1
|
Liang G, Huang Y, Tang Y, Ga L, Huo C, Ma Y, Zhao Y, Na H, Meng Z. Research Strategy for Short-peptide Fusion Inhibitors Based on 6-HB Core Structure against HIV-1: A Review. Curr Pharm Biotechnol 2025; 26:328-340. [PMID: 38551054 DOI: 10.2174/0113892010297943240325040448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/04/2025]
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is a devastating infectious disease caused by the Human Immunodeficiency Virus type 1 (HIV-1). Enfuvirtide (T20) is the first HIV-1 fusion inhibitor for marketing, which plays an important role in AIDS treatment. However, in the clinical application process, T20 has several drawbacks, such as a high level of development of drug resistance, a short half-life in vivo, and rapid renal clearance, which severely limits the clinical application. Therefore, the development of novel fusion inhibitors to address T20 shortcomings has long been the research hotspot. Short peptides have a long half-life through modification and a high barrier to drug resistance, which is expected to solve the current fusion inhibitors dilemma. In this paper, we summarized six emerging R&D strategies for short peptide-based fusion inhibitors against HIV-1. We hope that this review will provide fresh insights into the development of novel fusion inhibitors, as well as ideas for other viral fusion inhibitor discoveries based on the common membrane fusion 6-HB core structure.
Collapse
Affiliation(s)
- Guodong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yan Huang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yanbai Tang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Lu Ga
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Caixia Huo
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yuheng Ma
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yan Zhao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Heiya Na
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100039, P.R. China
| |
Collapse
|
2
|
Geng X, Zhu Y, Gao Y, Chong H, He Y. Development of lipopeptide-based HIV-1/2 fusion inhibitors targeting the gp41 pocket site with a new design strategy. Antiviral Res 2024; 232:106042. [PMID: 39586543 DOI: 10.1016/j.antiviral.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 11/27/2024]
Abstract
Emerging studies demonstrate that lipid conjugation is a vital strategy for designing peptide-based viral fusion inhibitors, and the so-called lipopeptides exhibit greatly improved antiviral activity. In the design of lipopeptides, a flexible linker between the peptide sequence and lipid molecule is generally required, mostly with a short polyethylene glycol or glycine-serine sequence. Very recently, we discovered that the helix-facilitating amino acid sequence "EAAAK" as a rigid linker is a more efficient method in the design of SARS-CoV-2 fusion inhibitory lipopeptides. In this study, we comprehensively characterized the functionalities of different linkers in HIV fusion inhibitors. A short-peptide inhibitor 2P23, which mainly targets the gp41 pocket site, was used as a design template, generating a group of cholesterol-modified lipopeptides. In the inhibition of HIV-1 infection, the lipopeptide inhibitors with a rigid linker were much superior than those with the flexible linkers, as indicated by LP-37 with the "EAAAK" linker and LP-39 with the repeated "EP" amino acid sequences. Both lipopeptides were very potent inhibitors of HIV-2 and simian immunodeficiency (SIV) either. Promisingly, LP-37 displayed high α-helicity, thermostability and binding ability to a target-mimic peptide, and it was metabolically stable when treated with temperature, proteolytic enzymes or human sera. Taken together, our studies have verified a universal strategy for designing viral fusion inhibitors and offered a novel HIV fusion inhibitor for drug development.
Collapse
Affiliation(s)
- Xiuzhu Geng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yue Gao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Geng X, Ding X, Zhu Y, Chong H, He Y. Characterization of novel HIV fusion-inhibitory lipopeptides with the M-T hook structure. Microbes Infect 2024; 26:105366. [PMID: 38777106 DOI: 10.1016/j.micinf.2024.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Combination antiretroviral therapy (cART) has significantly improved the survival of HIV-infected individuals, but long-term treatment can cause side-effects and drug resistance; thus, the development of new antivirals is of importance. We previously identified an M-T hook structure and accordingly designed short-peptide fusion inhibitor 2P23, which mainly targets the gp41 pocket site and displays potent, broad-spectrum anti-HIV activity. In this study, we continuingly characterized the amino acid sequences of peptide and lipopeptide-based inhibitors containing the M-T hook residues. Among a group of lipopeptides, stearic acid (C18)-modified LP-25 and LP-29 exhibited greatly improved inhibitions against divergent HIV-1 subtypes and drug-resistant mutants. LP-25 and LP-29 were evaluated in rhesus macaques, and the ex vivo inhibition data demonstrated their potent, long-lasting in vivo anti-HIV activity, with LP-25 much better than LP-29. Both the lipopeptides displayed high α-helicity, thermostability and binding ability to a target-mimic peptide, and they were metabolically stable when treated with high temperature, proteolytic enzymes, human or monkey sera and human liver microsomes. Therefore, our studies have provided critical information for understanding the structure-activity relationship of HIV fusion inhibitors with the M-T hook structure and offered novel candidates for drug development.
Collapse
Affiliation(s)
- Xiuzhu Geng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaohui Ding
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
4
|
Marković V, Szczepańska A, Berlicki Ł. Antiviral Protein-Protein Interaction Inhibitors. J Med Chem 2024; 67:3205-3231. [PMID: 38394369 PMCID: PMC10945500 DOI: 10.1021/acs.jmedchem.3c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Continually repeating outbreaks of pathogenic viruses necessitate the construction of effective antiviral strategies. Therefore, the development of new specific antiviral drugs in a well-established and efficient manner is crucial. Taking into account the strong ability of viruses to change, therapies with diversified molecular targets must be sought. In addition to the widely explored viral enzyme inhibitor approach, inhibition of protein-protein interactions is a very valuable strategy. In this Perspective, protein-protein interaction inhibitors targeting HIV, SARS-CoV-2, HCV, Ebola, Dengue, and Chikungunya viruses are reviewed and discussed. Antibodies, peptides/peptidomimetics, and small molecules constitute three classes of compounds that have been explored, and each of them has some advantages and disadvantages for drug development.
Collapse
Affiliation(s)
- Violeta Marković
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- University
of Kragujevac, Faculty of Science,
Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Anna Szczepańska
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
5
|
He L, Wang C, Zhang Y, Chong H, Hu X, Li D, Xing H, He Y, Shao Y, Hong K, Ma L. Broad-spectrum anti-HIV activity and high drug resistance barrier of lipopeptide HIV fusion inhibitor LP-19. Front Immunol 2023; 14:1199938. [PMID: 37256122 PMCID: PMC10225588 DOI: 10.3389/fimmu.2023.1199938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Lipopeptide-19, a HIV fusion inhibitor (LP-19), has showed potent anti-HIV activity. However, there is still limited information of the antiviral activity against different subtype clinical isolates and the drug resistance barrier of LP-19. Therefore, 47 HIV clinical isolates were selected for this study. The viral features were identified, in which 43 strains are CCR5 tropisms, and 4 strains are CCR5/CXCR4 tropisms, and there are 6 subtype B', 15 CRF01_AE, 14 CRF07_BC, 2 CRF08_BC and 10 URF strains. These 47 viruses were used to detected and analyze the inhibitory activities of LP-19. The results showed that the average 50% inhibitory concentration (IC50) and 90% inhibitory concentration (IC90) of LP-19 were 0.50 nM and 1.88 nM, respectively. The average IC50 of LP-19 to B', CRF01_AE, CRF07_BC, CRF08_BC, and URF strains was 0.76 nM, 0.29 nM, 0.38 nM, 0.85 nM, and 0.44 nM, respectively. C34 and Enfuvirtide (T-20), two fusion inhibitors, were compared on the corresponding strains simultaneously. The antiviral activity of LP-19 was 16.7-fold and 86-fold higher than that of C34 and T-20. The antiviral activity of LP-19, C34, and T-20 were further detected and showed IC50 was 0.15 nM, 1.02 nM, and 66.19 nM, respectively. IC50 of LP-19 was about 7-fold and 441-fold higher compared to C34 and T-20 against HIV-1 NL4-3 strains. NL4-3 strains were exposed to increasing concentrations of LP-19 and C34 in MT-2 cell culture. The culture virus was sequenced and analyzed. The results showed that A243V mutation site identified at weeks 28, 32, 38, and 39 of the cell culture in the gp41 CP (cytoplasmic domain) region. NL4-3/A243V viruses containing A243V mutation were constructed. Comparing the antiviral activities of LP-19 against HIV NL4-3 to HIV strains (only 1.3-fold), HIV did not show drug resistance when LP-19 reached 512-fold of the initial concentration under the drug pressure for 39 weeks. This study suggests that LP-19 has broad-spectrum anti-HIV activity, and high drug resistance barrier.
Collapse
Affiliation(s)
- Lin He
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Laboratory Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Yuanyuan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Hu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liying Ma
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Wang C, Li Q, Sun L, Wang X, Wang H, Zhang W, Li J, Liu Y, Lu L, Jiang S. An Artificial Peptide-Based Bifunctional HIV-1 Entry Inhibitor That Interferes with Viral Glycoprotein-41 Six-Helix Bundle Formation and Antagonizes CCR5 on the Host Cell Membrane. Viruses 2023; 15:v15051038. [PMID: 37243126 DOI: 10.3390/v15051038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is characterized by high variability and drug resistance. This has necessitated the development of antivirals with a new chemotype and therapy. We previously identified an artificial peptide with non-native protein sequence, AP3, with the potential to inhibit HIV-1 fusion through targeting hydrophobic grooves on the N-terminal heptad repeat trimer of viral glycoprotein gp41. Here, a small-molecule HIV-1 inhibitor targeting chemokine coreceptor CCR5 on the host cell was integrated into the AP3 peptide, producing a novel dual-target inhibitor with improved activity against multiple HIV-1 strains including those resistant to the currently used anti-HIV-1 drug enfuvirtide. Its superior antiviral potency in comparison with the respective pharmacophoric moieties is in consonance with the dual binding of viral gp41 and host factor CCR5. Therefore, our work provides a potent artificial peptide-based bifunctional HIV-1 entry inhibitor and highlights the multitarget-directed ligands approach in the development of novel therapeutic anti-HIV-1 agents.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lujia Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Jiahui Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| |
Collapse
|
7
|
Engineering T-Cell Resistance to HIV-1 Infection via Knock-In of Peptides from the Heptad Repeat 2 Domain of gp41. mBio 2022; 13:e0358921. [PMID: 35073736 PMCID: PMC8787484 DOI: 10.1128/mbio.03589-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous studies suggest that short peptides from the heptad repeat 2 (HR2) domain of gp41 expressed on the cell surface are more potent inhibitors of HIV-1 entry than soluble analogs. However, their therapeutic potential has only been examined using lentiviral vectors. Here, we aimed to develop CRISPR/Cas9-based fusion inhibitory peptide knock-in (KI) technology for the generation and selection of HIV-1-resistant T cells. First, we embedded a series of HIV-1 fusion inhibitory peptides in CD52, the shortest glycosylphosphatidylinositol (GPI)-anchored protein, which efficiently delivers epitope tags to the cell surface and maintains a sufficient level of KI. Among the seven peptides tested, MT-C34, HP-23L, and 2P23 exhibited significant activity against both cell-free and cell-to-cell HIV-1 infection. The shed variant of MT-C34 provided insufficient protection against HIV-1 due to its low concentration in the culture medium. Using Cas9 plasmids or ribonucleoprotein electroporation and peptide-specific antibodies, we sorted CEM/R5 cells with biallelic KI of MT-C34 and 2P23 peptides at the CXCR4 locus. In combination, these peptides provided a higher level of protection than individual KI. By extending homology arms and cloning donor DNA into a plasmid containing signals for nuclear localization, we achieved KI of MT-C34 into the CXCR4 locus and HIV-1 proviral DNA at levels of up to 35% in the T-cell line and up to 4 to 5% in primary CD4 lymphocytes. Compared to lentiviral delivery, KI resulted in the higher MT-C34 surface expression and stronger protection of lymphocytes from HIV-1. Thus, we demonstrate that KI is a viable strategy for peptide-based therapy of HIV infection. IMPORTANCE HIV is a human lentivirus that infects CD4-positive immune cells and, when left untreated, manifests in the fatal disease known as AIDS. Antiretroviral therapy (ART) does not lead to viral clearance, and HIV persists in the organism as a latent provirus. One way to control infection is to increase the population of HIV-resistant CD4 lymphocytes via entry molecule knockout or expression of different antiviral genes. Peptides from the heptad repeat (HR) domain of gp41 are potent inhibitors of HIV-1 fusion, especially when designed to express on the cell surface. Individual gp41 peptides encoded by therapeutic lentiviral vectors have been evaluated and some have entered clinical trials. However, a CRISPR/Cas9-based gp41 peptide delivery platform that operates through concomitant target gene modification has not yet been developed due to low knock-in (KI) rates in primary cells. Here, we systematically evaluated the antiviral activity of different HR2 peptides cloned into the shortest carrier molecule, CD52. The resulting small-size transgene constructs encoding selected peptides, in combination with improvements to enhance donor vector nuclear import, helped to overcome precise editing restrictions in CD4 lymphocytes. Using KI into CXCR4, we demonstrated different options for target gene modification, effectively protecting edited cells against HIV-1.
Collapse
|
8
|
Wang C, Wang X, Wang H, Pu J, Li Q, Li J, Liu Y, Lu L, Jiang S. A "Two-Birds-One-Stone" Approach toward the Design of Bifunctional Human Immunodeficiency Virus Type 1 Entry Inhibitors Targeting the CCR5 Coreceptor and gp41 N-Terminal Heptad Repeat Region. J Med Chem 2021; 64:11460-11471. [PMID: 34261320 DOI: 10.1021/acs.jmedchem.1c00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previous studies have reported the stepwise nature of human immunodeficiency virus type 1 (HIV-1) entry and the pivotal role of coreceptor CCR5 and the gp41 N-terminal heptad repeat (NHR) region in this event. With this in mind, we herein report a dual-targeted drug compound featuring bifunctional entry inhibitors, consisting of a piperidine-4-carboxamide-based CCR5 antagonist, TAK-220, and a gp41 NHR-targeting fusion-inhibitory peptide, C34. The resultant chimeras were constructed by linking both pharmacophores with a polyethylene glycol spacer. One chimera, CP12TAK, exhibited exceptionally potent antiviral activity, about 40- and 306-fold over that of its parent inhibitors, C34 and TAK-220, respectively. In addition to R5-tropic viruses, CP12TAK also strongly inhibited infection of X4-tropic HIV-1 strains. These data are promising for the further development of CP12TAK as a new anti-HIV-1 drug. Results show that this strategy could be extended to the design of therapies against infection of other enveloped viruses.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Jiahui Li
- Key Laboratory of Structure-based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| |
Collapse
|
9
|
Poh CL, Lalani S. Strategies to identify and develop antiviral peptides. VITAMINS AND HORMONES 2021; 117:17-46. [PMID: 34420580 DOI: 10.1016/bs.vh.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The emergence and re-emergence of viral pathogens capable of causing epidemics or pandemics pose a serious healthcare burden. Small molecule antivirals used in conventional therapy have given rise to the severe problem of viral resistance against them. Peptides are generally considered safe, effective and are less likely to induce viral resistance. Antiviral peptides can be identified from screening of phage display of combinational peptide libraries, peptide array libraries or designed against viral targets. Limitations of peptides such as bioavailability can be improved with chemical modifications. Nanotechnology can further improve the stability of peptides in systemic circulation and enhance the antiviral activity of peptides, making them an appealing therapeutic option.
Collapse
Affiliation(s)
- Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Subang Jaya, Selangor, Malaysia.
| | - Salima Lalani
- Centre for Virus and Vaccine Research, Sunway University, Subang Jaya, Selangor, Malaysia; Department of Biological Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Jurado S, Cano-Muñoz M, Polo-Megías D, Conejero-Lara F, Morel B. Thermodynamic dissection of the interface between HIV-1 gp41 heptad repeats reveals cooperative interactions and allosteric effects. Arch Biochem Biophys 2020; 688:108401. [PMID: 32376316 DOI: 10.1016/j.abb.2020.108401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 11/27/2022]
Abstract
HIV-1 glycoprotein 41 (gp41) mediates fusion between virus and target cells by folding into a fusion active state, in which the C-terminal heptad repeat (CHR) regions associate externally to the N-terminal heptad repeat (NHR) trimer and form a very stable six-helix bundle coiled-coil structure. Therefore, interfering with the NHR-CHR interaction of gp41 is a promising therapeutic approach against HIV-1. However, a full understanding of the molecular and mechanistic details of this interaction is still incomplete. Here, we use single-chain, chimeric proteins (named covNHR) that reproduce accurately the CHR-NHR interactions to analyze the binding thermodynamics of several peptides with different length from the CHR region. The results indicate that cooperative binding involving two or more pockets of the NHR groove is necessary to obtain relevant affinities and that the binding energy is broadly distributed along the interface, underlining a crucial role of a middle pocket to achieve tight binding. In contrast, targeting only the deep hydrophobic pocket is insufficient to achieve significant affinity. Moreover, calorimetry experiments in combination with limited proteolysis performed using a mutant with occluded binding in the N-terminal pocket reveal the existence of an allosteric communication between the different regions. This study is the first detailed thermodynamic dissection of the NHR-CHR interaction in gp41 and contributes therefore to a better understanding of HIV fusion. These results are relevant for the development of potential fusion inhibitors.
Collapse
Affiliation(s)
- Samuel Jurado
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Mario Cano-Muñoz
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Daniel Polo-Megías
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Bertrand Morel
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
11
|
Ancy I, Sivanandam M, Kalaivani R, Kumaradhas P. Insights of inhibition mechanism of sifuvirtide and MT-sifuvirtide against wild and mutant HIV-1 envelope glycoprotein41: a molecular dynamics simulation and binding free energy study. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1716978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Iruthayaraj Ancy
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Magudeeswaran Sivanandam
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Raju Kalaivani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Poomani Kumaradhas
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
12
|
Yu D, Su Y, Ding X, Zhu Y, Qin B, Chong H, Cui S, He Y. Structural and Functional Characterization of the Secondary Mutation N126K Selected by Various HIV-1 Fusion Inhibitors. Viruses 2020; 12:v12030326. [PMID: 32197300 PMCID: PMC7150849 DOI: 10.3390/v12030326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/15/2020] [Accepted: 03/03/2020] [Indexed: 01/15/2023] Open
Abstract
Peptides derived from the C-terminal heptad repeat (CHR) region of HIV-1 gp41 is potent viral membrane fusion inhibitors, such as the first clinically approved peptide drug T20 and a group of newly-designed peptides. The resistance profiles of various HIV-1 fusion inhibitors were previously characterized, and the secondary mutation N126K in the gp41 CHR was routinely identified during the in vitro and in vivo selections. In this study, the functional and structural relevance of the N126K mutation has been characterized from multiple angles. First, we show that a single N126K mutation across several HIV-1 isolates conferred mild to moderate cross-resistances. Second, the N126K mutation exerted different effects on Env-mediated HIV-1 entry and cell-cell fusion. Third, the N126K mutation did not interfere with the expression and processing of viral Env glycoproteins, but it disrupted the Asn126-based glycosylation site in gp41. Fourth, the N126K mutation was verified to enhance the thermal stability of 6-HB conformation. Fifth, we determined the crystal structure of a 6-HB bearing the N126K mutation, which revealed the interhelical and intrahelical interactions underlying the increased thermostability. Therefore, our data provide new information to understand the mechanism of HIV-1 gp41-mediated cell fusion and its resistance mode to viral fusion inhibitors.
Collapse
Affiliation(s)
- Danwei Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang Su
- Department of Lab Medicine, Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xiaohui Ding
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: ; Tel.: +86-10-67870275
| |
Collapse
|
13
|
The Tryptophan-Rich Motif of HIV-1 gp41 Can Interact with the N-Terminal Deep Pocket Site: New Insights into the Structure and Function of gp41 and Its Inhibitors. J Virol 2019; 94:JVI.01358-19. [PMID: 31619552 DOI: 10.1128/jvi.01358-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 11/20/2022] Open
Abstract
Refolding of the HIV-1 gp41 N- and C-terminal heptad repeats (NHR and CHR, respectively) into a six-helix bundle (6-HB) juxtaposes viral and cellular membranes for fusion. The CHR-derived peptide T20 is the only clinically approved viral fusion inhibitor and has potent anti-HIV activity; however, its mechanism of action is not fully understood. In this study, we surprisingly found that T20 disrupted the α-helical conformation of the NHR-derived peptide N54 through its C-terminal tryptophan-rich motif (TRM) and that synthetic short peptides containing the TRM sequence, TRM8 and TRM12, disrupted the N54 helix in a dose-dependent manner. Interestingly, TRM8 efficiently interfered with the secondary structures of three overlapping NHR peptides (N44, N38, and N28) and interacted with N28, which contains mainly the deep NHR pocket-forming sequence, with high affinity, suggesting that TRM targeted the NHR pocket site to mediate the disruption. Unlike TRM8, the short peptide corresponding to the pocket-binding domain (PBD) of the CHR helix had no such disruptive effect, and the CHR peptide C34 could form a stable 6-HB with the NHR helix; however, addition of the TRM to the C terminus of C34 resulted in a peptide (C46) that destroyed the NHR helix. Although the TRM peptides alone had no anti-HIV activity and could not block the formation of 6-HB conformation, substitution of the TRM for the PBD in C34 resulted in a mutant inhibitor (C34TRM) with high binding and inhibitory capacities. Combined, the present data inform a new mode of action of T20 and the structure-function relationship of gp41.IMPORTANCE The HIV-1 Env glycoprotein mediates membrane fusion and is conformationally labile. Despite extensive efforts, the structural property of the native fusion protein gp41 is largely unknown, and the mechanism of action of the gp41-derived fusion inhibitor T20 remains elusive. Here, we report that T20 and its C-terminal tryptophan-rich motif (TRM) can efficiently impair the conformation of the gp41 N-terminal heptad repeat (NHR) coiled coil by interacting with the deep NHR pocket site. The TRM sequence has been verified to possess the ability to replace the pocket-binding domain of C34, a fusion inhibitor peptide with high anti-HIV potency. Therefore, our studies have not only facilitated understanding of the mechanism of action of T20 and developed novel HIV-1 fusion inhibitors but also provided new insights into the structural property of the prefusion state of gp41.
Collapse
|
14
|
Meng G, Pu J, Li Y, Han A, Tian Y, Xu W, Zhang T, Li X, Lu L, Wang C, Jiang S, Liu K. Design and Biological Evaluation of m-Xylene Thioether-Stapled Short Helical Peptides Targeting the HIV-1 gp41 Hexameric Coiled-Coil Fusion Complex. J Med Chem 2019; 62:8773-8783. [PMID: 31513410 DOI: 10.1021/acs.jmedchem.9b00882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Short peptide-based inhibition of fusion remains an attractive goal in antihuman immunodeficiency virus (HIV) research based on its potential for the development of technically and economically desirable antiviral agents. Herein, we report the use of the dithiol bisalkylation reaction to generate a series of m-xylene thioether-stapled 22-residue α-helical peptides that have been identified as fusion inhibitors targeting HIV-1 glycoprotein 41 (gp41). The peptide sequence is based on the helix-zone binding domain of the gp41 C-terminal heptad repeat region. We found that one of these stapled peptides, named hCS6ERE, showed promising inhibitory potency against HIV-1 Env-mediated cell-cell fusion and viral replication at a level comparable to the clinically used 36-mer peptide T20. Furthermore, combining hCS6ERE with a fusion inhibitor having a different target site, such as HP23, produced synergistic anti-HIV-1 activity. Collectively, our study offers new insight into the design of anti-HIV peptides with short sequences.
Collapse
Affiliation(s)
- Guangpeng Meng
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Yue Li
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Aixin Han
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Xue Li
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China.,Lindsley F. Kimball Research Institute , New York Blood Center , 310 East 67th Street , New York , New York 10065 , United States
| | - Keliang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China.,State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| |
Collapse
|
15
|
Conserved Residue Asn-145 in the C-Terminal Heptad Repeat Region of HIV-1 gp41 is Critical for Viral Fusion and Regulates the Antiviral Activity of Fusion Inhibitors. Viruses 2019; 11:v11070609. [PMID: 31277353 PMCID: PMC6669600 DOI: 10.3390/v11070609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Entry of HIV-1 into target cells is mediated by its envelope (Env) glycoprotein composed of the receptor binding subunit gp120 and the fusion protein gp41. Refolding of the gp41 N- and C-terminal heptad repeats (NHR and CHR) into a six-helix bundle (6-HB) conformation drives the viral and cellular membranes in close apposition and generates huge amounts of energy to overcome the kinetic barrier leading to membrane fusion. In this study, we focused on characterizing the structural and functional properties of a single Asn-145 residue, which locates at the middle CHR site of gp41 and is extremely conserved among all the HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates. By mutational analysis, we found that Asn-145 plays critical roles for Env-mediated cell-cell fusion and HIV-1 entry. As determined by circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC), the substitution of Asn-145 with alanine (N145A) severely impaired the interactions between the NHR and CHR helices. Asn-145 was also verified to be important for the antiviral activity of CHR-derived peptide fusion inhibitors and served as a turn-point for the inhibitory potency. Intriguingly, Asn-145 could regulate the functionality of the M-T hook structure at the N-terminus of the inhibitors and displayed comparable activities with the C-terminal IDL anchor. Crystallographic studies further demonstrated the importance of Asn-145-mediated interhelical and intrahelical interactions in the 6-HB structure. Combined, the present results have provided valuable information for the structure-function relationship of HIV-1 gp41 and the structure-activity relationship of gp41-dependent fusion inhibitors.
Collapse
|
16
|
Chong H, Xue J, Zhu Y, Cong Z, Chen T, Wei Q, Qin C, He Y. Monotherapy with a low-dose lipopeptide HIV fusion inhibitor maintains long-term viral suppression in rhesus macaques. PLoS Pathog 2019; 15:e1007552. [PMID: 30716118 PMCID: PMC6375636 DOI: 10.1371/journal.ppat.1007552] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/14/2019] [Accepted: 01/02/2019] [Indexed: 11/23/2022] Open
Abstract
Combination antiretroviral therapy (cART) dramatically improves survival of HIV-infected patients, but lifelong treatment can ultimately result in cumulative toxicities and drug resistance, thus necessitating the development of new drugs with significantly improved pharmaceutical profiles. We recently found that the fusion inhibitor T-20 (enfuvirtide)-based lipopeptides possess dramatically increased anti-HIV activity. Herein, a group of novel lipopeptides were designed with different lengths of fatty acids, identifying a stearic acid-modified lipopeptide (LP-80) with the most potent anti-HIV activity. It inhibited a large panel of divergent HIV subtypes with a mean IC50 in the extremely low picomolar range, being > 5,300-fold more active than T-20 and the neutralizing antibody VRC01. It also sustained the potent activity against T-20-resistant mutants and exhibited very high therapeutic selectivity index. Pharmacokinetics of LP-80 in rats and monkeys verified its potent and long-acting anti-HIV activity. In the monkey, subcutaneous administration of 3 mg/kg LP-80 yielded serum concentrations of 1,147 ng/ml after injection 72 h and 9 ng/ml after injection 168 h (7 days), equivalent to 42,062- and 330-fold higher than the measured IC50 value. In SHIV infected rhesus macaques, a single low-dose LP-80 (3 mg/kg) sharply reduced viral loads to below the limitation of detection, and twice-weekly monotherapy could maintain long-term viral suppression. T-20 is the only clinically approved viral fusion inhibitor, which is used in combination therapy for HIV-1 infection; however, it exhibits relatively low antiviral activity and easily induces drug resistance. Here we report a lipopeptide fusion inhibitor termed LP-80, which exhibits the most potent activity in inhibiting divergent HIV-1 subtypes. Especially, LP-80 has extremely potent and long-acting therapeutic efficacy with very low cytotoxicity, making it an ideal drug candidate for clinical use. Furthermore, LP-80 and its truncated versions can be used as important probes for exploiting the mechanisms of viral fusion and inhibition.
Collapse
Affiliation(s)
- Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yuanmei Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cong
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ting Chen
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Qiang Wei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- * E-mail: (CQ); (YH)
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (CQ); (YH)
| |
Collapse
|
17
|
Structural and Functional Characterization of Membrane Fusion Inhibitors with Extremely Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. J Virol 2018; 92:JVI.01088-18. [PMID: 30089693 DOI: 10.1128/jvi.01088-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/01/2018] [Indexed: 12/28/2022] Open
Abstract
T-20 (enfuvirtide) is the only membrane fusion inhibitor available for the treatment of viral infection; however, it has low anti-human immunodeficiency virus (anti-HIV) activity and a low genetic barrier for drug resistance. We recently reported that T-20 sequence-based lipopeptides possess extremely potent in vitro and in vivo efficacies (X. Ding, Z. Zhang, H. Chong, Y. Zhu, H. Wei, X. Wu, J. He, X. Wang, Y. He, 2017, J Virol 91:e00831-17, https://doi.org/10.1128/JVI.00831-17; H. Chong, J. Xue, Y. Zhu, Z. Cong, T. Chen, Y. Guo, Q. Wei, Y. Zhou, C. Qin, Y. He, 2018, J Virol 92:e00775-18, https://doi.org/10.1128/JVI.00775-18). Here, we focused on characterizing the structure-activity relationships of the T-20 derivatives. First, a novel lipopeptide termed LP-52 was generated with improved target-binding stability and anti-HIV activity. Second, a large panel of truncated lipopeptides was characterized, revealing a 21-amino-acid sequence core structure. Third, it was surprisingly found that the addition of the gp41 pocket-binding residues in the N terminus of the new inhibitors resulted in increased binding but decreased antiviral activities. Fourth, while LP-52 showed the most potent activity in inhibiting divergent HIV-1 subtypes, its truncated versions, such as LP-55 (25-mer) and LP-65 (24-mer), still maintained their potencies at very low picomolar concentrations; however, both the N- and C-terminal motifs of LP-52 played crucial roles in the inhibition of T-20-resistant HIV-1 mutants, HIV-2, and simian immunodeficiency virus (SIV) isolates. Fifth, we verified that LP-52 can bind to target cell membranes and human serum albumin and has low cytotoxicity and a high genetic barrier to inducing drug resistance.IMPORTANCE Development of novel membrane fusion inhibitors against HIV and other enveloped viruses is highly important in terms of the peptide drug T-20, which remains the only one for clinical use, even if it is limited by large dosages and resistance. Here, we report a novel T-20 sequence-based lipopeptide showing extremely potent and broad activities against HIV-1, HIV-2, SIV, and T-20-resistant mutants, as well as an extremely high therapeutic selectivity index and genetic resistance barrier. The structure-activity relationship (SAR) of the T-20 derivatives has been comprehensively characterized, revealing a critical sequence core structure and the target sites of viral vulnerability that do not include the gp41 pocket. The results also suggest that membrane-anchored inhibitors possess unique modes of action relative to unconjugated peptides. Combined, our series studies have not only provided drug candidates for clinical development but also offered important tools to elucidate the mechanisms of viral fusion and inhibition.
Collapse
|
18
|
Yu D, Ding X, Liu Z, Wu X, Zhu Y, Wei H, Chong H, Cui S, He Y. Molecular mechanism of HIV-1 resistance to sifuvirtide, a clinical trial-approved membrane fusion inhibitor. J Biol Chem 2018; 293:12703-12718. [PMID: 29929981 DOI: 10.1074/jbc.ra118.003538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Indexed: 12/25/2022] Open
Abstract
Host cell infection with HIV-1 requires fusion of viral and cell membranes. Sifuvirtide (SFT) is a peptide-based HIV-1 fusion inhibitor approved for phase III clinical trials in China. Here, we focused on characterizing HIV-1 variants highly resistant to SFT to gain insight into the molecular resistance mechanism. Three primary substitutions (V38A, A47I, and Q52R) located at the inhibitor-binding site of HIV-1's envelope protein (Env) and one secondary substitution (N126K) located at the C-terminal heptad repeat region of the viral protein gp41, which is part of the envelope, conferred high SFT resistance and cross-resistance to the anti-HIV-1 drug T20 and the template peptide C34. Interestingly, SFT's resistance profile could be dramatically improved with an M-T hook structure-modified SFT (MTSFT) and with short-peptide inhibitors that mainly target the gp41 pocket (2P23 and its lipid derivative LP-19). We found that the V38A and Q52R substitutions reduce the binding stabilities of SFT, C34, and MTSFT, but they had no effect on the binding of 2P23 and LP-19; in sharp contrast, the A47I substitution enhanced fusion inhibitor binding. Furthermore, the primary resistance substitutions impaired Env-mediated membrane fusion and cell entry and changed the conformation of the gp41 core structure. Importantly, whereas the V38A and Q52R substitutions disrupted the N-terminal helix of gp41, a single A47I substitution greatly enhanced its thermostability. Taken together, our results provide crucial structural insights into the mechanism of HIV-1 resistance to gp41-dependent fusion inhibitors, which may inform the development of additional anti-HIV drugs.
Collapse
Affiliation(s)
- Danwei Yu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaohui Ding
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zixuan Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiyuan Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanmei Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huanmian Wei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Beijing 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
19
|
Zhang X, Zhu Y, Hu H, Zhang S, Wang P, Chong H, He J, Wang X, He Y. Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket. Front Cell Infect Microbiol 2018. [PMID: 29535974 PMCID: PMC5834435 DOI: 10.3389/fcimb.2018.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deep hydrophobic pocket of HIV-1 gp41 has been considered a drug target, but short-peptides targeting this site usually lack potent antiviral activity. By applying the M-T hook structure, we previously generated highly potent short-peptide fusion inhibitors that specifically targeted the pocket site, such as MT-SC22EK, HP23L, and LP-11. Here, the crystal structures of HP23L and LP-11 bound to the target mimic peptide N36 demonstrated the critical intrahelical and interhelical interactions, especially verifying that the hook-like conformation was finely adopted while the methionine residue was replaced by the oxidation-less prone residue leucine, and that addition of an extra glutamic acid significantly enhanced the binding and inhibitory activities. The structure of HP23L bound to N36 with two mutations (E49K and L57R) revealed the critical residues and motifs mediating drug resistance and provided new insights into the mechanism of action of inhibitors. Therefore, the present data help our understanding for the structure-activity relationship (SAR) of HIV-1 fusion inhibitors and facilitate the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Xiujuan Zhang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China.,Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanmei Zhu
- Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Hu
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Senyan Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pengfei Wang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huihui Chong
- Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinsheng He
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxian He
- Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition. J Virol 2017; 91:JVI.00831-17. [PMID: 28659478 DOI: 10.1128/jvi.00831-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
The peptide drug enfuvirtide (T20) is the only viral fusion inhibitor used in combination therapy for HIV-1 infection, but it has relatively low antiviral activity and easily induces drug resistance. Emerging studies demonstrate that lipopeptide-based fusion inhibitors, such as LP-11 and LP-19, which mainly target the gp41 pocket site, have greatly improved antiviral potency and in vivo stability. In this study, we focused on developing a T20-based lipopeptide inhibitor that lacks pocket-binding sequence and targets a different site. First, the C-terminal tryptophan-rich motif (TRM) of T20 was verified to be essential for its target binding and inhibition; then, a novel lipopeptide, termed LP-40, was created by replacing the TRM with a fatty acid group. LP-40 showed markedly enhanced binding affinity for the target site and dramatically increased inhibitory activity on HIV-1 membrane fusion, entry, and infection. Unlike LP-11 and LP-19, which required a flexible linker between the peptide sequence and the lipid moiety, addition of a linker to LP-40 sharply reduced its potency, implying different binding modes with the extended N-terminal helices of gp41. Also, interestingly, LP-40 showed more potent activity than LP-11 in inhibiting HIV-1 Env-mediated cell-cell fusion while it was less active than LP-11 in inhibiting pseudovirus entry, and the two inhibitors displayed synergistic antiviral effects. The crystal structure of LP-40 in complex with a target peptide revealed their key binding residues and motifs. Combined, our studies have not only provided a potent HIV-1 fusion inhibitor, but also revealed new insights into the mechanisms of viral inhibition.IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection; however, T20 requires high doses and has a low genetic barrier for resistance, and its inhibitory mechanism and structural basis remain unclear. Here, we report the design of LP-40, a T20-based lipopeptide inhibitor that has greatly improved anti-HIV activity and is a more potent inhibitor of cell-cell fusion than of cell-free virus infection. The binding modes of two classes of membrane-anchoring lipopeptides (LP-40 and LP-11) verify the current fusion model in which an extended prehairpin structure bridges the viral and cellular membranes, and their complementary effects suggest a vital strategy for combination therapy of HIV-1 infection. Moreover, our understanding of the mechanism of action of T20 and its derivatives benefits from the crystal structure of LP-40.
Collapse
|
21
|
Qi Q, Wang Q, Chen W, Du L, Dimitrov DS, Lu L, Jiang S. HIV-1 gp41-targeting fusion inhibitory peptides enhance the gp120-targeting protein-mediated inactivation of HIV-1 virions. Emerg Microbes Infect 2017. [PMID: 28634358 PMCID: PMC5520319 DOI: 10.1038/emi.2017.46] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein- or peptide-based viral inactivators are being developed as novel antiviral drugs with improved efficacy, pharmacokinetics and toxicity profiles because they actively inactivate cell-free human immunodeficiency virus type 1 (HIV-1) virions before attachment to host cells. By contrast, most clinically used antiviral drugs must penetrate host cells to inhibit viral replication. In this study, we pre-treated HIV-1 particles with a gp120-targeting bispecific multivalent protein, 2Dm2m or 4Dm2m, in the presence or absence of the gp41-targeting HIV-1 fusion inhibitory peptides enfuvirtide (T20), T2635, or sifuvirtide (SFT). HIV-1 virions were separated from the inhibitors using PEG-6000, followed by testing of the residual infectivity of the HIV-1 virions. 2Dm2m and 4Dm2m exhibited significant inactivation activity against all HIV-1 strains tested with EC50 values at the low nanomolar level, whereas none of the gp41-targeting peptides showed inactivation activity at concentrations up to 250 nM. Notably, these three peptides significantly enhanced protein-mediated inactivation against cell-free HIV-1 virions, including HIV-1 laboratory-adapted and primary HIV-1 strains, as well as those resistant to T20 or T2635 and virions released from reactivated latently HIV-1-infected cells. These results indicate that the gp120-targeting bispecific multivalent proteins 2Dm2m and 4Dm2m have potential for further development as HIV-1 inactivator-based antiviral drugs for use in the clinic, either alone or in combination with a gp41-targeting HIV-1 fusion inhibitor such as T20, to treat patients with HIV-1 infection and AIDS.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
22
|
A Lipopeptide HIV-1/2 Fusion Inhibitor with Highly Potent In Vitro, Ex Vivo, and In Vivo Antiviral Activity. J Virol 2017; 91:JVI.00288-17. [PMID: 28356533 DOI: 10.1128/jvi.00288-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Peptides derived from the C-terminal heptad repeat (CHR) region of the human immunodeficiency virus type 1 (HIV-1) fusogenic protein gp41 are potent viral entry inhibitors, and currently, enfuvirtide (T-20) is the only one approved for clinical use; however, emerging drug resistance largely limits its efficacy. In this study, we generated a novel lipopeptide inhibitor, named LP-19, by integrating multiple design strategies, including an N-terminal M-T hook structure, an HIV-2 sequence, intrahelical salt bridges, and a membrane-anchoring lipid tail. LP-19 showed stable binding affinity and highly potent, broad, and long-lasting antiviral activity. In in vitro studies, LP-19 efficiently inhibited HIV-1-, HIV-2-, and simian immunodeficiency virus (SIV)-mediated cell fusion, viral entry, and infection, and it was highly active against diverse subtypes of primary HIV-1 isolates and inhibitor-resistant mutants. Ex vivo studies demonstrated that LP-19 exhibited dramatically increased anti-HIV activity and an extended half-life in rhesus macaques. In short-term monotherapy, LP-19 reduced viral loads to undetectable levels in acutely and chronically simian-human immunodeficiency virus (SHIV)-infected monkeys. Therefore, this study offers an ideal HIV-1/2 fusion inhibitor for clinical development and emphasizes the importance of the viral fusion step as a drug target.IMPORTANCE The peptide drug T-20 is the only viral fusion inhibitor in the clinic, which is used for combination therapy of HIV-1 infection; however, it requires a high dosage and easily induces drug resistance, calling for a new drug with significantly improved pharmaceutical profiles. Here, we have developed a short-lipopeptide-based fusion inhibitor, termed LP-19, which mainly targets the conserved gp41 pocket site and shows highly potent inhibitory activity against HIV-1, HIV-2, and even SIV isolates. LP-19 exhibits dramatically increased antiviral activity and an extended half-life in rhesus macaques, and it has potent therapeutic efficacy in SHIV-infected monkeys, highlighting its high potential as a new viral fusion inhibitor for clinical use.
Collapse
|
23
|
Creating an Artificial Tail Anchor as a Novel Strategy To Enhance the Potency of Peptide-Based HIV Fusion Inhibitors. J Virol 2016; 91:JVI.01445-16. [PMID: 27795416 DOI: 10.1128/jvi.01445-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
20 (enfuvirtide) and other peptides derived from the human immunodeficiency virus type 1 (HIV-1) gp41 C-terminal heptad repeat (CHR) region inhibit HIV fusion by binding to the hydrophobic grooves on the N-terminal heptad repeat (NHR) trimer and blocking six-helix-bundle (6-HB) formation. Several strategies focusing on the binding grooves of the NHR trimer have been adopted to increase the antiviral activity of the CHR peptides. Here, we developed a novel and simple strategy to greatly enhance the potency of the existing peptide-based HIV fusion inhibitors. First, we identified a shallow pocket adjacent to the groove in the N-terminal region of NHR trimer as a new drug target, and then we designed several short artificial peptides to fit this target. After the addition of IDL (Ile-Asp-Leu) to the C terminus of CHR peptide WQ or MT-WQ, the conjugated peptides, WQ-IDL and MT-WQ-IDL, showed much more potent activities than WQ and T20, respectively, in inhibiting HIV-1 IIIB infection. WQ-IDL and MT-WQ-IDL were also more effective than WQ in blocking HIV-1 Env-mediated membrane fusion and had higher levels of binding affinity with NHR peptide N46. We solved the crystal structure of the 6-HB formed by MT-WQ-IDL and N46 and found that, besides the N-terminal MT hook tail, the IDL tail anchor of MT-WQ-IDL also binds with the shallow hydrophobic pocket outside the groove of the NHR trimer, resulting in enhanced inhibition of HIV-1 fusion with the target cell. It is expected that this novel approach can be widely used to improve the potency of peptidic fusion inhibitors against other enveloped viruses with class I fusion proteins. IMPORTANCE The hydrophobic groove of the human immunodeficiency virus type 1 (HIV-1) gp41 NHR trimer has been known as the classic drug target to develop fusion inhibitors derived from the gp41 CHR. Here, we developed a novel and simple strategy to improve the existing peptide-based HIV fusion inhibitors. We identified a shallow pocket adjacent to the groove in the NHR trimer and added a short artificial peptide consisting of three amino acids (IDL) to the C terminus of a fusion inhibitor to fit this new target. The inhibition activity of this new conjugated peptide was significantly enhanced, by 77-fold, making it much more potent than T20 (enfuvirtide) and suggesting that the IDL tail can be adopted for optimizing existing HIV-1 CHR peptide fusion inhibitors. This new approach of identifying a potential binding pocket outside the traditional target and creating an artificial tail anchor can be widely applied to design novel fusion inhibitors against other class I enveloped viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV).
Collapse
|
24
|
A Helical Short-Peptide Fusion Inhibitor with Highly Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. J Virol 2016; 91:JVI.01839-16. [PMID: 27795437 DOI: 10.1128/jvi.01839-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) has already spread to different regions worldwide, and currently about 1 to 2 million people have been infected, calling for new antiviral agents that are effective on both HIV-1 and HIV-2 isolates. T20 (enfuvirtide), a 36-mer peptide derived from the C-terminal heptad repeat region (CHR) of gp41, is the only clinically approved HIV-1 fusion inhibitor, but it easily induces drug resistance and is not active on HIV-2. In this study, we first demonstrated that the M-T hook structure was also vital to enhancing the binding stability and inhibitory activity of diverse CHR-based peptide inhibitors. We then designed a novel short peptide (23-mer), termed 2P23, by introducing the M-T hook structure, HIV-2 sequences, and salt bridge-forming residues. Promisingly, 2P23 was a highly stable helical peptide with high binding to the surrogate targets derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV). Consistent with this, 2P23 exhibited potent activity in inhibiting diverse subtypes of HIV-1 isolates, T20-resistant HIV-1 mutants, and a panel of primary HIV-2 isolates, HIV-2 mutants, and SIV isolates. Therefore, we conclude that 2P23 has high potential to be further developed for clinical use, and it is also an ideal tool for exploring the mechanisms of HIV-1/2- and SIV-mediated membrane fusion. IMPORTANCE The peptide drug T20 is the only approved HIV-1 fusion inhibitor, but it is not active on HIV-2 isolates, which have currently infected 1 to 2 million people and continue to spread worldwide. Recent studies have demonstrated that the M-T hook structure can greatly enhance the binding and antiviral activities of gp41 CHR-derived inhibitors, especially for short peptides that are otherwise inactive. By combining the hook structure, HIV-2 sequence, and salt bridge-based strategies, the short peptide 2P23 has been successfully designed. 2P23 exhibits prominent advantages over many other peptide fusion inhibitors, including its potent and broad activity on HIV-1, HIV-2, and even SIV isolates, its stability as a helical, oligomeric peptide, and its high binding to diverse targets. The small size of 2P23 would benefit its synthesis and significantly reduce production cost. Therefore, 2P23 is an ideal candidate for further development, and it also provides a novel tool for studying HIV-1/2- and SIV-mediated cell fusion.
Collapse
|
25
|
Zhu Y, Su S, Qin L, Wang Q, Shi L, Ma Z, Tang J, Jiang S, Lu L, Ye S, Zhang R. Rational improvement of gp41-targeting HIV-1 fusion inhibitors: an innovatively designed Ile-Asp-Leu tail with alternative conformations. Sci Rep 2016; 6:31983. [PMID: 27666394 PMCID: PMC5036048 DOI: 10.1038/srep31983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/01/2016] [Indexed: 11/08/2022] Open
Abstract
Peptides derived from the C-terminal heptad repeat (CHR) of HIV gp41 have been developed as effective fusion inhibitors against HIV-1, but facing the challenges of enhancing potency and stability. Here, we report a rationally designed novel HIV-1 fusion inhibitor derived from CHR-derived peptide (Trp628~Gln653, named CP), but with an innovative Ile-Asp-Leu tail (IDL) that dramatically increased the inhibitory activity by up to 100 folds. We also determined the crystal structures of artificial fusion peptides N36- and N43-L6-CP-IDL. Although the overall structures of both fusion peptides share the canonical six-helix bundle (6-HB) configuration, their IDL tails adopt two different conformations: a one-turn helix with the N36, and a hook-like structure with the longer N43. Structural comparison showed that the hook-like IDL tail possesses a larger interaction interface with NHR than the helical one. Further molecular dynamics simulations of the two 6-HBs and isolated CP-IDL peptides suggested that hook-like form of IDL tail can be stabilized by its binding to NHR trimer. Therefore, CP-IDL has potential for further development as a new HIV fusion inhibitor, and this strategy could be widely used in developing artificial fusion inhibitors against HIV and other enveloped viruses.
Collapse
Affiliation(s)
- Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Lili Qin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Lei Shi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenxuan Ma
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Jianchao Tang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Sheng Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
26
|
Genetic Pathway of HIV-1 Resistance to Novel Fusion Inhibitors Targeting the Gp41 Pocket. J Virol 2015; 89:12467-79. [PMID: 26446597 DOI: 10.1128/jvi.01741-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The peptide drug enfuvirtide (T20) is the only HIV-1 fusion inhibitor in clinical use, but it easily induces drug resistance, calling for new strategies for developing effective drugs. On the basis of the M-T hook structure, we recently developed highly potent short-peptide HIV-1 fusion inhibitors (MTSC22 and HP23), which mainly target the conserved gp41 pocket and possess high genetic barriers to resistance. Here, we focused on the selection and characterization of HIV-1 escape mutants of MTSC22, which revealed new resistance pathways and mechanisms. Two mutations (E49K and L57R) located at the inhibitor-binding site and two mutations (N126K and E136G) located at the C-terminal heptad repeat region of gp41 were identified as conferring high resistance either singly or in combination. While E49K reduced the C-terminal binding of inhibitors via an electrostatic repulsion, L57R dramatically disrupted the N-terminal binding of M-T hook structure and pocket-binding domain. Unlike E49K and N126K, which enhanced the stability of the endogenous viral six-helical bundle core (6-HB), L57R and E136G conversely destabilized the 6-HB structure. We also demonstrated that both primary and secondary mutations caused the structural changes in 6-HB and severely impaired the capability for HIV-1 entry. Collectively, our data provide novel insights into the mechanisms of short-peptide fusion inhibitors targeting the gp41 pocket site and help increase our understanding of the structure and function of gp41 and HIV-1 evolution. IMPORTANCE The deep pocket on the N-trimer of HIV-1 gp41 has been considered an ideal drug target because of its high degree of conservation and essential role in viral entry. Short-peptide fusion inhibitors, which contain an M-T hook structure and mainly target the pocket site, show extremely high binding and inhibitory activities as well as high genetic barriers to resistance. In this study, the HIV-1 mutants resistant to MTSC22 were selected and characterized, which revealed that the E49K and L57R substitutions at the inhibitor-binding site and the N126K and E136G substitutions at the C-terminal heptad repeat region of gp41 critically determine the resistance phenotype. The data provide novel insights into the mechanisms of action of the M-T hook structure-based fusion inhibitors which will help further our understanding of the structure-function relationship of gp41 and molecular pathways of HIV-1 evolution and eventually facilitate the development of new anti-HIV drugs.
Collapse
|
27
|
Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy. Sci Rep 2015; 5:13028. [PMID: 26286358 PMCID: PMC4541410 DOI: 10.1038/srep13028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/15/2015] [Indexed: 01/09/2023] Open
Abstract
Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neither recognized AP3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP3 form a hook-like structure to stabilize interaction between AP3 and NHR helices. Therefore, AP3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.
Collapse
|
28
|
Chong H, Qiu Z, Su Y, He Y. The N-Terminal T-T Motif of a Third-Generation HIV-1 Fusion Inhibitor Is Not Required for Binding Affinity and Antiviral Activity. J Med Chem 2015; 58:6378-88. [PMID: 26256053 DOI: 10.1021/acs.jmedchem.5b00109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highlighted next-generation HIV-1 fusion inhibitor peptide 1 is capped by two threonines. Here, we generated peptide 2 by deleting the T-T motif and compared their structural and antiviral properties. Significantly, two peptides showed similar helical and oligomeric states in solution, comparable binding affinities to the target, and no significant difference to inhibit HIV-1 fusion and infection. Also, the T-T motif was not associated with peptide 1 resistant mutations and its deletion did not affect peptide 1 against enfuvirtide-resistant HIV-1 mutants. The redundancy of the T-T motif was further verified by the model peptide C34 and short peptide inhibitors that mainly target the gp41 pocket, suggesting that the N-terminal T-T motif of peptide 1 could be removed or modified toward the development of new anti-HIV-1 drugs. Consistently, our data have verified that the M-T hook structure rather than the T-T motif is an efficient strategy for short peptide fusion inhibitors.
Collapse
Affiliation(s)
- Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Zonglin Qiu
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Yang Su
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9, Dong Dan San Tiao, Beijing 100730, China
| |
Collapse
|
29
|
Zhu X, Yu F, Liu K, Lu L, Jiang S. An artificial peptide-based HIV-1 fusion inhibitor containing M-T hook structure exhibiting improved antiviral potency and drug resistance profile. Future Virol 2015. [DOI: 10.2217/fvl.15.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SUMMARY Aim: We previously designed an artificial HIV-1 fusion inhibitor, PBDtrp-m4HR. Here, we have added two amino acid residues that can form an M-T hook structure at its N-terminus, with the aim of improving its antiviral potency and drug-resistance profile. Methods: Peptides were synthesized and tested for their inhibitory activity on HIV-1 Env-mediated cell–cell fusion and infection by HIV-1 strains, including those resistant to T2635, the third generation HIV fusion inhibitor, as well as its binding affinity to the gp41 NHR-peptide N36. Results: MT-PBDtrp-m4HR exhibited improved inhibitory activity on HIV-1 infection and Env-mediated cell–cell fusion, displayed an improved drug-resistance profile and increased NHR-binding affinity. Conclusion: The added M-T hook is able to enhance or stabilize the interaction between MT-PBDtrp-m4HR and the viral gp41 NHR domain. Therefore, MT-PBDtrp-m4HR has potential to be further developed as a new HIV fusion inhibitor. The approach described in this study can also be used for designing artificial peptides against other enveloped viruses with class I membrane fusion proteins.
Collapse
Affiliation(s)
- Xiaojie Zhu
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Yu
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Keliang Liu
- Beijing Institute of Pharmacology & Toxicology, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
30
|
The HEPT Analogue WPR-6 Is Active against a Broad Spectrum of Nonnucleoside Reverse Transcriptase Drug-Resistant HIV-1 Strains of Different Serotypes. Antimicrob Agents Chemother 2015; 59:4882-8. [PMID: 26055365 DOI: 10.1128/aac.00440-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/30/2015] [Indexed: 12/11/2022] Open
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are important components of the highly active antiretroviral therapy (HAART) used to treat human immunodeficiency type 1 virus (HIV-1). However, because of the emergence of drug resistance and the adverse effects of current anti-HIV drugs, it is essential to develop novel NNRTIs with an excellent safety profile, improved activity against NNRTI-resistant viruses, and enhanced activity against clinical isolates of different subtypes. Here, we have identified 1-[(benzyloxy)methyl]-6-(3,5-dimethylbenzyl)-5-iodopyrimidine-2,4(1H,3H)-dione (WPR-6), a novel NNRTI with a 50% effective concentration (EC50) of 2 to 4 nM against laboratory-adapted HIV-1 strain SF33 and an EC50 of 7 to 14 nM against nucleoside reverse transcriptase inhibitor-resistant HIV-1 strain 7391 with a therapeutic index of >1 × 10(4). A panel of five representative clinical virus isolates of different subtypes circulating predominantly in China was highly sensitive to WPR-6, with EC50s ranging from 1 to 6 nM. In addition, WPR-6 showed excellent antiviral potency against the most prevalent NNRTI-resistant viruses containing the K103N and Y181C mutations. To determine whether WPR-6 selects for novel resistant mutants, in vitro resistance selection was conducted with laboratory-adapted HIV-1 strain SF33 on MT-4 cells. The results demonstrated that V106I and Y188L were the two dominant NNRTI-associated resistance mutations detected in the breakthrough viruses. Taken together, these in vitro data indicate that WPR-6 has greater efficacy than the reference HEPT analogue TNK651 and the marketed drug nevirapine against HIV-1. However, to develop it as a new NNRTI, further improvement of its pharmacological properties is warranted.
Collapse
|
31
|
Identification and characterization of a subpocket on the N-trimer of HIV-1 Gp41: implication for viral entry and drug target. AIDS 2015; 29:1015-24. [PMID: 26125136 DOI: 10.1097/qad.0000000000000683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Crystallographic studies of HIV-1 gp41 demonstrate a stable six-helix bundle (6-HB) folded by trimeric N and C-terminal heptad repeats (NHR and CHR), and a deep hydrophobic pocket (pocket-1) on the NHR helices (N-trimer); however, previous crystal structures of 6-HB core were determined by peptide fragments missing the downstream sequence of pocket-1; thus, the structural features of this site could not be observed. DESIGN We recently determined several 6-HB structures containing the pocket-1 and its downstream site. Here, we focused to investigate the structural features of N-trimer previously uncharacterized. METHODS Biophysical, biochemical and functional approaches were combined to characterize the downstream residues of pocket-1. RESULTS A subpocket (designated pocket-2) was visualized on the C-terminal portion of N-trimer, which is formed by a cluster of seven residues, including Leu587, Lys588 and Glu584 on one NHR helix and Tyr586, Val583, Ala582 and Arg579 of another NHR helix. Mutagenesis studies demonstrated that the pocket-2 residues play essential roles for HIV-1 Env-mediated cell entry and critically determine the antiviral activity of NHR-derived peptide fusion inhibitor T21. Further, the pocket-2 mutations dramatically impaired the thermostability and conformation of 6-HB structure and reduced the binding affinity of CHR-derived inhibitor HP23 that specifically targets the deep pocket-1. CONCLUSION These data have provided important information for the structure-function relationship of HIV-1 gp41 and for the development of antiviral entry inhibitors.
Collapse
|
32
|
Mechanism of HIV-1 Resistance to Short-Peptide Fusion Inhibitors Targeting the Gp41 Pocket. J Virol 2015; 89:5801-11. [PMID: 25787278 DOI: 10.1128/jvi.00373-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The deep hydrophobic pocket on the N trimer of HIV-1 gp41 has been considered an ideal drug target. On the basis of the M-T hook structure, we recently developed short-peptide-based HIV-1 fusion inhibitors (MTSC22 and HP23), which mainly target the pocket site and possess highly potent antiviral activity. In this study, we focused on investigating their resistance pathways and mechanisms by escape HIV-1 mutants to SC22EK, a template peptide for MTSC22 and HP23. Two substitutions, E49K and N126K, located, respectively, at the N- and C-heptad repeat regions of gp41, were identified as conferring high resistance to the inhibitors targeting the pocket and cross-resistance to enfuvirtide (T20) and sifuvirtide (SFT). The underlying mechanisms of SC22EK-induced resistance include the following: (i) significantly reduced binding affinity of the inhibitors, (ii) dramatically enhanced interaction of the viral six-helix bundle, and (iii)severely damaged functionality of the viral Env complex. Our data have provided important information for the structure-function relationship of gp41 and the structure-activity relationship of viral fusion inhibitors. IMPORTANCE Enfuvirtide (T20) is the only HIV-1 fusion inhibitor in clinical use, but the problem of resistance significantly limits its use, calling for new strategies or concepts to develop next-generation drugs. On the basis of the M-T hook structure, short-peptide HIV-1 fusion inhibitors specifically targeting the gp41 pocket site exhibit high binding and antiviral activities. Here, we investigated the molecular pathway of HIV-1 resistance to the short inhibitors by selecting and mapping the escape mutants. The key substitutions for resistance and the underlying mechanisms have been finely characterized. The data provide important information for the structure-function relationship of gp41 and its inhibitors and will definitely help our future development of novel drugs that block gp41-dependent fusion.
Collapse
|
33
|
Abstract
OBJECTIVE T20 (Enfuvirtide), which is a 36-residue peptide derived from the C-terminal heptad repeat (CHR) of gp41, is the only clinically available HIV-1 fusion inhibitor, but it easily induces drug resistance, which calls for next-generation drugs. DESIGN We recently demonstrated that the M-T hook structure can be used to design a short CHR peptide that specifically targets the conserved gp41 pocket rather than the T20-resistant sites. We attempted to develop more potent HIV-1 fusion inhibitors based on the structure-activity relationship of MT-SC22EK. METHODS Multiple biophysical and functional approaches were performed to determine the structural features, binding affinities and anti-HIV activities of the inhibitors. RESULTS The 23-residue peptide HP23, which mainly contains the M-T hook structure and pocket-binding sequence, showed a helical and trimeric state in solution. HP23 had dramatically improved binding stability and antiviral activity, and it was the most potent inhibitor of the M-T hook-modified and unmodified control peptides. More promisingly, HP23 was highly active in the inhibition of diverse HIV-1 subtypes, including T20 and MT-SC22EK resistant HIV-1 mutants, and it exhibited a high genetic barrier to the development of resistance. CONCLUSION Our studies delivered an ideal HIV-1 fusion inhibitor that specifically targeted the highly conserved gp41 pocket and possessed potent binding and antiviral activity. Furthermore, HP23 can serve as a critical tool to explore the mechanisms of HIV-1 fusion and inhibition.
Collapse
|
34
|
Xia S, Liu Q, Wang Q, Sun Z, Su S, Du L, Ying T, Lu L, Jiang S. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res 2014; 194:200-10. [PMID: 25451066 PMCID: PMC7114414 DOI: 10.1016/j.virusres.2014.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/04/2023]
Abstract
The recent outbreak of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) infection has led to more than 800 laboratory-confirmed MERS cases with a high case fatality rate (∼35%), posing a serious threat to global public health and calling for the development of effective and safe therapeutic and prophylactic strategies to treat and prevent MERS-CoV infection. Here we discuss the most recent studies on the structure of the MERS-CoV spike protein and its role in virus binding and entry, and the development of MERS-CoV entry/fusion inhibitors targeting the S1 subunit, particularly the receptor-binding domain (RBD), and the S2 subunit, especially the HR1 region, of the MERS-CoV spike protein. We then look ahead to future applications of these viral entry/fusion inhibitors, either alone or in combination with specific and nonspecific MERS-CoV replication inhibitors, for the treatment and prevention of MERS-CoV infection.
Collapse
Affiliation(s)
- Shuai Xia
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Qi Liu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China; Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali 671000, China
| | - Qian Wang
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Zhiwu Sun
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Shan Su
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Tianlei Ying
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Lu Lu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
35
|
Zhang D, Li W, Jiang S. Peptide fusion inhibitors targeting the HIV-1 gp41: a patent review (2009 - 2014). Expert Opin Ther Pat 2014; 25:159-73. [PMID: 25428639 DOI: 10.1517/13543776.2014.987752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION As the first peptide HIV fusion inhibitor targeting gp41, enfuvirtide (T20) was approved by the US FDA in 2003 as a salvage therapy for HIV/AIDS patients who failed to respond to the then existing antiretroviral therapeutics. However, its clinical application is limited by its relatively low potency, low genetic barrier to drug resistance and short half-life. Therefore, it is essential to develop new peptide HIV fusion inhibitors with improved antiviral efficacy, drug-resistance profile and pharmaceutical properties. AREAS COVERED In this paper, we reviewed the patents, patent applications and related research articles for the development of new peptide fusion inhibitors targeting the HIV-1 gp41 published between 2009 and 2014. EXPERT OPINION To improve enfuvirtide's anti-HIV efficacy, drug-resistance profile, half-life and pharmaceutical properties, the best approaches include the addition of the pocket-binding domain (PBD) to the N-terminus of T20 and linking of the M-T hook to the N-terminus of PBD, as well as conjugation of cholesterol, serum albumin-binding motif or gp120-binding fragment with a PBD-containing C-terminal heptad repeat-peptide. Therefore, sifuvirtide from Tianjin FusoGen Pharmaceuticals, Inc., albuvirtide from Frontier Biotechnologies Co., Ltd., cholesterol-conjugated HIV fusion inhibitor from the Institute of Pathogen Biology, Chinese Academy of Medical Science, 2DLT, a bivalent HIV fusion inhibitor/inactivator, and an enfuvirtide/sifuvirtide combination regimen from the New York Blood Center may all have potential as next-generation HIV fusion inhibitors targeting gp41 for clinical use.
Collapse
Affiliation(s)
- Dongmei Zhang
- Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | | | | |
Collapse
|