1
|
Serna C, Calderón Bernal JM, Torre-Fuentes L, García Muñoz Á, Díez Guerrier A, Hernández M, Fernández-Garayzábal JF, Vela AI, Cid D, Alvarez J. Integrative and conjugative elements associated with antimicrobial resistance in multidrug resistant Pasteurella multocida isolates from bovine respiratory disease (BRD)-affected animals in Spanish feedlots. Vet Q 2025; 45:1-15. [PMID: 40055923 PMCID: PMC11892046 DOI: 10.1080/01652176.2025.2474220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
The emergence of multidrug-resistance (MDR) in Pasteurella multocida, a major contributor to bovine respiratory disease (BRD) is being increasingly reported, often linked to the carriage of antimicrobial resistance genes (ARGs) on integrative and conjugative elements (ICEs). The resistance phenotype for 19 antimicrobials was determined using broth microdilution in 75 Pasteurella multocida isolates from healthy and BRD-affected cattle from five feedlots. The genomes of 32 isolates were sequenced to identify ARG) and mobile genetic elements (MGEs) and assess their genetic diversity. MDR isolates (with phenotypic resistance to aminoglycosides, macrolides, fluoroquinolones and/or tetracyclines) were primarily found among BRD-affected compared to healthy animals. Non-susceptible isolates, belonging to ST79 and ST13, harbored point mutations and four to nine ARGs, including rarely reported mechanisms in Europe (mph(E), msr(E) and aadA31 ARGs and newly described mutations in the gyrA/parC genes). All ARGs were linked to the presence of MGEs including two ICEs, Tn7407 and the novel Tn7809, a prophage and a putative composite transposon. Clonally related isolates were found in different batches from the same feedlot, suggesting maintenance of MDR strains. Our findings demonstrate the diverse genetic basis of AMR in P. multocida from BRD-affected cattle in Spain, emphasizing the role of MGEs in the ARG dissemination.
Collapse
Affiliation(s)
- Carlos Serna
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Laura Torre-Fuentes
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| | - Ángel García Muñoz
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alberto Díez Guerrier
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - José Francisco Fernández-Garayzábal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| | - Ana Isabel Vela
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| | - Dolores Cid
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Julio Alvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| |
Collapse
|
2
|
Jahnen J, Hanke D, Kadlec K, Schwarz S, Krüger-Haker H. Antimicrobial Resistance in Pasteurella multocida Isolates from Bovine Mastitis Can Be Associated with Multidrug-Resistance-Mediating Integrative and Conjugative Elements (ICEs). Antibiotics (Basel) 2025; 14:153. [PMID: 40001397 PMCID: PMC11851858 DOI: 10.3390/antibiotics14020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Pasteurella multocida commonly colonizes the bovine respiratory tract and can occasionally cause intramammary infections. Here, eight P. multocida isolates from clinical cases of bovine mastitis were investigated for their molecular characteristics as well as phenotypic and genotypic antimicrobial resistance (AMR) properties. Methods: The isolates originated from quarter milk samples obtained in Germany for diagnostic purposes. Antimicrobial susceptibility testing (AST) by broth microdilution was performed according to the Clinical and Laboratory Standards Institute. Closed whole-genome sequences were generated by hybrid assembly of Illumina MiSeq short-reads and Oxford Nanopore MinION long-reads, followed by consecutive sequence analysis. Results: The P. multocida isolates belonged either to capsular:lipopolysaccharide type A:3 (n = 7) or A:6 (n = 1), and multi-locus sequence types 1 (n = 7) or 7 (n = 1). Seven isolates carried AMR genes, such as mef(C), mph(G), strA, strB, aphA1, aadA31, tet(H), tet(Y), floR, catA3, and sul2, as part of an integrative and conjugative element (ICE). These mobile genetic elements, 58,382-78,401 bp in size, were highly similar to the ICEs Tn7406 or Tn7407 that have been previously described in bovine Mannheimia haemolytica and P. multocida, respectively. Moreover, the isolates showed elevated minimal inhibitory concentrations corresponding to the identified AMR determinants. Conclusions: Molecular typing and ICE organization suggest the bovine respiratory tract as reservoir of the investigated mastitis-associated P. multocida. Horizontal cross-genus transfer of multidrug-resistance-mediating ICEs seems to occur under in vivo conditions among different pathogens from cattle in Germany, which underlines the importance of pathogen identification followed by AST for successful bovine mastitis therapy.
Collapse
Affiliation(s)
- Johanna Jahnen
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.J.); (D.H.); (H.K.-H.)
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.J.); (D.H.); (H.K.-H.)
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Kristina Kadlec
- Dairy Herd Consulting and Research Company (MBFG), 31515 Wunstorf, Germany;
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.J.); (D.H.); (H.K.-H.)
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.J.); (D.H.); (H.K.-H.)
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
3
|
He J, Yang Z, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Sun D, Tian B, He Y, Wu Z, Cheng A, Zhu D. Integrative and conjugative elements of Pasteurella multocida: Prevalence and signatures in population evolution. Virulence 2024; 15:2359467. [PMID: 38808732 PMCID: PMC11141479 DOI: 10.1080/21505594.2024.2359467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Pasteurella multocida (P. multocida) is a bacterial pathogen responsible for a range of infections in humans and various animal hosts, causing significant economic losses in farming. Integrative and conjugative elements (ICEs) are important horizontal gene transfer elements, potentially enabling host bacteria to enhance adaptability by acquiring multiple functional genes. However, the understanding of ICEs in P. multocida and their impact on the transmission of this pathogen remains limited. In this study, 42 poultry-sourced P. multocida genomes obtained by high-throughput sequencing together with 393 publicly available P. multocida genomes were used to analyse the horizontal transfer of ICEs. Eighty-two ICEs were identified in P. multocida, including SXT/R391 and Tn916 subtypes, as well as three subtypes of ICEHin1056 family, with the latter being widely prevalent in P. multocida and carrying multiple resistance genes. The correlations between insertion sequences and resistant genes in ICEs were also identified, and some ICEs introduced the carbapenem gene blaOXA-2 and the bleomycin gene bleO to P. multocida. Phylogenetic and collinearity analyses of these bioinformatics found that ICEs in P. multocida were transmitted vertically and horizontally and have evolved with host specialization. These findings provide insight into the transmission and evolution mode of ICEs in P. multocida and highlight the importance of understanding these elements for controlling the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jiao He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Zhishuang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Yu He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Zhen Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sicence and Technology Department of Sichuan Province, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Yuan M, Nie L, Huang Z, Xu S, Qiu X, Han L, Kang Y, Li F, Yao J, Li Q, Li H, Li D, Zhu X, Li Z. Capture of armA by a novel ISCR element, ISCR28. Int J Antimicrob Agents 2024; 64:107250. [PMID: 38908532 DOI: 10.1016/j.ijantimicag.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
ISCR28 is a fully functional and active member of the IS91-like family of insertion sequences. ISCR28 is 1,708-bp long and contains a 1,293-bp long putative open reading frame that codes a transposase. Sixty ISCR28-containing sequences from GenBank generated 27 non-repeat genetic contexts, all of which represented naturally occurring biological events that had occurred in a wide range of gram-negative organisms. Insertion of ISCR28 into target DNA preferred the presence of a 5'-GXXT-3' sequence at its terIS (replication terminator) end. Loss of the first 4 bp of its oriIS (origin of replication) likely caused ISCR28 to be trapped in ISApl1-based transposons or similar structures. Loss of terIS and fusion with a mobile element upstream likely promoted co-transfer of ISCR28 and the downstream resistance genes. ArmA and its downstream intact ISCR28 can be excised from recombinant pKD46 plasmids forming circular intermediates, further elucidating its activity as a transposase.
Collapse
Affiliation(s)
- Min Yuan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lu Nie
- Department of Laboratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhenzhou Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaotong Qiu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lichao Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yutong Kang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qixin Li
- Department of Laboratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huan Li
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiong Zhu
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China.
| | - Zhenjun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
5
|
Deschner D, Voordouw MJ, Fernando C, Campbell J, Waldner CL, Hill JE. Identification of genetic markers of resistance to macrolide class antibiotics in Mannheimia haemolytica isolates from a Saskatchewan feedlot. Appl Environ Microbiol 2024; 90:e0050224. [PMID: 38864630 PMCID: PMC11267883 DOI: 10.1128/aem.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Mannheimia haemolytica is a major contributor to bovine respiratory disease (BRD), which causes substantial economic losses to the beef industry, and there is an urgent need for rapid and accurate diagnostic tests to provide evidence for treatment decisions and support antimicrobial stewardship. Diagnostic sequencing can provide information about antimicrobial resistance genes in M. haemolytica more rapidly than conventional diagnostics. Realizing the full potential of diagnostic sequencing requires a comprehensive understanding of the genetic markers of antimicrobial resistance. We identified genetic markers of resistance in M. haemolytica to macrolide class antibiotics commonly used for control of BRD. Genome sequences were determined for 99 M. haemolytica isolates with six different susceptibility phenotypes collected over 2 years from a feedlot in Saskatchewan, Canada. Known macrolide resistance genes estT, msr(E), and mph(E) were identified in most resistant isolates within predicted integrative and conjugative elements (ICEs). ICE sequences lacking antibiotic resistance genes were detected in 10 of 47 susceptible isolates. No resistance-associated polymorphisms were detected in ribosomal RNA genes, although previously unreported mutations in the L22 and L23 ribosomal proteins were identified in 12 and 27 resistant isolates, respectively. Pangenome analysis led to the identification of 79 genes associated with resistance to gamithromycin, of which 95% (75 of 79) had no functional annotation. Most of the observed phenotypic resistance was explained by previously identified antibiotic resistance genes, although resistance to the macrolides gamithromycin and tulathromycin was not explained in 39 of 47 isolates, demonstrating the need for continued surveillance for novel determinants of macrolide resistance.IMPORTANCEBovine respiratory disease is the costliest disease of beef cattle in North America and the most common reason for injectable antibiotic use in beef cattle. Metagenomic sequencing offers the potential to make economically significant reductions in turnaround time for diagnostic information for evidence-based selection of antibiotics for use in the feedlot. The success of diagnostic sequencing depends on a comprehensive catalog of antimicrobial resistance genes and other genome features associated with reduced susceptibility. We analyzed the genome sequences of isolates of Mannheimia haemolytica, a major bovine respiratory disease pathogen, and identified both previously known and novel genes associated with reduced susceptibility to macrolide class antimicrobials. These findings reinforce the need for ongoing surveillance for markers of antimicrobial resistance to support improved diagnostics and antimicrobial stewardship.
Collapse
Affiliation(s)
- Darien Deschner
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Maarten J. Voordouw
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Champika Fernando
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - John Campbell
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Cheryl L. Waldner
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
Roy Chowdhury P, Alhamami T, Venter H, Veltman T, Carr M, Mollinger J, Trott DJ, Djordjevic SP. Identification and evolution of ICE-PmuST394: a novel integrative conjugative element in Pasteurella multocida ST394. J Antimicrob Chemother 2024; 79:851-858. [PMID: 38380682 PMCID: PMC10984947 DOI: 10.1093/jac/dkae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The emergence of macrolide and tetracycline resistance within Pasteurella multocida isolated from feedlot cattle and the dominance of ST394 in Australia was reported recently. OBJECTIVES To establish the genetic context of the resistance genes in P. multocida 17BRD-035, the ST394 reference genome, and conduct a molecular risk assessment of their ability to disperse laterally. METHODS A bioinformatic analysis of the P. multocida 17BRD-035 genome was conducted to determine if integrative conjugative elements (ICEs) carrying resistance genes, which hamper antibiotic treatment options locally, are in circulation in Australian feedlots. RESULTS A novel element, ICE-PmuST394, was characterized in P. multocida 17BRD-035. It was also identified in three other isolates (two ST394s and a ST125) in Australia and is likely present in a genome representing P. multocida ST79 from the USA. ICE-PmuST394 houses a resistance module carrying two variants of the blaROB gene, blaROB-1 and blaROB-13, and the macrolide esterase gene, estT. The resistance gene combination on ICE-PmuST394 confers resistance to ampicillin and tilmicosin, but not to tulathromycin and tildipirosin. Our analysis suggests that ICE-PmuST394 is circulating both by clonal expansion and horizontal transfer but is currently restricted to a single feedlot in Australia. CONCLUSIONS ICE-PmuST394 carries a limited number of unusual antimicrobial resistance genes but has hotspots that facilitate genomic recombination. The element is therefore amenable to hosting more resistance genes, and therefore its presence (or dispersal) should be regularly monitored. The element has a unique molecular marker, which could be exploited for genomic surveillance purposes locally and globally.
Collapse
Affiliation(s)
- Piklu Roy Chowdhury
- Australian Institute for Microbiology and Infection, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
| | - Tamara Alhamami
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Henrietta Venter
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Mandi Carr
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Joanne Mollinger
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Kostova V, Hanke D, Kaspar H, Fiedler S, Schwarz S, Krüger-Haker H. Macrolide resistance in Mannheimia haemolytica isolates associated with bovine respiratory disease from the German national resistance monitoring program GE RM-Vet 2009 to 2020. Front Microbiol 2024; 15:1356208. [PMID: 38495516 PMCID: PMC10940430 DOI: 10.3389/fmicb.2024.1356208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Data collected from the German national resistance monitoring program GERM-Vet showed slowly increasing prevalence of macrolide resistance among bovine respiratory disease (BRD)-associated Pasteurellacae from cattle over the last decade. The focus of this study was to analyze the genetic basis of antimicrobial resistance (AMR) and the prevalence of multidrug-resistance (MDR)-mediating integrative and conjugative elements (ICEs) in 13 German BRD-associated Mannheimia haemolytica isolates collected between 2009 and 2020 via whole-genome sequencing. Antimicrobial susceptibility testing (AST) was performed via broth microdilution according to the recommendations of the Clinical and Laboratory Standards Institute for the macrolides erythromycin, tilmicosin, tulathromycin, gamithromycin, tildipirosin, and tylosin as well as 25 other antimicrobial agents. All isolates either had elevated MICs or were resistant to at least one of the macrolides tested. Analysis of whole-genome sequences obtained by hybrid assembly of Illumina MiSeq and Oxford Nanopore MinION reads revealed the presence of seven novel Tn7406-like ICEs, designated Tn7694, and Tn7724- Tn7729. These ICEs harbored the antimicrobial resistance genes erm(T), mef (C), mph(G), floR, catA3, aad(3")(9), aph(3')-Ia, aac(3)-IIa, strA, strB, tet(Y), and sul2 in different combinations. In addition, mutational changes conferring resistance to macrolides, nalidixic acid or streptomycin, respectively, were detected among the M. haemolytica isolates. In addition, four isolates carried a 4,613-bp plasmid with the β-lactamase gene blaROB - 1. The detection of the macrolide resistance genes erm(T), mef (C), and mph(G) together with other resistance genes on MDR-mediating ICEs in bovine M. haemolytica may explain the occurrence of therapeutic failure when treating BRD with regularly used antimicrobial agents, such as phenicols, penicillins, tetracyclines, or macrolides. Finally, pathogen identification and subsequent AST is essential to ensure the efficacy of the antimicrobial agents applied to control BRD in cattle.
Collapse
Affiliation(s)
- Valeria Kostova
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Jiang N, Chen H, Cheng L, Fu Q, Liu R, Liang Q, Fu G, Wan C, Huang Y. Genomic analysis reveals the population structure and antimicrobial resistance of avian Pasteurella multocida in China. J Antimicrob Chemother 2024; 79:186-194. [PMID: 38019670 DOI: 10.1093/jac/dkad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES To investigate the population structure and antimicrobial resistance (AMR) of avian Pasteurella multocida in China. METHODS Utilizing WGS analysis, we explored the phylogeny using a dataset of 546 genomes, comprising avian P. multocida isolates from China (n = 121), the USA (n = 165), Australia(n = 153), Bangladesh (n = 3) and isolates of other hosts from China (n = 104). We examined the integrative and conjugative element (ICE) structures and the distribution of their components carrying resistance genes, and reconstructed the evolutionary history of A:L1:ST129 (n = 110). RESULTS The population structure of avian P. multocida in China was dominated by the A:L1:ST129 clone with limited genetic diversity. A:L1:ST129 isolates possessed a broader spectrum of resistance genes at comparatively higher frequencies than those from other hosts and countries. The novel putative ICEs harboured complex resistant clusters that were prevalent in A:L1:ST129. Bayesian analysis predicted that the A:L1:ST129 clone emerged around 1923, and evolved slowly. CONCLUSIONS A:L1:ST129 appears to possess a host predilection towards avian species in China, posing a potential health threat to other animals. The complex AMR determinants coupled with high frequencies may strengthen the population dominance of A:L1:ST129. The extensive antimicrobial utilization in poultry farming and the mixed rearing practices could have accelerated AMR accumulation in A:L1:ST129. ICEs, together with their resistant clusters, significantly contribute to resistance gene transfer and facilitate the adaptation of A:L1:ST129 to ecological niches. Despite the genetic stability and slow evolution rate, A:L1:ST129 deserves continued monitoring due to its propensity to retain resistance genes, warranting global attention to preclude substantial economic losses.
Collapse
Affiliation(s)
- Nansong Jiang
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Hongmei Chen
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Longfei Cheng
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Qiuling Fu
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Rongchang Liu
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Qizhang Liang
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Guanghua Fu
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Chunhe Wan
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| | - Yu Huang
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Prevention and Control of Avian Diseases, Fuzhou, Fujian Province, China
- Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control, Fuzhou, Fujian Province, China
| |
Collapse
|
9
|
Crosby WB, Karisch BB, Hiott LM, Pinnell LJ, Pittman A, Frye JG, Jackson CR, Loy JD, Epperson WB, Blanton J, Capik SF, Morley PS, Woolums AR. Tulathromycin metaphylaxis increases nasopharyngeal isolation of multidrug resistant Mannheimia haemolytica in stocker heifers. Front Vet Sci 2023; 10:1256997. [PMID: 38053814 PMCID: PMC10694364 DOI: 10.3389/fvets.2023.1256997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023] Open
Abstract
Bovine respiratory disease (BRD) is a leading cause of disease in feedlot and stocker calves with Mannheimia haemolytica (MH) as one of the most common etiologies. One of the most effective means of controlling BRD is through metaphylaxis, which involves administering antimicrobials to all animals at high risk of developing BRD. However, increasing prevalence of multidrug resistant (MDR) MH may reduce efficacy of metaphylaxis due to decreased susceptibility to drugs used for metaphylaxis. Primarily, this study aimed to determine the effect of tulathromycin metaphylaxis and subsequent BRD treatment on antimicrobial resistance (AMR) in MH isolated from stocker calves. Secondary objectives included evaluating the effect of metaphylaxis and treatment for BRD on animal health and comparing the genetic relationship of MH isolated. Crossbred beef heifers (n = 331, mean weight = 232, SD = 17.8 kg) at high risk for BRD were randomly assigned to receive tulathromycin metaphylaxis (META, n = 167) or not (NO META, n = 164). Nasopharyngeal swabs were collected for MH isolation, antimicrobial susceptibility testing and whole genome sequencing at arrival and 3 (WK3) and 10 (WK10) weeks later. Mixed-effects logistic regression was used to identify risk factors for isolation of MH and MDR MH (resistant to ≥3 antimicrobial drug classes) at 3 and 10 weeks, BRD morbidity, and crude mortality. Animals in the META group had higher odds of isolation of MDR MH at 3 weeks [OR (95% CI) = 13.08 (5-30.9), p < 0.0001] and 10 weeks [OR (95% CI) = 5.92 (1.34-26.14), p = 0.019] after arrival. There was no difference in risk of isolation of any MH (resistant or susceptible) between META and NO META groups at all timepoints. Animals in the NO META group had 3 times higher odds of being treated for BRD [WK3: OR (95% CI) = 3.07 (1.70-5.52), p = 0.0002; WK10: OR (95% CI) = 2.76 (1.59-4.80), p = 0.0002]. Antimicrobial resistance genes found within isolates were associated with integrative conjugative element (ICE) genes. Tulathromycin metaphylaxis increased risk of isolation of MDR MH and in this population, the increase in MDR MH appeared to be associated with ICE containing antimicrobial resistance genes for multiple antimicrobial classes. This may have important implications for future efficacy of antimicrobials for control and treatment of BRD.
Collapse
Affiliation(s)
- William B. Crosby
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B. Karisch
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service, Athens, GA, United States
| | - Lee J. Pinnell
- VERO Program, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, United States
| | - Alexandra Pittman
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service, Athens, GA, United States
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service, Athens, GA, United States
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - William B. Epperson
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - John Blanton
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, IN, United States
| | - Sarah F. Capik
- Tumbleweed Veterinary Services, PLLC, Amarillo, TX, United States
| | - Paul S. Morley
- VERO Program, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, United States
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
10
|
Calderón Bernal JM, Serna C, García Muñoz Á, Díez Guerrier A, Domínguez L, Fernández-Garayzábal JF, Vela AI, Cid D. Genotypic Comparison of Pasteurella multocida from Healthy Animals at Entry to the Feedlots with That and from Bovine Respiratory Disease-Affected Animals during the Fattening Period. Animals (Basel) 2023; 13:2687. [PMID: 37684951 PMCID: PMC10487216 DOI: 10.3390/ani13172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to investigate the possible genotypic differences between commensal Pasteurella multocida isolates from apparently healthy animals (AHA) at the time of entry to feedlots and those from BRD-affected animals (BRD-AA). A total of 20 batches of beef calves in seven feedlots were followed-up during the fattening period. P. multocida was isolated from 28.1% of AHA and 22.9% of BRD-AA. All isolates belonged to the A: L3 genotype. Most isolates from clinical cases (81.0%) grouped into a PFGE cluster were significantly associated with BRD cases (OR, 24.9; 95% CI, 6.4-96.2). The whole genomes of 14 isolates representative of the pulsotypes most frequently detected in BRD-AA and AHA were sequenced and compared with 53 bovine genomes belonging to the identified ST13, ST79, and ST80 genotypes for a global comparison. No differences were found in the virulence-associated gene content between sequence types (STs) globally or between BRD-AA and AHA isolates in this study. Significantly, ST79 isolates harbored ARGs, conferring resistance to different antimicrobials, including macrolides and tetracyclines, which are commonly used for the treatment of BRD. Two Spanish ST79 isolates carried an ICE highly similar to ICE Tn7407, which was recently detected in Germany, suggesting that ST79 P. multocida isolates in Europe and North America may be associated with different ICEs.
Collapse
Affiliation(s)
- Johan Manuel Calderón Bernal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; (J.M.C.B.); (C.S.); (A.D.G.); (L.D.); (A.I.V.); (D.C.)
| | - Carlos Serna
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; (J.M.C.B.); (C.S.); (A.D.G.); (L.D.); (A.I.V.); (D.C.)
| | - Ángel García Muñoz
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain;
| | - Alberto Díez Guerrier
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; (J.M.C.B.); (C.S.); (A.D.G.); (L.D.); (A.I.V.); (D.C.)
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Lucas Domínguez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; (J.M.C.B.); (C.S.); (A.D.G.); (L.D.); (A.I.V.); (D.C.)
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - José Francisco Fernández-Garayzábal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; (J.M.C.B.); (C.S.); (A.D.G.); (L.D.); (A.I.V.); (D.C.)
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Ana Isabel Vela
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; (J.M.C.B.); (C.S.); (A.D.G.); (L.D.); (A.I.V.); (D.C.)
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Dolores Cid
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; (J.M.C.B.); (C.S.); (A.D.G.); (L.D.); (A.I.V.); (D.C.)
| |
Collapse
|
11
|
Kosikowska U, Dłuski DF, Pietras-Ożga D, Leszczyńska-Gorzelak B, Andrzejczuk S. Prevalence of Culturable Bacteria and Yeasts in the Nasopharynx Microbiota during the Physiological Course of Pregnancy. J Clin Med 2023; 12:4447. [PMID: 37445482 DOI: 10.3390/jcm12134447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to compare the prevalence of the nasopharyngeal carriage of culturable microorganisms in the microbiota of asymptomatic women with a physiological pregnancy (PW) and nonpregnant women (NPW). Nasopharyngeal swabs were collected from 53 PW and 30 NPW to detect bacterial and fungal colonization. Isolates were identified using the culture method and the MALDI-TOF MS technique. The nasopharyngeal microbiota (NPM) partially differed between PW and NPW. These differences in the frequency of nasopharyngeal colonization between the PW and NPW groups were not statistically significant (p > 0.05); all cases were colonized by bacteria and only two cases in the PW group were colonized by yeasts, namely, Rhodotorula spp. High levels of staphylococcal colonization, including predominantly coagulase-negative staphylococci and S. aureus in the nasopharyngeal sample, were present in both groups. The reduced number of Gram-negative rods colonized in the cases studied was seen in samples from the NPW group, particularly with Enterobacterales, and anaerobic Cutibacterium spp. were isolated only in the PW group (p < 0.05). Moreover, a higher carriage rate of Enterobacter aerogenes colonization was statistically significant (p < 0.05) and correlated with the NPW group. Pregnancy may disturb the composition of the NPM represented by commensals and opportunistic bacteria and promote yeast colonization as compared to nonpregnant women.
Collapse
Affiliation(s)
- Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | | | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
12
|
Alhamami T, Roy Chowdhury P, Venter H, Veltman T, Truswell A, Abraham S, Sapula SA, Carr M, Djordjevic SP, Trott DJ. Genomic profiling of Pasteurella multocida isolated from feedlot cases of bovine respiratory disease. Vet Microbiol 2023; 283:109773. [PMID: 37201306 DOI: 10.1016/j.vetmic.2023.109773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Pasteurella multocida causes a range of diseases in many host species throughout the world, including bovine respiratory disease (BRD) which is predominantly seen in feedlot cattle. This study assessed genetic diversity among 139 P. multocida isolates obtained from post-mortem lung swabs of BRD-affected feedlot cattle in four Australian states: New South Wales, Queensland, South Australia, and Victoria during 2014-2019. Whole-genome sequencing (WGS) was used to determine capsular serogroup, lipopolysaccharide genotypes, multi-locus sequence types and phylogenetic relationships. Two capsular types (A and D), with most isolates (132/139; 95%) belonging to type A; and three lipopolysaccharide (LPS) genotypes were identified (L1 [6/139; 4.3%], L3 [124/139; 89.2%] and L6 [9/139; 6.4%)]). Multi-locus sequence types (STs) ST9, ST13, ST17, ST20, ST36, ST50, ST58, ST79, ST124, ST125, ST132, ST167, ST185, ST327, ST394, and three novel STs [ST396, ST397, and ST398] were identified, with ST394 (59/139; 42.4%) and ST79 (44/139; 32%) the most prevalent in all four states. Isolates displaying phenotypic resistance to single, dual or multiple antibiotics (macrolide, tetracycline and aminopenicillins) were predominantly ST394 (23/139; 17%). Laterally mobile elements identified in the resistant ST394 isolates included small plasmids, encoding macrolide and/or tetracycline resistance, distributed in all states; and chromosomally located integrative conjugative elements (ICEs) (4 ST394 and 1 ST125) from the same Queensland feedlot. This study highlights the genomic diversity, epidemiological relationships and AMR associations in bovine P. multocida isolates from Australia and provides insight into the unique ST prevalence compared to other major beef-producing countries.
Collapse
Affiliation(s)
- Tamara Alhamami
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Piklu Roy Chowdhury
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Alec Truswell
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA 6000, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA 6000, Australia
| | - Sylvia A Sapula
- Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Mandi Carr
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| |
Collapse
|
13
|
Tan Y, Cao X, Chen S, Ao X, Li J, Hu K, Liu S, Penttinen P, Yang Y, Yu X, Liu A, Liu C, Zhao K, Zou L. Antibiotic and heavy metal resistance genes in sewage sludge survive during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161386. [PMID: 36608829 DOI: 10.1016/j.scitotenv.2023.161386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Municipal sewage sludge has been generated in increasing amounts with the acceleration of urbanization and economic development. The nutrient rich sewage sludge can be recycled by composting that has a great potential to produce stabilized organic fertilizer and substrate for plant cultivation. However, little is known about the metals, pathogens and antibiotic resistance transfer risks involved in applying the composted sludge in agriculture. We studied changes in and relationships between heavy metal contents, microbial communities, and antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) in aerobic composting of sewage sludge. The contents of most of the analyzed heavy metals were not lower after composting. The bacterial α-diversity was lower, and the community composition was different after composting. Firmicutes were enriched, and Proteobacteria and potential pathogens in the genera Arcobacter and Acinetobacter were depleted in the composted sludge. The differences in bacteria were possibly due to the high temperature phase during the composting which was likely to affect temperature-sensitive bacteria. The number of detected ARGs, HMRGs and MGEs was lower, and the relative abundances of several resistance genes were lower after composting. However, the abundance of seven ARGs and six HMRGs remained on the same level after composting. Co-occurrence analysis of bacterial taxa and the genes suggested that the ARGs may spread via horizontal gene transfer during composting. In summary, even though aerobic composting is effective for managing sewage sludge and to decrease the relative abundance of potential pathogens, ARGs and HMRGs, it might include a potential risk for the dissemination of ARGs in the environment.
Collapse
Affiliation(s)
- Yulan Tan
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuedi Cao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaoling Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Petri Penttinen
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiumei Yu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Chengxi Liu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
14
|
Farghaly M, Hynes MF, Nazari M, Checkley S, Liljebjelke K. Examination of the horizontal gene transfer dynamics of an integrative and conjugative element encoding multidrug resistance in Histophilus somni. Can J Microbiol 2023; 69:123-135. [PMID: 36495587 DOI: 10.1139/cjm-2021-0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Integrative and conjugative elements (ICEs) are self-transferable mobile genetic elements that play a significant role in disseminating antimicrobial resistance between bacteria via horizontal gene transfer. A recently identified ICE in a clinical isolate of Histophilus somni (ICEHs02) is 72 914 base pairs in length and harbours seven predicted antimicrobial resistance genes conferring resistance to tetracycline (tetR-tet(H)), florfenicol (floR), sulfonamide (Sul2), aminoglycosides (APH(3″)-Ib, APH(6)-Id, APH(3')-Ia), and copper (mco). This study investigated ICEHs02 host range, assessed effects of antimicrobial stressors on transfer frequency, and examined effects of ICEHs02 acquisition on hosts. Conjugation assays examined transfer frequency of ICEHs02 to H. somni and Pasteurella multocida strains. Polymerase chain reaction assays confirmed the presence of a circular intermediate, ICE-associated core genes, and cargo genes in recipient strains. Susceptibility testing examined ICEHs02-associated resistance phenotypes in recipient strains. Tetracycline and ciprofloxacin induction significantly increased the transfer rates of ICEHs02 in vitro. The copy numbers of the circular intermediate of ICEHs02 per chromosome exhibited significant increases of ∼37-fold after tetracycline exposure and ∼4-fold after ciprofloxacin treatment. The acquisition of ICEHs02 reduced the relative fitness of H. somni transconjugants (TG) by 28% (w = 0.72 ± 0.04) and the relative fitness of P. multocida TG was decreased by 15% (w = 0.85 ± 0.01).
Collapse
Affiliation(s)
- Mai Farghaly
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael F Hynes
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Mohammad Nazari
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sylvia Checkley
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Karen Liljebjelke
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Hirsch C, Timsit E, Uddin MS, Guan LL, Alexander TW. Comparison of pathogenic bacteria in the upper and lower respiratory tracts of cattle either directly transported to a feedlot or co-mingled at auction markets prior to feedlot placement. Front Vet Sci 2023; 9:1026470. [PMID: 36761402 PMCID: PMC9902877 DOI: 10.3389/fvets.2022.1026470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/29/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Bacterial bronchopneumonia (BP) has been associated with purchasing cattle through auction markets. However, whether auction markets are a source of BP-associated bacterial pathogens is unknown. This study evaluated prevalence, antimicrobial susceptibility, and genetic relatedness (using pulsed-field gel electrophoresis, PFGE) of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from cattle either transported to an auction market prior to feedlot placement (AUC), or directly to a feedlot from a farm (RANC). Methods Two groups of cattle were enrolled (N = 30 per group) from two separate farms with 15 animals from an individual farm designated as AUC or RANC. Deep nasal swab (DNS) and trans-tracheal aspirates (TTA) were collected on day 0 at weaning (T0) and on day 2 at on-arrival processing at the feedlot (T1). The DNS were also collected on day 9 (T2) and day 30 (T3) after arrival at the feedlot. Results and discussion In both TTA and DNS, prevalence of bacteria did not differ between AUC and RANC groups (P > 0.05). None of the bacteria isolated at T0 were resistant to antimicrobials and diversity of all bacteria was greatest at T0 and T1. In Group 1 cattle, 100% of P. multocida isolated at T2 and T3 were multi-drug resistant. These isolates were highly related (>90%) according to PFGE, with most being clones. Though limited in size, results for animals evaluated in this study suggested that auction markets were not a major source of resistant BP pathogens, however, horizontal transmission of a multi-resistant strain of P. multocida occurred in a feedlot. Spread of resistant P. multocida was likely due to the selective pressures imposed by feedlot antimicrobial use and encoded resistance by the bacteria.
Collapse
Affiliation(s)
| | | | - Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada,*Correspondence: Trevor W. Alexander
| |
Collapse
|
16
|
Ueno Y, Suzuki K, Takamura Y, Hoshinoo K, Takamatsu D, Katsuda K. Antimicrobial resistance and associated genetic background of Histophilus somni isolated from clinically affected and healthy cattle. Front Vet Sci 2022; 9:1040266. [PMID: 36387383 PMCID: PMC9645265 DOI: 10.3389/fvets.2022.1040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Histophilus somni, a member of the Pasteurellaceae family, causes various diseases, including thrombotic meningoencephalitis and respiratory diseases. Here, 166 isolates recovered from Japanese cattle with various diseases between the late 1970s and the 2010s were subjected to susceptibility testing against 14 antimicrobials (ampicillin, amoxicillin, cefazolin, ceftiofur, kanamycin, streptomycin, nalidixic acid, enrofloxacin, danofloxacin, florfenicol, erythromycin, tylosin, oxytetracycline, and fosfomycin). The proportions of antimicrobial-resistant/intermediate isolates were low in the total isolates, with resistance rates ranging from 0% for ceftiofur and florfenicol to 13.2% for ampicillin. However, relatively high minimum inhibitory concentrations (MICs) and resistance/intermediate rates were observed in the isolates from cattle with respiratory diseases; i.e., 21/53 isolates (39.6%) showed resistance or intermediate to one or more antimicrobials for treatment of respiratory diseases, and the resistance/intermediate rates to oxytetracycline, kanamycin, ampicillin, amoxicillin, nalidixic acid, and danofloxacin were 28.3, 24.5, 24.5, 13.2, 1.9, and 1.9%, respectively. Isolates with high MICs tended to possess antimicrobial resistance genes, which may confer antimicrobial resistance phenotypes. In particular, all isolates with MICs of ampicillin/amoxicillin, kanamycin, and oxytetracycline ≥2 μg/mL, ≥512 μg/mL, and ≥4 μg/mL possessed blaROB − 1, aphA-1, and tetH/tetR, respectively, whereas isolates whose MICs were lower than the above-mentioned values did not possess these resistance genes. These results suggest that the resistance genes detected in this study are primarily responsible for the reduced susceptibility of H. somni strains to these antimicrobials. As integrative and conjugative element (ICEs)-associated genes were detected only in genetically related isolates possessing antimicrobial resistance genes, ICEs may play an important role in the spread of resistance genes in some genetic groups of H. somni strains.
Collapse
Affiliation(s)
- Yuichi Ueno
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, NARO, Tsukuba, Japan
- *Correspondence: Yuichi Ueno
| | - Kenta Suzuki
- Nagano Prefectural Matsumoto Livestock Hygiene Service Center, Matsumoto, Japan
| | - Yuji Takamura
- Aichi Prefectural Chuo Livestock Hygiene Service Center, Okazaki, Japan
| | - Kaori Hoshinoo
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, NARO, Tsukuba, Japan
| | - Daisuke Takamatsu
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, NARO, Tsukuba, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Ken Katsuda
- National Institute of Animal Health, National Agriculture and Food Research Organization, NARO, Tsukuba, Japan
- Ken Katsuda
| |
Collapse
|
17
|
Crosby WB, Pinnell LJ, Richeson JT, Wolfe C, Castle J, Loy JD, Gow SP, Seo KS, Capik SF, Woolums AR, Morley PS. Does swab type matter? Comparing methods for Mannheimia haemolytica recovery and upper respiratory microbiome characterization in feedlot cattle. Anim Microbiome 2022; 4:49. [PMID: 35964128 PMCID: PMC9375289 DOI: 10.1186/s42523-022-00197-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Bovine respiratory disease (BRD) is caused by interactions among host, environment, and pathogens. One standard method for antemortem pathogen identification in cattle with BRD is deep-guarded nasopharyngeal swabbing, which is challenging, costly, and waste generating. The objective was to compare the ability to recover Mannheimia haemolytica and compare microbial community structure using 29.5 inch (74.9 cm) deep-guarded nasopharyngeal swabs, 16 inch (40.6 cm) unguarded proctology swabs, or 6 inch (15.2 cm) unguarded nasal swabs when characterized using culture, real time-qPCR, and 16S rRNA gene sequencing. Samples for aerobic culture, qPCR, and 16S rRNA gene sequencing were collected from the upper respiratory tract of cattle 2 weeks after feedlot arrival.
Results There was high concordance of culture and qPCR results for all swab types (results for 77% and 81% of sampled animals completely across all 3 swab types for culture and qPCR respectively). Microbial communities were highly similar among samples collected with different swab types, and differences identified relative to treatment for BRD were also similar. Positive qPCR results for M. haemolytica were highly concordant (81% agreed completely), but samples collected by deep-guarded swabbing had lower amounts of Mh DNA identified (Kruskal–Wallis analysis of variance on ranks, P < 0.05; Dunn-test for pairwise comparison with Benjamini–Hochberg correction, P < 0.05) and lower frequency of positive compared to nasal and proctology swabs (McNemar’s Chi-square test, P < 0.05). Conclusions Though differences existed among different types of swabs collected from individual cattle, nasal swabs and proctology swabs offer comparable results to deep-guarded nasopharyngeal swabs when identifying and characterizing M. haemolytica by culture, 16S rRNA gene sequencing, and qPCR. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00197-6.
Collapse
|
18
|
Schink AK, Hanke D, Semmler T, Brombach J, Bethe A, Lübke-Becker A, Teske K, Müller KE, Schwarz S. Novel multiresistance-mediating integrative and conjugative elements carrying unusual antimicrobial resistance genes in Mannheimia haemolytica and Pasteurella multocida. J Antimicrob Chemother 2022; 77:2033-2035. [DOI: 10.1093/jac/dkac116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anne-Kathrin Schink
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Torsten Semmler
- NG1-Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Julian Brombach
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Kinga Teske
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Kerstin Elisabeth Müller
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
- Clinic for Ruminants and Swine, Freie Universität Berlin, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Melchner A, van de Berg S, Scuda N, Feuerstein A, Hanczaruk M, Schumacher M, Straubinger RK, Marosevic D, Riehm JM. Antimicrobial Resistance in Isolates from Cattle with Bovine Respiratory Disease in Bavaria, Germany. Antibiotics (Basel) 2021; 10:antibiotics10121538. [PMID: 34943750 PMCID: PMC8698709 DOI: 10.3390/antibiotics10121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Patterns of antimicrobial resistance (AMR) regarding Pasteurella multocida (n = 345), Mannheimia haemolytica (n = 273), Truperella pyogenes (n = 119), and Bibersteinia trehalosi (n = 17) isolated from calves, cattle and dairy cows with putative bovine respiratory disease syndrome were determined. The aim of this study was to investigate temporal trends in AMR and the influence of epidemiological parameters for the geographic origin in Bavaria, Germany, between July 2015 and June 2020. Spectinomycin was the only antimicrobial agent with a significant decrease regarding not susceptible isolates within the study period (P. multocida 88.89% to 67.82%, M. haemolytica 90.24% to 68.00%). Regarding P. multocida, significant increasing rates of not susceptible isolates were found for the antimicrobials tulathromycin (5.56% to 26.44%) and tetracycline (18.52% to 57.47%). The proportions of multidrug-resistant (MDR) P. multocida isolates (n = 48) increased significantly from 3.70% to 22.90%. The proportions of MDR M. haemolytica and P. multocida isolates (n = 62) were significantly higher in fattening farms (14.92%) compared to dairy farms (3.29%) and also significantly higher on farms with more than 300 animals (19.49%) compared to farms with 100 animals or less (6.92%). The data underline the importance of the epidemiological farm characteristics, here farm type and herd size regarding the investigation of AMR.
Collapse
Affiliation(s)
- Alexander Melchner
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Sarah van de Berg
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Nelly Scuda
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Andrea Feuerstein
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Matthias Hanczaruk
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Magdalena Schumacher
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Reinhard K. Straubinger
- Institute of Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany;
| | - Durdica Marosevic
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
| | - Julia M. Riehm
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (A.M.); (S.v.d.B.); (N.S.); (A.F.); (M.H.); (M.S.); (D.M.)
- Correspondence:
| |
Collapse
|
20
|
Siddaramappa S. Comparative genomics of the Pasteurella multocida toxin. Genome 2021; 64:679-692. [PMID: 33471631 DOI: 10.1139/gen-2020-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pasteurella multocida is a zoonotic pathogen whose genetic heterogeneity is well known. Five serogroups (A, B, D, E, and F) and 16 serotypes of P. multocida have been recognized thus far based on capsular polysaccharide typing and lipopolysaccharide typing, respectively. Progressive atrophic rhinitis in domestic pigs is caused by P. multocida strains containing toxA, which encodes a 146 kDa heat-labile toxin. Among the five serogroups, only some strains of serogroups A and D are toxigenic. In this study, by comparative analyses of the genomes of many strains, it has been shown that toxA is sparsely distributed in P. multocida. Furthermore, full-length homologs of P. multocida toxA were found only in two other bacterial species. It has also been shown that toxA is usually associated with a prophage, and that some strains contain an orthologous prophage but not toxA. Among the toxA-containing prophages that were compared, an operon putatively encoding a type II restriction-modification system was present only in strains LFB3, HN01, and HN06. These results indicate that the selection and maintenance of the heat-labile toxin and the type II restriction-modification system are evolutionarily less favorable among P. multocida strains. Phylogenetic analysis using the alignment- and parameter-free method CVTree3 showed that deduced proteome sequences can be used as effectively as whole/core genome single nucleotide polymorphisms to group P. multocida strains in relation to their serotypes and (or) genotypes. It remains to be determined if the toxA-containing prophages in strains HN01 and HN06 are inducible, and if they can be used for lysogenic transfer of toxA to other bacteria.
Collapse
Affiliation(s)
- Shivakumara Siddaramappa
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bengaluru, Karnataka 560100, India.,Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bengaluru, Karnataka 560100, India
| |
Collapse
|
21
|
Gao Y, Xia L, Pan R, Xuan H, Guo H, Song Q, Wei J, Shao D, Liu K, Li Z, Qiu Y, Ma Z, Li B. Identification of mcr-1 and a novel chloramphenicol resistance gene catT on an integrative and conjugative element in an Actinobacillus strain of swine origin. Vet Microbiol 2021; 254:108983. [PMID: 33486327 DOI: 10.1016/j.vetmic.2021.108983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/05/2021] [Indexed: 11/27/2022]
Abstract
The aim of this study was to characterize a mcr-1-carrying integrative and conjugative element (ICE) in a novel Pasteurellaceae-like bacteria of swine origin. The mcr-1-positive GY-402 strain, recovered from a pig fecal sample, was subjected to whole genome sequencing with the combination of Illumina Hiseq and MinION platforms. Genome-based taxonomy revealed that strain GY-402 exhibited highest ANI value (84.89 %) to Actinobacillus succinogenes, which suggested that it represented a novel Actinobacillus species. Sequence analysis revealed that mcr-1 was clustered with eight other resistance genes in the MDR region of a novel ICE element, named ICEAsp1. Inverse PCR and mating assays showed that ICEAsp1 is active and transferrable. In addition, six circular forms mediated by four ISApl1 elements were detected with different inverse PCR sets, indicating that flexible composite transposons could be formed by pairwise combinations of multiple IS copies. Cloning experiment and phylogenetic analysis revealed that the novel Cat protein, designated CatT, belongs to type-A family and confers resistance to chloramphenicol. In conclusion, this is, to the best of our knowledge, the first report of mcr-1 gene on ICE structure and also in Pasteurellaceae bacteria. The diverse composite transposons mediated by multicopy IS elements may facilitate the dissemination of different resistance genes.
Collapse
Affiliation(s)
- Yun Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, 830052, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, 830052, China
| | - Ruyi Pan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Huiyong Xuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, 830052, China
| | - Hongdou Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qiangqiang Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, 830052, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
22
|
Fostier CR, Monlezun L, Ousalem F, Singh S, Hunt JF, Boël G. ABC-F translation factors: from antibiotic resistance to immune response. FEBS Lett 2020; 595:675-706. [PMID: 33135152 DOI: 10.1002/1873-3468.13984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.
Collapse
Affiliation(s)
- Corentin R Fostier
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Laura Monlezun
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Farès Ousalem
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Shikha Singh
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - John F Hunt
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - Grégory Boël
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
23
|
Klima CL, Holman DB, Cook SR, Conrad CC, Ralston BJ, Allan N, Anholt RM, Niu YD, Stanford K, Hannon SJ, Booker CW, McAllister TA. Multidrug Resistance in Pasteurellaceae Associated With Bovine Respiratory Disease Mortalities in North America From 2011 to 2016. Front Microbiol 2020; 11:606438. [PMID: 33240256 PMCID: PMC7682020 DOI: 10.3389/fmicb.2020.606438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023] Open
Abstract
Multidrug-resistant (MDR; resistance to ≥3 antimicrobial classes) members of the Pasteurellaceae family may compromise the efficacy of therapies used to prevent and treat bovine respiratory disease (BRD) in feedlot cattle. This study examined the prevalence of multidrug resistance in strains of Mannheimia haemolytica and Pasteurella multocida collected from BRD cattle mortalities in North America. Isolates of M. haemolytica (n = 147) and P. multocida (n = 70) spanning 69 Alberta feedlots from 2011 to 2016 and two United States feedlots from 2011 to 2012 were examined for antimicrobial resistance (AMR) in association with integrative and conjugative elements (ICEs). Overall, resistance was high in both bacterial species with an increase in the prevalence of MDR isolates between 2011 and 2016. Resistance to >7 antimicrobial drugs occurred in 31% of M. haemolytica and 83% of P. multocida isolates. Resistance to sulfadimethoxine, trimethoprim/sulfamethoxazole, neomycin, clindamycin oxytetracycline, spectinomycin, tylosin, tilmicosin, and tulathromycin was most common. Although >80% of strains harbored three or more ICE-associated genes, only 12% of M. haemolytica and 77% of P. multocida contained all six, reflecting the diversity of ICEs. There was evidence of clonal spread as P. multocida and M. haemolytica isolates with the same pulsed-field gel electrophoresis profile from the United States in 2011 were isolated in Alberta in 2015–2016. This work highlights that MDR strains of Pasteurellaceae containing ICEs are widespread and may be contributing to BRD therapy failure in feedlot cattle. Given the antimicrobial resistance gene profiles identified, these MDR isolates may be selected for by the use of macrolides, tetracyclines, and/or in-feed supplements containing heavy metals.
Collapse
Affiliation(s)
- Cassidy L Klima
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Shaun R Cook
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - Cheyenne C Conrad
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Nick Allan
- Chinook Contract Research Inc., Airdrie, AB, Canada
| | | | - Yan D Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | | | | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
24
|
Kadlec K, Watts JL, Schwarz S, Sweeney MT. Plasmid-located extended-spectrum β-lactamase gene blaROB-2 in Mannheimia haemolytica. J Antimicrob Chemother 2020; 74:851-853. [PMID: 30561662 DOI: 10.1093/jac/dky515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To identify and analyse the first ESBL gene from Mannheimia haemolytica. METHODS Susceptibility testing was performed according to CLSI. Plasmids were extracted via alkaline lysis and transferred by electrotransformation. The sequence was determined by WGS and confirmed by Sanger sequencing. RESULTS The M. haemolytica strain 48 showed high cephalosporin MICs. A single plasmid, designated pKKM48, with a size of 4323 bp, was isolated. Plasmid pKKM48 harboured a novel blaROB gene, tentatively designated blaROB-2, and was transferred to Pasteurella multocida B130 and to Escherichia coli JM107. PCR assays and susceptibility testing confirmed the presence and activity of the blaROB-2 gene in the P. multocida and in the E. coli recipient carrying plasmid pKKM48. The transformants had high MICs of all β-lactam antibiotics. An ESBL phenotype was seen in the E. coli transformant when applying the CLSI double-disc confirmatory test for E. coli. The blaROB-2 gene from plasmid pKKM48 differed in three positions from blaROB-1, resulting in two amino acid exchanges and one additional amino acid in the deduced β-lactamase protein. In addition to blaROB-2, pKKM48 harboured mob genes and showed high similarity to other plasmids from Pasteurellaceae. CONCLUSIONS This study described the first ESBL gene in Pasteurellaceae, which may limit the therapeutic options for veterinarians. The transferability to Enterobacteriaceae with the functional activity of the gene in the new host underlines the possibility of the spread of this gene across species or genus boundaries.
Collapse
Affiliation(s)
- Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | | | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
25
|
Snyder E, Credille B. Mannheimia haemolytica and Pasteurella multocida in Bovine Respiratory Disease: How Are They Changing in Response to Efforts to Control Them? Vet Clin North Am Food Anim Pract 2020; 36:253-268. [PMID: 32327253 DOI: 10.1016/j.cvfa.2020.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The bacteria Mannheimia haemolytica and Pasteurella multocida contribute to bovine respiratory disease (BRD), which is often managed with antimicrobials. Antimicrobial resistance in these bacteria has been rare, but extensively drug-resistant strains have recently become common. Routine antimicrobial use may be driving this resistance. Resistance spread is caused in part by propagation of strains harboring integrative conjugative elements. The impact of antimicrobial resistance on treatment outcomes is not clear, but clinical observations suggest that response to first treatment has decreased over time, possibly because of resistance. Clinicians should consider antimicrobial resistance when designing BRD treatment and control programs.
Collapse
Affiliation(s)
- Emily Snyder
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Veterinary Medical Center, 2200 College Station Road, Athens, GA 30602, USA
| | - Brent Credille
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Veterinary Medical Center, 2200 College Station Road, Athens, GA 30602, USA.
| |
Collapse
|
26
|
Hurtado R, Maturrano L, Azevedo V, Aburjaile F. Pathogenomics insights for understanding Pasteurella multocida adaptation. Int J Med Microbiol 2020; 310:151417. [PMID: 32276876 DOI: 10.1016/j.ijmm.2020.151417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Pasteurella multocida is an important veterinary pathogen able to infect a wide range of animals in a broad spectrum of diseases. P. multocida is a complex microorganism in relation to its genomic flexibility, host adaptation and pathogenesis. Epidemiological analysis based on multilocus sequence typing, serotyping, genotyping, association with virulence genes and single nucleotide polymorphisms (SNPs), enables assessment of intraspecies diversity, phylogenetic and strain-specific relationships associated with host predilection or disease. A high number of sequenced genomes provides us a more accurate genomic and epidemiological interpretation to determine whether certain lineages can infect a host or produce disease. Comparative genomic analysis and pan-genomic approaches have revealed a flexible genome for hosting mobile genetic elements (MGEs) and therefore significant variation in gene content. Moreover, it was possible to find lineage-specific MGEs from the same niche, showing acquisition probably due to an evolutionary convergence event or to a genetic group with infective capacity. Furthermore, diversification selection analysis exhibits proteins exposed on the surface subject to selection pressures with an interstrain heterogeneity related to their ability to adapt. This article is the first review describing the genomic relationship to elucidate the diversity and evolution of P. multocida.
Collapse
Affiliation(s)
- Raquel Hurtado
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Lenin Maturrano
- Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Flávia Aburjaile
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Laboratory of Plant Genetics and Biotechnology, Federal University of Pernambuco, Recife, 50670-901, Pernambuco, Brazil.
| |
Collapse
|
27
|
Antimicrobial Resistance in Members of the Bacterial Bovine Respiratory Disease Complex Isolated from Lung Tissue of Cattle Mortalities Managed with or without the Use of Antimicrobials. Microorganisms 2020; 8:microorganisms8020288. [PMID: 32093326 PMCID: PMC7074851 DOI: 10.3390/microorganisms8020288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Over a two-year period, Mannheimia haemolytica (MH; n = 113), Pasteurella multocida (PM; n = 47), Histophilus somni (HS; n = 41) and Mycoplasma bovis (MB; n = 227) were isolated from bovine lung tissue at necropsy from cattle raised conventionally (CON, n = 29 feedlots) or without antimicrobials [natural (NAT), n = 2 feedlots]. Excluding MB, isolates were assayed by PCR to detect the presence of 13 antimicrobial resistance (AMR) genes and five core genes associated with integrative and conjugative elements (ICEs). Antimicrobial susceptibility phenotypes and minimum inhibitory concentrations (MICs, µg/mL) were determined for a subset of isolates (MH, n = 104; PM, n = 45; HS, n = 23; and MB, n = 61) using Sensititre analyses. A subset of isolates (n = 21) was also evaluated by whole-genome sequencing (WGS) based on variation in AMR phenotype. All five ICE core genes were detected in PM and HS by PCR, but only 3/5 were present in MH. Presence of mco and tnpA ICE core genes in MH was associated with higher MICs (p < 0.05) for all tetracyclines, and 2/3 of all macrolides, aminoglycosides and fluoroquinolones evaluated. In contrast, association of ICE core genes with MICs was largely restricted to macrolides for PM and to individual tetracyclines and macrolides for HS. For MH, the average number of AMR genes markedly increased (p < 0.05) in year 2 of the study due to the emergence of a strain that was PCR positive for all 13 PCR-tested AMR genes as well as two additional AMR genes (aadA31 and blaROB-1) detected by WGS. Conventional management of cattle increased (p < 0.05) MICs of tilmicosin and tulathromycin for MH; neomycin and spectinomycin for PM; and gamithromycin and tulathromycin for MB. The average number of PCR-detected AMR genes in PM was also increased (p < 0.05) in CON mortalities. This study demonstrates increased AMR especially to macrolides by bovine respiratory disease organisms in CON as compared to NAT feedlots and a rapid increase in AMR following dissemination of strain(s) carrying ICE-associated multidrug resistance.
Collapse
|
28
|
Eduardo-Correia B, Morales-Filloy H, Abad JP. Bacteria From the Multi-Contaminated Tinto River Estuary (SW, Spain) Show High Multi-Resistance to Antibiotics and Point to Paenibacillus spp. as Antibiotic-Resistance-Dissemination Players. Front Microbiol 2020; 10:3071. [PMID: 31998281 PMCID: PMC6965355 DOI: 10.3389/fmicb.2019.03071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Bacterial resistance to antibiotics is an ever-increasing phenomenon that, besides clinical settings, is generally assumed to be prevalent in environmental soils and waters. The analysis of bacteria resistant to each one of 11 antibiotics in waters and sediments of the Huelva’s estuary, a multi-contaminated environment, showed high levels of bacteria resistant mainly to Tm, among others. To further gain knowledge on the fate of multi-drug resistance (MDR) in environmental bacteria, 579 ampicillin-resistant bacteria were isolated tested for resistance to 10 antibiotics. 92.7% of the isolates were resistant to four or more antibiotic classes, indicating a high level of multi-resistance. 143 resistance profiles were found. The isolates with different MDR profiles and/or colony morphologies were phylogenetically ascribed based on 16S rDNA to phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, including 48 genera. Putative intrinsic resistance was detected in different phylogenetic groups including genera Altererythrobacter, Bacillus, Brevundimonas, Erythrobacter, Mesonia, Ochrobactrum, and Ponticaulis. Correlation of the presence of pairs of the non-intrinsic-resistances in phylogenetic groups based on the kappa index (κ) highlighted the co-habitation of some of the tested pairs at different phylogenetic levels. Maximum correlation (κ = 1.000) was found for pairs CzR/TcR in Betaproteobacteria, and CcR/TcR and EmR/SmR in Sphingobacteriia at the class level, while at the genus level, was found for CcR/TcR and NxR/TmR in Mesonia, CzR/TmR and EmR/KmR in Paenibacillus, and CcR/EmR and RpR/TcR in Pseudomonas. These results could suggest the existence of intra-class and intra-genus-transmissible genetic elements containing determinants for both members of each pair. Network analysis based on κ values higher than 0.4 indicated the sharing of paired resistances among several genera, many of them centered on the Paenibacillus node and raising the hypothesis of inter-genera transmission of resistances interconnected through members of this genus. This is the first time that a possible hotspot of resistance interchange in a particular environment may have been detected, opening up the possibility that one, or a few, bacterial members of the community could be important promoters of antibiotic resistance (AR) dissemination in this environment’s bacterial population. Further studies using the available isolates will likely give insights of the possible mechanisms and genetic elements involved.
Collapse
Affiliation(s)
- Benedito Eduardo-Correia
- Department of Molecular Biology, Faculty of Sciences-Biology Building, Universidad Autónoma de Madrid, Madrid, Spain
| | - Héctor Morales-Filloy
- Department of Molecular Biology, Faculty of Sciences-Biology Building, Universidad Autónoma de Madrid, Madrid, Spain
| | - José P Abad
- Department of Molecular Biology, Faculty of Sciences-Biology Building, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Cameron A, Zaheer R, McAllister TA. Emerging Variants of the Integrative and Conjugant Element ICE Mh1 in Livestock Pathogens: Structural Insights, Potential Host Range, and Implications for Bacterial Fitness and Antimicrobial Therapy. Front Microbiol 2019; 10:2608. [PMID: 31781082 PMCID: PMC6861422 DOI: 10.3389/fmicb.2019.02608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer of integrative and conjugative elements (ICE) in bacterial pathogens of the bovine respiratory disease (BRD) complex has emerged as a significant cause of antimicrobial resistance (AMR) and therapeutic failure and mortalities in cattle. The aim of this study was to assess an AMR ICE occurring in Pasteurella multocida from a case of BRD, designated ICEMh1PM22 for its structure and host genome insertion site, and to identify consequences for host fitness and antimicrobial therapy. The modular structure of ICEMh1-like elements found in several related livestock pathogens was compared to ICEMh1PM22, and the repertoire of cargo genes in variable ICE modules was functionally categorized. AMR genes were identified as frequent additions to the variable modules of ICEMh1-like elements. Random PCR-based mapping of ICEMh1PM22-genome junctions in transconjugants provided evidence that ICEMh1PM22 integrates into the tRNA-leu for the UUG codon, and not into tRNA-leu for other codons. This was separately confirmed in the genomes of ICEMh1-like-harboring livestock pathogens. Bacterial genera harboring receptive tRNA-leuUUG were identified to establish the potential host range of ICEMh1-like elements. ICEMh1PM22-carrying transconjugants in P. multocida and Mannheimia haemolytica were less fit than isogenic strains without the ICE when grown without antimicrobial selection. This fitness cost was abrogated in the presence of subinhibitory concentrations of antimicrobials. Despite this cost, ICEMh1PM22 was retained in transconjugants in extended culture. To identify possible therapeutic efficiencies, antimicrobial combinations were screened for synergistic interactions against AMR ICEMh1PM22-carrying transconjugants. No antimicrobial combination tested exhibited synergistic interactions against AMR P. multocida or M. haemolytica harboring ICEMh1PM22. In conclusion, this study provided information on the structural variation of ICEMh1-like elements, refined the ICE insertion site and potential host range, and demonstrated the risk and consequences for AMR following horizontal transfer of ICE into BRD pathogens.
Collapse
Affiliation(s)
- Andrew Cameron
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
30
|
Abstract
Pasteurella multocida is a highly versatile pathogen capable of causing infections in a wide range of domestic and wild animals as well as in humans and nonhuman primates. Despite over 135 years of research, the molecular basis for the myriad manifestations of P. multocida pathogenesis and the determinants of P. multocida phylogeny remain poorly defined. The current availability of multiple P. multocida genome sequences now makes it possible to delve into the underlying genetic mechanisms of P. multocida fitness and virulence. Using whole-genome sequences, the genotypes, including the capsular genotypes, lipopolysaccharide (LPS) genotypes, and multilocus sequence types, as well as virulence factor-encoding genes of P. multocida isolates from different clinical presentations can be characterized rapidly and accurately. Putative genetic factors that contribute to virulence, fitness, host specificity, and disease predilection can also be identified through comparative genome analysis of different P. multocida isolates. However, although some knowledge about genotypes, fitness, and pathogenesis has been gained from the recent whole-genome sequencing and comparative analysis studies of P. multocida, there is still a long way to go before we fully understand the pathogenic mechanisms of this important zoonotic pathogen. The quality of several available genome sequences is low, as they are assemblies with relatively low coverage, and genomes of P. multocida isolates from some uncommon host species are still limited or lacking. Here, we review recent advances, as well as continuing knowledge gaps, in our understanding of determinants contributing to virulence, fitness, host specificity, disease predilection, and phylogeny of P. multocida.
Collapse
|
31
|
Dong D, Li M, Liu Z, Feng J, Jia N, Zhao H, Zhao B, Zhou T, Zhang X, Tong Y, Zhu Y. Characterization of a NDM-1- Encoding Plasmid pHFK418-NDM From a Clinical Proteus mirabilis Isolate Harboring Two Novel Transposons, Tn 6624 and Tn 6625. Front Microbiol 2019; 10:2030. [PMID: 31551967 PMCID: PMC6737455 DOI: 10.3389/fmicb.2019.02030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Acquisition of the blaNDM–1 gene by Proteus mirabilis is a concern because it already has intrinsic resistance to polymyxin E and tigecycline antibiotics. Here, we describe a P. mirabilis isolate that carries a pPrY2001-like plasmid (pHFK418-NDM) containing a blaNDM–1 gene. The pPrY2001-like plasmid, pHFK418-NDM, was first reported in China. The pHFK418-NDM plasmid was sequenced using a hybrid approach based on Illumina and MinION platforms. The sequence of pHFK418-NDM was compared with those of the six other pPrY2001-like plasmids deposited in GenBank. We found that the multidrug-resistance encoding region of pHFK418-NDM contains ΔTn10 and a novel transposon Tn6625. Tn6625 consists of ΔTn1696, Tn6260, In251, ΔTn125 (carrying blaNDM–1), ΔTn2670, and a novel mph(E)-harboring transposon Tn6624. In251 was first identified in a clinical isolate, suggesting that it has been transferred efficiently from environmental organisms to clinical isolates. Genomic comparisons of all these pPrY2001-like plasmids showed that their relatively conserved backbones could integrate the numerous and various accessory modules carrying multifarious antibiotic resistance genes. Our results provide a greater depth of insight into the horizontal transfer of resistance genes and add interpretive value to the genomic diversity and evolution of pPrY2001-like plasmids.
Collapse
Affiliation(s)
- Dandan Dong
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Manli Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zhenzhen Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jiantao Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Nan Jia
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Tingting Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Snyder ER, Alvarez-Narvaez S, Credille BC. Genetic characterization of susceptible and multi-drug resistant Mannheimia haemolytica isolated from high-risk stocker calves prior to and after antimicrobial metaphylaxis. Vet Microbiol 2019; 235:110-117. [PMID: 31282368 DOI: 10.1016/j.vetmic.2019.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022]
Abstract
Bovine Respiratory Disease (BRD) is a major threat to animal health and welfare in the cattle industry. Strains of Mannheimia haemolytica (Mh) that are resistant to multiple classes of antimicrobials are becoming a major concern in the beef industry, as the frequency of isolation of these strains has been increasing. Mobile genetic elements, such as integrative conjugative elements (ICE), are frequently implicated in this rapid increase in multi-drug resistance. The objectives of the current study were to determine the genetic relationship between the isolates collected at arrival before metaphylaxis and at revaccination after metaphylaxis, to identify which resistance genes might be present in these isolates, and to determine if they were carried on an ICE. Twenty calves culture positive for Mh at arrival and revaccination were identified, and a total of 48 isolates with unique susceptibility profiles (26 from arrival, and 22 from revaccination) were submitted for whole-genome sequencing (WGS). A phylogenetic tree was constructed, showing the arrival isolates falling into four clades, and all revaccination isolates within one clade. All revaccination isolates, and one arrival isolate, were positive for the presence of an ICE. Three different ICEs with resistance gene modules were identified. The resistance genes aphA1, strA, strB, sul2, floR, erm42, tetH/R, aadB, aadA25, blaOXA-2, msrE, mphE were all located within an ICE. The gene bla-ROB1 was also present in the isolates, but was not located within an ICE.
Collapse
Affiliation(s)
- Emily R Snyder
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, United States.
| | - Sonsiray Alvarez-Narvaez
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, United States
| | - Brent C Credille
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, United States
| |
Collapse
|
33
|
Shi Y, Tian Z, Leclercq SO, Zhang H, Yang M, Zhang Y. Genetic characterization and potential molecular dissemination mechanism of tet(31) gene in Aeromonas caviae from an oxytetracycline wastewater treatment system. J Environ Sci (China) 2019; 76:259-266. [PMID: 30528016 DOI: 10.1016/j.jes.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/09/2023]
Abstract
Recently, the rarely reported tet(31) tetracycline resistance determinant was commonly found in Aeromonas salmonicida, Gallibacterium anatis, and Oblitimonas alkaliphila isolated from farming animals and related environment. However, its distribution in other bacteria and potential molecular dissemination mechanism in environment are still unknown. The purpose of this study was to investigate the potential mechanism underlying dissemination of tet(31) by analysing the tet(31)-carrying fragments in A. caviae strains isolated from an aerobic biofilm reactor treating oxytetracycline bearing wastewater. Twenty-three A. caviae strains were screened for the tet(31) gene by polymerase chain reaction (PCR). Three strains (two harbouring tet(31), one not) were subjected to whole genome sequencing using the PacBio RSII platform. Seventeen A. caviae strains carried the tet(31) gene and exhibited high resistance levels to oxytetracycline with minimum inhibitory concentrations (MICs) ranging from 256 to 512 mg/L. tet(31) was comprised of the transposon Tn6432 on the chromosome of A. caviae, and Tn6432 was also found in 15 additional tet(31)-positive A. caviae isolates by PCR. More important, Tn6432 was located on an integrative conjugative element (ICE)-like element, which could mediate the dissemination of the tet(31)-carrying transposon Tn6432 between bacteria. Comparative analysis demonstrated that Tn6432 homologs with the structure ISCR2-∆phzF-tetR(31)-tet(31)-∆glmM-sul2 were also carried by A. salmonicida, G. anatis, and O. alkaliphila, suggesting that this transposon can be transferred between species and even genera. This work provides the first report on the identification of the tet(31) gene in A. caviae, and will be helpful in exploring the dissemination mechanisms of tet(31) in water environment.
Collapse
Affiliation(s)
- Yanhong Shi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sébastien Olivier Leclercq
- INRA, UMR1282 Infectiology and Public Health, F-37380 Nouzilly, France; François Rabelais University, UMR1282 Infectiology and Public Health, F-37000 Tours, France
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Complete Genome Sequence Analysis and Characterization of Selected Iron Regulation Genes of Pasteurella Multocida Serotype A Strain PMTB2.1. Genes (Basel) 2019; 10:genes10020081. [PMID: 30691021 PMCID: PMC6409639 DOI: 10.3390/genes10020081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 11/25/2022] Open
Abstract
Although more than 100 genome sequences of Pasteurella multocida are available, comprehensive and complete genome sequence analysis is limited. This study describes the analysis of complete genome sequence and pathogenomics of P. multocida strain PMTB2.1. The genome of PMTB2.1 has 2176 genes with more than 40 coding sequences associated with iron regulation and 140 virulence genes including the complete tad locus. The tad locus includes several previously uncharacterized genes such as flp2, rcpC and tadV genes. A transposable phage resembling to Mu phages was identified in P. multocida that has not been identified in any other serotype yet. The multi-locus sequence typing analysis assigned the PMTB2.1 genome sequence as type ST101, while the comparative genome analysis showed that PMTB2.1 is closely related to other P. multocida strains with the genomic distance of less than 0.13. The expression profiling of iron regulating-genes of PMTB2.1 was characterized under iron-limited environment. Results showed significant changes in the expression profiles of iron-regulating genes (p < 0.05) whereas the highest expression of fecE gene (281 fold) at 30 min suggests utilization of the outer-membrane proteins system in iron acquisition at an early stage of growth. This study showed the phylogenomic relatedness of P. multocida and improved annotation of important genes and functional characterization of iron-regulating genes of importance to the bacterial growth.
Collapse
|
35
|
Zhu D, He J, Yang Z, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, You Y, Chen X, Cheng A. Comparative analysis reveals the Genomic Islands in Pasteurella multocida population genetics: on Symbiosis and adaptability. BMC Genomics 2019; 20:63. [PMID: 30658579 PMCID: PMC6339346 DOI: 10.1186/s12864-018-5366-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pasteurella multocida (P. multocida) is a widespread opportunistic pathogen that infects human and various animals. Genomic Islands (GIs) are one of the most important mobile components that quickly help bacteria acquire large fragments of foreign genes. However, the effects of GIs on P. multocida are unknown in the evolution of bacterial populations. RESULTS Ten avian-sourced P. multocida obtained through high-throughput sequencing together with 104 publicly available P. multocida genomes were used to analyse their population genetics, thus constructed a pan-genome containing 3948 protein-coding genes. Through the pan-genome, the open evolutionary pattern of P. multocida was revealed, and the functional components of 944 core genes, 2439 accessory genes and 565 unique genes were analysed. In addition, a total of 280 GIs were predicted in all strains. Combined with the pan-genome of P. multocida, the GIs accounted for 5.8% of the core genes in the pan-genome, mainly related to functional metabolic activities; the accessory genes accounted for 42.3%, mainly for the enrichment of adaptive genes; and the unique genes accounted for 35.4%, containing some defence mechanism-related genes. CONCLUSIONS The effects of GIs on the population genetics of P. multocida evolution and adaptation to the environment are reflected by the proportion and function of the pan-genome acquired from GIs, and the large quantities of GI data will aid in additional population genetics studies.
Collapse
Affiliation(s)
- Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Jiao He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Zhishuang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Yunya Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Ling Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yanling Yu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yu You
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiaoyue Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| |
Collapse
|
36
|
Niemann L, Feudi C, Eichhorn I, Hanke D, Müller P, Brauns J, Nathaus R, Schäkel F, Höltig D, Wendt M, Kadlec K, Schwarz S. Plasmid-located dfrA14 gene in Pasteurella multocida isolates from three different pig-producing farms in Germany. Vet Microbiol 2019; 230:235-240. [PMID: 30827394 DOI: 10.1016/j.vetmic.2019.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/15/2022]
Abstract
Pasteurella multocida is an important respiratory tract pathogen in intensive livestock farming, especially in pigs. Antimicrobial agents are frequently used to combat infections caused by this pathogen. In a study on antimicrobial resistance among respiratory tract pathogens of pigs from 30 German pig-producing farms, P. multocida isolates (n = 9) with high minimal inhibitory concentration (MIC) values of 16/304 mg/L (n = 2), 32/608 mg/L (n = 3) or ≥64/1216 mg/L (n = 4) for trimethoprim/sulfamethoxazole (1:19) and of ≥512 mg/L (n = 9) for trimethoprim (TMP) were detected in three of these farms. The genetic relatedness of the isolates was investigated via capsule-specific PCR and macrorestriction analyses with ApaI and SmaI. Pulsed-field gel electrophoresis revealed indistinguishable restriction patterns per farm, with slight differences between the three farms. All isolates represented capsular type A. Four representative isolates, that were subjected to whole genome sequencing, shared the multi-locus sequence type (ST) 3. Their plasmids were transformed into E. coli TOP10 with subsequent selection on TMP-containing agar plates. Antimicrobial susceptibility testing and plasmid analysis of the transformants confirmed that they were resistant to sulfonamides and trimethoprim and carried only a single small plasmid. This plasmid was completely sequenced and revealed a size of 6050 bp. Sequence analyses identified the presence of a resistance gene cluster comprising the genes sul2-ΔstrA-dfrA14-ΔstrA-ΔstrB. Further analysis identified a dfrA14 gene cassette being integrated into the strA reading frame. Neither the gene dfrA14 nor this gene cluster have been detected before in P. multocida.
Collapse
Affiliation(s)
- Lisa Niemann
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Claudia Feudi
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Petra Müller
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasmin Brauns
- Clinic for Swine and Small Ruminants and forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Franziska Schäkel
- Institute for Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Doris Höltig
- Clinic for Swine and Small Ruminants and forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Michael Wendt
- Clinic for Swine and Small Ruminants and forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
37
|
Iron-associated protein interaction networks reveal the key functional modules related to survival and virulence of Pasteurella multocida. Microb Pathog 2018; 127:257-266. [PMID: 30550841 DOI: 10.1016/j.micpath.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
Abstract
Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security.
Collapse
|
38
|
Antimicrobial susceptibility and molecular typing of Pasteurella multocida isolated from six provinces in China. Trop Anim Health Prod 2018; 51:987-992. [PMID: 30535896 DOI: 10.1007/s11250-018-1754-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/11/2018] [Indexed: 11/27/2022]
Abstract
Pasteurella multocida (P. multocida) is an important pathogen that causes bovine respiratory disease (BRD) in China and other countries. To investigate the antimicrobial susceptibility of P. multocida isolated from different provinces in China, we analyzed antimicrobial susceptibility phenotypes and pulsed-field gel electrophoresis (PFGE) types of P. multocida; then, we sequenced the complete genome of strain found to be multidrug-resistant. The isolates exhibited resistance to many antimicrobial agents, especially amikacin, sulfamethoxazole, sulfachloropyridazinesodium, macrolides, and fluoroquinolones. Pulsed-field gel electrophoresis analysis showed that a clonal spread of multidrug-resistant isolates occurred in various provinces. All of the isolates carried class I integron.
Collapse
|
39
|
Insights into the genome sequence of ovine Pasteurella multocida type A strain associated with pneumonic pasteurellosis. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Li Y, da Silva GC, Li Y, Rossi CC, Fernandez Crespo R, Williamson SM, Langford PR, Bazzolli DMS, Bossé JT. Evidence of Illegitimate Recombination Between Two Pasteurellaceae Plasmids Resulting in a Novel Multi-Resistance Replicon, pM3362MDR, in Actinobacillus pleuropneumoniae. Front Microbiol 2018; 9:2489. [PMID: 30405558 PMCID: PMC6206304 DOI: 10.3389/fmicb.2018.02489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Evidence of plasmids carrying the tetracycline resistance gene, tet(B), was found in the previously reported whole genome sequences of 14 United Kingdom, and 4 Brazilian, isolates of Actinobacillus pleuropneumoniae. Isolation and sequencing of selected plasmids, combined with comparative sequence analysis, indicated that the four Brazilian isolates all harbor plasmids that are nearly identical to pB1001, a plasmid previously found in Pasteurella multocida isolates from Spain. Of the United Kingdom isolates, 13/14 harbor plasmids that are (almost) identical to pTetHS016 from Haemophilus parasuis. The remaining United Kingdom isolate, MIDG3362, harbors a 12666 bp plasmid that shares extensive regions of similarity with pOV from P. multocida (which carries blaROB-1 , sul2, and strAB genes), as well as with pTetHS016. The newly identified multi-resistance plasmid, pM3362MDR, appears to have arisen through illegitimate recombination of pTetHS016 into the stop codon of the truncated strB gene in a pOV-like plasmid. All of the tet(B)-carrying plasmids studied were capable of replicating in Escherichia coli, and predicted origins of replication were identified. A putative origin of transfer (oriT) sequence with similar secondary structure and a nic-site almost identical to that of RP4 was also identified in these plasmids, however, attempts to mobilize them from an RP4-encoding E. coli donor strain were not successful, indicating that specific conjugation machinery may be required.
Collapse
Affiliation(s)
- Yinghui Li
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ciro C Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Botelho J, Grosso F, Peixe L. Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES-6 carbapenemase. J Antimicrob Chemother 2018; 73:77-83. [PMID: 29029083 DOI: 10.1093/jac/dkx337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives In Pseudomonas aeruginosa, the blaGES-6 carbapenemase gene was previously associated with an In1076 class I integron. Here, we conducted a genome-based analysis and explored the genetic platform associated with the mobility of this gene. Methods WGS of a blaGES-6-harbouring P. aeruginosa isolate (FFUP_PS_690) was performed with Illumina HiSeq, de novo assembly was performed using SPAdes and subsequent bioinformatic analysis was performed concerning antibiotic resistance genes, virulence features and mobile genetic elements. Results The FFUP_PS_690 isolate belongs to the ST235 high-risk clone and houses a novel integrative conjugative element (ICE), hereby named ICEPae690. This clc-like ICE comprises the blaGES-6-harbouring In1076 integron and specific modules. An ExoU island A variant was also identified. Conclusions The presence of a 'hitch-hiking' blaGES-6-harbouring In1076 integron in an ICE and an exoU-carrying genomic island highlight the potential spread of these elements through conjugation and/or clonal expansion of the ST235 lineage.
Collapse
Affiliation(s)
- João Botelho
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Filipa Grosso
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
Bhatt K, Timsit E, Rawlyk N, Potter A, Liljebjelke K. Integrative Conjugative Element ICE Hs1 Encodes for Antimicrobial Resistance and Metal Tolerance in Histophilus somni. Front Vet Sci 2018; 5:153. [PMID: 30042951 PMCID: PMC6048870 DOI: 10.3389/fvets.2018.00153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
The objectives of this study were to determine antimicrobial resistance and metal tolerance, and identify associated genes and mobile genetic elements in clinical strains of Histophilus somni isolated from feedlot cattle in Alberta during years 2012-2016 (contemporary isolates, n = 63) and years 1980-1990 (historical isolates, n = 31). Comparison of antimicrobial resistance (AMR) showed a significant increase in resistance among contemporary isolates compared to historical isolates (P < 0.001). Tolerance to copper (Cu) and zinc (Zn) concentrations above 1 mM was observed in 68 and 52% of the contemporary isolates, respectively. The tet(H) gene associated with oxytetracycline resistance and multicopper oxidase (mco) and cation efflux (czcD) genes associated with Cu and Zn tolerance were identified. An integrative conjugative element; ICEHs1, was identified in whole genome sequences of strains resistant to oxytetracycline, which had Cu and Zn minimum inhibitory concentrations (MIC) >1 mM. The length of ICEHs1 was 64,932 bp and it contained 83 genes, including tetracycline resistance gene tetH, a multidrug efflux pump gene ebrB, and metal tolerance genes mco, czcD, and acr3. Comparative genomics of ICEs revealed that ICEHs1 shares high homology with previously described ICEs of Histophilus somni, Pasteurella multocida, and Mannheimia haemolytica. The ICEHs1 is an active element capable of intra- and inter-genus transfer as demonstrated by successful transfer to H. somni and P. multocida recipients. All isolates carrying ICEHs1 were resistant to tetracycline, a commonly used antibiotic in feedlots, and had Cu and Zn MIC higher than 1 mM. Since Cu and Zn are routinely used in feedlots, there is the possibility of co-selection of AMR in H. somni due to selection pressure created by Cu and Zn. Based on results of in-vitro conjugation experiments, ICEHs1 mediated transmission of antimicrobial and metal resistance genes is possible between BRD pathogens in the respiratory tract, potentially undermining treatment options available for histophilosis and BRD.
Collapse
Affiliation(s)
- Krishna Bhatt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Edouard Timsit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Neil Rawlyk
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Karen Liljebjelke
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
43
|
Simjee S, McDermott P, Trott DJ, Chuanchuen R. Present and Future Surveillance of Antimicrobial Resistance in Animals: Principles and Practices. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0028-2017. [PMID: 30003869 PMCID: PMC11633600 DOI: 10.1128/microbiolspec.arba-0028-2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
There is broad consensus internationally that surveillance of the levels of antimicrobial resistance (AMR) occurring in various systems underpins strategies to address the issue. The key reasons for surveillance of resistance are to determine (i) the size of the problem, (ii) whether resistance is increasing, (iii) whether previously unknown types of resistance are emerging, (iv) whether a particular type of resistance is spreading, and (v) whether a particular type of resistance is associated with a particular outbreak. The implications of acquiring and utilizing this information need to be considered in the design of a surveillance system. AMR surveillance provides a foundation for assessing the burden of AMR and for providing the necessary evidence for developing efficient and effective control and prevention strategies. The codevelopment of AMR surveillance programs in humans and animals is essential, but there remain several key elements that make data comparisons between AMR monitoring programs, and between regions, difficult. Currently, AMR surveillance relies on uncomplicated in vitro antimicrobial susceptibility methods. However, the lack of harmonization across programs and the limitation of genetic information of AMR remain the major drawbacks of these phenotypic methods. The future of AMR surveillance is moving toward genotypic detection, and molecular analysis methods are expected to yield a wealth of information. However, the expectation that these molecular techniques will surpass phenotypic susceptibility testing in routine diagnosis and monitoring of AMR remains a distant reality, and phenotypic testing remains necessary in the detection of emerging resistant bacteria, new resistance mechanisms, and trends of AMR.
Collapse
Affiliation(s)
- S Simjee
- Elanco Animal Health, Basingstoke, UK
| | - P McDermott
- Food and Drug Administration, Center for Veterinary Medicine, Rockville MD
| | - D J Trott
- University of Adelaide, Roseworthy, Australia
| | | |
Collapse
|
44
|
Woolums AR, Karisch BB, Frye JG, Epperson W, Smith DR, Blanton J, Austin F, Kaplan R, Hiott L, Woodley T, Gupta SK, Jackson CR, McClelland M. Multidrug resistant Mannheimia haemolytica isolated from high-risk beef stocker cattle after antimicrobial metaphylaxis and treatment for bovine respiratory disease. Vet Microbiol 2018; 221:143-152. [PMID: 29981701 DOI: 10.1016/j.vetmic.2018.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
Antimicrobial resistance (AMR) in bacterial respiratory pathogens in high-risk stocker cattle has been poorly characterized. The objective of this study was to describe the prevalence of multidrug resistant (MDR; resistance to > 3 antimicrobial classes) respiratory pathogens in 50 conventionally managed stocker cattle over 21 days after arrival. Cattle received tildipirosin metaphylaxis on day 0 and were eligible to receive up to 3 additional antimicrobials for bovine respiratory disease (BRD): florfenicol, ceftiofur and enrofloxacin. Nasopharyngeal swabs were collected on days 0, 7, 14, and 21 for bacterial culture and antimicrobial susceptibility testing using disc diffusion and broth microdilution. Mannheimia haemolytica was isolated from 5 of 48, 27 of 50, 44 of 50, and 40 of 50 cattle on days 0, 7, 14, and 21, respectively. One of 5, 27 of 27, 43 of 44, and 40 of 40 M. haemolytica were MDR on days 0, 7, 14, and 21, respectively. Pasteurella multocida was isolated from 6 of 48 cattle on day 0 and none were MDR; no other pathogens were isolated. Twenty-four cattle required at least one BRD treatment; M. haemolytica was isolated before treatment from 13 of 24 cattle; all were MDR. One hundred-eighteen M. haemolytica isolates were subjected to pulsed-field gel electrophoresis (PFGE); multiple genotypes were identified. Whole genome sequencing of 33 isolates revealed 14 known AMR genes. Multidrug resistant M. haemolytica can be highly prevalent and genetically diverse in stocker cattle; additional research is necessary to determine factors that influence prevalence and the impact on cattle health.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA.
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - William Epperson
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - David R Smith
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - John Blanton
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Frank Austin
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Ray Kaplan
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Lari Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Tiffanie Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Sushim K Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, and Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
45
|
Hurtado R, Carhuaricra D, Soares S, Viana MVC, Azevedo V, Maturrano L, Aburjaile F. Pan-genomic approach shows insight of genetic divergence and pathogenic-adaptation of Pasteurella multocida. Gene 2018; 670:193-206. [PMID: 29802996 DOI: 10.1016/j.gene.2018.05.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/06/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Pasteurella multocida is a gram-negative, non-motile bacterial pathogen, which is associated with chronic and acute infections as snuffles, pneumonia, atrophic rhinitis, fowl cholera and hemorrhagic septicemia. These diseases affect a wide range of domestic animals, leading to significant morbidity and mortality and causing significant economic losses worldwide. Due to the interest in deciphering the genetic diversity and process adaptive between P. multocida strains, this work aimed was to perform a pan-genome analysis to evidence horizontal gene transfer and positive selection among 23 P. multocida strains isolated from distinct diseases and hosts. The results revealed an open pan-genome containing 3585 genes and an accessory genome presenting 1200 genes. The phylogenomic analysis based on the presence/absence of genes and islands exhibit high levels of plasticity, which reflects a high intraspecific diversity and a possible adaptive mechanism responsible for the specific disease manifestation between the established groups (pneumonia, fowl cholera, hemorrhagic septicemia and snuffles). Additionally, we identified differences in accessory genes among groups, which are involved in sugar metabolism and transport systems, virulence-related genes and a high concentration of hypothetical proteins. However, there was no specific indispensable functional mechanism to decisively correlate the presence of genes and their adaptation to a specific host/disease. Also, positive selection was found only for two genes from sub-group hemorrhagic septicemia, serotype B. This comprehensive comparative genome analysis will provide new insights of horizontal gene transfers that play an essential role in the diversification and adaptation mechanism into P. multocida species to a specific disease.
Collapse
Affiliation(s)
- Raquel Hurtado
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dennis Carhuaricra
- Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Siomar Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcus Vinicius Canário Viana
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lenin Maturrano
- Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Flávia Aburjaile
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratory of Plant Genetics and Biotechnology, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
46
|
A Novel Glaesserella sp. Isolated from Pigs with Severe Respiratory Infections Has a Mosaic Genome with Virulence Factors Putatively Acquired by Horizontal Transfer. Appl Environ Microbiol 2018; 84:AEM.00092-18. [PMID: 29572210 DOI: 10.1128/aem.00092-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/19/2018] [Indexed: 01/31/2023] Open
Abstract
An unknown member of the family Pasteurellaceae was repeatedly isolated from 20- to 24-week-old pigs with severe pulmonary lesions reared on the same farm in Victoria, Australia. The etiological diagnosis of the disease was inconclusive. The complete genome sequence analysis of one strain, 15-184, revealed some phylogenic proximity to Glaesserella (Haemophilus) parasuis, the cause of Glasser's disease. However, the sequences of the 16S rRNA and housekeeping genes, as well as the average nucleotide identity scores, differed from those of all other known species in the family Pasteurellaceae The protein content of 15-184 was composite, with 60% of coding sequences matching known G. parasuis products, while more than 20% had a closer relative in the genera Actinobacillus, Mannheimia, Pasteurella, and Bibersteinia Several putative virulence genes absent from G. parasuis but present in other Pasteurellaceae were also found, including the apxIII RTX toxin gene from Actinobacillus pleuropneumoniae, ABC transporters from Actinobacillus minor, and iron transporters from various species. Three prophages and one integrative conjugative element were present in the isolate. Horizontal gene transfers might explain the mosaic genomic structure and atypical metabolic and virulence characteristics of 15-184. This organism has not been assigned a taxonomic position in the family, but this study underlines the need for a large-scale epidemiological and clinical characterization of this novel pathogen in swine populations, as a genomic analysis suggests it could have a severe impact on pig health.IMPORTANCE Several species of Pasteurellaceae cause a range of significant diseases in pigs. A novel member of this family was recently isolated from Australian pigs suffering from severe respiratory infections. Comparative whole-genome analyses suggest that this bacterium represents a new species, which possesses a number of virulence genes horizontally acquired from a diverse range of other Pasteurellaceae While the possible contribution of other coinfecting noncultivable agents to the disease has not been ruled out in this study, the repertoire of virulence genes found in this organism may nevertheless explain some aspects of the associated pathology observed on the farm. The prevalence of this novel pathogen within pig populations is currently unknown. This finding is of particular importance for the pig industry, as this organism can have a serious impact on the health of these animals.
Collapse
|
47
|
Michael GB, Bossé JT, Schwarz S. Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0022-2017. [PMID: 29916344 PMCID: PMC11633590 DOI: 10.1128/microbiolspec.arba-0022-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Members of the highly heterogeneous family Pasteurellaceae cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family Pasteurellaceae in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (Pasteurella, Mannheimia, Actinobacillus, Haemophilus, and Histophilus). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected Pasteurellaceae members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms.
Collapse
Affiliation(s)
- Geovana B Michael
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| | - Janine T Bossé
- Section of Pediatrics, Department of Medicine London, Imperial College London, London W2 1PG, United Kingdom
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| |
Collapse
|
48
|
Injectable antimicrobials in commercial feedlot cattle and their effect on the nasopharyngeal microbiota and antimicrobial resistance. Vet Microbiol 2017; 214:140-147. [PMID: 29408026 DOI: 10.1016/j.vetmic.2017.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023]
Abstract
Beef cattle in North America that are deemed to be at high risk of developing bovine respiratory disease (BRD) are frequently administered a metaphylactic antibiotic injection to control the disease. Cattle may also receive in-feed antimicrobials to prevent specific diseases and ionophores to improve growth and feed efficiency. Presently, attempts to evaluate the effects that these medications have on antibiotic resistance in the bovine nasopharyngeal microbiota have been focused on culturable bacteria that are associated with BRD. Therefore, we assessed the effects of injectable antibiotics on the nasopharyngeal microbiota of commercial feedlot cattle in Alberta, Canada, through the first 60 d on feed. Although all cattle in the study were also receiving in-feed chlortetracycline and monensin, the administration of a single injection of either oxytetracycline or tulathromycin at feedlot placement altered the nasopharyngeal microbiota in comparison with the cattle receiving only in-feed antibiotics. Oxytetracycline significantly (P < 0.05) reduced the relative abundance of Mannheimia spp. from feedlot entry to exit (≥60 d) and both oxytetracycline and tulathromycin treated cattle had a significantly lower relative abundance of Mycoplasma spp. at feedlot exit compared with the in-feed antibiotic only group. The proportion of the tetracycline resistance gene tet(H) was significantly increased following oxytetracycline injection (P < 0.05). Oxytetracycline also reduced both the number of OTUs and the Shannon diversity index in the nasopharyngeal microbiota (P < 0.05). These results demonstrate that in feedlot cattle receiving subtherapeutic in-feed antimicrobials, the administration of a single injection of either oxytetracycline or tulathromycin resulted in measurable changes to the nasopharyngeal microbiota during the first 60 d following feedlot placement.
Collapse
|
49
|
Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease. G3-GENES GENOMES GENETICS 2017; 7:3059-3071. [PMID: 28739600 PMCID: PMC5592931 DOI: 10.1534/g3.117.1137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease–associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis. While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes.
Collapse
|
50
|
Cao P, Guo D, Liu J, Jiang Q, Xu Z, Qu L. Genome-Wide Analyses Reveal Genes Subject to Positive Selection in Pasteurella multocida. Front Microbiol 2017; 8:961. [PMID: 28611758 PMCID: PMC5447721 DOI: 10.3389/fmicb.2017.00961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023] Open
Abstract
Pasteurella multocida, a Gram-negative opportunistic pathogen, has led to a broad range of diseases in mammals and birds, including fowl cholera in poultry, pneumonia and atrophic rhinitis in swine and rabbit, hemorrhagic septicemia in cattle, and bite infections in humans. In order to better interpret the genetic diversity and adaptation evolution of this pathogen, seven genomes of P. multocida strains isolated from fowls, rabbit and pigs were determined by using high-throughput sequencing approach. Together with publicly available P. multocida genomes, evolutionary features were systematically analyzed in this study. Clustering of 70,565 protein-coding genes showed that the pangenome of 33 P. multocida strains was composed of 1,602 core genes, 1,364 dispensable genes, and 1,070 strain-specific genes. Of these, we identified a full spectrum of genes related to virulence factors and revealed genetic diversity of these potential virulence markers across P. multocida strains, e.g., bcbAB, fcbC, lipA, bexDCA, ctrCD, lgtA, lgtC, lic2A involved in biogenesis of surface polysaccharides, hsf encoding autotransporter adhesin, and fhaB encoding filamentous haemagglutinin. Furthermore, based on genome-wide positive selection scanning, a total of 35 genes were subject to strong selection pressure. Extensive analyses of protein subcellular location indicated that membrane-associated genes were highly abundant among all positively selected genes. The detected amino acid sites undergoing adaptive selection were preferably located in extracellular space, perhaps associated with bacterial evasion of host immune responses. Our findings shed more light on conservation and distribution of virulence-associated genes across P. multocida strains. Meanwhile, this study provides a genetic context for future researches on the mechanism of adaptive evolution in P. multocida.
Collapse
Affiliation(s)
- Peili Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Jiasen Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Qian Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| |
Collapse
|