in commensal strains). Although I1 and F were the most frequent replicons, only IncI1, sequence type 12 (ST12) was associated with bla CMY-2 in both populations. In contrast, the widespread resistant IncF plasmids were not linked to a single epidemic plasmid.
Collapse
|
42
|
Furlan JPR, Dos Santos LDR, Ramos MS, Gallo IFL, Stehling EG. Fecal cultivable aerobic microbiota of dairy cows and calves acting as reservoir of clinically relevant antimicrobial resistance genes. Braz J Microbiol 2020; 51:1377-1382. [PMID: 32246396 DOI: 10.1007/s42770-020-00265-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/21/2020] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance has become a global threat to public health since multidrug-resistant (MDR) bacteria have been reported worldwide carrying different antimicrobial resistance genes (ARGs), and animals have been described as a reservoir of ARGs. The presence of antimicrobial-resistant bacteria and ARGs in the food matrix is a risk to public health. This study aimed to research the presence of clinically relevant ARGs for important antimicrobials and genetic elements in fecal samples from dairy cows and calves on a Brazilian farm. In this study, a total of 21 fecal samples were collected, and then, the DNA of cultivable aerobic bacteria was extracted. Fifty-seven ARGs and twenty-three genetic elements were researched by PCR and confirmed by sequencing. Several ARGs that confer resistance to β-lactams, tetracyclines, fluoroquinolones, sulphonamides, phenicols, aminoglycoside, glycopeptides, and macrolides were detected. A total of 200 amplicons from 23 ARGs (blaCTX-M-Gp2, blaCMY, blaSHV, tetA, tetB, tetC, qepA, qnrB, qnrS, oqxA, oqxB, vanC1, vanC2/3, aadA, sul1, sul2, sul3, ermB, mefAE, floR, cmlA, aadA, aph(3')-Ia, aac(3')-Ia), and 145 amplicons from 12 genetic elements (IncF, IncFIA, IncFIB, IncI1, IncY, IncU, IncK, IncP, IncR, IncHI1, ColE-like, intI1) were detected. The results presented in this study call attention to the monitoring of antimicrobial resistance in dairy farms worldwide. MDR bacteria and ARGs can spread to different sources, including milk products, which are one of the most consumed products worldwide, representing a potential risk to human health.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Lucas David Rodrigues Dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Micaela Santana Ramos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.
- , Ribeirão Preto, Brazil.
| |
Collapse
|
43
|
Novel IncR/IncP6 Hybrid Plasmid pCRE3-KPC Recovered from a Clinical KPC-2-Producing Citrobacter braakii Isolate. mSphere 2020; 5:5/2/e00891-19. [PMID: 32213624 PMCID: PMC7096625 DOI: 10.1128/msphere.00891-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Reports of human-pathogenic C. braakii strains, especially of strains showing resistance to carbapenems, are rare. To the best of our knowledge, our results represent the first detection of carbapenemase gene blaKPC-2 in C. braakii strains. In addition, we have studied detailed genetic characteristics of the novel IncR/IncP6 hybrid plasmid pCRE3-KPC, which was isolated from a clinical multidrug-resistant Citrobacter braakii CRE3 strain. Our results may provide further insight into the horizontal transfer of multidrug resistance genes in bacteria and into the genomic diversity and molecular evolution of plasmids. Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae have become widespread in hospitals and the environment. Here, we describe a blaKPC-2-carrying plasmid called pCRE3-KPC, which was recovered from a clinical multidrug-resistant Citrobacter braakii CRE3 strain in China. The complete nucleotide sequence of pCRE3-KPC was determined by combining MiSeq and MinION sequencing and then compared with those of three related plasmids. Plasmid conjugal transfer and electroporation tests, modified carbapenem inactivation method, and bacterial antimicrobial susceptibility test were carried out. We compared this plasmid with three related plasmids to verify that the backbone of pCRE3-KPC was composed of the backbones of the IncR plasmid and IncP6 plasmid. Further bioinformatics analysis showed that pCRE3-KPC carried two resistance-related regions (the blaKPC-2 gene cluster and the aacC2-tmrB-related region). The aacC2-tmrB-related region included two novel insertion sequences (ISCfr28 and ISCfr16). IMPORTANCE Reports of human-pathogenic C. braakii strains, especially of strains showing resistance to carbapenems, are rare. To the best of our knowledge, our results represent the first detection of carbapenemase gene blaKPC-2 in C. braakii strains. In addition, we have studied detailed genetic characteristics of the novel IncR/IncP6 hybrid plasmid pCRE3-KPC, which was isolated from a clinical multidrug-resistant Citrobacter braakii CRE3 strain. Our results may provide further insight into the horizontal transfer of multidrug resistance genes in bacteria and into the genomic diversity and molecular evolution of plasmids.
Collapse
|
44
|
Prevalence and Antibiotic Resistance Pattern of Salmonella Isolated from Caecal Contents of Exotic Chicken in Debre Zeit and Modjo, Ethiopia. Int J Microbiol 2020; 2020:1910630. [PMID: 32047517 PMCID: PMC7003256 DOI: 10.1155/2020/1910630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/14/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022] Open
Abstract
A cross-sectional study was conducted between December, 2013, and May, 2014, to determine the prevalence and antibiotic resistance feature of Salmonella isolated from broilers slaughtered in Debre Zeit and Modjo towns, Ethiopia. A total of 384 caecal content samples were collected for microbiological examination following the standard techniques and procedures outlined by the International Organization for Standardization to isolate Salmonella. The sensitivity of the isolates subjected to nine antimicrobials was tested by the Kirby-Bauer disk diffusion method. The overall prevalence of Salmonella was 14.6%, and its occurrence differ significantly by farm (p < 0.05). The occurrence of the bacteria was not statistically different in the midland (15.2%) and lowland (13.3%) (p > 0.05) and between males (13.5%) and females (15.6) (p > 0.05). Of the 50 isolates, 48 were resistant to at least one drug. Multidrug resistance was recorded in 43 (86.0%) of the isolates. The study demonstrated considerable prevalence and high antimicrobial resistant Salmonella in exotic chicken and indicates the potential importance of chickens as source of foodborne salmonellosis and multiple antimicrobial resistance of Salmonella. Improving the hygienic practice of farms could help to reduce the occurrence of Salmonella in farms. Further studies are needed to describe the risk factors associated with the emergence of drug-resistant Salmonella in chicken.
Collapse
|
45
|
In Vitro Susceptibility and Florfenicol Resistance in Citrobacter Isolates and Whole-Genome Analysis of Multidrug-Resistant Citrobacter freundii. Int J Genomics 2019; 2019:7191935. [PMID: 31828082 PMCID: PMC6885840 DOI: 10.1155/2019/7191935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
The genus Citrobacter is an opportunistic pathogen causing infections in animals, and the published data for its resistance to florfenicol are scarce. In this study, we investigated the antimicrobial susceptibility and molecular characteristics of florfenicol resistance genes among Citrobacter isolates from animal and relevant environmental samples and conducted a comparative analysis of a multidrug-resistant Citrobacter freundii strain isolated from a rabbit. Among 20 Citrobacter strains isolated from animal samples, resistance was most commonly observed to ampicillin (100%), tetracycline (75%), streptomycin (65%), florfenicol (60%), chloramphenicol (60%), and aztreonam (50%), while all the strains found in environmental samples were resistant to few antibiotics. The florfenicol resistance gene floR was detected in 12 isolates (48%, 12/25) from animal samples, and all of the floR-positive isolates were resistant to florfenicol with minimum inhibitory concentration (MIC) values ≥256 μg/mL. Sequencing and comparative analysis of the plasmids from a multidrug-resistant C. freundii isolate named R47 showed that the floR-containing region in the plasmid pR47-54 was a truncated transposon-like structure and could be found on both plasmids and chromosomes of bacteria of either animal or human origin. Furthermore, a range of antimicrobial and metal resistance genes associated with mobile genetic elements could be identified in pR47-54 and the other plasmid pR47-309 of C. freundii R47. These results provide in-depth views into the phenotypic and molecular characteristics of Citrobacter isolates recovered from animal and relevant environmental samples, as well as highlight the role horizontal gene transfer plays in the dissemination of plasmid-encoded resistance genes.
Collapse
|
46
|
Hadjadj L, Baron SA, Olaitan AO, Morand S, Rolain JM. Co-occurrence of Variants of mcr-3 and mcr- 8 Genes in a Klebsiella pneumoniae Isolate From Laos. Front Microbiol 2019; 10:2720. [PMID: 31849875 PMCID: PMC6887894 DOI: 10.3389/fmicb.2019.02720] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Colistin is considered as a last resort antibiotic. The re-use of this antibiotic highlighted the emergence of colistin resistance mediated by chromosomal and plasmidic resistance mechanisms. Five colistin-resistant Klebsiella pneumoniae strains from Laos and Thailand were analyzed by Next Generation Sequencing (NGS) approaches to determine their colistin resistance mechanisms. Antimicrobial susceptibility testing, conjugation and transformation were performed on these strains. Moreover, whole genome sequencing (WGS) combining Illumina (MiSeq) and Oxford Nanopore technologies (MinION) was realized to obtain closed genomes and plasmids. Resistome analyses as well as location of mcr genes and its genetic environments were done in silico. All five strains had colistin MIC of 32 mg/L and were positive for mcr-3 variants including additionally positive for a mcr-8 variant gene. The novel variants were named mcr-3.21, mcr-3.26, mcr-3.28, and mcr-8.3 genes. The mcr-3 variants genes were located on plasmids IncP1, IncFII, and IncI1 type, while mcr-8.3 gene was found on an IncFII type plasmid. The genetic environment of mcr-3.21 and mcr-3.26 genes were composed of a composite transposon ISKpn40- mcr-3-dgkA- ISKpn40. Concerning mcr-8.3 gene, a similar genetic environment of mcr-8.1 gene surrounded by ISIX2 and IS903B was observed. To the best of our knowledge, this is the first description of the novel variants mcr-3.21, mcr-3.26, mcr-3.28 and mcr-8.3 genes as well as the first study on co-occurrence of mcr-3 and mcr-8 genes. Spread and evolution of mcr genes should be monitored.
Collapse
Affiliation(s)
- Linda Hadjadj
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Abiola Olumuyiwa Olaitan
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Serge Morand
- Institut des Sciences de l'Évolution, CNRS-IRD-UM2, CC065, Université Montpellier 2, Montpellier, France
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
47
|
Furlan JPR, Gallo IFL, de Campos ACLP, Passaglia J, Falcão JP, Navarro A, Nakazato G, Stehling EG. Molecular characterization of multidrug-resistant Shiga toxin-producing Escherichia coli harboring antimicrobial resistance genes obtained from a farmhouse. Pathog Glob Health 2019; 113:268-274. [PMID: 31757195 DOI: 10.1080/20477724.2019.1693712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) colonize the gastrointestinal tract of animals; however, STEC may also cause severe diarrheal diseases. Food-producing animals have been acting as reservoirs and disseminators of multidrug-resistant (MDR) bacteria and antimicrobial resistance genes (ARGs); however, there are few studies characterizing molecularly bacterial isolates from sheep. Therefore, this study aimed to characterize E. coli isolates obtained from feces of sheep in a Brazilian farmhouse. A total of 14 MDR E. coli isolates were obtained from 100 feces samples, six of which were classified as non-O157 STEC (stx1, stx2 and ehxA). MDR E. coli isolates presented different ARGs [blaCTX-M-Gp9, blaCMY, blaSHV, qnrS, oqxB, aac(6')-Ib, tet(A), tet(B), tet(C), sul1, sul2, and cmlA] and plasmids (IncI1, IncFrepB, IncFIB, IncFIA, IncHI1, IncK, and ColE-like). In addition, mutations in the quinolone-resistance determining region of GyrA (Ser83Leu; Asp87Asn) and ParC (Glu84Asp) were detected. PFGE showed a high genetic diversity (30.9 to 83.9%) and thirteen STs were detected (ST25, ST48, ST155, ST162, ST642, ST1247, ST1518, ST1725, ST2107, ST2522, ST3270, ST5036, and ST7100). Subtyping of the fimH gene showed seven fimH-type (25, 32, 38, 41, 54, 61, and 366). The results found in the present study showed high genetic diversity among MDR ARGs-producing E. coli obtained from a farmhouse. This study reports for the first time, the presence of MDR STEC and non-STEC belonging to ST25, ST162, ST642, ST1247, ST1518, ST1725, ST2107, ST3270, ST5036, and ST7100 in sheep, and contributes to the surveillance studies associated with One Health concept.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | | | - Jaqueline Passaglia
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autônoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas - Universidade Estadual de Londrina (UEL), Londrina, Brasil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| |
Collapse
|
48
|
Acheampong G, Owusu M, Owusu-Ofori A, Osei I, Sarpong N, Sylverken A, Kung HJ, Cho ST, Kuo CH, Park SE, Marks F, Adu-Sarkodie Y, Owusu-Dabo E. Chromosomal and plasmid-mediated fluoroquinolone resistance in human Salmonella enterica infection in Ghana. BMC Infect Dis 2019; 19:898. [PMID: 31660876 PMCID: PMC6819380 DOI: 10.1186/s12879-019-4522-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 11/19/2022] Open
Abstract
Background Salmonella infection poses significant public health threat globally, especially in resource-limited countries. Emergence and spread of antibiotic resistant strains to fluoroquinolones have led to treatment failures and increased mortality in Salmonella infection. However, there is dearth of information regarding mechanisms of resistance to fluoroquinolones in Ghana. This study therefore sought to identify chromosomal mutations and plasmid-mediated resistance as possible mechanisms of fluoroquinolone resistance from clinical isolates in Ghana. Methods This was a retrospective study of archived isolates biobanked at Kumasi Centre for Collaborative Research in Tropical Medicine, Ghana. Isolates were obtained from blood, stool and oropharynx samples at two hospitals, between May, 2016 and January, 2018. Salmonella identification was done using standard microbiological protocols and antibiotic susceptibility testing performed by Kirby-Bauer disc diffusion method. Isolates with intermediate susceptibility and/or resistance to nalidixic acid and/or ciprofloxacin were selected and examined for chromosomal mutations by Sanger sequencing and plasmid-mediated resistance by PCR. Results Of 133 biobanked isolates cultured, 68 (51.1%) and 16 (12%) were identified as Salmonella Typhi and non-typhoidal Salmonella (NTS), respectively. Sequence analysis of gyrA gene revealed the presence of 5 different nonsynonymous mutations, with the most frequent mutation (Ile203Ser) occurring in 12 out of 13 isolates tested. Gyrase B (gyrB) gene had 1 nonsynonymous mutation in 3 out of 13 isolates, substituting phenylalanine with leucine at codon 601 (Phe601Leu). No mutation was observed in parC and parE genes. Two NTS isolates were found to harbour qnrS plasmid-mediated resistant gene of molecular size 550 bp with high ciprofloxacin MIC of 0.5 μg/ml. Conclusion This study reports for the first time in Ghana plasmid-mediated fluoroquinolone resistant gene qnrS in Salmonella clinical isolates. Nonsynonymous mutations of gyrA and gyrB genes likely to confer Salmonella reduced susceptibility to ciprofloxacin were also reported.
Collapse
Affiliation(s)
- Godfred Acheampong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Michael Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.,Department of Medical Laboratory Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Owusu-Ofori
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Isaac Osei
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | | | - Augustina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.,Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hung-Jui Kung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Se Eun Park
- Department of Epidemiology, International Vaccine Institute, Seoul, South Korea.,Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet, Quant 5, Ho Chi Minh City, Vietnam
| | - Florian Marks
- Department of Epidemiology, International Vaccine Institute, Seoul, South Korea
| | - Yaw Adu-Sarkodie
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ellis Owusu-Dabo
- Department of Global and International Health, School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
49
|
Kawahara R, Khong DT, Le HV, Phan QN, Nguyen TN, Yamaguchi T, Kumeda Y, Yamamoto Y. Prevalence Of mcr-1 Among Cefotaxime-Resistant Commensal Escherichia coli In Residents Of Vietnam. Infect Drug Resist 2019; 12:3317-3325. [PMID: 31695451 PMCID: PMC6815942 DOI: 10.2147/idr.s224545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose The dissemination of colistin-resistant bacteria harboring the colistin-resistance gene mcr-1 in developing countries has recently entered the spotlight as an emerging public health threat, which is attributed to the abuse of colistin use in these countries. However, the prevalence of these bacteria in developing countries has not been extensively investigated. Therefore, in the present study, we examined the prevalence of cefotaxime-resistant commensal Escherichia coli harboring mcr-1 among residents of a representative Vietnamese village and assessed the characteristics of these isolates. Materials and methods The stool samples, one stool sample per resident, of 612 residents were cultured on MacConkey agar with cefotaxime. Resulting E. coli-like colonies were isolated and examined further for the presence of colistin-resistant extended-spectrum β-lactamase (ESBL)-producing E. coli with mcr-1. Antibiotic susceptibility tests were performed, and clonal relationship among colistin-resistant isolates was assessed. Results Thirty-one of the 451 cefotaxime-resistant E. coli isolates were resistant to colistin and the majority possessed mcr-1, blaCTX-M, and/or blaTEM, except for two isolates that produced the AmpC β-lactamase. All mcr-1 ESBL-producing E. coli isolates were multidrug-resistant (5–11 antibiotics). The isolates contained various plasmid replicon types, including the most prevalent types IncHI2 (54.8%), IncFIB (48.4%), and IncN (41.9%). In addition, 83.9% of the mcr-1 ESBL-E. coli isolates possessed a transposon ISApl1-mcr-1 segment. Furthermore, 77.4% of the mcr-1 ESBL-E. coli isolates belonged to phylogenetic group A. Pulsed-field gel electrophoresis analysis indicated limited clonal expansion of a specific strain. Conclusion These results demonstrate the wide dissemination of colistin-resistant ESBL-E. coli harboring mcr-1 among commensal bacteria of rural residents in Vietnam, suggesting possible mobilization of the mcr-1 gene among ESBL-producing microbiota, which is a great public health concern.
Collapse
Affiliation(s)
- Ryuji Kawahara
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Diep Thi Khong
- Center of Medical, Pharmaceutical Science and Technology Services, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Ha Viet Le
- Center of Medical, Pharmaceutical Science and Technology Services, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Quang Ngoc Phan
- Center of Medical, Pharmaceutical Science and Technology Services, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Thang Nam Nguyen
- Center of Medical, Pharmaceutical Science and Technology Services, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Takahiro Yamaguchi
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yuko Kumeda
- Research Center for the 21st Century, Osaka Prefecture University, Osaka, Japan
| | - Yoshimasa Yamamoto
- Life Science Research Center, Gifu University, Gifu, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
50
|
Zhou M, Li X, Hou W, Wang H, Paoli GC, Shi X. Incidence and Characterization of Salmonella Isolates From Raw Meat Products Sold at Small Markets in Hubei Province, China. Front Microbiol 2019; 10:2265. [PMID: 31636615 PMCID: PMC6787437 DOI: 10.3389/fmicb.2019.02265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
Salmonella is a leading cause of foodborne disease and is often associated with the consumption of foods of animal origin. In this study, sixty-six Salmonella isolates were obtained from 631 raw meat samples purchased at small retail suppliers in Hubei Province, China. The most prevalent Salmonella serotypes were Thompson (18.2%) and Agona (13.6%). Frequent antimicrobial resistance was observed for the sulfonamides (43.9%), tetracycline (43.9%), and the β-lactams amoxicillin and ampicillin (36.4% for each). Interestingly, a high incidence of resistance to cephazolin was observed in strains of the most common serotype, S. Thompson. Class I integrons were found in 27.3% (18/66) of the isolates and five of these integrons contained different gene cassettes (aacA4C-arr-3-dfr2, dfrA12-aadA21, aadA2, dfrA12-aadA2, dfr17-aadA5). Additional antimicrobial resistance genes, including bla TEM-1, bla CTX-M-65, bla CTX-M-15, qnrB, and qnrS, were also identified among these Salmonella isolates. Results of replicon typing and conjugation experiments revealed that an integron with qnrB and bla CTX-M-15 genes was present on incH12 mobile plasmid in S. Thompson strain. Multilocus sequence typing (MLST) analysis revealed 32 sequence types, indicating that these isolates were phenotypically and genetically diverse, among which ST26 (18.2%) and ST541 (12.1%) were the predominant sequence types. The integrons, along with multiple antimicrobial resistance genes on mobile plasmids, are likely contributors to the dissemination of multidrug resistance in Salmonella.
Collapse
Affiliation(s)
- Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xiaofang Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wenfu Hou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongxun Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - George C Paoli
- Molecular Characterization of Foodborne Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center (USDA-ARS-ERRC), USDA-MOST Joint Research Center for Food Safety, Wyndmoor, PA, United States
| | - Xianming Shi
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, MOST-USDA Joint Research Center for Food Safety, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|