1
|
Oh H, Choi Y, Lee J. Antibiotic-Resistant Salmonella in Animal Products Jeopardize Human Health. Food Sci Anim Resour 2025; 45:409-428. [PMID: 40093628 PMCID: PMC11907419 DOI: 10.5851/kosfa.2025.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
Despite the significance of antibiotics in treating bacterial infections, antibiotic resistance is continuously increasing, thus posing a significant threat. In addition to strains resistant to individual drugs, multidrug-resistant (MDR) and pandrug-resistant strains, are emerging. Salmonella, a primary cause of global foodborne illness, is often transmitted through animal products. Antibiotic treatment is crucial for immunocompromised individuals, such as older adults and patients with weakened immune systems, due to their increased susceptibility to severe effects. MDR Salmonella, which can arise following antibiotic use in food animals, may transfer to humans, leading to significant health challenges. The emergence of Salmonella strains resistant to carbapenems, often considered a last-resort antibiotic class, is particularly concerning. Salmonella neutralizes antibiotics through mechanisms, such as horizontal gene transfer via plasmids, efflux/influx system regulation, and enzyme production that deactivate or alter antibiotics. The rise of megaplasmids in Salmonella is particularly alarming, as it may enable resistance to a broader range of antibiotics. This review summarizes the current state of the growing threat of MDR Salmonella and underscores the urgent need for a coordinated response.
Collapse
Affiliation(s)
- Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Korea
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yukyung Choi
- Chong Kun Dang Bio Research Institute, Ansan 15604, Korea
| | - Jeeyeon Lee
- Department of Food & Nutrition, Dong-eui University, Busan 47340, Korea
| |
Collapse
|
2
|
Ali MS, Na SH, Moon BY, Kang HY, Kang HS, Kim SJ, Kim TS, Heo YE, Hwang YJ, Yoon SS, Lim SK. Antimicrobial Resistance Profiles and Molecular Characteristics of Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serovar Typhimurium Isolates from Food Animals During 2010-2021 in South Korea. Foodborne Pathog Dis 2024; 21:634-642. [PMID: 39029478 DOI: 10.1089/fpd.2023.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Salmonella is emerging as a worldwide public health concern. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of ESBL-producing Salmonella enterica serovar Typhimurium (S. Typhimurium). We obtained a total of 995 S. Typhimurium isolates from the feces and carcasses of pigs (n = 678), chickens (n = 202), and cattle (n = 115) during 2010-2021 in Korea. We found that 35 S. Typhimurium isolates (3.5%) showed resistance to ceftiofur: pigs (51.4%, 18/35) and cattle (42.9%, 15/35). All of the ceftiofur-resistant S. Typhimurium isolates demonstrated multidrug resistance. Moreover, ceftiofur-resistant S. Typhimurium isolates displayed significantly higher rates of resistance to chloramphenicol and trimethoprim/sulfamethoxazole than ceftiofur-susceptible S. Typhimurium isolates (p < 0.05). The ceftiofur-resistant S. Typhimurium isolates produced four different CTX-M-type β-lactamase, comprising blaCTX-M-55 in the majority (51.4%, 18/35), followed by blaCTX-M-65 (28.6%, 10/35), blaCTX-M-14 (17.1%, 6/35), and blaCTX-M-1 (2.9%, 1/35). Among the 35 ceftiofur-resistant S. Typhimurium isolates, 16 blaCTX-M-55-positive isolates and one blaCTX-M-1-positive isolate were transferred to recipient Escherichia coli RG488 by conjugation. The predominantly found transposable units were blaCTX-M-55-orf477 (45.7%, 16/35), followed by blaCTX-M-65-IS903 (28.6%, 10/35) and blaCTX-M-14-IS903 (17.1%, 6/35). Ceftiofur-resistant S. Typhimurium represented 19 types, with types P1-19 (22.9%, 8/35) and P12-34 (22.9%, 8/35) making up the majority and being found in most farms nationwide. Sequence types (STs) were different by animal species: ST19 (48.6%, 17/35) and ST34 (42.9%, 15/35) were mostly found STs in pigs and cattle, respectively. These findings showed that food animals, especially pigs and cattle, act as reservoirs of blaCTX-M-harboring S. Typhimurium that can potentially be spread to humans.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Seok-Hyeon Na
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Hee Young Kang
- Centre for Infectious Diseases Research, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Hee-Seung Kang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Su-Jeong Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Tae-Sun Kim
- Public Health and Environment Institute of Gwangju, Gwangju, Republic of Korea
| | - Ye-Eun Heo
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Yu-Jeong Hwang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Soon Seek Yoon
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| |
Collapse
|
3
|
Kang HS, Ali MS, Na SH, Moon BY, Kim JI, Hwang YJ, Yoon SS, Park SC, Lim SK. Nationwide surveillance and characterization of the third-generation cephalosporin-resistant Salmonella enterica serovar infantis isolated from chickens in South Korea between 2010 and 2022. Heliyon 2024; 10:e37124. [PMID: 39319126 PMCID: PMC11419902 DOI: 10.1016/j.heliyon.2024.e37124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The occurrence of extended-spectrum β-lactamase (ESBL)/AmpC β-lactamase-producing Salmonella conferring resistance to third-generation cephalosporin has emerged as a global public health concern. In this study, we aimed to investigate the prevalence and molecular characterization of third-generation cephalosporin-resistant Salmonella enterica serovar Infantis. In total, 409 S. Infatis isolates were collected from the feces and carcasses of healthy and diseased food animals, including chickens (n = 348), pigs (n = 48), cattle (n = 8), and ducks (n = 5) between 2010 and 2022 nationwide in South Korea. Among them, 61.9 % (253/409) of S. Infantis strains displayed resistance to ceftiofur, with the most resistant isolates obtained from chickens (98.4 %, 249/253). Moreover, S. Infantis isolates showed high resistance (47.7-67.2 %) to streptomycin, ampicillin, nalidixic acid, sulfisoxazole, chloramphenicol, tetracycline, and trimethoprim/sulfamethoxazole. Additionally, the multidrug resistance (MDR) was significantly greater in the ceftiofur-resistant isolates compared to the ceftiofur-susceptible isolates (p < 0.05). All the ceftiofur-resistant S. Infantis strains produced CTX-M/CMY-2 β-lactamase enzymes, with bla CTX-M-65 comprising the most (98.4 %, 249/253), followed by bla CTX-M-15 (1.2 %, 3/253), and bla CMY-2 (0.4 %, 1/253). The ceftiofur-resistant S. Infantis belonged to 37 different pulsotypes, with X1A1 (26.1 %, 66/253), X1A2 (20.9 %, 53/253), and X5A3 (9.1 %) being the most prevalent, representing a total of 56.1 % (142/253). Furthermore, the S. Infantis sequence type (ST)32 was the most common, accounting for 91.9 % (34/37) of the three distinct STs (ST32, ST16, and ST11) detected across farms located in various provinces nationwide. Most of the bla CMX-M-65 genes (77.5 %, 193/249), all of the bla CTX-M-15 genes (100 %, 3/3), and the bla CMY-2 gene (100 %, 1/1) were transferred to the recipient E. coli RG488 by conjugation. In addition, the majority of the transconjugants (98.9 %, 191/193) containing bla CTX-M-65 genes belong to the IncFIB replicon type, playing an important role in the quick and widespread dissemination of S. Infantis. Thus, ceftiofur-resistant S. Infantis carrying the β-lactamase genes in chickens has the potential to be transmitted to humans.
Collapse
Affiliation(s)
- Hee-Seung Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Md Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Seok-Hyeon Na
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Ji-In Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yu-Jeong Hwang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Soon Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
4
|
Jehangir M, Iqbal MS, Aftab U. Biotransformation of Sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica. Molecules 2024; 29:4226. [PMID: 39275074 PMCID: PMC11396929 DOI: 10.3390/molecules29174226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
This study aimed at the biotransformation of sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica and the identification of the drug metabolites by liquid chromatography-mass spectrometry. The drug was incubated with the organisms in tryptic soya broth at 37 °C. The broth was filtered and subjected to liquid chromatography-mass spectrometry. The metabolites identified by the use of mass spectral (+ve ion mode) fragmentation patterns were (3-methylphenyl)methanethiol (Bacillus subtilis), 1-(4-amino-3-ethylphenyl)-N-methylmethanesulfonamide (Salmonella enterica subsp. enterica) and 1-{4-amino-3-[(1E)-3-(dimethylamino)prop-1-en-1-yl]phenyl}methanesulfinamide (Salmonella enterica subsp. enterica, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus). These metabolites exhibit high gastrointestinal absorption, no blood-brain barrier permeability (except (3-methylphenyl)methanethiol), a bioavailability score of 0.55 and no inhibitory effect on CYP2C19, CYP2C9, CYP2D6, CYP3A4 or cytochrome P450 1A2 (except (3-methylphenyl)methanethiol), as determined by SwissADME software ver. 2024. The metabolites appear to be more toxic than the parent drug, as suggested by their calculated median lethal dose values. All four organisms under investigation transformed sumatriptan to different chemical substances that were more toxic than the parent drug.
Collapse
Affiliation(s)
- Muhammad Jehangir
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan
| | | | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan
| |
Collapse
|
5
|
Mattock J, Chattaway MA, Hartman H, Dallman TJ, Smith AM, Keddy K, Petrovska L, Manners EJ, Duze ST, Smouse S, Tau N, Timme R, Baker DJ, Mather AE, Wain J, Langridge GC. A One Health Perspective on Salmonella enterica Serovar Infantis, an Emerging Human Multidrug-Resistant Pathogen. Emerg Infect Dis 2024; 30:701-710. [PMID: 38526070 PMCID: PMC10977846 DOI: 10.3201/eid3004.231031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Salmonella enterica serovar Infantis presents an ever-increasing threat to public health because of its spread throughout many countries and association with high levels of antimicrobial resistance (AMR). We analyzed whole-genome sequences of 5,284 Salmonella Infantis strains from 74 countries, isolated during 1989-2020 from a wide variety of human, animal, and food sources, to compare genetic phylogeny, AMR determinants, and plasmid presence. The global Salmonella Infantis population structure diverged into 3 clusters: a North American cluster, a European cluster, and a global cluster. The levels of AMR varied by Salmonella Infantis cluster and by isolation source; 73% of poultry isolates were multidrug resistant, compared with 35% of human isolates. This finding correlated with the presence of the pESI megaplasmid; 71% of poultry isolates contained pESI, compared with 32% of human isolates. This study provides key information for public health teams engaged in reducing the spread of this pathogen.
Collapse
Affiliation(s)
| | - Marie Anne Chattaway
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Hassan Hartman
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | | | - Anthony M. Smith
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Karen Keddy
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | | | | | - Sanelisiwe T. Duze
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Shannon Smouse
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Nomsa Tau
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Ruth Timme
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Dave J. Baker
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Alison E. Mather
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - John Wain
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Gemma C. Langridge
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| |
Collapse
|
6
|
Novak A, Dzelalija M, Goic-Barisic I, Kovacic A, Pirija M, Maravic A, Radic M, Marinovic J, Rubic Z, Carev M, Tonkic M. Phenotypic and Molecular Characterization of a Hospital Outbreak Clonal Lineage of Salmonella enterica Subspecies enterica serovar Mikawasima Containing blaTEM-1B and blaSHV-2 That Emerged on a Neonatal Ward, During the COVID-19 Pandemic. Microb Drug Resist 2024; 30:118-126. [PMID: 38330414 DOI: 10.1089/mdr.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Nontyphoid salmonella can cause severe infections in newborns and is therefore declared a pathogen of major health significance at this age. The aim of the study was molecular and antimicrobial characterization of β-lactamase-producing Salmonella Mikawasima outbreak clone on a Neonatal ward, University Hospital of Split (UHS), Croatia during the COVID-19 pandemic. From April 2020, until April 2023, 75 nonrepetitive strains of Salmonella Mikawasima were isolated from stool specimens and tested for antimicrobial resistance. All 75 isolates were resistant to ampicillin and gentamicin, while 98% of isolates were resistant to amoxicillin/clavulanic acid. A high level of resistance was observed to third-generation cephalosporins (36% to ceftriaxone and 47% to ceftazidime). Extended-spectrum β-lactamase production was phenotypically detected by double-disk synergy test in 40% of isolates. Moderate resistance to quinolones was detected; 7% of isolates were resistant to pefloxacin and ciprofloxacin. All isolates were susceptible to carbapenems, chloramphenicol, and co-trimoxazole. Fourteen representative isolates, from 2020, 2021, 2022, and 2023, were analyzed with PFGE and all of them belong to the same clone. Whole-genome sequencing (WGS) analysis of three outbreak-related strains (SM1 and SM2 from 2020 and SM3 from 2023) confirmed that these strains share the same serotype (Mikawasima), multilocus sequence typing profile (ST2030), resistance genes [blaTEM-1B, aac(6')-Iaa, aac(6')-Im, and aph(2'')-Ib)] and carry incompatibility group C (IncC) plasmid. Furthermore, the gene blaSHV-2 was detected in SM1 and SM2. In summary, WGS analysis of three representative strains clearly demonstrates the persistence of β-lactamase-producing Salmonella Mikawasima in UHS during the 4-year period.
Collapse
Affiliation(s)
- Anita Novak
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
- ESCMID Food and Waterborne Infections Study Group - EFWISG, Basel, Switzerland
| | - Mia Dzelalija
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Ivana Goic-Barisic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Ana Kovacic
- Teaching Public Health Institute of Split and Dalmatia County, Split, Croatia
| | - Mario Pirija
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
| | - Ana Maravic
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Marina Radic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Jelena Marinovic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Zana Rubic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Merica Carev
- School of Medicine, University of Split, Split, Croatia
- ESCMID Food and Waterborne Infections Study Group - EFWISG, Basel, Switzerland
- Teaching Public Health Institute of Split and Dalmatia County, Split, Croatia
- Department of Health Studies, University of Split, Split, Croatia
| | - Marija Tonkic
- Department of Clinical Microbiology, University Hospital of Split, Croatia, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
7
|
Ali MS, Song HJ, Moon BY, Kim SJ, Kang HY, Moon DC, Lee YH, Kwon DH, Yoon SS, Lim SK. Antibiotic Resistance Profiles and Molecular Characteristics of blaCMY-2-Carrying Salmonella enterica Serovar Albany Isolated from Chickens During 2013-2020 in South Korea. Foodborne Pathog Dis 2023; 20:492-501. [PMID: 37699238 DOI: 10.1089/fpd.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The production of β-lactamase by nontyphoidal Salmonella has become a public health issue throughout the world. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of β-lactamase-producing Salmonella enterica serovar Albany isolates. A total of 434 Salmonella Albany were obtained from feces and carcasses of healthy and diseased food-producing animals [cattle (n = 2), pigs (n = 3), chickens (n = 391), and ducks (n = 38)] during 2013-2020. Among the 434 Salmonella Albany isolates, 3.7% showed resistance to cefoxitin, and all the cefoxitin-resistant isolates were obtained from chickens. Moreover, Salmonella Albany isolates demonstrated high resistance to nalidixic acid (99.3%), trimethoprim/sulfamethoxazole (97.9%), ampicillin (86.6%), chloramphenicol (86.6%), and tetracycline (85.7%), as well as higher rates of multidrug resistance were detected in cefoxitin-resistant isolates compared to cefoxitin-susceptible isolates. All cefoxitin-resistant isolates harbored CMY-2-type β-lactamase and belonged to seven different pulsotypes, with type IV-b (43.75%) and IV-a (25%) making up the majority. In addition, genes encoding cefoxitin resistant of all blaCMY-2-harboring Salmonella Albany isolates were horizontally transmitted to a recipient Escherichia coli J53 by conjugation. Furthermore, 93.75% (15/16) of conjugative plasmids harboring blaCMY-2 genes belong to ST12/CC12-IncI1. Genetic characteristics of transmitted blaCMY-2 genes were associated with ISEcp1, which can play an essential role in the effective mobilization and expression of these genes. Salmonella Albany containing blaCMY-2 in chickens can potentially be transferred to humans. Therefore, it is necessary to restrict antibiotic use and conduct continuous monitoring and analysis of resistant bacteria in the poultry industry.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hyun-Ju Song
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Su-Jeong Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hee Young Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Dong Chan Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yeon-Hee Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Dong-Hyeon Kwon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
8
|
The Mechanisms Involved in the Fluoroquinolone Resistance of Salmonella enterica Strains Isolated from Humans in Poland, 2018-2019: The Prediction of Antimicrobial Genes by In Silico Whole-Genome Sequencing. Pathogens 2023; 12:pathogens12020193. [PMID: 36839465 PMCID: PMC9966331 DOI: 10.3390/pathogens12020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Salmonellosis remains the second most common zoonosis in Europe. Resistance to fluoroquinolones (FQs) in Salmonella has been increasing worldwide, with WHO considering FQ-resistant Salmonella spp. as high-priority pathogens. The aim of this study was a retrospective analysis of the molecular mechanisms of FQ resistance, detected among clinical ciprofloxacin-resistant Salmonella enterica belonging to the most common serotypes. The whole genome sequences (WGS) of tested isolates were also analysed for the occurrence of other antimicrobial resistance determinants. Out of a total of 1051 Salmonella collected in the years 2018-2019, 447 strains belonging to the most common serotypes in Poland were selected were screened for FQ resistance using the pefloxacin disc test according to EUCAST recommendations. All pefloxacin-resistant isolates were confirmed as ciprofloxacin-resistant using the E-test. A total of 168 (37.6%) Salmonella enterica, which belonged to seven serotypes, were resistant to ciprofloxacin (mostly Hadar, Virchow and Newport). A hundred randomly selected Salmonella were investigated by WGS. A total of 127 QRDR mutations in GyrA and ParC were identified in 93 isolates. The qnr genes were the only PMQR determinants detected and were found in 19% of the sequenced isolates. Moreover, 19 additional resistance genes (including: bla,,tet, sul, aad, aac-, ant-, aph-, floR, cmlA) were identified among the FQ-resistant Salmonella tested that confer resistance to clinically important antibiotics such as β-lactams, tetracyclines, sulphonamides, aminoglycosides and phenicol, respectively). In conclusion, FQ resistance of human Salmonella in Poland is rising towards a critical level and needs to be tightly monitored.
Collapse
|
9
|
Pitti M, Garcia-Vozmediano A, Tramuta C, Maurella C, Decastelli L. Monitoring of Antimicrobial Resistance of Salmonella Serotypes Isolated from Humans in Northwest Italy, 2012-2021. Pathogens 2023; 12:pathogens12010089. [PMID: 36678437 PMCID: PMC9865215 DOI: 10.3390/pathogens12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica is among the most common causes of foodborne outbreaks in humans in Europe. The global emergence of resistance to antimicrobials calls for close monitoring of the spread and prevalence of resistant Salmonella strains. In this study, we investigated the occurrence of antimicrobial resistance of Salmonella serotypes isolated from humans between 2012 and 2021 in Piedmont, northwest Italy. A total of 4814 Salmonella strains (168 serotypes) were tested against six classes of antimicrobials. Many strains (83.3%) showed resistance to at least one antibiotic: tetracycline (85.1%), ampicillin (79.2%), quinolones (47.4%), and gentamicin (28.4%). Between the first (2012-2016) and the second study period (2017-2021), a decrease in antimicrobial resistance was noted for tetracycline (from 92.4% to 75.3%), ampicillin (from 85.3% to 71.3%), quinolones (from 49.4% to 44.6%), and cefotaxime (from 34.8% to 4.0%). Many multidrug resistant Salmonella strains (43.6%) belonged to S. ser. Typhimurium, S. ser. Infantis, and S. ser. Typhimurium 1,4,[5],12:i:-. Overall, multidrug resistance decreased from 60.7% to 26.4%, indicating a reduction in the antimicrobial resistance of Salmonella strains in Piedmont and in Europe and demonstrating the effectiveness of the measures that were put in place to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Monica Pitti
- Centro di Riferimento per la Tipizzazione delle Salmonelle, CeRTiS, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna, 148, 10154 Turin, Italy
- Correspondence: ; Tel.: +39-0112686233
| | - Aitor Garcia-Vozmediano
- S.S. Rischi Alimentari ed Epidemiologia degli Alimenti (REA), Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna, 148, 10154 Turin, Italy
| | - Clara Tramuta
- Centro di Riferimento per la Tipizzazione delle Salmonelle, CeRTiS, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna, 148, 10154 Turin, Italy
| | | | - Cristiana Maurella
- S.S. Rischi Alimentari ed Epidemiologia degli Alimenti (REA), Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna, 148, 10154 Turin, Italy
| | - Lucia Decastelli
- Centro di Riferimento per la Tipizzazione delle Salmonelle, CeRTiS, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna, 148, 10154 Turin, Italy
| |
Collapse
|
10
|
Chaudhari R, Singh K, Kodgire P. Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp. Res Microbiol 2023; 174:103985. [PMID: 35944794 DOI: 10.1016/j.resmic.2022.103985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
Salmonella is a diverse Gram-negative bacterium that represents the major disease burden worldwide. According to WHO, Salmonella is one of the fourth global causes of diarrhoeal disease. Antibiotic resistance is a worldwide health concern, and Salmonella spp. is one of the microorganisms that can evade the toxicity of antimicrobials via antibiotic resistance. This review aims to deliver in-depth knowledge of the molecular mechanisms and the underlying biochemical alterations perceived in antibiotic resistance in Salmonella. This information will help understand and mitigate the impact of antibiotic-resistant bacteria on humans and contribute to the state-of-the-art research developing newer and more potent antibiotics.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kanika Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
11
|
Antimicrobial Resistance of Salmonella Strains Isolated from Human, Wild Boar, and Environmental Samples in 2018-2020 in the Northwest of Italy. Pathogens 2022; 11:pathogens11121446. [PMID: 36558780 PMCID: PMC9787983 DOI: 10.3390/pathogens11121446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance is one of the most challenging public health problems worldwide, and integrated surveillance is a key aspect in a One Health control strategy. Additionally, Salmonella is the second most common zoonosis in Europe. We aimed to investigate the circulation of Salmonella strains and their related antimicrobial resistance in human, environmental, and wild boar samples from the northwest of Italy, from 2018 to 2020, to obtain a more comprehensive epidemiological picture. Salmonella Typhimurium 1,4,[5],12:i:-, S. Veneziana and S. Newport were the most common serotypes occurring in humans, the environment, and wild boar, respectively. Antimicrobial resistance was rather common in Salmonella isolates, with those from human displaying the highest degree of resistance against sulfadiazine−sulfamerazine−sulfamethazine (>90% of resistance). Moreover, resistance against azithromycin were exclusively observed in environmental samples, while only 7.7% (95% CI = 1.6−20.8) of wild boar isolates experienced resistance against trimethoprim−sulfamethoxazole. Multidrug resistance concurrently involved up to seven antimicrobial classes in human isolates, including third-generation cephalosporins and fluoroquinolones. Salmonella Typhimurium in humans and serotypes Goldcoast and Rissen from environmental sources showed the highest levels of resistance. This study shows diverse antimicrobial resistance patterns in Salmonella strains isolated from different sources and gives a broad picture of antimicrobial resistance spread in wild animals, humans, and the environment.
Collapse
|
12
|
Calarga AP, Gontijo MTP, de Almeida LGP, de Vasconcelos ATR, Nascimento LC, de Moraes Barbosa TMC, de Carvalho Perri TM, Dos Santos SR, Tiba-Casas MR, Marques EGL, Ferreira CM, Brocchi M. Antimicrobial resistance and genetic background of non-typhoidal Salmonella enterica strains isolated from human infections in São Paulo, Brazil (2000-2019). Braz J Microbiol 2022; 53:1249-1262. [PMID: 35446010 PMCID: PMC9433476 DOI: 10.1007/s42770-022-00748-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
Abstract
Salmonella enterica causes Salmonellosis, an important infection in humans and other animals. The number of multidrug-resistant (MDR) phenotypes associated with Salmonella spp. isolates is increasing worldwide, causing public health concern. Here, we aim to characterize the antimicrobial-resistant phenotype of 789 non-typhoidal S. enterica strains isolated from human infections in the state of São Paulo, Brazil, along 20 years (2000-2019). Among the non-susceptible isolates, 31.55, 14.06, and 13.18% were resistant to aminoglycosides, tetracycline, and β-lactams, respectively. Moreover, 68 and 11 isolates were considered MDR and Extended Spectrum β-Lactamase (ESBL) producers, respectively, whereas one isolate was colistin-resistant. We selected four strains to obtain a draft of the Genome Sequence; one S. Infantis (ST32), one S. Enteritidis (ST11), one S. I 4,[5],12:i:- (ST19), and one S. Typhimurium (ST313). Among them, three presented at least one of the following antimicrobial resistance genes (AMR) linked to mobile DNA: blaTEM-1B, dfrA1, tetA, sul1, floR, aac(6')-laa, and qnrE1. This is the first description of the plasmid-mediated quinolone resistance (PMQR) gene qnrE1 in a clinical isolate of S. I 4,[5],12:i:-. The S. Typhimurium is a colistin-resistant isolate, but did not harbor mcr genes, but it presented mutations within the mgrB, pmrB, and pmrC regions that might be linked to the colistin-resistant phenotype. The virulence pattern of the four isolates resembled the virulence pattern of the highly pathogenic S. Typhimurium UK-1 reference strain in assays involving the in vivo Galleria mellonella model. In conclusion, most isolates studied here are susceptible, but a small percentage present an MDR or ESBL-producer and pathogenic phenotype. Sequence analyses revealed plasmid-encoded AMR genes, such as β-lactam and fluoroquinolone resistance genes, indicating that these characteristics can be potentially disseminated among other bacterial strains.
Collapse
Affiliation(s)
- Aline Parolin Calarga
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil.
| | - Marco Tulio Pardini Gontijo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil
| | | | | | - Leandro Costa Nascimento
- Central Laboratory for High Performance Technologies (LaCTAD), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-886, Brazil
| | | | | | - Silvia Regina Dos Santos
- Division of Clinical Laboratory of the University Hospital of São Paulo, University of São Paulo (USP), São Paulo, São Paulo, 05508-000, Brazil
| | | | | | - Cleide Marques Ferreira
- Adolfo Lutz Institute, Regional Laboratory Center Campinas III, Campinas, São Paulo, 13035-420, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil.
| |
Collapse
|
13
|
Detection of extended spectrum beta-lactamase (ESBL)–production in Salmonella Typhimurium isolated from poultry birds in Nasarawa State, Nigeria. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Lee WWY, Mattock J, Greig DR, Langridge GC, Baker D, Bloomfield S, Mather AE, Wain JR, Edwards AM, Hartman H, Dallman TJ, Chattaway MA, Nair S. Characterization of a pESI-like plasmid and analysis of multidrug-resistant Salmonella enterica Infantis isolates in England and Wales. Microb Genom 2021; 7:000658. [PMID: 34647862 PMCID: PMC8627215 DOI: 10.1099/mgen.0.000658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Infantis is the fifth most common Salmonella serovar isolated in England and Wales. Epidemiological, genotyping and antimicrobial-resistance data for S . enterica Infantis isolates were used to analyse English and Welsh demographics over a 5 year period. Travel cases associated with S . enterica Infantis were mainly from Asia, followed by cases from Europe and North America. Since 2000, increasing numbers of S . enterica Infantis had multidrug resistance determinants harboured on a large plasmid termed ‘plasmid of emerging S . enterica Infantis’ (pESI). Between 2013 and 2018, 42 S . enterica Infantis isolates were isolated from humans and food that harboured resistance determinants to multiple antimicrobial classes present on a pESI-like plasmid, including extended-spectrum β-lactamases (ESBLs; bla CTX-M-65). Nanopore sequencing of an ESBL-producing human S . enterica Infantis isolate indicated the presence of two regions on an IncFIB pESI-like plasmid harbouring multiple resistance genes. Phylogenetic analysis of the English and Welsh S . enterica Infantis population indicated that the majority of multidrug-resistant isolates harbouring the pESI-like plasmid belonged to a single clade maintained within the population. The bla CTX-M-65 ESBL isolates first isolated in 2013 comprise a lineage within this clade, which was mainly associated with South America. Our data, therefore, show the emergence of a stable resistant clone that has been in circulation for some time in the human population in England and Wales, highlighting the necessity of monitoring resistance in this serovar.
Collapse
Affiliation(s)
- Winnie W. Y. Lee
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | | - David R. Greig
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
- Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - David Baker
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | - Samuel Bloomfield
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | - Alison E. Mather
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | - John R. Wain
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Hassan Hartman
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
| | - Timothy J. Dallman
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
- Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Marie A. Chattaway
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
| | - Satheesh Nair
- Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK
| |
Collapse
|
15
|
Ramirez-Hernandez A, Carrascal-Camacho AK, Varón-García A, Brashears MM, Sanchez-Plata MX. Genotypic Characterization of Antimicrobial Resistant Salmonella spp. Strains from Three Poultry Processing Plants in Colombia. Foods 2021; 10:foods10030491. [PMID: 33668959 PMCID: PMC7996530 DOI: 10.3390/foods10030491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The poultry industry in Colombia has implemented several changes and measures in chicken processing to improve sanitary operations and control pathogens’ prevalence. However, there is no official in-plant microbial profile reference data currently available throughout the processing value chains. Hence, this research aimed to study the microbial profiles and the antimicrobial resistance of Salmonella isolates in three plants. In total, 300 samples were collected in seven processing sites. Prevalence of Salmonella spp. and levels of Enterobacteriaceae were assessed. Additionally, whole-genome sequencing was conducted to characterize the isolated strains genotypically. Overall, the prevalence of Salmonella spp. in each establishment was 77%, 58% and 80% for plant A, B, and C. The mean levels of Enterobacteriaceae in the chicken rinsates were 5.03, 5.74, and 6.41 log CFU/mL for plant A, B, and C. Significant reductions were identified in the counts of post-chilling rinsate samples; however, increased levels were found in chicken parts. There were six distinct Salmonella spp. clusters with the predominant sequence types ST32 and ST28. The serotypes Infantis (54%) and Paratyphi B (25%) were the most commonly identified within the processing plants with a high abundance of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Alejandra Ramirez-Hernandez
- Animal and Food Sciences Department, Texas Tech University, Lubbock, TX 79409, USA; (M.M.B.); (M.X.S.-P.)
- Correspondence: ; Tel.: +1-402-304-5727
| | - Ana K. Carrascal-Camacho
- Microbiology Department, Environmental and Industrial Biotechnology Group, Pontificia Universidad Javeriana, Bogota 110231, Colombia;
| | | | - Mindy M. Brashears
- Animal and Food Sciences Department, Texas Tech University, Lubbock, TX 79409, USA; (M.M.B.); (M.X.S.-P.)
| | - Marcos X. Sanchez-Plata
- Animal and Food Sciences Department, Texas Tech University, Lubbock, TX 79409, USA; (M.M.B.); (M.X.S.-P.)
| |
Collapse
|
16
|
Petrin S, Orsini M, Mastrorilli E, Longo A, Cozza D, Olsen JE, Ricci A, Losasso C, Barco L. Identification and characterization of a spreadable IncI1 plasmid harbouring a bla CTX-M-15 gene in an Italian human isolate of Salmonella serovar Napoli. Plasmid 2021; 114:102566. [PMID: 33582117 DOI: 10.1016/j.plasmid.2021.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Salmonella enterica subsp. enterica serovar Napoli (S. Napoli) ranks among the top serovars causing human infections in Italy, although not common in other European countries. Isolates are generally pan-susceptible or resistant to aminoglycosides only, however data on antimicrobial resistance genes in strains of S. Napoli are limited. Recently an isolate encoding resistance to third generation cephalosporins was reported. This study aimed to characterize plasmid-encoded cephalosporin resistance due to the blaCTX-M-15 gene in a human S. Napoli isolate in Italy, and to investigate plasmid stability over time. S. Napoli 16/174478 was confirmed to be ESBL-producing. The blaCTX-M-15 gene was shown to be located on an IncI1α plasmid of 90,272 bp (50.03 GC%) encoding for 107 coding sequences (CDS). The plasmid was successfully transferred by conjugation to an E. coli 1816 recipient strain (conjugation frequency 3.9 × 10-2 transconjugants per donor). Transconjugants were confirmed to carry the IncI1α plasmid, and to be ESBL-producing strains as well. Moreover, transconjugant colonies maintained the plasmid for up to 10 passages. The identification of S. Napoli isolates able to produce ESBLs is of great concern, as this pathogen is frequently associated with invasive infections and a higher risk of bacteraemia, and its reservoir has not yet been clearly identified.
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Massimiliano Orsini
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Eleonora Mastrorilli
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Alessandra Longo
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Debora Cozza
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Antonia Ricci
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Carmen Losasso
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy.
| | - Lisa Barco
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| |
Collapse
|
17
|
Bokhary H, Rashid H, Hill-Cawthorne GA, Abd El Ghany M. The Rise of Antimicrobial Resistance in Mass Gatherings. HANDBOOK OF HEALTHCARE IN THE ARAB WORLD 2021:1199-1214. [DOI: 10.1007/978-3-030-36811-1_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Qamar A, Ismail T, Akhtar S. Prevalence and antibiotic resistance of Salmonella spp. in South Punjab-Pakistan. PLoS One 2020; 15:e0232382. [PMID: 33211713 PMCID: PMC7676730 DOI: 10.1371/journal.pone.0232382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/07/2020] [Indexed: 11/18/2022] Open
Abstract
Present study aimed at investigating the magnitude of the prevalence and antibiotic resistance among four Salmonella spp. i.e., S. typhi, S. paratyphi A, S. paratyphi B and S. typhimurium. Raw milk and environment samples were collected from the five districts of southern part of the province of Punjab in Pakistan i.e., Multan, Bahawalpur, Lodhran, Dera Ghazi Khan and Muzaffargarh. Extent of antibiotic resistance was also determined and classified as resistant, intermediate and susceptible. District–wise prevalence data on Salmonella spp. in milk and environmental samples indicated higher S. typhi, S. paratyphi B and S. typhimurium count in Bahawalpur, D.G. Khan and Muzaffargarh districts, respectively. Amongst 13 tested antibiotics, chloramphenicol and ofloxacin were found to be the most susceptible against Salmonella spp. Increased emergence of antibacterial resistance was noted with respect to the type of antibiotics among Salmonella spp. isolates. The study suggests serious interventions to be practiced by the farmers and raw milk vendors in animal husbandry and milk marketing, respectively to curb the burden of Salmonella spp. prevalence in milk. Further, active engagement of animal health division and enforcement agencies to ensure sagacious use of antibiotics at farm level may also help in containment of antimicrobial resistance in Salmonella spp.
Collapse
Affiliation(s)
- Aftab Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
- * E-mail:
| |
Collapse
|
19
|
Nooreddeen E, Mohammed Alemam A, Ghous AA, Abu Alnasr AA, Al-Qurainees GI. What is Behind Salmonella? Unusual Presentation in Two Pediatric Cases. Cureus 2020; 12:e8769. [PMID: 32714706 PMCID: PMC7377651 DOI: 10.7759/cureus.8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Salmonella infection is an international public health concern. Salmonella organisms are Gram-negative bacilli that belong to the family Enterobacteriaceae, and more than 2500 Salmonella serovars have been described. The most common clinical presentations of Salmonella infection are gastroenteritis, bacteremia, enteric fever, and chronic carrier state. Other rare extraintestinal infections include cellulitis, urinary tract infection, pneumonia, endocarditis, meningitis, brain abscess, and osteomyelitis. Salmonella species resistant to first-line treatment such as ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole are referred to as multi-drug resistant. In recent years, extensively drug-resistant (XDR) Salmonella have appeared in Pakistan; XDR strains are resistant to multiple antibiotics, including first-line antibiotics, fluoroquinolones, and third-generation cephalosporins. We report two interesting pediatric cases who presented with uncommon Salmonella infection. The first case is a child diagnosed with XDR typhoid fever in a country where the strain is not endemic. The second case is a child who presented with a Salmonella urinary tract infection who is otherwise immunocompetent and has no apparent underlying structural abnormalities of the urinary tract.
Collapse
|
20
|
Shigemura H, Sakatsume E, Sekizuka T, Yokoyama H, Hamada K, Etoh Y, Carle Y, Mizumoto S, Hirai S, Matsui M, Kimura H, Suzuki M, Onozuka D, Kuroda M, Inoshima Y, Murakami K. Food Workers as a Reservoir of Extended-Spectrum-Cephalosporin-Resistant Salmonella Strains in Japan. Appl Environ Microbiol 2020; 86:e00072-20. [PMID: 32276982 PMCID: PMC7301857 DOI: 10.1128/aem.00072-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022] Open
Abstract
Dissemination of extended-spectrum-cephalosporin (ESC)-resistant Salmonella, especially extended-spectrum-β-lactamase (ESBL)-producing Salmonella, is a concern worldwide. Here, we assessed Salmonella carriage by food workers in Japan to clarify the prevalence of ESC-resistant Salmonella harboring blaCTX-M We then characterized the genetic features, such as transposable elements, of blaCTX-M-harboring plasmids using whole-genome sequencing. A total of 145,220 stool samples were collected from food workers, including cooks and servers from several restaurants, as well as food factory workers, from January to October 2017. Isolated salmonellae were subjected to antimicrobial susceptibility testing (disk diffusion method), and whole-genome sequencing was performed for Salmonella strains harboring blaCTX-M Overall, 164 Salmonella isolates (0.113%) were recovered from 164 samples, from which we estimated that at least 0.113% (95% confidence interval [CI]: 0.096 to 0.132%) of food workers may carry Salmonella Based on this estimation, 3,473 (95% CI = 2,962 to 4,047) individuals among the 3,075,330 Japanese food workers are likely to carry Salmonella Of the 158 culturable isolates, seven showed resistance to ESCs: three isolates harbored blaCMY-2 and produced AmpC β-lactamase, while four ESBL-producing isolates harbored blaCTX-M-14 (n = 1, Salmonella enterica serovar Senftenberg) or blaCTX-M-15 (n = 3, S. enterica serovar Haardt). blaCTX-M-15 was chromosomally located in the S Haardt isolates, which also contained ISEcp1, while the S Senftenberg isolate contained an IncFIA(HI1)/IncHI1A/IncHI1B(R27) hybrid plasmid carrying blaCTX-M-14 along with ISEcp1 This study indicates that food workers may be a reservoir of ESBL-producing Salmonella and associated genes. Thus, these workers may contribute to the spread of blaCTX-M via plasmids or mobile genetic elements such as ISEcp1IMPORTANCE Antimicrobial-resistant Salmonella bacteria arise in farm environments through imprudent use of antimicrobials. Subsequently, these antimicrobial-resistant strains, such as extended-spectrum-β-lactamase (ESBL)-producing Salmonella, may be transmitted to humans via food animal-derived products. Here, we examined Salmonella carriage among food handlers in Japan. Overall, 164 of 145,220 fecal samples (0.113%) were positive for Salmonella Among the 158 tested isolates, four were identified as ESBL-producing isolates carrying ESBL determinants blaCTX-M-15 or blaCTX-M-14 In all cases, the genes coexisted with ISEcp1, regardless of whether they were located on the chromosome or on a plasmid. Our findings suggest that food workers may be a reservoir of ESBL-producing strains and could contribute to the spread of resistance genes from farm-derived Salmonella to other bacterial species present in the human gut.
Collapse
Affiliation(s)
- Hiroaki Shigemura
- Division of Pathology and Microbiology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Eri Sakatsume
- Kotobiken Medical Laboratories, Inc., Fukushima, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Yoshiki Etoh
- Division of Pathology and Microbiology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Yuki Carle
- Division of Pathology and Microbiology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Shiro Mizumoto
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan
| | - Shinichiro Hirai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mari Matsui
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, Gunma, Japan
| | - Motoi Suzuki
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Onozuka
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuo Inoshima
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
21
|
Pereira NMD, Shah I. Cephalosporin-resistant typhoid. SAGE Open Med Case Rep 2020; 8:2050313X20917835. [PMID: 32477551 PMCID: PMC7233889 DOI: 10.1177/2050313x20917835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 01/09/2023] Open
Abstract
Typhoid fever is endemic in developing countries like India. An increasing prevalence of resistance to cephalosporins and fluoroquinolones by Salmonella isolates is seen. We present an 8-month-old boy with invasive Salmonella typhi disease. Blood culture showed S. typhi sensitive to ampicillin–sulbactam and cotrimoxazole but resistant to fluoroquinolones and third-generation cephalosporins. Cerebrospinal fluid examination revealed an aseptic meningitic picture. He was treated with intravenous meropenem and azithromycin following which his condition improved. This case highlights the need for improvement in environment sanitation and hygiene combined with early vaccination against typhoid fever and antimicrobial stewardship to help reduce the emerging resistance to cephalosporins and fluoroquinolones.
Collapse
Affiliation(s)
| | - Ira Shah
- Department of Paediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| |
Collapse
|
22
|
Abstract
Dog treats might be contaminated with Salmonella. In Canada and the USA, outbreaks of human salmonellosis related to exposure to animal-derived dog treats were reported. Consequently, surveillance data on Salmonella contamination of dog treats have been gathered in many countries, but not in Japan. In the current study, we investigated whether dog treats in Japan were contaminated with Salmonella. Overall, 303 dog treats (of which 255 were domestically produced) were randomly collected and the presence of Salmonella investigated. Seven samples were positive for Salmonella enterica subsp. enterica. Among these isolates, three were identified as serovar 4,5,12:i:–; two were serovar Rissen; and two were serovar Thompson. All serovar 4,5,12:i:– and Thompson isolates were resistant to one or more drugs. Two serovar Rissen isolates were fully susceptible to all tested antimicrobial agents. All Salmonella isolates were susceptible to cefotaxime, ciprofloxacin and nalidixic acid. The gene blaTEM was detected in two serovar 4,5,12:i:– isolates. The blaCTX−M and blaCMY genes were not detected in any isolates. This study demonstrated that dog treats in Japan could constitute a potential source of dog and human Salmonella infections, including multidrug-resistant Salmonella isolates.
Collapse
|
23
|
Bokhary H, Rashid H, Hill-Cawthorne GA, Abd El Ghany M. The Rise of Antimicrobial Resistance in Mass Gatherings. HANDBOOK OF HEALTHCARE IN THE ARAB WORLD 2020:1-16. [DOI: 10.1007/978-3-319-74365-3_47-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/15/2019] [Indexed: 09/01/2023]
|
24
|
Benevides VP, Rubio MS, Alves LBR, Barbosa FO, Souza AIS, Almeida AM, Casas MRT, Guastalli EAL, Soares NM, Berchieri Jr A. Antimicrobial Resistance in Salmonella Serovars Isolated From an Egg-Producing Region in Brazil. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2020-1259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - MS Rubio
- University of the State of São Paulo, Brazil
| | - LBR Alves
- University of the State of São Paulo, Brazil
| | - FO Barbosa
- University of the State of São Paulo, Brazil
| | - AIS Souza
- University of the State of São Paulo, Brazil
| | - AM Almeida
- University of the State of São Paulo, Brazil
| | | | | | | | | |
Collapse
|
25
|
Pragasam AK, Anandan S, John J, Neeravi A, Narasimman V, Muthuirulandi Sethuvel DP, Elangovan D, Veeraraghavan B. An emerging threat of ceftriaxone-resistant non-typhoidal salmonella in South India: Incidence and molecular profile. Indian J Med Microbiol 2019; 37:198-202. [PMID: 31745019 DOI: 10.4103/ijmm.ijmm_19_300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Non-typhoidal Salmonella (NTS) infection is a serious public health problem globally. Although NTS infections are self-limited, antimicrobial therapy is recommended for severe infections and immunocompromised patients. Antimicrobial resistance (AMR) in these pathogens further limits its therapeutic options. Here, we report an incidence of ceftriaxone resistance in NTS over the past 9 years in a southern Indian region. Materials and Methods Molecular mechanisms of resistance in ceftriaxone-resistant NTS have been tested by both phenotypic and molecular methods. Minimum inhibitory concentration was determined by the E-test and broth microdilution method. AMR gene markers of β-lactamases such as AmpCs (blaMOX, blaCMY, blaDHA, blaFOX, blaACC and blaACT) and extended-spectrum β-lactamases (ESBLs) (blaSHV, blaTEM, blaVEB, blaPER, blaCTXM-1like,blaCTXM-2like, blaCTXM-8like, blaCTXM-9like and blaCTXM-25like) were screened. The presence of IncH12 and IncI1 plasmid was also analysed. Results The study reports a 5% prevalence of ceftriaxone resistance in NTS. The most common serogroup was Salmonella Group B followed by Salmonella Group E and Salmonella group C1/C2. The occurrence of blaCTX-M-1, blaTEM, blaCMY and blaSHV genes was observed in 54%, 54%, 48% and 3% of the isolates, respectively. Interestingly, few isolates carried dual resistance genes (ESBLs and AmpCs). IncH12 and IncI1 plasmid was identified in isolates carrying ESBL and AmpC genes, respectively. Conclusion This study shows that ceftriaxone resistance is mainly mediated by β-lactamases such as ESBL and AmpC. As the incidence of ceftriaxone resistance is rising gradually over the years, it is imperative to monitor the AMR in this species.
Collapse
Affiliation(s)
- Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - James John
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Vignesh Narasimman
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | | | - Divyaa Elangovan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
26
|
Epidemiology and Outcomes of Nontyphoidal Salmonella Bacteremias from England, 2004 to 2015. J Clin Microbiol 2019; 57:JCM.01189-18. [PMID: 30381422 DOI: 10.1128/jcm.01189-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022] Open
Abstract
Nontyphoidal Salmonella (NTS) bacteremia causes hospitalization and high morbidity and mortality. We linked Gastrointestinal Bacteria Reference Unit (GBRU) data to the Hospital Episode Statistics (HES) data set to study the trends and outcomes of NTS bacteremias in England between 2004 and 2015. All confirmed NTS isolates from blood from England submitted to GBRU between 1 January 2004 and 31 December 2015 were deterministically linked to HES records. Adjusted odds ratios (AOR), proportions, and confidence intervals (CI) were calculated to describe differences in age, sex, antibiotic resistance patterns, and serotypes over time. Males, neonates, and adults above 65 years were more likely to have NTS bacteremia (AOR, 1.54 [95% CI, 1.46 to 1.67]; 2.57 [95% CI, 1.43 to 4.60]; and 3.56 [95% CI, 3.25 to 3.90], respectively). Proportions of bacteremia increased from 1.41% in 2004 to 2.67% in 2015. Thirty-four percent of all blood isolates were resistant to a first-line antibiotic, and 1,397 (56%) blood isolates were linked to an HES record. Of the patients with NTS bacteremia, 969 (69%) had a cardiovascular condition and 155 (12%) patients died, out of which 120 (77%) patients were age 65 years and above. NTS bacteremia mainly affects older people with comorbidities placing them at increased risk of prolonged hospital stay and death. Resistance of invasive NTS to first-line antimicrobial agents appeared to be stable in England, but the emergence of resistance to last-resort antibiotics, such as colistin, requires careful monitoring.
Collapse
|
27
|
Fuenmayor Y, Rodas-González A, Carruyo G, Hoet AE, Wittum T, Narváez-Bravo C. Salmonella Prevalence and Antimicrobial Drug Resistance in Dual-Purpose Cattle Operations in the Eastern Region of Zulia State, Venezuela. Foodborne Pathog Dis 2018; 16:205-213. [PMID: 30481054 DOI: 10.1089/fpd.2018.2515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To evaluate the Salmonella prevalence and its antimicrobial susceptibility in dual-purpose cattle farms, fecal (n = 3964; from cows and calves) and environmental samples (n = 334; personnel, feed, and water sources) were collected over a 1-year period at six farms in the eastern region of Zulia State, Venezuela. Salmonella detection was carried out using standard microbiological culture methods. From 453 isolated Salmonella, antimicrobial susceptibility was tested using a panel of 10 antibiotics by the disk diffusion test method. Overall, the prevalence of Salmonella at the farm was 10.4% (n = 410/3964), being positive for Salmonella in at least in one sample. Salmonella was found in 11% (222/2009) of cows and 9.7% (188/1937) of calves. The prevalence of environmental samples was 10.78% (36/334), where water sources and milkers' hands showed higher occurrence (p < 0.01). Among the Salmonella isolates recovered, 10.2% displayed resistance to tetracyclines, aminoglycosides, cephalosporins, penicillins, sulfonamides, quinolones and fluoroquinolones. Overall, multidrug resistance was 9.1%, and the most common combination was cephalothin-gentamicin-tetracycline, followed by gentamicin-norfloxacin-tetracycline. Over the course of this study, it was found that 100% of the evaluated farms had cattle shedding Salmonella and that the surrounding farm environments were contaminated, which contributed to the cycling of the pathogen at the farms and further contamination of the milk. However, only a low percentage of isolates exhibited significant antimicrobial resistance.
Collapse
Affiliation(s)
- Yrimar Fuenmayor
- 1 Infectious Transmission Diseases Department, School of Veterinary Science , Universidad del Zulia, Maracaibo, Venezuela
| | - Argenis Rodas-González
- 2 Department of Food and Human Nutritional Sciences, University of Manitoba , Winnipeg, Canada
| | - Gabriela Carruyo
- 1 Infectious Transmission Diseases Department, School of Veterinary Science , Universidad del Zulia, Maracaibo, Venezuela
| | - Armando E Hoet
- 3 Department of Veterinary Preventive Medicine, Ohio State University , Columbus, Ohio
| | - Thomas Wittum
- 3 Department of Veterinary Preventive Medicine, Ohio State University , Columbus, Ohio
| | - Claudia Narváez-Bravo
- 2 Department of Food and Human Nutritional Sciences, University of Manitoba , Winnipeg, Canada
| |
Collapse
|
28
|
Liang B, Xie Y, He S, Mai J, Huang Y, Yang L, Zhong H, Deng Q, Yao S, Long Y, Yang Y, Gong S, Zhou Z. Prevalence, serotypes, and drug resistance of nontyphoidal Salmonella among paediatric patients in a tertiary hospital in Guangzhou, China, 2014-2016. J Infect Public Health 2018; 12:252-257. [PMID: 30466903 DOI: 10.1016/j.jiph.2018.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2018] [Accepted: 10/29/2018] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Nontyphoidal Salmonella (NTS) is a common pathogen responsible for acute gastroenteritis among all ages; however, information on the prevalence, serotypes, and antibiotic susceptibility of NTS isolates is limited. We aimed to explore the characteristics of NTS isolated from paediatric patients in Guangzhou, China. METHODS This was a retrospective study of 4586 stool culture collected at Guangzhou Women and Children's Medical Center from 2014 to 2016. RESULTS We identified 220 (4.80%) NTS isolates in stool samples. Fourteen serotypes were identified among the 220 NTS isolates. Salmonella serotype Typhimurium was the most common serotype, representing 69.09%. The highest rate of resistance was recorded in relation to AMP (76.61%), followed by SXT (29.95%), CTX (29.93%), CHL (29.77%), CAZ (23.20%), CIP (7.51%), and CFS (7.18%). The resistance rates of NTS and serotype Typhimurium to CAZ in 2015 were significantly higher than those in 2014. The average hospitalisation duration of inpatients infected by NTS resistant to three or more clinically important agents was significantly longer than that of patients infected with NTS with less antibiotic resistance. CONCLUSION NTS represents a major cause of paediatric gastroenteritis in Guangzhou, China, and the high level of resistance to third-generation cephalosporins coupled with increasing resistance to quinolones among isolated NTS from paediatric gastroenteritis is a serious public health concern that requires continued monitoring and rational usage of antibiotics.
Collapse
Affiliation(s)
- Bingshao Liang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongqiang Xie
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shujun He
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jialiang Mai
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanmei Huang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liyuan Yang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huamin Zhong
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiulian Deng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuwen Yao
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Long
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiyu Yang
- Paediatric Intensive Care Unit, Gangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sitang Gong
- Department of Gastroenterology, Gangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenwen Zhou
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Characterization of stm3030 and stm3031 genes of Salmonella enterica serovar Typhimurium in relation to cephalosporin resistance. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 52:282-288. [PMID: 30448437 DOI: 10.1016/j.jmii.2018.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND/PURPOSE The outer membrane protein STM3031 had been shown to confer Salmonella enterica serovar Typhimurium resistance to ceftriaxone. In this study, the STM3030 was increased in strain R200 and decreased in strain R200(Δstm3031). How stm3030 and stm3031 contributing to antibiotic resistance was investigated. METHODS The level of STM3030 protein in R200(Δstm3031) were compared between 01-4, R200, and R200(Δstm3031) by 2-DE analysis. The stm3030 gene deleted strain, R200(Δstm3030), was generated by the one-step inactivation chromosome gene method. The various antibiotic susceptibility of strains 01-4, R200, R200(Δstm3031) and R200(Δstm3030) were determined by agar dilutions assays and E-test. The co-transcription of stm3031 and stm3030 were determined by RT-PCR. The promoter activities of these two genes fused with LacZ were determined. The binding of the regulatory protein BaeR on the promoter of both genes was detected by EMSA. The interaction between STM3030 and STM3031 proteins was determined by GST pull-down assay. RESULTS Strain R200(Δstm3030) displayed a 32- to 64-fold reduction in resistance to cephalosporin drugs. Transcription analyses revealed that stm3030 and stm3031 are independent genes and that the promoter of stm3030 is stronger than that of stm3031. The regulator BaeR binds to the promoter region of stm3031 but not that of stm3030. The STM3031 decreased in R200(Δstm3030) compared to R200 by western blot analysis. The pull-down assay revealed that STM3030 and STM3031 bind to each other. CONCLUSION Our data indicate that STM3030 has a chaperone-like activity and may modulate or stabilize STM3031, leading to resistance of S. enterica serovar Typhimurium to cephalosporin drugs.
Collapse
|
30
|
High-levels of resistance to quinolone and cephalosporin antibiotics in MDR-ACSSuT Salmonella enterica serovar Enteritidis mainly isolated from patients and foods in Shanghai, China. Int J Food Microbiol 2018; 286:190-196. [PMID: 30268051 DOI: 10.1016/j.ijfoodmicro.2018.09.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 11/22/2022]
Abstract
In this study, 2887 Salmonella strains were mainly obtained from patients and foods in Shanghai from 2006 to 2014 in order to assess the susceptibility to 16 antibiotics. Among them, 3.8% (110/2887) S. Enteritidis isolates were shown to have an ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline) resistance pattern. The resistance genes of ACSSuT included sul2 (74.55%), flo (67.27%), tetA (49.09%), and aph(3)-IIa (46.36%). In addition, class 1 integron profiles were detected in 9 isolates, and 55.6% (5/9) were shown to carry resistant genes against aminoglycosides and sulfonamides. Moreover, these isolates had a high rate of resistance to nalidixic acid (95.29%), cefotaxime (70.64%), cefepime (58.72%), and ceftazidime (48.62%). Detection of quinolone genes showed that 93.64% (103/110) of the strains had gyrA single mutations (D87G, D87Y, D87N, S83Y, and S83F), where D87G was the dominant mutation in 55.45% isolates. 19.1% (21/110) isolates carried plasmid-mediated quinolone resistance (PMQR) genes (qnrB and aac(6')-Ib-cr), and the most prevalent was qnrB. Furthermore, we also detected ESBLS genes. The most common were blaCTX-M-55 (57.27%) followed by blaTEM (23.6%) and blaOXY (4.55%). Mart, prot6E, steB, fimA, and sopE2 genes (100%) were the most in these isolates. The strains in the dominant PFGE profiles of G1 were all co-resistant to quinolones, cephalosporins, and ACSSuT, and were isolated from different sources. This suggests that existence of these genes lead to the emergence of high-levels of resistance to quinolone and cephalosporin in these ACSSuT resistance pattern isolates. And these isolates are transmitted between humans and food.
Collapse
|
31
|
Neuert S, Nair S, Day MR, Doumith M, Ashton PM, Mellor KC, Jenkins C, Hopkins KL, Woodford N, de Pinna E, Godbole G, Dallman TJ. Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica. Front Microbiol 2018; 9:592. [PMID: 29636749 PMCID: PMC5880904 DOI: 10.3389/fmicb.2018.00592] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Surveillance of antimicrobial resistance (AMR) in non-typhoidal Salmonella enterica (NTS), is essential for monitoring transmission of resistance from the food chain to humans, and for establishing effective treatment protocols. We evaluated the prediction of phenotypic resistance in NTS from genotypic profiles derived from whole genome sequencing (WGS). Genes and chromosomal mutations responsible for phenotypic resistance were sought in WGS data from 3,491 NTS isolates received by Public Health England’s Gastrointestinal Bacteria Reference Unit between April 2014 and March 2015. Inferred genotypic AMR profiles were compared with phenotypic susceptibilities determined for fifteen antimicrobials using EUCAST guidelines. Discrepancies between phenotypic and genotypic profiles for one or more antimicrobials were detected for 76 isolates (2.18%) although only 88/52,365 (0.17%) isolate/antimicrobial combinations were discordant. Of the discrepant results, the largest number were associated with streptomycin (67.05%, n = 59). Pan-susceptibility was observed in 2,190 isolates (62.73%). Overall, resistance to tetracyclines was most common (26.27% of isolates, n = 917) followed by sulphonamides (23.72%, n = 828) and ampicillin (21.43%, n = 748). Multidrug resistance (MDR), i.e., resistance to three or more antimicrobial classes, was detected in 848 isolates (24.29%) with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines being the most common MDR profile (n = 231; 27.24%). For isolates with this profile, all but one were S. Typhimurium and 94.81% (n = 219) had the resistance determinants blaTEM-1,strA-strB, sul2 and tet(A). Extended-spectrum β-lactamase genes were identified in 41 isolates (1.17%) and multiple mutations in chromosomal genes associated with ciprofloxacin resistance in 82 isolates (2.35%). This study showed that WGS is suitable as a rapid means of determining AMR patterns of NTS for public health surveillance.
Collapse
Affiliation(s)
- Saskia Neuert
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom.,Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Satheesh Nair
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Martin R Day
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Michel Doumith
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Philip M Ashton
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Kate C Mellor
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom.,London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Claire Jenkins
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom.,Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Katie L Hopkins
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Neil Woodford
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Elizabeth de Pinna
- Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Gauri Godbole
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom.,Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| | - Timothy J Dallman
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom.,Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kindom
| |
Collapse
|
32
|
Liakopoulos A, Geurts Y, Dierikx CM, Brouwer MSM, Kant A, Wit B, Heymans R, van Pelt W, Mevius DJ. Extended-Spectrum Cephalosporin-Resistant Salmonella enterica serovar Heidelberg Strains, the Netherlands(1). Emerg Infect Dis 2018; 22:1257-61. [PMID: 27314180 PMCID: PMC4918182 DOI: 10.3201/eid2207.151377] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg strains (JF6X01.0022/XbaI.0251, JF6X01.0326/XbaI.1966, JF6X01.0258/XbaI.1968, and JF6X01.0045/XbaI.1970) have been identified in the United States with pulsed-field gel electrophoresis. Our examination of isolates showed introduction of these strains in the Netherlands and highlight the need for active surveillance and intervention strategies by public health organizations.
Collapse
|
33
|
Hindermann D, Gopinath G, Chase H, Negrete F, Althaus D, Zurfluh K, Tall BD, Stephan R, Nüesch-Inderbinen M. Salmonella enterica serovar Infantis from Food and Human Infections, Switzerland, 2010-2015: Poultry-Related Multidrug Resistant Clones and an Emerging ESBL Producing Clonal Lineage. Front Microbiol 2017; 8:1322. [PMID: 28751886 PMCID: PMC5507995 DOI: 10.3389/fmicb.2017.01322] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/29/2017] [Indexed: 01/10/2023] Open
Abstract
Objectives: The aim of this study was to characterize a collection of 520 Salmonella enterica serovar Infantis strains isolated from food (poultry meat), human infections and environmental sources from the years 2010, 2013 and 2015 in Switzerland. Methods: We performed antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE) analysis on all 520 S. Infantis isolates, and whole genome sequencing (WGS) on 32 selected isolates. Results: The majority (74.8%) of the isolates was multidrug resistant (MDR). PFGE analysis revealed that 270 (51.9%) isolates shared an identity of 90%. All isolates subjected to WGS belonged to sequence type (ST) 32 or a double-locus variant thereof (one isolate). Seven (21.9%) of the sequenced isolates were phylogenetically related to the broiler-associated clone B that emerged in Hungary and subsequently spread within and outside of Europe. In addition, three isolates harboring blaCTX-M-65 on a predicted large (∼320 kb) plasmid grouped in a distinct cluster. Conclusion: This study documents the presence of the Hungarian clone B and related clones in food and human isolates between 2010 and 2015, and the emergence of a blaCTX-M-65 harboring MDR S. serovar Infantis lineage.
Collapse
Affiliation(s)
- Denise Hindermann
- Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | - Gopal Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, LaurelMD, United States
| | - Hannah Chase
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, LaurelMD, United States
| | - Flavia Negrete
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, LaurelMD, United States
| | - Denise Althaus
- Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, LaurelMD, United States
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | | |
Collapse
|
34
|
Molecular characterization of antimicrobial susceptibility of Salmonella isolates: First identification of a plasmid carrying qnrD or oqxAB in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:214-223. [DOI: 10.1016/j.jmii.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022]
|
35
|
Ferstl PG, Reinheimer C, Jozsa K, Zeuzem S, Kempf VAJ, Waidmann O, Grammatikos G. Severe infection with multidrug-resistant Salmonella choleraesuis in a young patient with primary sclerosing cholangitis. World J Gastroenterol 2017; 23:2086-2089. [PMID: 28373776 PMCID: PMC5360651 DOI: 10.3748/wjg.v23.i11.2086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/13/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
Massive global spread of multidrug-resistant (MDR) Salmonella spp. expressing extended-spectrum beta-lactamase (ESBL) and additional resistance to fluoroquinolones has often been attributed to high international mobility as well as excessive use of oral antibiotics in livestock farming. However, MDR Salmonella spp. have not been mentioned as a widespread pathogen in clinical settings so far. We demonstrate the case of a 25-year-old male with primary sclerosing cholangitis who tested positive for MDR Salmonella enterica serotype Choleraesuis expressing ESBL and fluoroquinolone resistance. The pathogen was supposedly acquired during a trip to Thailand, causing severe fever, cholangitis and pancreatitis. To our knowledge, this is the first report of Salmonella enterica serotype Choleraesuis in Europe expressing such a multidrug resistance pattern. ESBL resistance of Salmonella enterica spp. should be considered in patients with obstructive biliary tract pathology and travel history in endemic countries.
Collapse
|
36
|
Whole-Genome Shotgun Sequencing of Cephalosporin-Resistant Salmonella enterica Serovar Typhi. GENOME ANNOUNCEMENTS 2017; 5:5/10/e01639-16. [PMID: 28280021 PMCID: PMC5347241 DOI: 10.1128/genomea.01639-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Typhoid is one of the leading causes of mortality in developing countries. Here, we report the draft genome sequences of four Salmonella enterica serovar Typhi strains isolated from bloodstream infections in a tertiary care hospital. The sequence data indicate genomes of ~4.5 Mb for all isolates, with one plasmid in each.
Collapse
|
37
|
Moura Q, Fernandes MR, Silva KC, Monte DF, Esposito F, Dropa M, Noronha C, Moreno AM, Landgraf M, Negrão FJ, Lincopan N. Virulent nontyphoidal Salmonella producing CTX-M and CMY-2 β-lactamases from livestock, food and human infection, Brazil. Virulence 2017; 9:281-286. [PMID: 28102761 PMCID: PMC5955470 DOI: 10.1080/21505594.2017.1279779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Quézia Moura
- a Department of Microbiology , Institute of Biomedical Sciences, Universidade de São Paulo , São Paulo , Brazil
| | - Miriam R Fernandes
- b Department of Clinical Analysis , School of Pharmacy, Universidade de São Paulo , São Paulo , Brazil
| | - Ketrin C Silva
- c School of Veterinary Medicine, Universidade de São Paulo , São Paulo , Brazil
| | - Daniel F Monte
- d Food and Experimental Nutrition Department , School of Pharmacy & Food Research Center, Universidade de São Paulo , São Paulo , Brazil
| | - Fernanda Esposito
- b Department of Clinical Analysis , School of Pharmacy, Universidade de São Paulo , São Paulo , Brazil
| | - Milena Dropa
- e Public Health Laboratory, School of Public Health, Universidade de São Paulo , São Paulo , Brazil
| | - César Noronha
- f State Center for Clinical Analysis , São Paulo, São Paulo , Brazil
| | - Andrea M Moreno
- c School of Veterinary Medicine, Universidade de São Paulo , São Paulo , Brazil
| | - Mariza Landgraf
- d Food and Experimental Nutrition Department , School of Pharmacy & Food Research Center, Universidade de São Paulo , São Paulo , Brazil
| | - Fábio J Negrão
- g Health Sciences Research Laboratory, School of Health Sciences, Universidade Federal da Grande Dourados , Dourados , Brazil
| | - Nilton Lincopan
- a Department of Microbiology , Institute of Biomedical Sciences, Universidade de São Paulo , São Paulo , Brazil.,b Department of Clinical Analysis , School of Pharmacy, Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
38
|
El-Tayeb MA, Ibrahim ASS, Al-Salamah AA, Almaary KS, Elbadawi YB. Prevalence, serotyping and antimicrobials resistance mechanism of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia. Braz J Microbiol 2017; 48:499-508. [PMID: 28245965 PMCID: PMC5498448 DOI: 10.1016/j.bjm.2016.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/18/2016] [Indexed: 11/26/2022] Open
Abstract
Salmonella is recognized as a common foodborne pathogen, causing major health problems in Saudi Arabia. Herein, we report epidemiology, antimicrobial susceptibility and the genetic basis of resistance among S. enterica strains isolated in Saudi Arabia. Isolation of Salmonella spp. from clinical and environmental samples resulted in isolation of 33 strains identified as S. enterica based on their biochemical characteristics and 16S-rDNA sequences. S. enterica serovar Enteritidis showed highest prevalence (39.4%), followed by S. Paratyphi (21.2%), S. Typhimurium (15.2%), S. Typhi and S. Arizona (12.1%), respectively. Most isolates were resistant to 1st and 2nd generation cephalosporin; and aminoglycosides. Moreover, several S. enterica isolates exhibited resistance to the first-line antibiotics used for Salmonellosis treatment including ampicillin, trimethoprim–sulfamethoxazole and chloramphenicol. In addition, the results revealed the emergence of two S. enterica isolates showing resistance to third-generation cephalosporin. Analysis of resistance determinants in S. enterica strains (n = 33) revealed that the resistance to β-lactam antibiotics, trimethoprim–sulfamethoxazole, chloramphenicol, and tetracycline, was attributed to the presence of carb-like, dfrA1, floR, tetA gene, respectively. On the other hand, fluoroquinolone resistance was related to the presence of mutations in gyrA and parC genes. These findings improve the information about foodborne Salmonella in Saudi Arabia, alarming the emergence of multi-drug resistant S. enterica strains, and provide useful data about the resistance mechanisms.
Collapse
Affiliation(s)
- Mohamed A El-Tayeb
- King Saud University, College of Science, Department of Botany and Microbiology, Riyadh, Saudi Arabia
| | - Abdelnasser S S Ibrahim
- King Saud University, College of Science, Department of Botany and Microbiology, Riyadh, Saudi Arabia; National Research Center, Pharmaceutical Industries Research Division, Department of Chemistry of Natural and Microbial Products, Cairo, Egypt.
| | - Ali A Al-Salamah
- King Saud University, College of Science, Department of Botany and Microbiology, Riyadh, Saudi Arabia
| | - Khalid S Almaary
- King Saud University, College of Science, Department of Botany and Microbiology, Riyadh, Saudi Arabia
| | - Yahya B Elbadawi
- King Saud University, College of Science, Department of Botany and Microbiology, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect 2017; 23:826-833. [PMID: 28143782 DOI: 10.1016/j.cmi.2017.01.013] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/18/2016] [Accepted: 01/19/2017] [Indexed: 11/24/2022]
Abstract
There has been a great and long-term concern that extended-spectrum β-lactamase (ESBL)/AmpC- and carbapenemase-producing Enterobacteriaceae occurring in animals may constitute a public-health issue. A large number of factors with complex interrelations contribute to the spread of those bacteria among animals and humans. ESBL/AmpC- or carbapenemase-encoding genes are most often located on mobile genetic elements favouring their dissemination. Some shared reservoirs of ESBL/AmpC or carbapenemase genes, plasmids or clones have been identified and suggest cross-transmissions. Even though exposure to animals is regarded as a risk factor, evidence for a direct transfer of ESBL/AmpC-producing bacteria from animals to humans through close contacts is limited. Nonetheless, the size of the commensal ESBL/AmpC reservoir in non-human sources is dramatically rising. This may constitute an indirect risk to public health by increasing the gene pool from which pathogenic bacteria can pick up ESBL/AmpC/carbapenemase genes. The extent to which food contributes to potential transmission of ESBL/AmpC producers to humans is also not well established. Overall, events leading to the occurrence of ESBL/AmpC- and carbapenemase-encoding genes in animals seem very much multifactorial. The impact of animal reservoirs on human health still remains debatable and unclear; nonetheless, there are some examples of direct links that have been identified.
Collapse
|
40
|
Fernandes SA, Camargo CH, Francisco GR, Bueno MFC, Garcia DO, Doi Y, Casas MRT. Prevalence of Extended-Spectrum β-Lactamases CTX-M-8 and CTX-M-2-Producing Salmonella Serotypes from Clinical and Nonhuman Isolates in Brazil. Microb Drug Resist 2016; 23:580-589. [PMID: 27828759 DOI: 10.1089/mdr.2016.0085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We characterized extended-spectrum β-lactamases (ESBL) enzymes among Salmonella strains isolated in Brazil from 2009 to 2014. Salmonella recovered from both clinical and nonhuman (food, poultry, and environment) sources were subjected to antimicrobial susceptibility testing. β-lactamases genes were detected by polymerase chain reaction/sequencing; plasmid profiles and transferability were assessed by S1-pulsed field gel electrophoresis (PFGE). Genetic diversity was evaluated by XbaI-PFGE. Out of 630 Salmonella strains screened, 46 displayed ESBL phenotype, distributed across 11 different serotypes. blaCTX-M-8 and blaCTX-M-2 genes were detected at frequencies of 47% and 41%, respectively. blaSHV-5 and blaSHV-2 were also detected but in lower frequencies (4%, 2%). blaTEM-1 gene was detected in 22% of the strains. Most of the ESBL genes were transferable by conjugation, and the respective blaESBL gene was detected in the recipient strain, indicating the location of ESBL determinants on transferable plasmids. XbaI-PFGE revealed genomic diversity of Salmonella Typhimurium bearing blaCTX-M-2, blaCTX-M-8, blaTEM-1, and blaSHV-2 genes. Salmonella Muenchen (harboring blaCTX-M-2) and Salmonella Corvallis (blaCTX-M-8 and blaSHV-5) showed clonal relatedness within respective serotypes. Our findings underscore the occurrence of diverse ESBL genes in several Salmonella serotypes, reinforcing the need for continuous surveillance of resistance genes circulating in human and nonhuman sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Yohei Doi
- 2 Division of Infectious Diseases, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | |
Collapse
|
41
|
Hwang JH, Shin GW, Hwang JH, Lee CS. Bloodstream Infection Due to CTX-M-15 and TEM-1 Extended-Spectrum β-Lactamase-Producing Salmonella enterica serovar Virchow ST16. Jpn J Infect Dis 2016; 70:308-310. [PMID: 27795467 DOI: 10.7883/yoken.jjid.2016.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A 57-year-old man presented with high fever and diarrhea. A blood culture revealed the presence of a Group C nontyphoidal Salmonella (NTS) isolate. On Salmonella serotyping, the isolate was identified as Salmonella enterica serovar Virchow. Its sequence type was determined to be ST16 by sequence analysis of 7 different housekeeping genes. The blaCTX-M group 1 and blaTEM genes were amplified using multiplex PCR assay for detecting extended-spectrum β-lactamases (ESBL) genes. Sequences of both amplicons were respectively identical to CTX-M-15- and TEM-1-encoding genes. Since NTS is a cause of foodborne illness outbreaks in communities and an important cause of community-acquired bloodstream infection, clinicians should consider ESBL- or AmpC-producing NTS species in the differential diagnosis.
Collapse
Affiliation(s)
- Jeong-Hwan Hwang
- Department of Internal Medicine, Chonbuk National University.,Research Institute of Clinical Medicine, Chonbuk National University.,Biomedical Research Institute of Chonbuk National University Hospital
| | - Gee-Wook Shin
- Biosafety Reference Center and College of Veterinary Medicine, Chonbuk National University
| | - Joo-Hee Hwang
- Department of Internal Medicine, Chonbuk National University
| | - Chang-Seop Lee
- Department of Internal Medicine, Chonbuk National University.,Research Institute of Clinical Medicine, Chonbuk National University.,Biomedical Research Institute of Chonbuk National University Hospital
| |
Collapse
|
42
|
Schwarz S, Enne VI, van Duijkeren E. 40 years of veterinary papers inJAC– what have we learnt? J Antimicrob Chemother 2016; 71:2681-90. [DOI: 10.1093/jac/dkw363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
43
|
Nair S, Ashton P, Doumith M, Connell S, Painset A, Mwaigwisya S, Langridge G, de Pinna E, Godbole G, Day M. WGS for surveillance of antimicrobial resistance: a pilot study to detect the prevalence and mechanism of resistance to azithromycin in a UK population of non-typhoidalSalmonella. J Antimicrob Chemother 2016; 71:3400-3408. [DOI: 10.1093/jac/dkw318] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/27/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022] Open
|
44
|
Saito S, Koori Y, Ohsaki Y, Osaka S, Oana K, Nagano Y, Arakawa Y, Nagano N. Third-Generation Cephalosporin-Resistant Non-Typhoidal Salmonella Isolated from Human Feces in Japan. Jpn J Infect Dis 2016; 70:301-304. [PMID: 27580578 DOI: 10.7883/yoken.jjid.2016.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
β-lactamase genes were detected and characterized from 10 non-typhoidal Salmonella (NTS) clinical isolates resistant to third-generation cephalosporins collected between 2012 and 2014 in Japan. Five strains showed cefotaxime minimum inhibitory concentration (MIC) ≥ 64 μg/ml and positive clavulanic acid inhibition results. The blaCTX-M-2 was detected in 3 strains (serotypes Stanley and Muenchen), whereas blaTEM-52 (serotype Manhattan) and blaSHV-12 (serotype Infantis) were each found in 1 strain. blaCMY-2 was detected in the remaining 5 strains (serotypes Infantis, Rissen, Newport, and Saintpaul) with cefotaxime MICs of 4-32 μg/ml and positive cloxacillin- and 3-aminophenylboronic acid- based inhibition tests. ISEcp1 was located upstream of the blaCMY-2 in 4 strains and of the blaCTX-M-2 in 1 strain. Incompatibility (Inc)A/C, IncP, and IncI1 plasmids were present in the strains harboring blaCMY-2, which were detected predominantly in this study. Acquisition of resistance to third-generation cephalosporins by invasive NTS may limit therapeutic options for severe systemic infections and causing serious public health problems. Though such resistant clinical isolates are still rare in Salmonella species in Japan, our findings reveal the presence of cephem-resistant NTS in food handlers, thus emphasizing the necessity of more systematic nationwide investigations.
Collapse
Affiliation(s)
- Satomi Saito
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine
| | | | - Yusuke Ohsaki
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine
| | - Shunsuke Osaka
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine
| | - Kozue Oana
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine
| | - Yukiko Nagano
- Department of Bacteriology, Nagoya University Graduate School of Medicine
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine
| | - Noriyuki Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine
| |
Collapse
|
45
|
Cordeiro NF, Nabón A, García-Fulgueiras V, Álvez M, Sirok A, Camou T, Vignoli R. Analysis of plasmid-mediated quinolone and oxyimino-cephalosporin resistance mechanisms in Uruguayan Salmonella enterica isolates from 2011-2013. J Glob Antimicrob Resist 2016; 6:165-171. [PMID: 27530862 DOI: 10.1016/j.jgar.2016.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 05/02/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022] Open
Abstract
This study characterised the mechanisms of fluoroquinolone and oxyimino-cephalosporin resistance in human Salmonella enterica isolates in Uruguay. Salmonella enterica isolates were collected from 2011-2013 and were selected based on non-susceptibility to ciprofloxacin and/or oxyimino-cephalosporins. The disk diffusion assay was performed for various antibiotics, and the ciprofloxacin minimum inhibitory concentration (MIC) was determined following CLSI guidelines. Genetic relatedness was determined following PulseNet protocols. Extended-spectrum β-lactamases, ampC alleles and plasmid-mediated quinolone resistance were characterised by PCR and sequencing. Plasmid analyses were carried out by conjugation or transformation assays, and plasmid-encoded genes were identified by PCR. Mutations in the quinolone resistance-determining region of gyrases were sought by PCR and sequencing. Among 579 isolates, 105 (18.4%) ciprofloxacin-non-susceptible (CIP-NS) isolates, 9 (1.6%) oxyimino-cephalosporin-resistant isolates and 2 (0.3%) isolates resistant to both antibiotic families were detected. Thirteen isolates carried qnrB alleles (twelve qnrB19 and one qnrB2), four carried blaCTX-M-8, two blaCTX-M-14, two blaSHV-2 and three blaCMY-2-like genes. No correlation was found between mutations in gyrases and ciprofloxacin MICs. Several co-circulating clones of S. enterica ssp. enterica serovar Typhimurium were detected; conversely, S. enterica ssp. enterica serovar Enteritidis corresponded mainly to a single circulating clone. Nine (75%) of twelve of CIP-NS extraintestinal isolates shared the same pulsotype with intestinal isolates. During the study period, the frequency of CIP-NS isolates increased, albeit with ciprofloxacin MICs of 0.125-0.5mg/L. Detection of the same quinolone-resistant clones recovered both from intestinal and extraintestinal samples highlights the significance of epidemiological surveillance of antibiotic susceptibility for every human Salmonella isolate.
Collapse
Affiliation(s)
- Nicolás F Cordeiro
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay
| | - Adriana Nabón
- Departamento de Laboratorios, Ministerio de Salud Pública, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay
| | - Virginia García-Fulgueiras
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay; Departamento de Laboratorios, Ministerio de Salud Pública, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay
| | - Marcelo Álvez
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay
| | - Alfredo Sirok
- Departamento de Laboratorios, Ministerio de Salud Pública, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay
| | - Teresa Camou
- Departamento de Laboratorios, Ministerio de Salud Pública, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay.
| |
Collapse
|
46
|
Gaskell KM, Feasey NA, Heyderman RS. Management of severe non-TB bacterial infection in HIV-infected adults. Expert Rev Anti Infect Ther 2016; 13:183-95. [PMID: 25578883 DOI: 10.1586/14787210.2015.995631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite widespread antiretroviral therapy use, severe bacterial infections (SBI) in HIV-infected adults continue to cause significant morbidity and mortality globally. Four main pathogens account for the majority of documented SBI: Streptococcus pneumoniae, non-typhoidal strains of Salmonella enterica, Escherichia coli and Staphylococcus aureus. The epidemiology of SBI is dynamic, both in developing countries where, despite dramatic successes in antiretroviral therapy, coverage is far from complete, and in settings in both resource-poor and resource-rich countries where antiretroviral therapy failure is becoming increasingly common. Throughout the world, this complexity is further compounded by rapidly emerging antimicrobial resistance, making management of SBI very challenging in these vulnerable patients. We review the causes and treatment of SBI in HIV-infected people and discuss future developments in this field.
Collapse
Affiliation(s)
- Katherine M Gaskell
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | | | | |
Collapse
|
47
|
Franco A, Leekitcharoenphon P, Feltrin F, Alba P, Cordaro G, Iurescia M, Tolli R, D’Incau M, Staffolani M, Di Giannatale E, Hendriksen RS, Battisti A. Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014. PLoS One 2015; 10:e0144802. [PMID: 26716443 PMCID: PMC4696813 DOI: 10.1371/journal.pone.0144802] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 11/24/2015] [Indexed: 11/18/2022] Open
Abstract
We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (blaCTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013-2014.A set (n = 49) of extended-spectrum cephalosporin (ESC)-resistant (R) isolates of S. Infantis (2011-2014) from humans, food-producing animals and meat thereof, were studied along with a selected set of earlier and more recent ESC-susceptible (ESC-S) isolates (n = 42, 2001-2014). They were characterized by macrorestriction-PFGE analysis and genetic environment of ESC-resistance. Isolates representative of PFGE-patterns and origin were submitted to Whole Genome Sequencing. The emerging ESC-R clone, detected mainly from broiler chickens, broiler meat and humans, showed a minimum pattern of clinical resistance to cefotaxime, tetracycline, sulfonamides, and trimethoprim, beside ciprofloxacin microbiological resistance (MIC 0.25 mg/L). All isolates of this clone harbored a conjugative megaplasmid (~ 280-320 Kb), similar to that described in ESC-susceptible S. Infantis in Israel (pESI-like) in 2014. This megaplasmid carried the ESBL gene blaCTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness (qacE1, mer) in the intensive-farming environment. This emerging clone of S. Infantis has been causing infections in humans, most likely through the broiler industry. Since S. Infantis is among major serovars causing human infections in Europe and is an emerging non-typhoidal Salmonella globally, further spread of this lineage in primary productions deserves quick and thorough risk-management strategies.
Collapse
Affiliation(s)
- Alessia Franco
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, National Reference Laboratory for Antimicrobial Resistance, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Technical University of Denmark, WHO Collaborating Center for Antimicrobial Resistance in Food borne Pathogens, and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Fabiola Feltrin
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, National Reference Laboratory for Antimicrobial Resistance, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Patricia Alba
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, National Reference Laboratory for Antimicrobial Resistance, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Gessica Cordaro
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, National Reference Laboratory for Antimicrobial Resistance, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Manuela Iurescia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, National Reference Laboratory for Antimicrobial Resistance, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Rita Tolli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, National Reference Laboratory for Antimicrobial Resistance, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Mario D’Incau
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia–Romagna ‘‘Bruno Ubertini”, Via Bianchi 9, 25124, Brescia, Italy
| | - Monica Staffolani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Sezione di Macerata, Via dei Velini, 15, 62100, Macerata, Italy
| | - Elisabetta Di Giannatale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100, Teramo, Italy
| | - Rene S. Hendriksen
- National Food Institute, Technical University of Denmark, WHO Collaborating Center for Antimicrobial Resistance in Food borne Pathogens, and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Antonio Battisti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, National Reference Laboratory for Antimicrobial Resistance, Via Appia Nuova 1411, 00178, Rome, Italy
| |
Collapse
|
48
|
Olaitan AO, Dia NM, Gautret P, Benkouiten S, Belhouchat K, Drali T, Parola P, Brouqui P, Memish Z, Raoult D, Rolain JM. Acquisition of extended-spectrum cephalosporin- and colistin-resistant Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj. Int J Antimicrob Agents 2015; 45:600-4. [PMID: 25769786 DOI: 10.1016/j.ijantimicag.2015.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/30/2022]
Abstract
Gatherings like the Hajj involving many people who travel from different parts of the world represent a risk for the acquisition and dissemination of infectious diseases. In this study, acquisition of multidrug-resistant (MDR) Salmonella spp. in 2013 Hajj pilgrims from Marseille, France, was investigated. In total, 267 rectal swabs were collected from 129 participants before their departure and after their return from the pilgrimage as well as during the pilgrimage from patients with diarrhoea. Samples were screened for the presence of Salmonella using quantitative real-time PCR and culture. Whole-genome sequencing was performed to characterise one of the isolates, and the mechanism leading to colistin resistance was investigated. Six post-Hajj samples and one sample collected during a diarrhoea episode in Hajj were positive for Salmonella by real-time PCR, with five Salmonella enterica belonging to several serotypes recovered by culture, whereas no pre-Hajj sample was positive. Two of the isolates belonged to the epidemic Newport serotype, were resistant to cephalosporins, gentamicin and colistin, and harboured the bla(CTX-M-2) gene and a 12-nucleotide deletion in the pmrB gene leading to colistin resistance. This study shows that pilgrims acquired Salmonella bacteria, including a novel MDR clone, during the Hajj pilgrimage. This calls for more improved public health surveillance during Hajj because Salmonella is one of the most common diarrhoea-causing bacteria worldwide. Therefore, returning pilgrims could disseminate MDR bacteria worldwide upon returning to their home countries.
Collapse
Affiliation(s)
- Abiola Olumuyiwa Olaitan
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Ndèye Méry Dia
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Philippe Gautret
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Samir Benkouiten
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Khadidja Belhouchat
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Tassadit Drali
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Philippe Parola
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Philippe Brouqui
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Ziad Memish
- Alfaisal University, Riyadh 11176, Saudi Arabia
| | - Didier Raoult
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France; Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
49
|
Trends in serotype distribution and antimicrobial susceptibility in Salmonella enterica isolates from humans in Belgium, 2009 to 2013. Antimicrob Agents Chemother 2014; 59:544-52. [PMID: 25385108 DOI: 10.1128/aac.04203-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Belgian National Reference Centre for Salmonella received 16,544 human isolates of Salmonella enterica between January 2009 and December 2013. Although 377 different serotypes were identified, the landscape is dominated by S. enterica serovars Typhimurium (55%) and Enteritidis (19%) in a ratio which is inverse to European Union averages. With outbreaks of Salmonella serotypes Ohio, Stanley, and Paratyphi B variant Java as prime examples, 20 serotypes displayed significant fluctuations in this 5-year period. Typhoid strains account for 1.2% of Belgian salmonellosis cases. Large-scale antibiotic susceptibility analyses (n = 4,561; panel of 12 antibiotics) showed declining resistance levels in S. Enteritis and Typhimurium isolates for 8 and 3 tested agents, respectively. Despite low overall resistance to ciprofloxacin (4.4%) and cefotaxime (1.6%), we identified clonal lineages of Salmonella serotypes Kentucky and Infantis displaying rising resistance against these clinically important drugs. Quinolone resistance is mainly mediated by serotype-specific mutations in GyrA residues Ser83 and Asp87 (92.2% not wild type), while an additional ParC_Ser80Ile mutation leads to ciprofloxacin resistance in 95.5% S. Kentucky isolates, which exceeds European averages. Plasmid-mediated quinolone resistance (PMQR) alleles qnrA1 (n = 1), qnrS (n = 9), qnrD1 (n = 4), and qnrB (n = 4) were found in only 3.0% of 533 isolates resistant to nalidixic acid. In cefotaxime-resistant isolates, we identified a broad range of Ambler class A and C β-lactamase genes (e.g., bla(SHV-12), blaTEM-52, bla(CTX-M-14), and bla(CTX-M-15)) commonly associated with members of the family Enterobacteriaceae. In conclusion, resistance to fluoroquinolones and cefotaxime remains rare in human S. enterica, but clonal resistant serotypes arise, and continued (inter)national surveillance is mandatory to understand the origin and routes of dissemination thereof.
Collapse
|
50
|
Schmiedel J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berninghoff E, Imirzalioglu C, Chakraborty T. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol 2014; 14:187. [PMID: 25014994 PMCID: PMC4105247 DOI: 10.1186/1471-2180-14-187] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiresistant Gram-negative bacteria producing extended-spectrum β-lactamases (ESBLs) are an emerging problem in human and veterinary medicine. This study focused on comparative molecular characterization of β-lactamase and ESBL-producing Enterobacteriaceae isolates from central Hesse in Germany. Isolates originated from humans, companion animals (dogs and cats) and horses. RESULTS In this study 153 (83.6%) of the human isolates (n = 183) and 163 (91.6%) of the animal isolates (n = 178) were confirmed as ESBL producers by PCR and subsequent sequencing of the PCR amplicons. Predominant ESBL subtypes in human and animal samples were CTX-M-15 (49.3%) and CTX-M-1 (25.8%) respectively. Subtype blaCTX-M-2 was found almost exclusively in equine and was absent from human isolates. The carbapenemase OXA-48 was detected in 19 ertapenem-resistant companion animal isolates in this study. The Plasmid-encoded quinolone resistance (PMQR) gene aac('6)-Ib-cr was the most frequently detected antibiotic- resistance gene present in 27.9% of the human and 36.9% of the animal ciprofloxacin-resistant isolates. Combinations of two or up to six different resistance genes (penicillinases, ESBLs and PMQR) were detected in 70% of all isolates investigated. The most frequent species in this study was Escherichia coli (74%), followed by Klebsiella pneumoniae (17.5%), and Enterobacter cloacae (4.2%). Investigation of Escherichia coli phylogenetic groups revealed underrepresentation of group B2 within the animal isolates. CONCLUSIONS Isolates from human, companion animals and horses shared several characteristics regarding presence of ESBL, PMQR and combination of different resistance genes. The results indicate active transmission and dissemination of multi-resistant Enterobacteriaceae among human and animal populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Schubertstrasse 81, 35392 Giessen, Germany.
| | | |
Collapse
|