1
|
Alshammari AD, Salem AM, Almarshedy SM, Rakha E, Saleem M. Multidrug-resistant gram-negative bacteria in ICU patients of a tertiary care hospital in Saudi Arabia: distribution of carbapenemase genes in clinical and rectal swab samples. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04194-9. [PMID: 40272517 DOI: 10.1007/s00210-025-04194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Antimicrobial resistance among Gram-negative bacteria is a growing clinical challenge. This study aimed to assess bacterial distribution, antimicrobial susceptibility, and carbapenemase gene prevalence in clinical isolates. A total of 154 patients (mean age: 57.51 ± 18.75 years) were included. Specimens were primarily sputum (42.2%), blood (22.7%), and urine (18.8%). Bacterial isolates included K pneumoniae (43.8%), A. baumannii (24%), and P. aeruginosa (13.5%). Antimicrobial susceptibility testing (AST) was conducted to evaluate resistance patterns. MDR was detected, with alarming resistance to carbapenems, β-lactams, and fluoroquinolones. A. baumannii and P. aeruginosa exhibited near-total resistance to Imipenem (IPM), Meropenem (MRP), and Ertapenem (ETP), indicating extensive drug resistance (XDR). K. pneumoniae demonstrated exceptionally high resistance to carbapenems (IPM: 90.5%, MRP: 92.9%) and β-lactam antibacterial drugs (> 90%). Fluoroquinolone resistance exceeded 90% for Ciprofloxacin and Levofloxacin in A. baumannii, P. aeruginosa, and K. pneumoniae. Aminoglycosides, particularly Gentamicin, showed moderate resistance (A. baumannii: 87%, P. aeruginosa: 69.2%). Tigecycline remained one of the few viable treatment options against K. pneumoniae. Biofilm formation was significant, with 63.6% of isolates producing biofilm, particularly P. aeruginosa (80.9%), K. pneumoniae (67.2%), and A. baumannii (48.6%), increasing their pathogenic potential. Carbapenemase production was detected in 42.9% of isolates. The most prevalent genes were blaOXA- 48 (15.6%), blaNDM (8.4%), and blaVIM (7.1%), with co-expression in 9.7% of isolates. K. pneumoniae exhibited the highest risk for carbapenemase production (OR: 4.23, p < 0.001), whereas A. baumannii had a significantly lower risk (OR: 0.20, p = 0.005). Screening swabs showed more OXA- 48 (42.1%), while clinical isolates had more NDM and VIM. Alternative resistance mechanisms were suggested in 57.3% of clinical cases. The overwhelming prevalence of MDR and Carbapenem resistance among Gram-negative bacteria, particularly K. pneumoniae and A. baumannii, emphasizes an urgent need for strict antimicrobial stewardship, advanced infection control strategies, and novel therapeutic interventions to combat resistance spread.
Collapse
Affiliation(s)
- Amal Daher Alshammari
- Department of Family and Community Medicine, University of Ha'il, Hail, Saudi Arabia
| | - Alharbi Mohammed Salem
- Department of Internal Medicine, College of Medicine, University of Ha'il, Hail, Saudi Arabia
| | | | - Ehab Rakha
- Laboratory Department, King Khalid Hospital, Hail, Saudi Arabia
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohd Saleem
- Department of Pathology, College of Medicine, University of Ha'il, Hail, Saudi Arabia.
| |
Collapse
|
2
|
Simner PJ, Pitout JDD, Dingle TC. Laboratory detection of carbapenemases among Gram-negative organisms. Clin Microbiol Rev 2024; 37:e0005422. [PMID: 39545731 PMCID: PMC11629623 DOI: 10.1128/cmr.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYThe carbapenems remain some of the most effective options available for treating patients with serious infections due to Gram-negative bacteria. Carbapenemases are enzymes that hydrolyze carbapenems and are the primary method driving carbapenem resistance globally. Detection of carbapenemases is required for patient management, the rapid implementation of infection prevention and control (IP&C) protocols, and for epidemiologic purposes. Therefore, clinical and public health microbiology laboratories must be able to detect and report carbapenemases among predominant Gram-negative organisms from both cultured isolates and direct from clinical specimens for treatment and surveillance purposes. There is not a "one size fits all" laboratory approach for the detection of bacteria with carbapenemases, and institutions need to determine what fits best with the goals of their antimicrobial stewardship and IP&C programs. Luckily, there are several options and approaches available for clinical laboratories to choose methods that best suits their individual needs. A laboratory approach to detect carbapenemases among bacterial isolates consists of two steps, namely a screening process (e.g., not susceptible to ertapenem, meropenem, and/or imipenem), followed by a confirmation test (i.e., phenotypic, genotypic or proteomic methods) for the presence of a carbapenemase. Direct from specimen testing for the most common carbapenemases generally involves detection via rapid, molecular approaches. The aim of this article is to provide brief overviews on Gram-negative bacteria carbapenem-resistant definitions, types of carbapenemases, global epidemiology, and then describe in detail the laboratory methods for the detection of carbapenemases among Gram-negative bacteria. We will specifically focus on the Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex.
Collapse
Affiliation(s)
- Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johann D. D. Pitout
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic Laboratory, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tanis C. Dingle
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Odoko D, Kumalo A, Alemu G, Demisse T, Mulugeta T, Temesgen M. Extended-spectrum β-lactamase and carbapenemase producing Enterobacteriaceae among patients suspected with surgical site infection at Hospitals in Southern Ethiopia. Front Microbiol 2024; 15:1417425. [PMID: 39588105 PMCID: PMC11586188 DOI: 10.3389/fmicb.2024.1417425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Background Extended-spectrum β-lactamase and carbapenemase-producing Enterobacteriaceae are an increasing problem for patients today. Data on clinical samples for ESBL and carbapenemase-producing Enterobacteriaceae for surgical site infection patients in developing countries are limited, including Ethiopia, mainly due to resource constraints. Hence, this study aimed to determine the prevalence of extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae among patients suspected to have surgical site infection at Hospital in Southern Ethiopia. Materials and methods A hospital-based cross-sectional study was conducted on 422 suspected surgical site infections from June 1, 2022 to August 30, 2022 at Hospitals in Southern Ethiopia. Sociodemographic and clinical data were obtained by using a structured questionnaire. Clinical samples (pus, pus aspirates, and wound swabs) were collected aseptically and processed within 30 min by placing the swabs in sterile test tubes containing sterile normal saline (0.5 mL). Samples were cultured on blood and MacConkey agar plates. All positive cultures were characterized by colony morphology, Gram staining, and standard biochemical tests. Antimicrobial sensitivity tests were performed using Kirby Baur disk diffusion on Mueller-Hinton agar. ESBL production was confirmed using a double-disc synergy test (DDST) method. Carbapenemase production was assessed using the modified Hodge test. Logistic regression analysis was used to determine associated factors. A P-value < 0.05 were considered statistically significant. Result Bacteria belonging to the order Enterobacterales were cultured in 23.7% out of 422 patients with suspected surgical wound infection. Of all the isolates, Enterobacteriaceae (69 isolates) were the most frequent, with E. coli (29/69) followed by K. pneumoniae (14/69). Of 69 Enterobacteriaceae isolates, 66.6 % (46/69) were positive for ESBL production, and 21.7 (15/69) were positive for carbapenemase-producing Enterobacteriaceae. The majority of Enterobacteriaceae isolates showed sensitivity to meropenem (72.1%); however revealed 63.9% and 70.5% were resistant to gentamicin and ciprofloxacin, respectively. Similarly, a higher resistance rate to cefepime (91.8%), amoxicillin-clavulanic acid (98.4%), ceftriaxone (95.1%), and ceftazidime (91.8%). MDR rate of Enterobacteriaceae isolates was 25/61 (41%) among patients suspected for surgical site infection. The Multivariable analysis revealed that length of hospital stay in hospital [AOR = 3.81 (95% CI 2.08-6.95)] remained statistically significant factor associated with surgical site infection due to ESBL producing Enterobacteriaceae. Conclusion Study results showed the severity of ESBL-producing Enterobacteriaceae is critical and CPE is alarming. Meropenem is the most effective antibiotic against the ESBL-producing Enterobacteriaceae. MDR rate of Enterobacteriaceae isolates was 61 (61%) among patients suspected for surgical site infection. Therefore, antibiotic selection should be based on the results of the culture and sensitivity tests.
Collapse
Affiliation(s)
- Desta Odoko
- Medical Laboratory Science Department, Sodo Christian General Hospital, Sodo, Ethiopia
| | - Abera Kumalo
- School of Medical Laboratory Sciences, College of Health Sciences and Medicine, Wolaita Sodo University, Sodo, Ethiopia
| | - Getachew Alemu
- School of Medical Laboratory Sciences, College of Health Sciences and Medicine, Wolaita Sodo University, Sodo, Ethiopia
| | - Tigistu Demisse
- School of Medical Laboratory Sciences, College of Health Sciences and Medicine, Wolaita Sodo University, Sodo, Ethiopia
| | - Teshale Mulugeta
- Medical Laboratory Science Department, Sodo Christian General Hospital, Sodo, Ethiopia
| | - Muluneh Temesgen
- Department of Medical Laboratory Science, Hosanna Health Science College, Hosanna, Ethiopia
| |
Collapse
|
4
|
Wang F, Fu Y, Lin Z, Zhang B, Se J, Guo X, Fan J, Jia Y, Xu X, Jiang Y, Shen C. Neglected Drivers of Antibiotic Resistance: Survival of Extended-Spectrum β-Lactamase-Producing Pathogenic Escherichia coli from Livestock Waste through Dormancy and Release of Transformable Extracellular Antibiotic Resistance Genes under Heat Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37336722 DOI: 10.1021/acs.est.3c02377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has caused a global pandemic with high prevalence in livestock and poultry, which could disseminate into the environment and humans. To curb this risk, heat-based harmless treatment of livestock waste was carried out. However, some risks of the bacterial persistence have not been thoroughly assessed. This study demonstrated that antibiotic-resistant bacteria (ARB) could survive at 55 °C through dormancy, and simultaneously transformable extracellular antibiotic resistance genes (eARGs) would be released. The ESBL-producing pathogenic Escherichia coli CM1 from chicken manure could enter a dormant state at 55 °C and reactivate at 37 °C. Dormant CM1 had stronger β-lactam resistance, which was associated with high expression of β-lactamase genes and low expression of outer membrane porin genes. Resuscitated CM1 maintained its virulence expression and multidrug resistance and even had stronger cephalosporin resistance, which might be due to the ultra-low expression of the porin genes. Besides, heat at 55 °C promoted the release of eARGs, some of which possessed a certain nuclease stability and heat persistence, and even maintained their transformability to an Acinetobacter baylyi strain. Therefore, dormant multidrug-resistant pathogens from livestock waste will still pose a direct health risk to humans, while the resuscitation of dormant ARB and the transformation of released eARGs will jointly promote the proliferation of ARGs and the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Feiyu Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingni Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Se
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoguang Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaojie Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunhan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| |
Collapse
|
5
|
Eltahlawi RA, Jiman-Fatani A, Gad NM, Ahmed SH, Al-Rabia MW, Zakai S, Kharaba A, El-Hossary D. Detection of Carbapenem-resistance in CRE by Comparative Assessment of RAPIDEC ® CARBA NP and Xpert™Carba-R Assay. Infect Drug Resist 2023; 16:1123-1131. [PMID: 36855392 PMCID: PMC9968435 DOI: 10.2147/idr.s393739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Carbapenem-resistant Enterobacteriaceae (CRE) infections resist nearly most available antimicrobials, resulting in poor clinical outcomes. Saudi Arabia has a relatively high CRE prevalence. This study aims to evaluate the sensitivity of Rapidec Carba NP test and GeneXpert Carba-R assay compared with conventional manners for detection of carbapenemase-producing Enterobacteriaceae. Methods This is a cross-sectional study including a total of 90 CRE isolates examined at two tertiary hospitals in KSA from October 2020 to December 2021. Gram-negative Enterobacteriaceae were identified by using Vitek 2 system and were furtherly tested for imipenem and meropenem susceptibility by E- test strips, followed by Rapidec Carba NP test and the Xpert™Carba-R assay. Results Carbapenem-resistant K. pneumoniae (78.9%) and carbapenem-resistant E. coli (14.4%) were the two most common isolates species. Colistin (98.9%) and tigecycline (88.9%) were the most effective antibiotics against CRE isolates, followed by amikacin (52.2%), gentamicin (33.3%), cotrimoxazole (15.6%), and ciprofloxacin (8.9%). blaOXA-48 was the predominant carbapenemase gene (44.4%), followed by blaNDM (32.2%). blaKPC gene was not detected. The Rapidec Carba NP and the Xpert™Carba-R demonstrated an overall sensitivity of 69.3% and 88%, respectively, in comparison to gold standard detection of meropenem and imipenem resistance by Vitek 2 system and E- test strips. Discussion RAPIDEC® CARBA NP may be a beneficial screening test for detecting CRE, but for confirmation of the results, Xpert Carba-R assay is more sensitive, significantly lowering the turnaround time compared to reference traditional methods. The information on carbapenemase genes may be used for epidemiologic purposes and outbreak management.
Collapse
Affiliation(s)
- Rehab A Eltahlawi
- Department of Microbiology, College of Medicine, Taibah University, Taibah, Saudi Arabia,Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asif Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Clinical and Molecular Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Niveen M Gad
- Clinical Microbiology Laboratory, King Fahd Hospital, Medina, Saudi Arabia,Medical Microbiology and Immunology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Shereen H Ahmed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohammed W Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Health Promotion Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadi Zakai
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Kharaba
- Intensive Care Unit, King Fahad Hospital, Madinah, Saudi Arabia
| | - Dalia El-Hossary
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt,Correspondence: Dalia El-Hossary, Email
| |
Collapse
|
6
|
Shaaban M, Elshaer SL, Abd El-Rahman OA. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol 2022; 22:247. [PMID: 36221063 PMCID: PMC9552493 DOI: 10.1186/s12866-022-02662-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Proteus mirabilis is an opportunistic pathogen, causing a variety of community-acquired and nosocomial illnesses. It poses a potential threat to patients via the production of β-lactamases, which decrease the efficacy of antimicrobial treatment and impair the management of its pathogenicity. Hence, this study was established to determine the prevalence of extended-spectrum β-lactamases (ESBLs), AmpC, and carbapenemases of P. mirabilis isolated from various clinical specimens. Results Proteus mirabilis was identified in 20.7% (58/280) of specimens. ESBL producers were present at a rate of 51.7% (30/58). All AmpC-positive isolates (n = 20) produced ESBLs as well, so 66.7% of ESBL-producing isolates coproduced AmpC enzymes. The modified Hodge test confirmed carbapenemase production in six out of seven imipenem nonsusceptible isolates. Of these, only two (5.7%) isolates were also ESBL-and AmpC-positive. Antibiotic resistance reached the highest level for cotrimoxazole (62.1%, n = 36/58 isolates) and the lowest for imipenem (12.1%, n = 7/58 isolates). The levels of multidrug-resistant (MDR) was 41.4% among the tested isolates. The blaSHV (83.3%), blaAmpC (80%), and blaVIM-1 (50%) were the most detected genes in phenotypically confirmed ESBL-, AmpC-, and carbapenemase-producing isolates, respectively. Besides, more than a half of the tested P. mirabilis strains (53%) coproduced ESBLs and AmpC. Moreover, two isolates coproduced ESBLs and AmpC together with carbapenemases. Furthermore, dendrogram analysis showed great genetic divergence based on the 21 different enterobacterial repetitive intergenic consensus (ERIC) patterns (P1–P21) through the 34 β-lactamase producers. ERIC analysis distinguished clonal similarities between isolates 21 and 22 in P2 and 9 and 10 in P4, which were isolated from the same clinical source and possessed similar patterns of β-lactamase-encoding genes. Conclusion Hence, there is an urgent need to monitor hospitalized patients and improve healthcare in order to reduce the incidence of infection and outbreaks of infection with antibiotic-resistant Proteus. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02662-3.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ola A Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
| |
Collapse
|
7
|
Characterization of Carbapenem-Resistant K. Pneumoniae Isolated from Intensive Care Units of Zagazig University Hospitals. Antibiotics (Basel) 2022; 11:antibiotics11081108. [PMID: 36009977 PMCID: PMC9405146 DOI: 10.3390/antibiotics11081108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 12/15/2022] Open
Abstract
The advent of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant challenge to public health, as carbapenems are typically employed as a last resort to treat nosocomial infections caused by such organisms, especially in intensive care units (ICUs). This study aims to characterize the CRKP isolated from patients admitted to the Zagazig University Hospitals (ZUHs) ICU in Egypt. About 56.2%, 41.0%, and 32.4% of the isolates indicated the presence of blaNDM, blaOXA-48, and blaKPC, respectively. Carbapenemase-encoding genes were found in many isolates, and blaNDM was the most predominant gene. Nevertheless, this situation has become a heavy burden in developing countries, including Egypt, and is associated with substantial morbidity, mortality, and increased healthcare expenses.
Collapse
|
8
|
Ejaz H. Analysis of diverse β-lactamases presenting high-level resistance in association with OmpK35 and OmpK36 porins in ESBL-producing Klebsiella pneumoniae. Saudi J Biol Sci 2022; 29:3440-3447. [PMID: 35844436 PMCID: PMC9280233 DOI: 10.1016/j.sjbs.2022.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging extensively drug-resistant (XDR) Klebsiella pneumoniae due to the production of β-lactamases and porin loss is a substantial worldwide concern. This study aimed to elucidate the role of outer membrane porin (OMP) loss, AmpC, and carbapenemases among extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae strains with XDR phenotype. This study analyzed 79 K. pneumoniae from several clinical sources and detected ESBLs in 29 strains co-harbored with other β-lactamases using standard microbiological practices and phenotypic procedures. Minimum inhibitory concentrations (MICs) were determined against several antibiotics using Microscan WalkAway plus. OMP analysis was carried out using sodium dodecyl sulfate–polyacrylamide gel electrophoresis. ESBL, AmpC, and carbapenemase genes were detected using molecular methods. The microbiological analysis discovered 29 (36.7%) ESBL strains of K. pneumoniae, which showed the co-existence of 7 (24.1%) AmpC β-lactamases and 22 (75.9%) carbapenemases. Porin loss of OmpK35 was observed in 13 (44.8%) and OmpK36 in 8 (27.5%) K. pneumoniae strains. The strains were significantly associated with the intensive care unit (ICU) (p = 0.006) and urinary sources (p = 0.004). The most commonly detected gene variants in each β-lactamase class included 16 (55.2%) blaCTX-M−1, 7 (100%) blaCYM-2, 11 (50%) blaNDM-1, and integron-1 was detected in 21/29 (72.4%) strains. MICs of cephalosporin, fluoroquinolone, carbapenem, aminoglycoside, and β-lactam combinations demonstrated a high number of XDR strains. Tigecycline (2 µg/mL MIC50 and >32 µg/mL MIC90) and colistin (1 µg/mL MIC50 and 8 µg/mL MIC90) presented lower resistance. ESBL K. pneumoniae strains with OmpK35 and OmpK36 porin loss demonstrate conglomerate resistance mechanisms with AmpC and carbapenemases, leading to emerging XDR and pan drug resistance.
Collapse
|
9
|
Silago V, Mruma EC, Msemwa B, Mtemisika CI, Phillip S, Ndagula RA, Said MM, Mushi MF, Mshana SE. Predominance of Acinetobacter spp., Harboring the blaIMP Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Pathogens 2022; 11:pathogens11010063. [PMID: 35056011 PMCID: PMC8781992 DOI: 10.3390/pathogens11010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Data on colonization and hospital contamination of carbapenem-resistant Gram-negative bacteria (CR-GNB) are limited in low- and middle-income countries. We designed this study to determine the prevalence and co-existence of carbapenemase genes among CR-GNB isolated from clinical, colonization, and hospital environmental samples at a tertiary hospital in Mwanza, Tanzania. The modified Hodge test (MHT), the combined disk test (CDT), and the double-disk synergy test (DDST) were used for the phenotypic detection of carbapenemases. A multiplex PCR assay was used to detect blaIMP and blaKPC, and a singleplex PCR assay was used to detect blaOXA-48. Data were analyzed by STATA version 13.0. Overall, 68.8% (44/64) of the CR-GNB had at least one phenotype by phenotypic methods, whereby 60.9% (39/64) were both CDT and DDST positive and 31.3% (20/64) were MHT positive. A total of 23/64 (35.9%) had at least one of the genes tested with the predominance of blaIMP (91.3%; 21/23). In addition, 47.7% (21/44) of the CR-GNB phenotypes had at least one gene. Around 47.8% (11/23) of the CR-GNB carried multiple genes encoding for carbapenem resistance, with the maximum co-existence of blaIMP/blaKPC/blaOXA-48 (45.5%; 5/11). The majority of carbapenem-resistant genes were detected in Acinetobacter spp. (82.6%; 19/23) and isolated from bed swabs (69.6%; 16/23). Acinetobacter spp. carrying the blaIMP gene predominantly contaminated the hospital environment. Therefore, we recommend routine decontamination of inanimate hospital surfaces, including patient beds.
Collapse
Affiliation(s)
- Vitus Silago
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania; (E.C.M.); (B.M.); (C.I.M.); (S.P.); (M.M.S.); (M.F.M.); (S.E.M.)
- Correspondence:
| | - Eveline C. Mruma
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania; (E.C.M.); (B.M.); (C.I.M.); (S.P.); (M.M.S.); (M.F.M.); (S.E.M.)
| | - Betrand Msemwa
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania; (E.C.M.); (B.M.); (C.I.M.); (S.P.); (M.M.S.); (M.F.M.); (S.E.M.)
| | - Conjester I. Mtemisika
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania; (E.C.M.); (B.M.); (C.I.M.); (S.P.); (M.M.S.); (M.F.M.); (S.E.M.)
- Molecular Biology Department, Central Pathology Laboratory, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania
| | - Shukurani Phillip
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania; (E.C.M.); (B.M.); (C.I.M.); (S.P.); (M.M.S.); (M.F.M.); (S.E.M.)
- Institute of Allied Health Sciences, Ruaha Catholic University, Iringa P.O. Box 774, Tanzania
| | - Reuben A. Ndagula
- National Public Health Laboratory, Dar es Salaam P.O. Box 9083, Tanzania;
| | - Maria M. Said
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania; (E.C.M.); (B.M.); (C.I.M.); (S.P.); (M.M.S.); (M.F.M.); (S.E.M.)
- Department of Clinical Laboratory, Kondoa District Hospital, Dodoma P.O. Box 40, Tanzania
| | - Martha F. Mushi
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania; (E.C.M.); (B.M.); (C.I.M.); (S.P.); (M.M.S.); (M.F.M.); (S.E.M.)
| | - Stephen E. Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania; (E.C.M.); (B.M.); (C.I.M.); (S.P.); (M.M.S.); (M.F.M.); (S.E.M.)
| |
Collapse
|
10
|
Tandel K, Bhatt P, Das N, Grover N, Ranjan P, Rathi KR. Phenotypic detection and molecular characterization of carbapenem-resistant Enterobacteriaceae at a tertiary care center. JOURNAL OF MARINE MEDICAL SOCIETY 2022. [DOI: 10.4103/jmms.jmms_163_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Paul D, Anto N, Bhardwaj M, Prendiville A, Elangovan R, Bachmann TT, Chanda DD, Bhattacharjee A. Antimicrobial resistance in patients with suspected urinary tract infections in primary care in Assam, India. JAC Antimicrob Resist 2021; 3:dlab164. [PMID: 34917941 PMCID: PMC8669238 DOI: 10.1093/jacamr/dlab164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
Objectives We investigated the prevalence and diversity of antimicrobial resistance in bacteria isolated from urine samples of community-onset urinary tract infection (UTI) patients in southern Assam, India. Methods Freshly voided midstream urine samples were collected from patients attending primary healthcare centres, with the patients’ epidemiological data also recorded. Species identification was confirmed using a VITEK 2 compact automated system. Phenotypic confirmation of ESBLs was performed using the combined disc diffusion method (CLSI 2017) and carbapenemase production was phenotypically characterized using a modified Hodge test. Common ESBLs and carbapenem-resistance mechanisms were determined in Escherichia coli isolates using PCR assays. Incompatibility typing of the conjugable plasmids was determined by PCR-based replicon typing; the phylotypes and MLSTs were also analysed. Results A total of 301 (59.7%) samples showed significant bacteriuria along with symptoms of UTI and among them 103 isolates were identified as E. coli of multiple STs (ST3268, ST3430, ST4671 and others). Among them, 26.2% (27/103) were phenotypically ESBL producers whereas 12.6% (13/103) were carbapenemase producers. This study describes the occurrence of diverse ESBL genes—blaCTX-M-15, blaSHV-148, blaPER-1 and blaTEM—and two E. coli isolates carrying the blaNDM-1 carbapenemase gene. ESBL genes were located within transconjugable plasmids of IncP and IncF type whereas blaNDM-1 was carried in an IncFrepB type plasmid. Conclusions This study illustrates the high rate of MDR in E. coli causing UTI in primary care in rural Assam. UTIs caused by ESBL- or MBL-producing bacteria are very difficult to treat and can often lead to treatment failure. Thus, future research should focus on rapid diagnostics to enable targeted treatment options and reduce the treatment failure likely to occur with commonly prescribed antibiotics, which will help to combat antimicrobial resistance and the burden of UTIs.
Collapse
Affiliation(s)
- Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar, India
| | - Nimmy Anto
- Department of Biochemical Engineering and Biotechnology (DBEB), Indian Institute of Technology, Delhi, India
| | - Mohit Bhardwaj
- Department of Biochemical Engineering and Biotechnology (DBEB), Indian Institute of Technology, Delhi, India
| | | | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology (DBEB), Indian Institute of Technology, Delhi, India
| | - Till T Bachmann
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
12
|
Comparative study of phenotypic-based detection assays for carbapenemase-producing Acinetobacter baumannii with a proposed algorithm in resource-limited settings. PLoS One 2021; 16:e0259686. [PMID: 34735533 PMCID: PMC8568097 DOI: 10.1371/journal.pone.0259686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/23/2021] [Indexed: 11/23/2022] Open
Abstract
The increasing incidence of carbapenem resistance in Acinetobacter baumannii is a critical concern worldwide owing to the limitations of therapeutic alternatives. The most important carbapenem resistance mechanism for A. baumannii is the enzymatic hydrolysis mediated by carbapenemases, mostly OXA-type carbapenemases (class D) and, to a lesser extent, metallo-β-lactamases (class B). Therefore, early and accurate detection of carbapenemase-producing A. baumannii is required to achieve the therapeutic efficacy of such infections. Many methods for carbapenemase detection have been proposed as effective tests for A. baumannii; however, none of them are officially recommended. In this study, three carbapenemase detection methods, namely, CarbaAcineto NP test, modified carbapenem inactivation method (mCIM), and simplified carbapenem inactivation method (sCIM) were evaluated for phenotypic detection of clinically isolated A. baumannii. The MICs of imipenem, meropenem, and doripenem were determined for 123 clinically isolated A. baumannii strains before performing three phenotypic detections. The overall sensitivity and specificity values were 89.09%/100% for the carbAcineto NP test, 71.82%/100% for sCIM, and 32.73%/33.13% for mCIM. CarbAcineto NP test and sCIM performed excellently (100% sensitivity) when both Class B and Class D carbapenemases were present in the same isolate. Based on the results, the combined detection method of sCIM and CarbAcineto NP test was proposed to detect carbapenemase-producing A. baumannii rather than a single assay, significantly increasing the sensitivity of detection to 98.18%. The proposed algorithm was more reliable and cost-effective than the CarbAcineto NP test alone. It can be easily applied in routine microbiology laboratories for developing countries with limited resources.
Collapse
|
13
|
Wei M, Wang P, Wang S, Yang C, Gu LI. Rapid Detection and Differentiation of KPC and MBL Carbapenemases among Enterobacterales Isolates by a Modified Combined-Disk Test. Pol J Microbiol 2021; 70:387-394. [PMID: 34584532 PMCID: PMC8458999 DOI: 10.33073/pjm-2021-036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
This study was conducted to develop a cheap, rapid, and accurate modified combined-disk test (mCDT) approach to detect and differentiate KPC and MBL carbapenemases among clinical carbapenem-resistant Enterobacterales (CRE) isolates and simultaneously distinguish them from carbapenem-susceptible Enterobacterales (CSE) isolates. A total of 163 CRE and 90 third-generation cephalosporin-resistant Enterobacterales isolates were tested using imipenem and meropenem disks and different concentrations of carbapenemase inhibitors. The optimal sensitivity and specificity for detecting KPC carbapenemase were 97.2% and 100%, respectively. The sensitivity and specificity for detecting MBL carbapenemase were 100% and 100% with imipenem or meropenem and carbapenemase inhibitors within six hours. The inhibitory zone diameter of 18 mm for imipenem or meropenem disks without inhibitor could distinguish CRE from CSE isolates. Therefore, this mCDT approach may be a useful tool in clinical laboratories to detect CRE isolates and differentiate KPC and MBL producers, which is beneficial for patient management and hospital infection prevention and control.
![]()
Collapse
Affiliation(s)
- Ming Wei
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Peng Wang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shuai Wang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chunxia Yang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - L I Gu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
14
|
Ansari M, Aryal SC, Rai G, Rai KR, Pyakurel S, Bhandari B, Sah AK, Rai SK. Prevalence of multidrug-resistance and bla VIM and bla IMP genes among gram-negative clinical isolates in tertiary care hospital, Kathmandu, Nepal. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:303-311. [PMID: 34540168 PMCID: PMC8416584 DOI: 10.18502/ijm.v13i3.6392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background and Objectives Carbapenems have been the choice of antibiotics for the treatment of infections caused by multidrug-resistant bacteria. The main objective of this study was to determine the prevalence of carbapenemase (bla VIM and bla IMP ) producing isolates among Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Materials and Methods A total of 1,151 clinical samples were collected from the patients visiting Annapurna Neurological Institute and Allied Science and Annapurna Research Centre, Kathmandu, between June 2017 and January 2018. Antibiotic susceptibility testing (AST) was performed on the Enterobacteriaceae, P. aeruginosa and A. baumannii isolates using the Kirby-Bauer disk diffusion method. The modified Hodge test (MHT) was performed on the carbapenem-resistant isolates to confirm carbapenemase production. DNA was extracted and then screened for bla VIM and bla IMP genes by multiplex PCR. Results Of the total 1,151 clinical samples, 253 (22.0%) showed positive growth. Of them, 226 (89.3%) were identified as Enterobacteriaceae, P. aeruginosa, and A. baumannii. Among the 226 isolates, 106 (46.9%) were multidrug-resistant. Out of the 106, 97 (91.5%) isolates showed resistance to at least one of the carbapenem used. Among the 97 carbapenem-resistant isolates, 67 (69.1%) showed the modified Hodge test (MHT) positive results. bla VIM and bla IMP were detected in 40 and 38 isolates respectively using multiplex PCR assay. Conclusion This study determined a high prevalence of MDR and carbapenem resistance among Enterobacteriaceae, P. aeruginosa, and A. baumannii as detected by the presence of bla VIM and bla IMP genes. This study recommends the use of rapid and advanced diagnostic tools along with conventional phenotypic detection methods in the clinical settings for early detection and management of drug-resistant pathogens to improve treatment strategies.
Collapse
Affiliation(s)
- Mehraj Ansari
- Depatment of Microbiology, Shi-Gan International College of Sciences and Technology, Kathmandu, Nepal
| | | | - Ganesh Rai
- Depatment of Microbiology, Shi-Gan International College of Sciences and Technology, Kathmandu, Nepal
| | - Kul Raj Rai
- Depatment of Microbiology, Shi-Gan International College of Sciences and Technology, Kathmandu, Nepal
| | - Susil Pyakurel
- Depatment of Microbiology, Shi-Gan International College of Sciences and Technology, Kathmandu, Nepal
| | - Bina Bhandari
- Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Anil Kumar Sah
- Department of Microbiology, Annapurna Research Centre, Kathmandu, Nepal
| | - Shiba Kumar Rai
- Depatment of Microbiology, Shi-Gan International College of Sciences and Technology, Kathmandu, Nepal.,Department of Microbiology, Nepal Medical College, Kathmandu, Nepal
| |
Collapse
|
15
|
Kocer K, Klein S, Hildebrand D, Krall J, Heeg K, Boutin S, Nurjadi D. Pitfalls in genotypic antimicrobial susceptibility testing caused by low expression of blaKPC in Escherichia coli. J Antimicrob Chemother 2021; 76:2795-2801. [PMID: 34324652 DOI: 10.1093/jac/dkab267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is a growing interest in the rapid genotypic identification of antimicrobial resistance (AMR). In routine diagnostics, we detected multiple KPC-positive Escherichia coli (KPC-Ec) with discordant phenotypic meropenem susceptibility from a single patient's blood cultures, which prompted a more thorough investigation. OBJECTIVES We investigated the potential clinical relevance of, and the mechanism behind, discordant phenotypic and genotypic meropenem susceptibility in KPC-Ec. METHODS WGS was used to perform a comparative analysis of the isolates' genetic characteristics and their blaKPC-2 locus. Expression of blaKPC-2 was determined by quantitative PCR and the potency of meropenem hydrolysis was determined using a semi-quantitative carbapenem inactivation method. An in vivo infection assay using Galleria mellonella was performed to assess the potential clinical relevance of KPC expression in E. coli. RESULTS Despite the presence of blaKPC-2, three of five isolates were susceptible to meropenem (MICVITEK2 ≤ 0.25 mg/L), while two isolates were resistant (MICVITEK2 ≥ 16 mg/L). The isolates with high MICs had significantly higher blaKPC-2 expression, which corresponds to phenotypic meropenem inactivation. The genetic environment of blaKPC-2, which may impact KPC production, was identical in all isolates. In vivo infection assay with G. mellonella suggested that meropenem was effective in reducing mortality following infection with low-expressing KPC-Ec. CONCLUSIONS Our findings clearly highlight a limitation of genotypic AMR prediction for blaKPC. For the time being, genotypic AMR prediction requires additional analysis for accurate antibiotic therapy decision-making.
Collapse
Affiliation(s)
- Kaan Kocer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sabrina Klein
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Johannes Krall
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Beig M, Taheri M, Arabestani MR. Comparison of Different Phenotypic Tests versus PCR in the Detection of Carbapenemase-Producing Pseudomonas aeruginosa Isolates in Hamadan, Iran. Int J Microbiol 2021; 2021:5582615. [PMID: 34335779 PMCID: PMC8313346 DOI: 10.1155/2021/5582615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, the prevalence of carbapenem-resistant Pseudomonas aeruginosa isolates has become a worldwide concern. Rapid and accurate detection of carbapenemase-producing P. aeruginosa isolates is so important. The aim of this study was to evaluate the performance of the phenotypic methods such as Modified Hodge test (MHT), CarbaNP (CNPt), combined double-disk synergy test (CDDT), and carbapenem inactivation method (CIM) for rapid and accurate detection of clinical carbapenemase production of P. aeruginosa isolates. This study was performed on 97 P. aeruginosa strains, which were isolated from clinical samples in Hamadan hospitals, western Iran in 2017-2018. Antibiotic susceptibility testing was performed using disk diffusion and minimum inhibitory concentration (MIC) by E-test method. We evaluated the performance of MHT, CarbaNP, CDDT, and CIM tests in comparison to polymerase chain reaction (PCR) for the detection of carbapenemase-producing isolates. Additionally, the presence of carbapenem-resistant genes was investigated using the PCR method. Our findings showed that the highest resistance was to cefoxitin (94.8%). Moreover, among the carbapenem antibiotics, the highest resistance was to imipenem (49.4%). Among the 49 carbapenem-resistant isolates, 42 (85.7%) isolates were MIC positive. The results of phenotypic tests showed that CarbaNP, CIM, CDDT, and MHT tests were positive in (48/49, 97.95%), (46/49, 93.87%), (27/49, 57.44%), and (25/49, 53.19%) of isolates, respectively. CarbaNP and CIM tests showed high sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV) compared to PCR in P. aeruginosa isolates. CarbaNP and CIM tests are highly sensitive and specific tests for identifying carbapenemase-producing P. aeruginosa isolates.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Nutrition Health Research Center, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
17
|
Practical agar-based disk-diffusion tests using sulfamoyl heteroarylcarboxylic acids for identification of subclass B1 metallo-β-lactamase-producing Enterobacterales. J Clin Microbiol 2021; 59:e0076121. [PMID: 34260275 DOI: 10.1128/jcm.00761-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The worldwide distribution of carbapenemase-producing Enterobacterales (CPE) is a serious public health concern as they exhibit carbapenem resistance, thus limiting the choice of antimicrobials for treating CPE infections. The combination treatment with a β-lactam and one of the newly approved β-lactamase inhibitors, such as avibactam, relebactam, or vaborbactam, provides a valuable tool to cope with CPE; however, these inhibitors are active only against serine-type carbapenemases, and not against metallo-β-lactamases (MβLs). Therefore, it is important to readily differentiate carbapenemases produced by CPE by using simple and reliable methods in order to choose an appropriate treatment. Here, we developed three practical agar-based disk-diffusion tests (double-disk synergy test [DDST], disk potentiation test, and modified carbapenem inactivation method [mCIM]) to discriminate the production of subclass B1 MβLs, such as IMP-, NDM-, and VIM-type MβLs, from the other carbapenemases, especially serine-type carbapenemases. This was accomplished using B1 MβL-specific sulfamoyl heteroarylcarboxylic acid inhibitors, 2,5-dimethyl-4-sulfamoylfuran-3-carboxylic acid (SFC) and 2,5-diethyl-1-methyl-4-sulfamoylpyrrole-3-carboxylic acid (SPC), originally developed by us. The DDST and mCIM using SFC and SPC revealed high sensitivity (95.3%) and specificity (100%) in detecting B1 MβL-producing Enterobacterales. In disk potentiation test, the sensitivities using SFC and SPC were 89.1% and 93.8%, respectively, whereas the specificities for both were 100%. These methods are simple and inexpensive, and have a high accuracy rate. These methods would, therefore, be of immense assistance in the specific detection and discrimination of B1 MβL-producing Enterobacterales in clinical microbiology laboratories, and would lead to better prevention against infection with such multidrug-resistant bacteria in clinical settings.
Collapse
|
18
|
Jonas D, Reuter S, Klassen S, Weber S, Buck M, Giani T, Rossolini GM, Grundmann H. Evaluation of the BD Phoenix CPO detect panel for prediction of Ambler class carbapenemases. Sci Rep 2021; 11:13150. [PMID: 34162904 PMCID: PMC8222379 DOI: 10.1038/s41598-021-92336-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/03/2021] [Indexed: 11/27/2022] Open
Abstract
Rapid detection of carbapenemases as a cause of resistance is beneficial for infection control and antimicrobial therapy. The BD Phoenix NMIC-502 panel and CPO detect test identifies presence of carbapenemases in Enterobacterales such as Klebsiella pneumoniae and assigns them to Ambler classes. To evaluate the performance of the CPO detect panel, we employed a European collection of 1222 K. pneumoniae including carbapenem non-susceptible and susceptible clinical isolates from 26 countries, for which draft genomes were available after Illumina sequencing and the presence of carbapenemase genes had been identified by ARIBA gene calling. The CPO panel detected 488 out of 494 carbapenemase-encoding isolates as positive and six as negative. One-hundred and two isolates were tested positive for carbapenemase in the absence of any carbapenemase gene. The CPO panel identified 229 out of 230 KPC-positive isolates as carbapenemase producing and classified 62 of these as class A enzyme. Similarly, the CPO panel correctly specified 167 of 182 as class D. Regarding metallo-beta-lactamases, the CPO panel assigned 78 of 90 MBL positive isolates to class B enzymes. The sensitivity of the CPO panel in detecting carbapenemase activity was 99.5%, 97.7% and 98.3% for class A, B and D enzymes, respectively. The sensitivity in assignation to Ambler class A, B and D was 27%, 86% and 91%, respectively. An overall sensitivity of 98.8% and specificity of 86% in unclassified detection of carbapenemases was observed, with frequent false positive detection of carbapenemase producing organisms, thus rendering further confirmatory tests necessary.
Collapse
Affiliation(s)
- Daniel Jonas
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Klassen
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Weber
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marion Buck
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Hajo Grundmann
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Kanitthamniyom P, Hon PY, Zhou A, Abdad MY, Leow ZY, Yazid NBM, Xun VLW, Vasoo S, Zhang Y. A 3D-printed magnetic digital microfluidic diagnostic platform for rapid colorimetric sensing of carbapenemase-producing Enterobacteriaceae. MICROSYSTEMS & NANOENGINEERING 2021; 7:47. [PMID: 34567760 PMCID: PMC8433351 DOI: 10.1038/s41378-021-00276-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 05/27/2023]
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are a group of drug-resistant Gram-negative pathogens that are classified as a critical threat by the World Health Organization (WHO). Conventional methods of detecting antibiotic-resistant pathogens do not assess the resistance mechanism and are often time-consuming and laborious. We have developed a magnetic digital microfluidic (MDM) platform, known as MDM Carba, for the identification of CPE by measuring their ability to hydrolyze carbapenem antibiotics. MDM Carba offers the ability to rapidly test CPE and reduce the amount of reagents used compared with conventional phenotypic testing. On the MDM Carba platform, tests are performed in droplets that function as reaction chambers, and fluidic operations are accomplished by manipulating these droplets with magnetic force. The simple droplet-based magnetic fluidic operation allows easy system automation and simplified hands-on operation. Because of the unique "power-free" operation of MDM technology, the MDM Carba platform can also be operated manually, showing great potential for point-of-care testing in resource-limited settings. We tested 27 bacterial isolates on the MDM Carba platform, and the results showed sensitivity and specificity that were comparable to those of the widely used Carba NP test. MDM Carba may shorten the overall turnaround time for CPE identification, thereby enabling more timely clinical decisions for better clinical outcomes. MDM Carba is a technological platform that can be further developed to improve diagnostics for other types of antibiotic resistance with minor modifications.
Collapse
Affiliation(s)
- Pojchanun Kanitthamniyom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Pei Yun Hon
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Aiwu Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Mohammad Yazid Abdad
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Zhi Yun Leow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | | | - Vanessa Lim Wei Xun
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Shawn Vasoo
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Yi Zhang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
20
|
Patidar N, Vyas N, Sharma S, Sharma B. Phenotypic Detection of Carbapenemase Production in Carbapenem-Resistant Enterobacteriaceae by Modified Hodge Test and Modified Strip Carba NP Test. J Lab Physicians 2021; 13:14-21. [PMID: 34054236 PMCID: PMC8154340 DOI: 10.1055/s-0041-1723859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective
Carbapenems are last resort antibiotics for multidrug-resistant
Enterobacteriaceae
. However, resistance to carbapenem is increasing at an alarming rate worldwide leading to major therapeutic failures and increased mortality rate. Early and effective detection of carbapenemase producing carbapenem-resistant
Enterobacteriaceae
(CRE) is therefore key to control dissemination of carbapenem resistance in nosocomial as well as community-acquired infection. The aim of present study was to evaluate efficacy of Modified strip Carba NP (CNP) test against Modified Hodge test (MHT) for early detection of carbapenemase producing
Enterobacteriaceae
(CPE).
Material and MethodsEnterobacteriaceae
isolated from various clinical samples were screened for carbapenem resistance. A total of 107 CRE were subjected to MHT and Modified strip CNP test for the detection of CPE.
Statistical Analysis
It was done on Statistical Package for the Social Sciences (SPSS) software, IBM India; version V26. Nonparametric test chi-square and
Z
-test were used to analyze the results within a 95% level of confidence.
Results
Out of 107 CRE, 94 (88%) were phenotypically confirmed as carbapenemase producer by Modified strip CNP test and 46 (43%) were confirmed by Modified Hodge Test (MHT). Thirty-eight (36%) isolates showed carbapenemase production by both MHT and CNP test, 56 isolates (52%) were CNP test positive but MHT negative, eight (7%) isolates were MHT positive but CNP test negative and five (5%) isolates were both MHT and CNP test negative. There is statistically significant difference in efficiency of Modified CNP test and MHT (
p
< 0.05).
Conclusion
Modified strip CNP test is simple and inexpensive test which is easy to perform and interpret and gives rapid results in less than 5 minutes. It has high degree of sensitivity and specificity. Modified strip CNP test shows significantly higher detection capacity for carbapenemase producers as compared with MHT.
Collapse
Affiliation(s)
- Nisha Patidar
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India
| | - Nitya Vyas
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India
| | - Shanoo Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India
| | - Babita Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India
| |
Collapse
|
21
|
Lee AJ, Suh HS. Comparative Evaluation of the Modified Carbapenem Inactivation Method for Phenotypic Detection of Guiana Extended-Spectrum β-Lactamase-Type Carbapenemases in Enterobacterales. Lab Med 2021; 52:578-583. [PMID: 33928355 DOI: 10.1093/labmed/lmab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE We comparatively evaluated the performance of 3 phenotypic tests for the detection of carbapenemase production. MATERIALS AND METHODS Carbapenemase production was evaluated using the modified Hodge test (MHT), the modified carbapenemase inhibition method (mCIM), and the Rapidec Carba NP test (RCNP). RESULTS Among the 170 isolates, 79 were CP-CRE and 91 were non-CP-CRE. The CP-CRE isolates produced GES-5 (n = 66), KPC (n = 4), NDM (n = 7), NDM and OXA-48 (n = 1), and VIM (n = 1). For KPC producers, all 3 methods showed a sensitivity of 75%. The sensitivities of MHT, mCIM, and RCNP were 14.3%, 100%, and 71.4%, respectively, for NDM producers, and 1.5%, 12.1%, and 18.2% for GES-5 producers, respectively. CONCLUSION The performance of the phenotypic tests varied depending on the type of carbapenemase. For intensive infection control, phenotypic and molecular tests are required for the detection of common and rare types of carbapenemases.
Collapse
Affiliation(s)
- A-Jin Lee
- Department of Laboratory Medicine, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Hun Suk Suh
- Department of Laboratory Medicine, Daegu Catholic University School of Medicine, Daegu, South Korea
| |
Collapse
|
22
|
Wang L, Jia H, Sun Y, Zhang Y, Liu S, Lin Y, Liao W, Ye J, Zhou T. Evaluation of NitroSpeed-Carba NP test for rapid identification among different classes of carbapenemases in Enterobacterales and Pseudomonas aeruginosa. Int J Infect Dis 2021; 106:415-420. [PMID: 33864920 DOI: 10.1016/j.ijid.2021.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the performance of the NitroSpeed-Carba NP test for detecting carbapenemases in the clinical strains of Enterobacterales and Pseudomonas aeruginosa (P. aeruginosa), and analyze its advantages and limitations. METHODS The antimicrobial susceptibility tests were performed according to the agar dilution method. Using the modified carbapenemase inactivation method (mCIM), polymerase chain reaction (PCR), and sequencing, the production of carbapenemase and the prevalence of genes were studied. The NitroSpeed-Carba NP test was performed to detect different types of carbapenemases in Enterobacterales and P. aeruginosa. The results of PCR and sequencing were used as the gold standard. RESULTS Among 144 carbapenemase-producing and 54 carbapenemase-negative strains of Enterobacterales and P. aeruginosa, the NitroSpeed-Carba NP test correctly detected 143 of 144 carbapenemase producers and 51 of 54 non-carbapenemase producers. Moreover, the sensitivity and specificity of all tested isolates were 99.31% and 94.44%, respectively (99.28% and 92.86% for Enterobacterales; 100% and 100% for P. aeruginosa). The sensitivity was 100% for class A (56 of 56), 100% for class B (60 of 60), and 100% for class D (27 of 27). CONCLUSIONS The results suggest that NitroSpeed-Carba NP test is a simple and valuable assay that could be used as a rapid and stable detection method to identify the carbapenemases in Enterobacterales and P. aeruginosa strains.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Huaiyu Jia
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yishuai Lin
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
23
|
Yang BS, Park JA. Detection of blaKPC and blaNDM Genes from Gram-Negative Rod Bacteria Isolated from a General Hospital in Gyeongnam. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.1.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Byoung Seon Yang
- Department of Medical Laboratory Science, Jinju Health College, Jinju, Korea
| | - Ji Ae Park
- Department of Medical Laboratory Science, Jinju Health College, Jinju, Korea
| |
Collapse
|
24
|
Lau MY, Teng FE, Chua KH, Ponnampalavanar S, Chong CW, Abdul Jabar K, Teh CSJ. Molecular Characterization of Carbapenem Resistant Klebsiella pneumoniae in Malaysia Hospital. Pathogens 2021; 10:pathogens10030279. [PMID: 33801250 PMCID: PMC8001961 DOI: 10.3390/pathogens10030279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great concern, as carbapenems are the last-line therapy for multidrug-resistant Gram-negative bacteria infections. This study aims to report the epidemiology of CRKP in a teaching hospital in Malaysia based on the molecular genotypic and clinical characteristics of the isolates. Sixty-three CRKP strains were isolated from a tertiary teaching hospital from January 2016 until August 2017. Carbapenemase genes were detected in 55 isolates, with blaOXA-48 (63.5%) as the predominant carbapenemase gene, followed by blaNDM (36.5%). At least one porin loss was detected in nine isolates. Overall, 63 isolates were divided into 30 clusters at similarity of 80% with PFGE analysis. Statistical analysis showed that in-hospital mortality was significantly associated with the usage of central venous catheter, infection or colonization by CRKP, particularly NDM-producers. In comparison, survival analysis using Cox proportional hazards regression identified a higher hazard ratio for patients with a stoma and patients treated with imipenem but a lower hazard ratio for patients with NDM-producing CRKP. OXA-48 carbapenemase gene was the predominant carbapenemase gene in this study. As CRKP infection could lead to a high rate of in-hospital mortality, early detection of the isolates was important to reduce their dissemination.
Collapse
Affiliation(s)
- Min Yi Lau
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (F.E.T.)
| | - Fui Enn Teng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (F.E.T.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sasheela Ponnampalavanar
- Department of Infectious Diseases, University Malaya Medical Centre, Kuala Lumpur 50603, Malaysia;
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- Centre for Translational Research, Institute of Research, Development and Innovation, Kuala Lumpur 57000, Malaysia
| | - Kartini Abdul Jabar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (F.E.T.)
- Correspondence: (K.A.J.); (C.S.J.T.); Tel.: +603-79676674 (C.S.J.T.)
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (F.E.T.)
- Correspondence: (K.A.J.); (C.S.J.T.); Tel.: +603-79676674 (C.S.J.T.)
| |
Collapse
|
25
|
Bonnin RA, Jousset AB, Emeraud C, Oueslati S, Dortet L, Naas T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front Med (Lausanne) 2021; 7:616490. [PMID: 33553210 PMCID: PMC7855592 DOI: 10.3389/fmed.2020.616490] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
Gram-negative bacteria, especially Enterobacterales, have emerged as major players in antimicrobial resistance worldwide. Resistance may affect all major classes of anti-gram-negative agents, becoming multidrug resistant or even pan-drug resistant. Currently, β-lactamase-mediated resistance does not spare even the most powerful β-lactams (carbapenems), whose activity is challenged by carbapenemases. The dissemination of carbapenemases-encoding genes among Enterobacterales is a matter of concern, given the importance of carbapenems to treat nosocomial infections. Based on their amino acid sequences, carbapenemases are grouped into three major classes. Classes A and D use an active-site serine to catalyze hydrolysis, while class B (MBLs) require one or two zinc ions for their activity. The most important and clinically relevant carbapenemases are KPC, IMP/VIM/NDM, and OXA-48. However, several carbapenemases belonging to the different classes are less frequently detected. They correspond to class A (SME-, Nmc-A/IMI-, SFC-, GES-, BIC-like…), to class B (GIM, TMB, LMB…), class C (CMY-10 and ACT-28), and to class D (OXA-372). This review will address the genetic diversity, biochemical properties, and detection methods of minor acquired carbapenemases in Enterobacterales.
Collapse
Affiliation(s)
- Rémy A Bonnin
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Agnès B Jousset
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Cécile Emeraud
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Laurent Dortet
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
26
|
Kumudunie WGM, Wijesooriya LI, Wijayasinghe YS. Comparison of four low-cost carbapenemase detection tests and a proposal of an algorithm for early detection of carbapenemase-producing Enterobacteriaceae in resource-limited settings. PLoS One 2021; 16:e0245290. [PMID: 33434203 PMCID: PMC7802922 DOI: 10.1371/journal.pone.0245290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/25/2020] [Indexed: 01/27/2023] Open
Abstract
Rapidly progressing antibiotic resistance is a great challenge in therapy. In particular, the infections caused by carbapenem-resistant Enterobacteriaceae (CRE) are exceedingly difficult to treat. Carbapenemase production is the predominant mechanism of resistance in CRE. Early and accurate identification of carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CP-CRE) is extremely important for the treatment and prevention of such infections. In the present study, four phenotypic carbapenemase detection tests were compared and an algorithm was developed for rapid and cost-effective identification of CP-CRE. A total of 117 Enterobacteriaceae (54 CP-CRE, 3 non-CP-CRE, and 60 non-CRE) isolates were tested for carbapenemase production using modified Hodge test (MHT), modified carbapenem inactivation method (mCIM), Carba NP test (CNPt), and CNPt-direct test. The overall sensitivity/specificity values were 90.7%/92.1% for MHT, 100%/100% for mCIM, 75.9%/100% for CNPt, and 83.3%/100% for CNPt-direct. OXA-48-like enzymes were detected with 93.2% sensitivity by MHT and >77.3% sensitivity by two Carba NP tests. MHT could only detect half of the NDM carbapenemase producers. CNPt-direct exhibited enhanced sensitivity compared to CNPt (100% vs 25%) for detection of NDM producers. Considering these findings we propose CNPt-direct as the first test followed by mCIM for rapid detection of CP-CRE. With this algorithm >80% of the CP-CRE could be detected within 24 hours from the time the sample is received and 100% CP-CRE could be detected in day two. In conclusion, mCIM was the most sensitive assay for the identification of CP-CRE. CNPt-direct performed better than CNPt. An algorithm consisting CNPt-direct and mCIM allows rapid and reliable detection of carbapenemase production in resource-limited settings.
Collapse
|
27
|
Malik T, Naim A. Phenotypic and Molecular Detection of BlaNDM Gene Among Drug-Resistant Klebsiella Isolates. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2021; 16:166-173. [PMID: 34961435 DOI: 10.2174/2772434416666210812163922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the past few centuries, a widespread increase in antimicrobial resistance has been observed among Klebsiella species. The antibiotic- resistant strains of the genus Klebsiella are becoming a serious threat in clinical settings due to their involvement in severe invasive and non-invasive infections. The emergence of resistance among these strains is associated with their strong enzymatic activity against several broad-spectrum antibiotics. These enzymes include beta-lactamases, extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases, and carbapenemases. These resistance enzymes are capable of hydrolyzing various broad-spectrum drugs like extended-spectrum cephalosporin and carbapenems. OBJECTIVE The present study was conducted to determine the emerging resistance among Klebsiella strains by identifying the production of carbapenemase enzyme phenotypically and the frequency of the NDM resistance gene by a polymerase chain reaction. METHODS In this study, 236 Gram-negative isolates from different clinical laboratories were identified. Out of which, 125 isolates were found as Klebsiella species by using standard microbiological techniques. Minimum inhibitory concentrations (MIC) were determined using eight representative antibiotics by the Macro broth dilution method. Phenotypic detection of carbapenemase producing Klebsiella species was performed by Modified Hodge Test. Phenotypic findings were then checked and compared with genotypic results obtained by using the Polymerase chain reaction (PCR) for the detection of resistance genes responsible for the production of carbapenemase. RESULTS In this study, carbapenemase production was found only in 6 (5%) Klebsiella isolates by using the phenotypic method; however, 3 isolates out of 125 were screened positive for the gene NDM-1. CONCLUSION Since we are considering carbapenems as the last therapeutic option for treating infections, mainly caused by Gram-negative isolates, the prevailing resistance against this drug is widely disseminating. It is better to evaluate the antibiotic susceptibility, phenotypic screening as well genotypic screening (where possible) for implementing strict antibiotic control policies in health care settings, hospitals, laboratories, etc.
Collapse
Affiliation(s)
- Taqdees Malik
- Department of Microbiology, Jinnah University for Women, Karachi, Pakistan
| | - Asma Naim
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
28
|
da Silva KE, Thi Nguyen TN, Boinett CJ, Baker S, Simionatto S. Molecular and epidemiological surveillance of polymyxin-resistant Klebsiella pneumoniae strains isolated from Brazil with multiple mgrB gene mutations. Int J Med Microbiol 2020; 310:151448. [PMID: 33092694 DOI: 10.1016/j.ijmm.2020.151448] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
The prevalence of polymyxin-resistant Enterobacteriaceae is increasing worldwide. Their emergence is worrisome and limits therapeutic options for severely ill patients. We aimed to investigate the molecular and epidemiological characteristics of polymyxin-resistant Klebsiella pneumoniae circulating in Brazilian hospitals. Polymyxin-resistant K. pneumoniae isolates from two Brazilian healthcare facilities were characterized phenotypically and subjected to whole genome sequencing (WGS). Using the WGS data we determined their sequence type, resistance gene content (resistome), their composition of virulence genes and plasmids. ST11 was the most common (80 %) sequence type among the isolates followed by ST345, ST15 and ST258. A resistome analysis revealed the common presence of blaKPC-2 and less frequently blaSHV-11, blaTEM-1, blaCTX-M-15, and blaOXA-9. Genes conferring resistance to aminoglycosides, fluoroquinolones, phenicols, sulphonamides, tetracyclines, trimethoprim and macrolide-lincosamide-streptogramin were also detected. We observed a clonal spread of polymyxin-resistant K. pneumoniae isolates, with polymyxin-resistance associated with various alterations in the mgrB gene including inactivation by an insertion sequence and nonsense point mutations. We additionally identified a novel 78-bp repeat sequence, encoding a MgrB protein with 26 amino acids duplicated in six isolates. This is the first observation of this type of alteration being associated with polymyxin resistance. Our findings demonstrate that mgrB alterations were the most common source of polymyxin-resistance in Brazilian clinical settings. Interestingly, distinct genetic events were identified among clonally related isolates, including a new amino acid alteration. The clinical implications and investigation of the resistance mechanisms is of great importance to patient safety and control of these infections, particularly in long-term care facilities.
Collapse
Affiliation(s)
- Kesia Esther da Silva
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brazil
| | - To Nguyen Thi Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Christine J Boinett
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Stephen Baker
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK; Department of Medicine, Cambridge University, Cambridge, UK
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brazil.
| |
Collapse
|
29
|
Rapid Detection and Characterization of Carbapenemases in Enterobacterales with a New Modified Carbapenem Inactivation Method, mCIMplus. J Clin Microbiol 2020; 58:JCM.01370-20. [PMID: 32878954 DOI: 10.1128/jcm.01370-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
The worldwide emergence and spread of antimicrobial resistance in Gram-negative bacteria are severely limiting therapeutic options and thus constitute a major public health threat. The timely accurate detection of carbapenemase producers and the determination of carbapenemase class according to the Ambler classification can guide antimicrobial therapy and facilitate infection control measures. A modified version of the carbapenemase inactivation method (CIM), mCIM, was described and approved by the CLSI in 2017. We evaluated the performance of a faster new mCIM-based assay, mCIMplus, which can detect carbapenemase activity within 8 h and characterize the carbapenemase according to the Ambler classification in 20 h. A panel of 137 isolates producing carbapenemases (GES, IMP, KPC, NDM, OXA-48, OXA-48-like, and VIM enzymes) and 22 non-carbapenemase-producing isolates was used to evaluate the performance of mCIMplus. We evaluated the detection of carbapenemase activity at 8 and 20 h. Carbapenemase class was determined, with specific inhibitors, at 20 h. The sensitivities of mCIMplus were 99.3% at 8 h and 98.5% at 20 h. Its specificity was 100% regardless of culture time. Based on a decision algorithm, this test successfully identified the carbapenemase class for 98.4% of the tested isolates (127/129). Characterization was correct for 100, 95, and 100% of Ambler class A, B, and D isolates, respectively. This test can, therefore, be used to detect carbapenemase activity within 8 h and to determine carbapenemase class within 20 h. It constitutes a very affordable (<€1 per isolate) and reliable technique requiring only basic laboratory equipment.
Collapse
|
30
|
Swathi C, Sudhaharan S, Lakshmi V, Suguna Ratnakar K, Sritharan V. Direct Detection and Discrimination of Carbapenemases of Acinetobacter baumannii from Uncultured Tracheal Aspirates. Microb Drug Resist 2020; 26:1153-1162. [PMID: 32364821 DOI: 10.1089/mdr.2019.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Carbapenemases play important roles in conferring resistance to beta-lactam antibiotics, including the carbapenems. Detection of carbapenemase activity helps to understand the possible mechanism(s) of carbapenem resistance. Identification of carbapenemases is currently being done by various phenotypic methods and molecular methods. However, innovative biochemical and spectrophotometric methods are desirable as they will be easy to perform, affordable, and rapid. A novel chromogenic method called Carba NP test was introduced recently to screen for carbapenemases in clinical isolates of gram-negative pathogens. We adopted this assay (1) to detect the total carbapenemase activity, (2) to discriminate Class A, B, and D carbapenemases with inhibitors, (3) to compare with carbapenemase genotype, and (4) for direct differential diagnosis of carbapenemases in uncultured clinical sample such as tracheal aspirate. The study included 132 purulent tracheal aspirates. All samples were processed and screened by a protocol optimized in our laboratory, which showed good sensitivity and correlation with genotyping and conventional phenotyping. Our protocol not only offers the fastest way to identify the pathogen but also its carbapenemase profile, directly from uncultured clinical samples in less than 4 hr. Our protocol is currently being validated on other types of clinical specimens in our laboratory.
Collapse
Affiliation(s)
- Cheguri Swathi
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education and Research Foundation (GMERF), Hyderabad, India
| | - Sukanya Sudhaharan
- Department of Microbiology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, India
| | - Vemu Lakshmi
- Department of Microbiology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, India
| | - Kamaraju Suguna Ratnakar
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education and Research Foundation (GMERF), Hyderabad, India
| | - Venkataraman Sritharan
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education and Research Foundation (GMERF), Hyderabad, India
| |
Collapse
|
31
|
Reyes S, Nicolau DP. Precision medicine for the diagnosis and treatment of carbapenem-resistant Enterobacterales: time to think from a different perspective. Expert Rev Anti Infect Ther 2020; 18:721-740. [PMID: 32368940 DOI: 10.1080/14787210.2020.1760844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Carbapenem-resistant Enterobacterales (CRE) represent a global public health problem. Precision medicine (PM) is a multicomponent medical approach that should be used to individualize the management of patients infected with CRE. AREAS COVERED Here, we differentiate carbapenem-producing CRE (CP-CRE) from non-CP-CRE and the importance of this distinction in clinical practice. The current phenotypic CRE-case definition and its implications are also discussed. Additionally, we summarize data regarding phenotypic and molecular diagnostic tools and available antibiotics. In order to review the most relevant data, a comprehensive literature search of peer-reviewed articles in PubMed and abstracts presented at high-impact conferences was performed. EXPERT OPINION PM in CRE infections entails a multi-step process that includes applying the current phenotypic definition, utilization of the right phenotypic or molecular testing methods, and thorough evaluation of risk factors, source of infection, and comorbidities. A powerful armamentarium is available to treat CRE infections, including recently approved agents. Randomized controlled trials targeting specific pathogens instead of site of infections may be appropriate to fill in the current gaps. In light of the diverse enzymology behind CP-CRE, PM should be employed to provide the best therapy based on the underlying resistance mechanism.
Collapse
Affiliation(s)
- Sergio Reyes
- Center for Anti-Infective Research and Development, Hartford Hospital , Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital , Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital , Hartford, CT, USA
| |
Collapse
|
32
|
Cafferkey J, O’Connor M, Doyle D, Skally M, Fitzpatrick M, Burns K, O’Connell K, Fitzpatrick F, Smyth E, Humphreys H. Improving the processing time for the detection of carbapenemase-producing enterobacterales using an evolving algorithm. Br J Biomed Sci 2020; 77:97-100. [DOI: 10.1080/09674845.2019.1704357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J Cafferkey
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - M O’Connor
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - D Doyle
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - M Skally
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - M Fitzpatrick
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - K Burns
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
- Health Protection Surveillance Centre, Dublin, Ireland
| | - K O’Connell
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - F Fitzpatrick
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - E Smyth
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - H Humphreys
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
33
|
Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrob Resist Infect Control 2019; 8:185. [PMID: 31832185 PMCID: PMC6868752 DOI: 10.1186/s13756-019-0611-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/21/2019] [Indexed: 01/27/2023] Open
Abstract
Background Antibiotic use is largely under-regulated in Egypt leading to the emergence of resistant isolates. Carbapenems are last resort agents to treat Acinetobacter baumannii infections resistant to other classes of antibiotics. However, carbapenem-resistant isolates are emerging at an alarming rate. This study aimed at phenotypically and molecularly characterizing seventy four carbapenem-unsusceptible A. baumannii isolates from Egypt to detect the different enzymes responsible for carbapenem resistance. Methods Carbapenemase production was assessed by a number of phenotypic methods: modified Hodge test (MHT), carbapenem inactivation method (CIM), combined disc test (CDT), CarbAcineto NP test and boronic acid disc test. Polymerase chain reaction (PCR) was used to screen the isolates for the presence of some genes responsible for resistance to carbapenems, as well as some insertion sequences. Results PCR amplification of class D carbapenemases revealed the prevalence of blaOXA-51 and blaOXA-23 in 100% of the isolates and of blaOXA-58 in only one isolate (1.4%). blaVIM and blaNDM-1 belonging to class B metallo-β-lactamases were present in 100 and 12.1% of the isolates, respectively. The prevalence of ISAba1, ISAba2 and ISAba3 was 100, 2.7 and 4.1%, respectively. None of the tested isolates carried blaOXA-40, blaIMP, blaSIM, blaSPM, blaGIM or the class A blaKPC. Taking PCR as the gold standard method for the detection of different carbapenemases, the sensitivities of the MHT, CIM, CDT, CarbAcineto NP test and boronic acid disc/imipenem or meropenem test for this particular collection of isolates were 78.4, 68.9, 79.7, 95.9, and 56.8% or 70.3%, respectively. Conclusions The widespread detection of carbapenem-resistant A. baumannii (CR-AB) has become a real threat to the efficacy of treatment regimens. Among the studied cohort of CR-AB clinical isolates, blaOXA-51, blaOXA-23 and blaVIM were the most prevalent, followed by blaNDM-1 and blaOXA-58. The genotypic detection of carbapenemases among CR-AB clinical isolates using PCR was most conclusive, followed closely by the phenotypic testing using CarbAcineto NP test.
Collapse
|
34
|
Cordeiro-Moura JR, Fehlberg LCC, Nodari CS, Matos APD, Alves VDO, Cayô R, Gales AC. Performance of distinct phenotypic methods for carbapenemase detection: The influence of culture media. Diagn Microbiol Infect Dis 2019; 96:114912. [PMID: 31704067 DOI: 10.1016/j.diagmicrobio.2019.114912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
We evaluated the performance of five phenotypic tests [Modified Hodge Test (MHT); combined-disk test (CDT) using phenylboronic acid, EDTA, and cloxacillin; CarbaNP and CarbAcinetoNP; Blue-Carba, Carbapenembac™ and Carbapenembac Metallo™] for carbapenemase detection in Gram-negative bacilli (GNB). A total of 73 carbapenemase producers and 27 non-carbapenemase producers were tested. All GNB were subcultured onto Müeller-Hinton agar (MHA), MacConkey agar (MAC), and sheep blood agar (SBA). High sensitivity (100%) and specificity (100%) was observed for MHA using CarbaNP, Blue-Carba, and Carbapenembac™. The sensitivity and specificity of CarbaNP (98.6%/100%), Blue-Carba (97.1%/91.0%), and Carbapenembac™ (100%/96.5%) were slightly lower for SBA. In contrast, unacceptable sensitivity rates of CarbaNP (71.1%) and Blue-Carba (66.6%), but not Carbapenembac™ (97.3%), were observed for MAC. The colorimetric methods showed high sensitivity and specificity to detect carbapenemase production from isolates grown on MHA or SBA. However, colonies obtained from MAC must not be tested for carbapenemase detection by colorimetric methods.
Collapse
Affiliation(s)
- Jhonatha Rodrigo Cordeiro-Moura
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Departament of Internal Medicine, Escola Paulista de Medicina - EPM, São Paulo, - SP, Brazil
| | - Lorena Cristina Corrêa Fehlberg
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Departament of Internal Medicine, Escola Paulista de Medicina - EPM, São Paulo, - SP, Brazil.
| | - Carolina Silva Nodari
- Universidade Federal de São Paulo - UNIFESP, Laboratório de Imunologia e Bacteriologia - LIB, Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas - DCB, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, - SP, Brazil
| | - Adriana Pereira de Matos
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Departament of Internal Medicine, Escola Paulista de Medicina - EPM, São Paulo, - SP, Brazil
| | - Vinicius de Oliveira Alves
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Departament of Internal Medicine, Escola Paulista de Medicina - EPM, São Paulo, - SP, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Departament of Internal Medicine, Escola Paulista de Medicina - EPM, São Paulo, - SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Laboratório de Imunologia e Bacteriologia - LIB, Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas - DCB, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, - SP, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Departament of Internal Medicine, Escola Paulista de Medicina - EPM, São Paulo, - SP, Brazil
| |
Collapse
|
35
|
Lahiri S, Venkataraman R, Jagan A, Deshmukh G, Patra S, Reddy V, Sangeetha V, Solanki R, Gupta J, Patel K, De A, Mukhopadhyay C, Dias M, Kanungo R, Mendiratta D, Nawal P, Shastri J, Vemu L, Rangarajan R. Evaluation of LAMP-based assays for carbapenemase genes. J Med Microbiol 2019; 68:1431-1437. [DOI: 10.1099/jmm.0.001050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Surobhi Lahiri
- Vitas Pharma Research Private Limited, TBI, University of Hyderabad, Hyderabad, India
| | - Rasika Venkataraman
- Vitas Pharma Research Private Limited, TBI, University of Hyderabad, Hyderabad, India
| | - Akshaya Jagan
- Vitas Pharma Research Private Limited, TBI, University of Hyderabad, Hyderabad, India
| | - Gargi Deshmukh
- Vitas Pharma Research Private Limited, TBI, University of Hyderabad, Hyderabad, India
| | - Sudipta Patra
- Department of Microbiology, Kasturba Medical College, Manipal, India
| | - Vani Reddy
- Department of Microbiology, St. John’s Medical College, Bangalore, India
| | - V. Sangeetha
- Department of Microbiology, Pondicherry Institute of Medical Sciences, Puducherry, India
| | | | - Jyoti Gupta
- Department of Microbiology, Chirayu Medical College & Hospital, Bhopal, India
| | | | - Anuradha De
- Department of Microbiology, T. N. Medical College, Mumbai, India
| | | | - Mary Dias
- Department of Microbiology, St. John’s Medical College, Bangalore, India
| | - Reba Kanungo
- Department of Microbiology, Pondicherry Institute of Medical Sciences, Puducherry, India
| | - Deepak Mendiratta
- Department of Microbiology, Chirayu Medical College & Hospital, Bhopal, India
| | | | - Jayanthi Shastri
- Department of Microbiology, T. N. Medical College, Mumbai, India
| | - Lakshmi Vemu
- Department of Microbiology, Kamineni Academy of Medical Sciences & Research Centre, Hyderabad, India
| | - Radha Rangarajan
- Vitas Pharma Research Private Limited, TBI, University of Hyderabad, Hyderabad, India
| |
Collapse
|
36
|
Cui X, Zhang H, Du H. Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Front Microbiol 2019; 10:1823. [PMID: 31481937 PMCID: PMC6710837 DOI: 10.3389/fmicb.2019.01823] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have spread rapidly around the world in the past few years, posing great challenges to human health. The plasmid-mediated horizontal transmission of carbapenem-resistance genes is the main cause of the surge in the prevalence of CRE. Therefore, the timely and accurate detection of CRE, especially carbapenemase-producing Enterobacteriaceae, is very important for the clinical prevention and treatment of these infections. A variety of methods for the rapid detection of CRE phenotypes and genotypes have been developed for use in clinical microbiology laboratories. To overcome the lack of efficient antibiotics, CRE infections are often treated with combination therapies. Moreover, novel drugs and emerging strategies appeared successively and in various stages of development. In this article, we summarized the global distribution of various carbapenemases. And we focused on summarizing and comparing the advantages and limitations of the detection methods and the therapeutic strategies of CRE primarily.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
37
|
Ghasemnejad A, Doudi M, Amirmozafari N. Evaluation of Modified Hodge Test as a Non-molecular Assay for Accurate Detection of KPC-producing Klebsiella pneumoniae. Pol J Microbiol 2019; 67:291-295. [PMID: 30451445 PMCID: PMC7255689 DOI: 10.21307/pjm-2018-034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2018] [Indexed: 11/11/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) have become a major therapeutic challenge because of its increasingly fast dissemination throughout the world. Accurate detection of KPC is essential for optimal treatment. The Clinical and Laboratory Standards Institutes (CLSI) for fast detection of KPC producers currently recommend Modified Hodge Test (MHT) and Carba NP test. MHT can directly detect carbapenemase production in Enterobacteriaceae isolates. The current study was conducted to evaluate the capacity of MHT with two carbapenem disks for accurate detection of KPC. MHT was performed according to guidelines of CLSI to identify isolates with carbapenem resistance. In doing so, two substrates of MHT were assigned into two groups for examination: meropenem and ertapenem groups. A total of 96 non-repetitive clinical isolates of Klebsiella pneumoniae were tested. The presence of the bla KPC gene in each MHT-positive isolate was examined by PCR. A total of 54 isolates exhibited reduced susceptibility or resistance to carbapenems. Sensitivity of MHT with two carbapenem disks was similar. Specificity of the MHT with meropenem disk was 64% and with ertapenem disk was 53%. Detection of KPC by MHT with meropenem disk was found to be more effective than with ertapenem disk. Based on our results, the presence of KPC does not in itself influence the categorization of resistance. Therefore, the use of MHT with ertapenem disk for the rapid detection of KPC among K. pneumoniae for infection control should not be recommended.
Collapse
Affiliation(s)
- Atossa Ghasemnejad
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Monir Doudi
- Department of Microbiology, Falavarjan branch, Islamic Azad University, Esfahan, Iran
| | - Nour Amirmozafari
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Phenotypic Methods for Detection of Carbapenemase Production in Carbapenem-Resistant Organisms: What Method Should Your Laboratory Choose? ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.clinmicnews.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Jing X, Zhou H, Min X, Zhang X, Yang Q, Du S, Li Y, Yu F, Jia M, Zhan Y, Zeng Y, Yang B, Pan Y, Lu B, Liu R, Zeng J. The Simplified Carbapenem Inactivation Method (sCIM) for Simple and Accurate Detection of Carbapenemase-Producing Gram-Negative Bacilli. Front Microbiol 2018; 9:2391. [PMID: 30425686 PMCID: PMC6218411 DOI: 10.3389/fmicb.2018.02391] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
This study reports the simplified carbapenem inactivation method (sCIM) to detect carbapenemase-producing gram-negative bacilli in a simple and accurate manner. This method is based on the modified carbapenem inactivation method (mCIM) with the improvement of experimental procedures. Instead of incubating the antibiotic disk in the organism culture media, the organism to be tested was smeared directly onto the antibiotic disk in the sCIM. For evaluating the sensitivity and specificity of the method, a total of 196 Enterobacteriaceae, 73 Acinetobacter baumannii, and 158 Pseudomonas aeruginosa isolates were collected. Polymerase chain reaction (PCR) was used to detect the carbapenemase genes. Phenotypic evaluations were performed using both the sCIM and the mCIM. PCR results showed that, of the 196 Enterobacteriaceae strains, 147 expressed the carbapenemase genes blaKPC−2 (58.5%), blaIMP−4 (21.8%), blaIMP−2 (2.0%), blaVIM−1 (6.1%), blaNDM−1 (10.2%), and blaOXA−48 (1.4%). sCIM results had high concordance with PCR results (99.5%) and mCIM results (100%) with the exception of one Klebsiella pneumoniae strain, which had an minimal inhibitory concentration (MIC) for imipenem of 0.25 mg/L. PCR demonstrated that 53 of the 73 A. baumannii isolates expressed the carbapenemase genes blaOXA−23 (98.1%) and blaVIM−2 (1.8%). sCIM and PCR results corresponded but all A. baumannii isolates were carbapenemase negative by the mCIM. PCR demonstrated that 25 of the 158 P. aeruginosa isolates expressed carbapenemase genes blaVIM−1 (52%), blaVIM−2 (8%), blaVIM−4 (36%), and blaIMP−4 (4%). sCIM results had high concordance with PCR results (100%) and the mCIM results (99.4%) with the exception of one P. aeruginosa isolate that expressed the blaVIM−4 gene. The sCIM offers specificity and sensitivity comparable to PCR but has the advantage of being more user-friendly. This method is suitable for routine use in most clinical microbiology laboratories for the detection of carbapenemase-producing gram-negative bacilli.
Collapse
Affiliation(s)
- Xiaopeng Jing
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochun Min
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Yang
- Department of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuaixian Du
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Jia
- Department of Clinical Laboratory, Wuhan First Hospital, Wuhan, China
| | - Yu Zhan
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Wuhan, China
| | - Yi Zeng
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Wuhan, China
| | - Bo Yang
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Wuhan, China
| | - Yunjun Pan
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Binghuai Lu
- Department of Laboratory Medicine, Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical Medicine, Beijing, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates. J Clin Microbiol 2018; 56:JCM.01140-18. [PMID: 30158194 DOI: 10.1128/jcm.01140-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rapid spread of multidrug-resistant Gram-negative organisms constitutes one of the greatest challenges to global health. While Gram-negative organisms have developed several mechanisms to avert the bactericidal effects of commonly prescribed antibiotic agents, the increasing prevalence of carbapenemase-producing organisms (CPO) is particularly concerning given the rapid spread of mobile genetic elements containing carbapenemase genes, the limited treatment options for infections caused by these organisms, and the high mortality rates associated with CPO infections. Understanding if an organism is carbapenemase producing and, if so, the class of carbapenemase(s) produced has treatment implications, as some agents preferentially have activity against specific carbapenemases. Furthermore, CPO disseminate between patients with greater ease than non-CP-carbapenem-resistant organisms and warrant more intensive infection control measures than would be employed in the absence of carbapenemase production. Phenotypic assays currently used in clinical practice to detect CPO consist of the following: (i) growth-based assays which measure carbapenem resistance based on organism growth in the presence of a carbapenem antibiotic (e.g., modified Hodge test and modified carbapenem inactivation method), (ii) hydrolysis methods which detect carbapenem degradation products (e.g., Carba NP test and matrix-assisted laser desorption-ionization time of flight mass spectrometry), and (iii) lateral flow immunoassays which detect carbapenemase enzymes through the use of specific antibodies. Although there is no single phenotypic test that meets all specifications of the ideal test, as we describe in this review, there are a number of tests that are user-friendly, affordable, accurate, and feasible for implementation in clinical microbiology laboratories of all sizes.
Collapse
|
41
|
Within-a-Day Detection and Rapid Characterization of Carbapenemase by Use of a New Carbapenem Inactivation Method-Based Test, CIMplus. J Clin Microbiol 2018; 56:JCM.00137-18. [PMID: 29950336 DOI: 10.1128/jcm.00137-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
The dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a major threat to public health. Rapid and accurate detection of CPE is essential for initiating appropriate antimicrobial treatment and establishing infection control measures. The carbapenem inactivation method (CIM), which has good sensitivity and specificity but a detection time of 20 h, was recently described. In this study, we evaluated the performances of a new version, the CIMplus test, which allows detection of carbapenemases in 8 h and characterization of carbapenemase classes, according to the Ambler classification, in 20 h. A panel of 110 carbapenem-resistant Enterobacteriaceae strains, including 92 CPE strains (with NDM, VIM, IMP, KPC, GES, OXA-48, and OXA-48-like enzymes), was used to evaluate test performance. Carbapenemase activity was detected at 8 h and 20 h. Characterization of carbapenemase classes, using specific inhibitors, was possible in 20 h. The CIMplus test had sensitivities of 95.7% and 97.8% at 8 h and 20 h, respectively, and a specificity of 94.4%, independent of the culture duration. Using a decision algorithm, this test was successful in identifying the carbapenemase class for 98.9% of tested CPE isolates (87/88 isolates). In total, the characterization was correct for 100%, 96.9%, and 100% of Ambler class A, B, and D isolates, respectively. Therefore, this test allows detection of carbapenemase activity in 8 h and characterization of carbapenemase classes, according to the Ambler classification, in 20 h. The CIMplus test represents a simple, affordable, easy-to-read, and accurate tool that can be used without any specific equipment.
Collapse
|
42
|
Pereckaite L, Tatarunas V, Giedraitiene A. Current antimicrobial susceptibility testing for beta-lactamase-producing Enterobacteriaceae in clinical settings. J Microbiol Methods 2018; 152:154-164. [PMID: 30063958 DOI: 10.1016/j.mimet.2018.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 11/17/2022]
Abstract
The worldwide prevalence of beta-lactamase-producing Enterobacteriaceae (BL-E) is increasing. Bacterial infections involving ESBLs can be more difficult to treat because of antibiotic resistance, as there are fewer effective antibiotics left to be used. Moreover, treatment failure is often observed. Thus, quick and accurate identification of β-lactamases is imperative to minimize it. This review article describes most commonly used phenotypic techniques and molecular methods for the detection of ESBLs, acquired AmpC β-lactamases, and carbapenemases produced by Enterobacteriaceae. Phenotypic detection tests remain useful and relevant in clinical laboratories while molecular diagnostic methods are less affordable, more technically demanding, and not standardized. Molecular methods could be used to speed up results of bacterial antibiotic resistance or to clarify the results of phenotypic β-lactamases confirmation tests.
Collapse
Affiliation(s)
- Laura Pereckaite
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vacis Tatarunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Agne Giedraitiene
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
43
|
Comparative Evaluation of Four Phenotypic Methods for Detection of Class A and B Carbapenemase-Producing Enterobacteriaceae in China. J Clin Microbiol 2018; 56:JCM.00395-18. [PMID: 29769274 DOI: 10.1128/jcm.00395-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/08/2018] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to evaluate the performance of four phenotypic methods in the detection of carbapenemase-producing Enterobacteriaceae (CPE) in China. We evaluated the performance of four carbapenemase detection methods, the modified Hodge test (MHT), the Carba NP test, the meropenem hydrolysis assay (MHA) with 1- and 2-h incubation, and the modified carbapenem inactivation method (mCIM) with meropenem, imipenem, and ertapenem, on 342 carbapenem-resistant Enterobacteriaceae isolates (CRE) in China. PCR was used as the gold standard. The 2-h-incubation MHA performed the best in carbapenemase detection (overall sensitivity, specificity, positive predictive value, and negative predictive value all 100%). Second was the Carba NP test, with a sensitivity of 99.6%. The 1-h-incubation MHA performed poorly in Klebsiella pneumoniae carbapenemase (KPC) detection (sensitivity, 71.3%). For mCIM, the best performance was observed with the meropenem disk. The MHT exhibited the worst performance, with a specificity of 88.8%. All assays except 1-h-incubation MHA, which failed to identify 68 KPC-2s, had a sensitivity of >98% in the detection of 172 KPCs. Likewise, all assays had a sensitivity of >95% in the detection of 70 class B carbapenemases, except for MHT (82.9%). The 2-h-incubation MHA significantly improved the accuracy in CPE detection compared with that for 1-h incubation and performed the best in the detection of class A and B carbapenemases. Our findings suggest that the MHA is the most practical assay for carbapenemase detection. For those who cannot afford the associated equipment, both the Carba NP test and mCIM are good alternatives with regard to the practical requirements of time and cost.
Collapse
|
44
|
Braun SD, Jamil B, Syed MA, Abbasi SA, Weiß D, Slickers P, Monecke S, Engelmann I, Ehricht R. Prevalence of carbapenemase-producing organisms at the Kidney Center of Rawalpindi (Pakistan) and evaluation of an advanced molecular microarray-based carbapenemase assay. Future Microbiol 2018; 13:1225-1246. [PMID: 29938540 DOI: 10.2217/fmb-2018-0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM A DNA microarray-based assay for the detection of antimicrobial resistance (AMR) genes was used to study carbapenemase-producing organisms at the Kidney Center of Rawalpindi, Pakistan. METHODS The evaluation of this assay was performed using 97 reference strains with confirmed AMR genes. Testing of 7857 clinical samples identified 425 Gram-negative bacteria out of which 82 appeared carbapenem resistant. These isolates were analyzed using VITEK-2 for phenotyping and the described AMR assay for genotyping. RESULTS The most prevalent carbapenemase gene was blaNDM and in 12 isolates we detected two carbapenemase genes (e.g., blaNDM/blaOXA-48). CONCLUSION Our prevalence data from Pakistan show that - as in other parts of the world - carbapenemase-producing organisms with different underlying resistance mechanisms are emerging, and this warrants intensified and constant surveillance.
Collapse
Affiliation(s)
- Sascha D Braun
- Research & Development, Abbott (Alere Technologies GmbH), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Bushra Jamil
- Department of Biogenetics, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad A Syed
- Department of Microbiology, University of Haripur, Haripur, Pakistan
| | - Shahid A Abbasi
- Department of Pathology, Al-Sayed Hospital (Pvt) Ltd, 1-Hill Park, Opp. Ayub Park, Jhelum Road, Rawalpindi, Pakistan
| | - Daniel Weiß
- Research & Development, Abbott (Alere Technologies GmbH), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Peter Slickers
- Research & Development, Abbott (Alere Technologies GmbH), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Stefan Monecke
- Research & Development, Abbott (Alere Technologies GmbH), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany.,Technische Universität Dresden, Medizinische Fakultät "Carl Gustav Carus", Dresden, Germany
| | - Ines Engelmann
- Research & Development, Abbott (Alere Technologies GmbH), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Ralf Ehricht
- Research & Development, Abbott (Alere Technologies GmbH), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| |
Collapse
|
45
|
Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA, Westblade LF. Carbapenemase-Producing Organisms: A Global Scourge. Clin Infect Dis 2018; 66:1290-1297. [PMID: 29165604 PMCID: PMC5884739 DOI: 10.1093/cid/cix893] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
The dramatic increase in the prevalence and clinical impact of infections caused by bacteria producing carbapenemases is a global health concern. Carbapenemase production is especially problematic when encountered in members of the family Enterobacteriaceae. Due to their ability to readily spread and colonize patients in healthcare environments, preventing the transmission of these organisms is a major public health initiative and coordinated international effort are needed. Central to the treatment and control of carbapenemase-producing organisms (CPOs) are phenotypic (growth-/biochemical-dependent) and nucleic acid-based carbapenemase detection tests that identify carbapenemase activity directly or their associated molecular determinants. Importantly, bacterial isolates harboring carbapenemases are often resistant to multiple antibiotic classes, resulting in limited therapy options. Emerging agents, novel antibiotic combinations and treatment regimens offer promise for management of these infections. This review highlights our current understanding of CPOs with emphasis on their epidemiology, detection, treatment, and control.
Collapse
Affiliation(s)
- Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
- Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University and Research Service, CWRU-VA Center for Antimicrobial Resistance and Epidemiology (CARES), Cleveland, Ohio
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Atlanta, Georgia
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - John Conly
- Departments of Medicine, Pathology and Laboratory Medicine, Microbiology, Calgary, Alberta, Canada
- Immunology and Infectious Diseases, Synder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, and Alberta Health Services, Calgary, Alberta, Canada
| | - Brandi M Limbago
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Switzerland
| | - Julie A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, New York, New York
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York
| |
Collapse
|
46
|
Kuchibiro T, Komatsu M, Yamasaki K, Nakamura T, Nishio H, Nishi I, Kimura K, Niki M, Ono T, Sueyoshi N, Kita M, Kida K, Ohama M, Satoh K, Toda H, Mizutani T, Fukuda N, Sawa K, Nakai I, Kofuku T, Orita T, Watari H, Shimura S, Fukuda S, Nakamura A, Wada Y. Evaluation of the modified carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. J Infect Chemother 2018; 24:262-266. [DOI: 10.1016/j.jiac.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 11/24/2022]
|
47
|
Gautier G, Guillard T, Podac B, Bercot B, Vernet-Garnier V, de Champs C. Detection of different classes of carbapenemases: Adaptation and assessment of a phenotypic method applied to Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii, and proposal of a new algorithm. J Microbiol Methods 2018; 147:26-35. [PMID: 29486226 DOI: 10.1016/j.mimet.2018.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 10/18/2022]
Abstract
A new phenotypic method for detecting carbapenemases has been adapted (assembling of two MAST® kits, including one that contains faropenem to which a temocillin disk has been added) then assessed using 101 bacterial strains (Enterobacteriaceae with assays on Pseudomonas aeruginosa and Acinetobacter baumannii) including 62 which produce genetically identified carbapenemases. Concerning Carbapenemase-Producing Enterobacteriaceae (CPE), there is 100% sensitivity for Klebsiella pneumoniae carbapenemase (KPC, Ambler class A) and OXA-48 (Ambler class D), and 91% for metallo-beta-lactamase (MBL, Ambler class B), with a 97% sensitivity for all carbapenemases, with a specificity of 100%. The test is also efficient for detecting Pseudomonas aeruginosa carbapenemases (sensitivity between 82 and 100% and 100% specificity). The major innovation is the combined use of faropenem and temocillin for reliable detection (excellent performance with 100% sensitivity and specificity) of OXA-48. This study has led to the development of a new algorithm to detect the different classes of carbapenemases, for first-line diagnosis, by combining this modified MAST® test with immunochromatographic methods and molecular biology techniques.
Collapse
Affiliation(s)
- Guillaume Gautier
- Bacteriology-Virology-Hygiene Department, Bacteriology Unit, Robert Debré University Hospital, avenue du général Koenig, 51092 Reims Cedex, France; Medical Biology Laboratory, Microbiology Department, Bacteriology Unit, William Morey General Hospital, 4 rue capitaine Drillien, 71321 Chalon-sur-Saône Cedex, France.
| | - Thomas Guillard
- Bacteriology-Virology-Hygiene Department, Bacteriology Unit, Robert Debré University Hospital, avenue du général Koenig, 51092 Reims Cedex, France; Research Unit EA 4687 SFR Cap-Santé (FED 4231), Acquired Resistance in Enterobacteriaceae, Reims Champagne-Ardenne University, 51 rue Cognacq-Jay, 51095 Reims Cedex, France.
| | - Bianca Podac
- Medical Biology Laboratory, Microbiology Department, Bacteriology Unit, William Morey General Hospital, 4 rue capitaine Drillien, 71321 Chalon-sur-Saône Cedex, France.
| | - Béatrice Bercot
- AP-HP, Saint-Louis-Lariboisière-Fernand-Widal Hospital Group, Laboratory of Bacteriology, associated for the National Reference Center for gonococci, 1 avenue Claude Vellefaux, 75010 Paris, France; IAME, UMR 1137, INSERM, Paris Diderot University, 16 rue Henri Huchard, 75890 Paris Cedex 18, France.
| | - Véronique Vernet-Garnier
- Bacteriology-Virology-Hygiene Department, Bacteriology Unit, Robert Debré University Hospital, avenue du général Koenig, 51092 Reims Cedex, France; Research Unit EA 4687 SFR Cap-Santé (FED 4231), Acquired Resistance in Enterobacteriaceae, Reims Champagne-Ardenne University, 51 rue Cognacq-Jay, 51095 Reims Cedex, France.
| | - Christophe de Champs
- Bacteriology-Virology-Hygiene Department, Bacteriology Unit, Robert Debré University Hospital, avenue du général Koenig, 51092 Reims Cedex, France; Research Unit EA 4687 SFR Cap-Santé (FED 4231), Acquired Resistance in Enterobacteriaceae, Reims Champagne-Ardenne University, 51 rue Cognacq-Jay, 51095 Reims Cedex, France.
| |
Collapse
|
48
|
Chowdhury G, Pazhani GP, Sarkar A, Rajendran K, Mukhopadhyay AK, Bhattacharya MK, Ghosh A, Ramamurthy T. Carbapenem Resistance in Clonally Distinct Clinical Strains of Vibrio fluvialis Isolated from Diarrheal Samples. Emerg Infect Dis 2018; 22:1754-61. [PMID: 27649032 PMCID: PMC5038395 DOI: 10.3201/eid2210.151612] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
These strains might acquire the blaNDM-1 gene without exposure to antimicrobial drugs. Carbapenems have been used for many years to treat severe nosocomial Enterobacteriaceae infections. The spread of resistance to these drugs among other bacterial families is an emerging problem worldwide, mostly caused by New Delhi metallo-β-lactamase (NDM-1). We screened for the prevalence of NDM-1–expressing enteric pathogens from hospitalized patients with acute diarrhea in Kolkata, India, and identified 27 Vibrio fluvialis–harboring blaNDM-1 (NDM-VF) strains. These isolates were also resistant to all the tested antimicrobial drugs except doxycycline. The large plasmid of V. fluvialis harboring blaNDM-1 could be easily transferred to other enteric pathogens. Genes flanking the blaNDM-1 were found to be identical to the reported sequence from an Escherichia coli isolate. Analyses showed that the V. fluvialis possessing the NDM-VF region belonged to different clones. The pathogenicity of V. fluvialis to humans and its ubiquitous presence in the environment call for constant monitoring of this species for emerging antimicrobial drug resistance.
Collapse
|
49
|
Zuppolini S, Quero G, Consales M, Diodato L, Vaiano P, Venturelli A, Santucci M, Spyrakis F, Costi MP, Giordano M, Cutolo A, Cusano A, Borriello A. Label-free fiber optic optrode for the detection of class C β-lactamases expressed by drug resistant bacteria. BIOMEDICAL OPTICS EXPRESS 2017; 8:5191-5205. [PMID: 29188113 PMCID: PMC5695963 DOI: 10.1364/boe.8.005191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 06/01/2023]
Abstract
This paper reports the experimental assessment of an automated optical assay based on label free optical fiber optrodes for the fast detection of class C β-lactamases (AmpC BLs), actually considered as one of the most important sources of resistance to β-lactams antibiotics expressed by resistant bacteria. Reflection-type long period fiber gratings (RT-LPG) have been used as highly sensitive label free optrodes, while a higher affine boronic acid-based ligand was here selected to enhance the overall assay performances compared to those obtained in our first demonstration. In order to prove the feasibility analysis towards a fully automated optical assay, an engineered system was developed to simultaneously manipulate and interrogate multiple fiber optic optrodes in the different phases of the assay. The automated system tested in AmpC solutions at increasing concentrations demonstrated a limit of detection (LOD) of 6 nM, three times better when compared with the results obtained in our previous work. Moreover, the real effectiveness of the proposed optical assay has been also confirmed in complex matrices as the case of lysates of Escherichia coli overexpressing AmpC.
Collapse
Affiliation(s)
- Simona Zuppolini
- Institute for Polymers, Composites and Biomaterials - National Council of Research, Portici, Italy
- These authors contributed equally to this work
| | - Giuseppe Quero
- Optoelectronics Group, Dept. of Engineering, University of Sannio, Benevento, Italy
- These authors contributed equally to this work
| | - Marco Consales
- Optoelectronics Group, Dept. of Engineering, University of Sannio, Benevento, Italy
| | - Laura Diodato
- Institute for Polymers, Composites and Biomaterials - National Council of Research, Portici, Italy
| | - Patrizio Vaiano
- Optoelectronics Group, Dept. of Engineering, University of Sannio, Benevento, Italy
| | | | - Matteo Santucci
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Spyrakis
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Current Address: Dept. of Drug Science and Technology, University of Torino, Torino, Italy
| | - Maria P Costi
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Antonello Cutolo
- Optoelectronics Group, Dept. of Engineering, University of Sannio, Benevento, Italy
| | - Andrea Cusano
- Optoelectronics Group, Dept. of Engineering, University of Sannio, Benevento, Italy
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials - National Council of Research, Portici, Italy
| |
Collapse
|
50
|
A multiplex real-time PCR for the direct, fast, economic and simultaneous detection of the carbapenemase genes bla KPC, bla NDM, bla VIM and bla OXA-48. J Microbiol Methods 2017; 142:20-26. [DOI: 10.1016/j.mimet.2017.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023]
|