1
|
Higuera-Ciapara I, Benitez-Vindiola M, Figueroa-Yañez LJ, Martínez-Benavidez E. Polyphenols and CRISPR as Quorum Quenching Agents in Antibiotic-Resistant Foodborne Human Pathogens ( Salmonella Typhimurium, Campylobacter jejuni and Escherichia coli 0157:H7). Foods 2024; 13:584. [PMID: 38397561 PMCID: PMC10888066 DOI: 10.3390/foods13040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/25/2024] Open
Abstract
Antibiotic resistance in foodborne pathogens is an increasing threat to global human health. Among the most prevalent antibiotic-resistant bacteria are Salmonella enterica serovar Typhimurium, Campylobacter jejuni and E. coli 0157:H7. Control of these and other pathogens requires innovative approaches, i.e., discovering new molecules that will inactivate them, or render them less virulent without inducing resistance. Recently, several polyphenol molecules have been shown to possess such characteristics. Also, the use of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) approaches has recently been proposed for such purpose. This review summarizes the main findings regarding the application of both approaches to control the above-mentioned foodborne pathogens by relying on Quorum Sensing interference (Quorum Quenching) mechanisms and highlights the avenues needed for further research.
Collapse
Affiliation(s)
| | - Marieva Benitez-Vindiola
- Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico;
| | - Luis J. Figueroa-Yañez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Jalisco, Mexico; (L.J.F.-Y.); (E.M.-B.)
| | - Evelin Martínez-Benavidez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Jalisco, Mexico; (L.J.F.-Y.); (E.M.-B.)
| |
Collapse
|
2
|
Higuera-Ciapara I, Benitez-Vindiola M, Figueroa-Yañez LJ, Martínez-Benavidez E. Polyphenols and CRISPR as Quorum Quenching Agents in Antibiotic-Resistant Foodborne Human Pathogens (Salmonella Typhimurium, Campylobacter jejuni and Escherichia coli 0157:H7). Foods 2024; 13:584. [DOI: https:/doi.org/10.3390/foods13040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Antibiotic resistance in foodborne pathogens is an increasing threat to global human health. Among the most prevalent antibiotic-resistant bacteria are Salmonella enterica serovar Typhimurium, Campylobacter jejuni and E. coli 0157:H7. Control of these and other pathogens requires innovative approaches, i.e., discovering new molecules that will inactivate them, or render them less virulent without inducing resistance. Recently, several polyphenol molecules have been shown to possess such characteristics. Also, the use of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) approaches has recently been proposed for such purpose. This review summarizes the main findings regarding the application of both approaches to control the above-mentioned foodborne pathogens by relying on Quorum Sensing interference (Quorum Quenching) mechanisms and highlights the avenues needed for further research.
Collapse
Affiliation(s)
| | | | - Luis J. Figueroa-Yañez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Jalisco, Mexico
| | - Evelin Martínez-Benavidez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Jalisco, Mexico
| |
Collapse
|
3
|
Werneburg GT. Catheter-Associated Urinary Tract Infections: Current Challenges and Future Prospects. Res Rep Urol 2022; 14:109-133. [PMID: 35402319 PMCID: PMC8992741 DOI: 10.2147/rru.s273663] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/27/2022] [Indexed: 12/15/2022] Open
Abstract
Catheter-associated urinary tract infection (CAUTI) is the most common healthcare-associated infection and cause of secondary bloodstream infections. Despite many advances in diagnosis, prevention and treatment, CAUTI remains a severe healthcare burden, and antibiotic resistance rates are alarmingly high. In this review, current CAUTI management paradigms and challenges are discussed, followed by future prospects as they relate to the diagnosis, prevention, and treatment. Clinical and translational evidence will be evaluated, as will key basic science studies that underlie preventive and therapeutic approaches. Novel diagnostic strategies and treatment decision aids under development will decrease the time to diagnosis and improve antibiotic accuracy and stewardship. These include several classes of biomarkers often coupled with artificial intelligence algorithms, cell-free DNA, and others. New preventive strategies including catheter coatings and materials, vaccination, and bacterial interference are being developed and investigated. The antibiotic pipeline remains insufficient, and new strategies for the identification of new classes of antibiotics, and rational design of small molecule inhibitor alternatives, are under development for CAUTI treatment.
Collapse
Affiliation(s)
- Glenn T Werneburg
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
4
|
Wijers CDM, Pham L, Menon S, Boyd KL, Noel HR, Skaar EP, Gaddy JA, Palmer LD, Noto MJ. Identification of Two Variants of Acinetobacter baumannii Strain ATCC 17978 with Distinct Genotypes and Phenotypes. Infect Immun 2021; 89:e0045421. [PMID: 34460288 PMCID: PMC8594612 DOI: 10.1128/iai.00454-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that exhibits substantial genomic plasticity. Here, the identification of two variants of A. baumannii ATCC 17978 that differ based on the presence of a 44-kb accessory locus, named AbaAL44 (A. baumannii accessory locus 44 kb), is described. Analyses of existing deposited data suggest that both variants are found in published studies of A. baumannii ATCC 17978 and that American Type Culture Collection (ATCC)-derived laboratory stocks comprise a mix of these two variants. Yet, each variant exhibits distinct interactions with the host in vitro and in vivo. Infection with the variant that harbors AbaAL44 (A. baumannii 17978 UN) results in decreased bacterial burdens and increased neutrophilic lung inflammation in a mouse model of pneumonia, and affects the production of interleukin 1 beta (IL-1β) and IL-10 by infected macrophages. AbaAL44 harbors putative pathogenesis genes, including those predicted to encode a type I pilus cluster, a catalase, and a cardiolipin synthase. The accessory catalase increases A. baumannii resistance to oxidative stress and neutrophil-mediated killing in vitro. The accessory cardiolipin synthase plays a dichotomous role by promoting bacterial uptake and increasing IL-1β production by macrophages, but also by enhancing bacterial resistance to cell envelope stress. Collectively, these findings highlight the phenotypic consequences of the genomic dynamism of A. baumannii through the evolution of two variants of a common type strain with distinct infection-related attributes.
Collapse
Affiliation(s)
- Christiaan D. M. Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, Kerala, India
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael J. Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol Aspects Med 2021; 81:100998. [PMID: 34294411 DOI: 10.1016/j.mam.2021.100998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.
Collapse
|
6
|
Stoica C, Cox G. Old problems and new solutions: antibiotic alternatives in food animal production. Can J Microbiol 2021; 67:427-444. [PMID: 33606564 DOI: 10.1139/cjm-2020-0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The antimicrobial resistance crisis is a Global Health challenge that impacts humans, animals, and the environment alike. In response to increased demands for animal protein and by-products, there has been a substantial increase in the use of antimicrobial agents in the animal industry. Indeed, they are extensively used to prevent, control, and (or) treat disease in animals. In addition to infection control, in-feed supplementation with antimicrobials became common practice for growth promotion of livestock. Unfortunately, the global overuse of antimicrobials has contributed to the emergence and spread of resistance. As such, many countries have implemented policies and approaches to eliminate the use of antimicrobials as growth promoters in food animals, which necessitates the need for alternate and One Health strategies to maintain animal health and welfare. This review summarizes the antimicrobial resistance crisis from Global Health and One Health perspectives. In addition, we outline examples of potential alternate strategies to circumvent antimicrobial use in animal husbandry practices, including antivirulence agents, bacteriophages, and nutritional measures to control bacterial pathogens. Overall, these alternate strategies require further research and development efforts, including assessment of efficacy and the associated development, manufacturing, and labor costs.
Collapse
Affiliation(s)
- Celine Stoica
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Vaca DJ, Thibau A, Schütz M, Kraiczy P, Happonen L, Malmström J, Kempf VAJ. Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Med Microbiol Immunol 2019; 209:277-299. [PMID: 31784893 PMCID: PMC7248048 DOI: 10.1007/s00430-019-00644-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
The capacity of pathogenic microorganisms to adhere to host cells and avoid clearance by the host immune system is the initial and most decisive step leading to infections. Bacteria have developed different strategies to attach to diverse host surface structures. One important strategy is the adhesion to extracellular matrix (ECM) proteins (e.g., collagen, fibronectin, laminin) that are highly abundant in connective tissue and basement membranes. Gram-negative bacteria express variable outer membrane proteins (adhesins) to attach to the host and to initiate the process of infection. Understanding the underlying molecular mechanisms of bacterial adhesion is a prerequisite for targeting this interaction by “anti-ligands” to prevent colonization or infection of the host. Future development of such “anti-ligands” (specifically interfering with bacteria-host matrix interactions) might result in the development of a new class of anti-infective drugs for the therapy of infections caused by multidrug-resistant Gram-negative bacteria. This review summarizes our current knowledge about the manifold interactions of adhesins expressed by Gram-negative bacteria with ECM proteins and the use of this information for the generation of novel therapeutic antivirulence strategies.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Infection Control, University Hospital, Eberhard Karls-University, Tübingen, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany.
| |
Collapse
|
8
|
Yan Z, Huang M, Melander C, Kjellerup BV. Dispersal and inhibition of biofilms associated with infections. J Appl Microbiol 2019; 128:1279-1288. [PMID: 31618796 DOI: 10.1111/jam.14491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 12/26/2022]
Abstract
As bacteria aggregate and form biofilms on surfaces in the human body such as tissues, indwelling medical devices, dressings and implants, they can cause a significant health risk. Bacterial biofilms possess altered phenotypes: physical features that facilitate antibiotic resistance and evasion of the host immune response. Since metabolic and physical factors contribute to biofilm maturation and persistence, an objective in antibiofilm therapy is to target these factors to deliver innovative approaches for solving these important health problems. Currently, there is little research on the direct immunological effects resulting from the introduction of foreign components to the body pertaining to biofilm inhibition methods. Detailed research involving animal models is necessary to better understand the biological side effects of synthetic peptides, genetically modified bacteriophages and isolated proteins and any resistance that may develop from these approaches.
Collapse
Affiliation(s)
- Z Yan
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| | - M Huang
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| | - C Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - B V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| |
Collapse
|
9
|
Deipenbrock M, Hensel A. Polymethoxylated flavones from Orthosiphon stamineus leaves as antiadhesive compounds against uropathogenic E. coli. Fitoterapia 2019; 139:104387. [PMID: 31678632 DOI: 10.1016/j.fitote.2019.104387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/30/2022]
Abstract
Aqueous and acetone extracts of O. stamineus leaves reduce the adhesion of uropathogenic E. coli (UPEC, strain UTI89) to T24 bladder cells significantly (IC25 ~ 524 mg/mL, resp. 40 μg/mL). The acteonic extract had no cytotoxic effects against UPEC in concentrations that inhibited the bacterial adhesion. The extract significantly reduced the gene expression of fimH, fimC, fimD, csgA and focG, which are strongly involved in the formation of bacterial adhesins. The antiadhesive effect was due to the presence of polymethoxylated flavones, enriched in the acetonic extract. Five flavones have been isolated by fast centrifugal partition chromatography, followed by preparative HPLC. Eupatorin, ladanein, salvigenin, sinensetin, 5,6,7,4'-tetramethoxyflavone and 5-hydroxy-6,7,3',4'-tetramethoxyflavone were identified as the main polymethoxylated flavones. With the exception of eupatorin, all of these flavones reduced the bacterial adhesion in a concentration depending manner, indicating that B-ring hydroxylation and methoxylation seems to have a major impact on the antiadhesive activity. In addition, this was confirmed by investigation of the flavones chrysoeriol and diosmetin, which had only very weak antiadhesive activity. From these data, Orthosiphon extracts can be assessed to have a pronounced antiadhesive activity against UPEC, based on a variety of polymethoxylated flavones.
Collapse
Affiliation(s)
- Melanie Deipenbrock
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstraße 48, D-48149 Münster, Germany
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
10
|
Psonis JJ, Chahales P, Henderson NS, Rigel NW, Hoffman PS, Thanassi DG. The small molecule nitazoxanide selectively disrupts BAM-mediated folding of the outer membrane usher protein. J Biol Chem 2019; 294:14357-14369. [PMID: 31391254 PMCID: PMC6768635 DOI: 10.1074/jbc.ra119.009616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial pathogens assemble adhesive surface structures termed pili or fimbriae to initiate and sustain infection of host tissues. Uropathogenic Escherichia coli, the primary causative agent of urinary tract infections, expresses type 1 and P pili required for colonization of the bladder and kidney, respectively. These pili are assembled by the conserved chaperone-usher (CU) pathway, in which a periplasmic chaperone works together with an outer membrane (OM) usher protein to build and secrete the pilus fiber. Previously, we found that the small molecule and antiparasitic drug nitazoxanide (NTZ) inhibits CU pathway-mediated pilus biogenesis in E. coli by specifically interfering with proper maturation of the usher protein in the OM. The usher is folded and inserted into the OM by the β-barrel assembly machine (BAM) complex, which in E. coli comprises five proteins, BamA-E. Here, we show that sensitivity of the usher to NTZ is modulated by BAM expression levels and requires the BamB and BamE lipoproteins. Furthermore, a genetic screen for NTZ-resistant bacterial mutants isolated a mutation in the essential BamD lipoprotein. These findings suggest that NTZ selectively interferes with an usher-specific arm of the BAM complex, revealing new details of the usher folding pathway and BAM complex function. Evaluation of a set of NTZ derivatives identified compounds with increased potency and disclosed that NTZ's nitrothiazole ring is critical for usher inhibition. In summary, our findings indicate highly specific effects of NTZ on the usher folding pathway and have uncovered NTZ analogs that specifically decrease usher levels in the OM.
Collapse
Affiliation(s)
- John J Psonis
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Peter Chahales
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Nadine S Henderson
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Nathan W Rigel
- Department of Biology, Hofstra University, Hempstead, New York 11549
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22908
| | - David G Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
11
|
Abstract
The chaperone-usher (CU) pathway is a conserved secretion system dedicated to the assembly of a superfamily of virulence-associated surface structures by a wide range of Gram-negative bacteria. Pilus biogenesis by the CU pathway requires two specialized assembly components: a dedicated periplasmic chaperone and an integral outer membrane assembly and secretion platform termed the usher. The CU pathway assembles a variety of surface fibers, ranging from thin, flexible filaments to rigid, rod-like organelles. Pili typically act as adhesins and function as virulence factors that mediate contact with host cells and colonization of host tissues. Pilus-mediated adhesion is critical for early stages of infection, allowing bacteria to establish a foothold within the host. Pili are also involved in modulation of host cell signaling pathways, bacterial invasion into host cells, and biofilm formation. Pili are critical for initiating and sustaining infection and thus represent attractive targets for the development of antivirulence therapeutics. Such therapeutics offer a promising alternative to broad-spectrum antibiotics and provide a means to combat antibiotic resistance and treat infection while preserving the beneficial microbiota. A number of strategies have been taken to develop antipilus therapeutics, including vaccines against pilus proteins, competitive inhibitors of pilus-mediated adhesion, and small molecules that disrupt pilus biogenesis. Here we provide an overview of the function and assembly of CU pili and describe current efforts aimed at interfering with these critical virulence structures.
Collapse
|
12
|
Inhibitors of the Neisseria meningitidis PilF ATPase provoke type IV pilus disassembly. Proc Natl Acad Sci U S A 2019; 116:8481-8486. [PMID: 30948644 DOI: 10.1073/pnas.1817757116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the availability of antibiotics and vaccines, Neisseria meningitidis remains a major cause of meningitis and sepsis in humans. Due to its extracellular lifestyle, bacterial adhesion to host cells constitutes an attractive therapeutic target. Here, we present a high-throughput microscopy-based approach that allowed the identification of compounds able to decrease type IV pilus-mediated interaction of bacteria with endothelial cells in the absence of bacterial or host cell toxicity. Compounds specifically inhibit the PilF ATPase enzymatic activity that powers type IV pilus extension but remain inefficient on the ATPase that promotes pilus retraction, thus leading to rapid pilus disappearance from the bacterial surface and loss of pili-mediated functions. Structure activity relationship of the most active compound identifies specific moieties required for the activity of this compound and highlights its specificity. This study therefore provides compounds targeting pilus biogenesis, thereby inhibiting bacterial adhesion, and paves the way for a novel therapeutic option for meningococcal infections.
Collapse
|
13
|
Abstract
To interact with the external environments, bacteria often display long proteinaceous appendages on their cell surface, called pili or fimbriae. These non-flagellar thread-like structures are polymers composed of covalently or non-covalently interacting repeated pilin subunits. Distinct pilus classes can be identified on basis of their assembly pathways, including chaperone-usher pili, type V pili, type IV pili, curli and fap fibers, conjugative and type IV secretion pili, as well as sortase-mediated pili. Pili play versatile roles in bacterial physiology, and can be involved in adhesion and host cell invasion, DNA and protein secretion and uptake, biofilm formation, cell motility and more. Recent advances in structure determination of components involved in the various pilus systems has enabled a better molecular understanding of their mechanisms of assembly and function. In this chapter we describe the diversity in structure, biogenesis and function of the different pilus systems found in Gram-positive and Gram-negative bacteria, and review their potential as anti-microbial targets.
Collapse
Affiliation(s)
- Magdalena Lukaszczyk
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Brajabandhu Pradhan
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
14
|
Hollenbeck EC, Antonoplis A, Chai C, Thongsomboon W, Fuller GG, Cegelski L. Phosphoethanolamine cellulose enhances curli-mediated adhesion of uropathogenic Escherichia coli to bladder epithelial cells. Proc Natl Acad Sci U S A 2018; 115:10106-10111. [PMID: 30232265 PMCID: PMC6176564 DOI: 10.1073/pnas.1801564115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections, employing numerous molecular strategies to contribute to adhesion, colonization, and persistence in the bladder niche. Identifying strategies to prevent adhesion and colonization is a promising approach to inhibit bacterial pathogenesis and to help preserve the efficacy of available antibiotics. This approach requires an improved understanding of the molecular determinants of adhesion to the bladder urothelium. We designed experiments using a custom-built live cell monolayer rheometer (LCMR) to quantitatively measure individual and combined contributions of bacterial cell surface structures [type 1 pili, curli, and phosphoethanolamine (pEtN) cellulose] to bladder cell adhesion. Using the UPEC strain UTI89, isogenic mutants, and controlled conditions for the differential production of cell surface structures, we discovered that curli can promote stronger adhesive interactions with bladder cells than type 1 pili. Moreover, the coproduction of curli and pEtN cellulose enhanced adhesion. The LCMR enables the evaluation of adhesion under high-shear conditions to reveal this role for pEtN cellulose which escaped detection using conventional tissue culture adhesion assays. Together with complementary biochemical experiments, the results support a model wherein cellulose serves a mortar-like function to promote curli association with and around the bacterial cell surface, resulting in increased bacterial adhesion strength at the bladder cell surface.
Collapse
Affiliation(s)
- Emily C Hollenbeck
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | | | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | | | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305;
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|
15
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
16
|
Role for FimH in Extraintestinal Pathogenic Escherichia coli Invasion and Translocation through the Intestinal Epithelium. Infect Immun 2017; 85:IAI.00581-17. [PMID: 28808163 DOI: 10.1128/iai.00581-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
The translocation of bacteria across the intestinal epithelium of immunocompromised patients can lead to bacteremia and life-threatening sepsis. Extraintestinal pathogenic Escherichia coli (ExPEC), so named because this pathotype infects tissues distal to the intestinal tract, is a frequent cause of such infections, is often multidrug resistant, and chronically colonizes a sizable portion of the healthy population. Although several virulence factors and their roles in pathogenesis are well described for ExPEC strains that cause urinary tract infections and meningitis, they have not been linked to translocation through intestinal barriers, a fundamentally distant yet important clinical phenomenon. Using untransformed ex situ human intestinal enteroids and transformed Caco-2 cells, we report that ExPEC strain CP9 binds to and invades the intestinal epithelium. ExPEC harboring a deletion of the gene encoding the mannose-binding type 1 pilus tip protein FimH demonstrated reduced binding and invasion compared to strains lacking known E. coli virulence factors. Furthermore, in a murine model of chemotherapy-induced translocation, ExPEC lacking fimH colonized at levels comparable to that of the wild type but demonstrated a statistically significant reduction in translocation to the kidneys, spleen, and lungs. Collectively, this study indicates that FimH is important for ExPEC translocation, suggesting that the type 1 pilus is a therapeutic target for the prevention of this process. Our study also highlights the use of human intestinal enteroids in the study of enteric diseases.
Collapse
|
17
|
Plakunov VK, Mart’yanov SV, Teteneva NA, Zhurina MV. Controlling of microbial biofilms formation: Anti- and probiofilm agents. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Abstract
Antibiotics are undoubtedly a pillar of modern medicine; their discovery in 1929 revolutionized the fight against infectious disease, instigating a worldwide decline in infection-associated mortality. Throughout the 1930s, 1940s, and 1950s the golden age of antibiotic discovery was underway with numerous new classes of antibiotics identified and brought to market. By 1962 all of our currently known families of antibiotics had been discovered, and it was a widely held belief, that humanity had conquered infectious disease. Despite varying bacterial cellular targets, most antibiotics targeted exponentially multiplying bacteria by interfering with integral processes such as peptidoglycan synthesis or ribosomal activity. The very nature of this targeted approach has driven the emergence of antibiotic-resistant bacteria.Methods of antibiotic identification relied solely on scientific observation, and while chemical analogues such as amoxicillin, derived from penicillin, continued to be developed, they retained the same mechanisms of action and hence the same bacterial targets. This article describes and discusses some of the emerging novel targets for antimicrobial treatments, highlighting pivotal research on which our ability to continue to successfully treat bacterial infection relies.
Collapse
|
19
|
Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections. Microbiol Spectr 2017; 4. [PMID: 27227305 DOI: 10.1128/microbiolspec.vmbf-0023-2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies.
Collapse
|
20
|
De Schutter JW, Morrison JP, Morrison MJ, Ciulli A, Imperiali B. Targeting Bacillosamine Biosynthesis in Bacterial Pathogens: Development of Inhibitors to a Bacterial Amino-Sugar Acetyltransferase from Campylobacter jejuni. J Med Chem 2017; 60:2099-2118. [PMID: 28182413 DOI: 10.1021/acs.jmedchem.6b01869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The glycoproteins of selected microbial pathogens often include highly modified carbohydrates such as 2,4-diacetamidobacillosamine (diNAcBac). These glycoconjugates are involved in host-cell interactions and may be associated with the virulence of medically significant Gram-negative bacteria. In light of genetic studies demonstrating the attenuated virulence of bacterial strains in which modified carbohydrate biosynthesis enzymes have been knocked out, we are developing small molecule inhibitors of selected enzymes as tools to evaluate whether such compounds modulate virulence. We performed fragment-based and high-throughput screens against an amino-sugar acetyltransferase enzyme, PglD, involved in biosynthesis of UDP-diNAcBac in Campylobacter jejuni. Herein we report optimization of the hits into potent small molecule inhibitors (IC50 < 300 nM). Biophysical characterization shows that the best inhibitors are competitive with acetyl coenzyme A and an X-ray cocrystal structure reveals that binding is biased toward occupation of the adenine subpocket of the AcCoA binding site by an aromatic ring.
Collapse
Affiliation(s)
- Joris W De Schutter
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - James P Morrison
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael J Morrison
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , DD1 5EH Dundee, Scotland
| | - Barbara Imperiali
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Biology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Naidoo N, Pillay M. Bacterial pili, with emphasis on Mycobacterium tuberculosis curli pili: potential biomarkers for point-of care tests and therapeutics. Biomarkers 2016; 22:93-105. [PMID: 27797276 DOI: 10.1080/1354750x.2016.1252960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT Novel biomarkers are essential for developing rapid diagnostics and therapeutic interventions Objective: This review aimed to highlight biomarker characterisation and assessment of unique bacterial pili. METHODS A PubMed search for bacterial pili, diagnostics, vaccine and therapeutics was performed, with emphasis on the well characterised pili. RESULTS In total, 46 papers were identified and reviewed. CONCLUSION Extensive analyses of pili enabled by advanced nanotechnology and whole genome sequencing provide evidence that they are strong biomarker candidates. Mycobacterium tuberculosis curli pili are emphasised as important epitopes for the development of much needed point-of-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Natasha Naidoo
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| | - Manormoney Pillay
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| |
Collapse
|
22
|
Cheng G, Dai M, Ahmed S, Hao H, Wang X, Yuan Z. Antimicrobial Drugs in Fighting against Antimicrobial Resistance. Front Microbiol 2016; 7:470. [PMID: 27092125 PMCID: PMC4824775 DOI: 10.3389/fmicb.2016.00470] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/21/2016] [Indexed: 01/18/2023] Open
Abstract
The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals.
Collapse
Affiliation(s)
- Guyue Cheng
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Menghong Dai
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Saeed Ahmed
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Xu Wang
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Zonghui Yuan
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
23
|
Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane. Antimicrob Agents Chemother 2016; 60:2028-38. [PMID: 26824945 DOI: 10.1128/aac.02221-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/07/2016] [Indexed: 12/21/2022] Open
Abstract
Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly.
Collapse
|
24
|
Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, Gabrani R. Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 2016; 121:309-19. [PMID: 26811181 DOI: 10.1111/jam.13078] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/08/2023]
Abstract
Escherichia coli biofilm consists of a bacterial colony embedded in a matrix of extracellular polymeric substances (EPS) which protects the microbes from adverse environmental conditions and results in infection. Besides being the major causative agent for recurrent urinary tract infections, E. coli biofilm is also responsible for indwelling medical device-related infectivity. The cell-to-cell communication within the biofilm occurs due to quorum sensors that can modulate the key biochemical players enabling the bacteria to proliferate and intensify the resultant infections. The diversity in structural components of biofilm gets compounded due to the development of antibiotic resistance, hampering its eradication. Conventionally used antimicrobial agents have a restricted range of cellular targets and limited efficacy on biofilms. This emphasizes the need to explore the alternate therapeuticals like anti-adhesion compounds, phytochemicals, nanomaterials for effective drug delivery to restrict the growth of biofilm. The current review focuses on various aspects of E. coli biofilm development and the possible therapeutic approaches for prevention and treatment of biofilm-related infections.
Collapse
Affiliation(s)
- G Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - S Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - P Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - D Chandola
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - S Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - S Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - R Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
25
|
Busch A, Phan G, Waksman G. Molecular mechanism of bacterial type 1 and P pili assembly. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2013.0153. [PMID: 25624519 DOI: 10.1098/rsta.2013.0153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The formation of adhesive surface structures called pili or fimbriae ('bacterial hair') is an important contributor towards bacterial pathogenicity and persistence. To fight often chronic or recurrent bacterial infections such as urinary tract infections, it is necessary to understand the molecular mechanism of the nanomachines assembling such pili. Here, we focus on the so far best-known pilus assembly machinery: the chaperone-usher pathway producing the type 1 and P pili, and highlight the most recently acquired structural knowledge. First, we describe the subunits' structure and the molecular role of the periplasmic chaperone. Second, we focus on the outer-membrane usher structure and the catalytic mechanism of usher-mediated pilus biogenesis. Finally, we describe how the detailed understanding of the chaperone-usher pathway at a molecular level has paved the way for the design of a new generation of bacterial inhibitors called 'pilicides'.
Collapse
Affiliation(s)
- Andreas Busch
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gilles Phan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
26
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|
27
|
Arita-Morioka KI, Yamanaka K, Mizunoe Y, Ogura T, Sugimoto S. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob Agents Chemother 2015; 59:633-41. [PMID: 25403660 PMCID: PMC4291377 DOI: 10.1128/aac.04465-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 01/19/2023] Open
Abstract
Biofilms are complex communities of microorganisms that attach to surfaces and are embedded in a self-produced extracellular matrix. Since these cells acquire increased tolerance against antimicrobial agents and host immune systems, biofilm-associated infectious diseases tend to become chronic. We show here that the molecular chaperone DnaK is important for biofilm formation and that chemical inhibition of DnaK cellular functions is effective in preventing biofilm development. Genetic, microbial, and microscopic analyses revealed that deletion of the dnaK gene markedly reduced the production of the extracellular functional amyloid curli, which contributes to the robustness of Escherichia coli biofilms. We tested the ability of DnaK inhibitors myricetin (Myr), telmisartan, pancuronium bromide, and zafirlukast to prevent biofilm formation of E. coli. Only Myr, a flavonol widely distributed in plants, inhibited biofilm formation in a concentration-dependent manner (50% inhibitory concentration [IC50] = 46.2 μM); however, it did not affect growth. Transmission electron microscopy demonstrated that Myr inhibited the production of curli. Phenotypic analyses of thermosensitivity, cell division, intracellular level of RNA polymerase sigma factor RpoH, and vulnerability to vancomycin revealed that Myr altered the phenotype of E. coli wild-type cells to make them resemble those of the isogenic dnaK deletion mutant, indicating that Myr inhibits cellular functions of DnaK. These findings provide insights into the significance of DnaK in curli-dependent biofilm formation and indicate that DnaK is an ideal target for antibiofilm drugs.
Collapse
Affiliation(s)
- Ken-ichi Arita-Morioka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yoshimitsu Mizunoe
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Beloin C, Renard S, Ghigo JM, Lebeaux D. Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol 2014; 18:61-8. [PMID: 25254624 DOI: 10.1016/j.coph.2014.09.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/05/2014] [Indexed: 11/15/2022]
Abstract
Biofilms formed by pathogenic bacteria and fungi are associated with a wide range of diseases, from device-related infections (such as catheters or prosthetic joints) to chronic infections occurring on native tissues (such as lung infections in cystic fibrosis patients). Biofilms are therefore responsible for an important medical and economic burden. Currently used antibiotics have mostly been developed to target exponentially growing microorganisms and are poorly effective against biofilms. In particular, even high concentrations of bactericidal antibiotics are inactive against a subset of persistent biofilm bacteria, which can cause infection recurrence despite prolonged treatments. While the search for a magic bullet antibiotic effective against both planktonic and biofilm bacteria is still active, alternative preventive and curative approaches are currently being developed either limiting adhesion or biofilm formation or targeting biofilm tolerance by killing persister bacteria. Most of these approaches are adjunctive using new molecules in combination with antibiotics. This review presents promising approaches or strategies that could improve our ability to prevent or eradicate bacterial biofilms in medical settings.
Collapse
Affiliation(s)
- Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - David Lebeaux
- Université Paris Descartes, Sorbonne Paris Cité, AP-HP, Hôpital Necker Enfants Malades, Centre d'Infectiologie Necker-Pasteur and Institut Imagine, Paris, France.
| |
Collapse
|
29
|
Lillington J, Geibel S, Waksman G. Reprint of "Biogenesis and adhesion of type 1 and P pili". Biochim Biophys Acta Gen Subj 2014; 1850:554-64. [PMID: 25063559 DOI: 10.1016/j.bbagen.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- James Lillington
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Sebastian Geibel
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
30
|
Steadman D, Lo A, Waksman G, Remaut H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol 2014; 9:887-900. [DOI: 10.2217/fmb.14.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The rise of multidrug resistant bacteria is a major worldwide health concern. There is currently an unmet need for the development of new and selective antibacterial drugs. Therapies that target and disarm the crucial virulence factors of pathogenic bacteria, while not actually killing the cells themselves, could prove to be vital for the treatment of numerous diseases. This article discusses the main surface architectures of pathogenic Gram-negative bacteria and the small molecules that have been discovered, which target their specific biogenesis pathways and/or actively block their virulence. The future perspective for the use of antivirulence compounds is also assessed.
Collapse
Affiliation(s)
- David Steadman
- Institute of Structural & Molecular Biology, Birkbeck & University College London, Malet Street, London, WC1E 7HX, UK
| | - Alvin Lo
- Structural & Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gabriel Waksman
- Institute of Structural & Molecular Biology, Birkbeck & University College London, Malet Street, London, WC1E 7HX, UK
| | - Han Remaut
- Structural & Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
31
|
Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type 1 and P pili. Biochim Biophys Acta Gen Subj 2014; 1840:2783-93. [PMID: 24797039 DOI: 10.1016/j.bbagen.2014.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- James Lillington
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Sebastian Geibel
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|