1
|
Li Y, Jiang T, Mao J, Xu F, Zhang R, Yan J, Cai J, Xie Y. Prevalence and genetic diversity of optrA-positive enterococci isolated from patients in an anorectal surgery ward of a Chinese hospital. Front Microbiol 2024; 15:1481162. [PMID: 39583545 PMCID: PMC11581948 DOI: 10.3389/fmicb.2024.1481162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Linezolid-resistant enterococci have increased in recent years due to the worldwide spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and environmental settings. This study investigated the carriage of optrA-positive enterococci among patients in the anorectal surgery ward in Hangzhou, China, and characterized the genetic context of optrA. A total of 173 wound secretion samples were obtained to screen optrA-positive enterococci. Of the 173 samples, 15 (8.67%) were positive for optrA, including 12 Enterococcus faecalis, two E. faecium, and one E. hirae. Multilocus sequence type analysis revealed that 12 optrA-positive E. faecalis isolates belonged to eight different sequence types (STs), of which ST16 was the main type. Eight optrA variants were identified, whose optrA flanking regions with a fexA gene downstream were bounded by different mobile genetic elements. Furthermore, the optrA gene in 8 out of 15 optrA-positive enterococci could be successfully transferred through conjugation. The findings revealed a high carriage rate of optrA in enterococci from one anorectal surgery ward in China. The dissemination of optrA-positive enterococci isolates in clinical settings should be continually monitored.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Jianfeng Mao
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Fangyi Xu
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jing Yan
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jiachang Cai
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yanjun Xie
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Chen H, Xu H, Yuan F, Li H, Sheng L, Liu C, Chen W, Li X. Pharmacokinetics and Safety of Linezolid Tablets of 2 Different Manufacturers in Healthy Chinese Subjects in Fasting and Fed States. Clin Pharmacol Drug Dev 2024; 13:1239-1244. [PMID: 39158152 DOI: 10.1002/cpdd.1462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
This study aimed to evaluate the pharmacokinetics (PKs) and safety of a generic drug, linezolid, compared to those of a reference drug in healthy Chinese subjects under both fasting and fed conditions. This was a randomized, open-label, 2-period, 2-sequence crossover study. The subjects received a single dose of the test or reference drug, linezolid (600 mg), in each period. The PK parameters were calculated using a non-compartmental method and compared between the 2 drugs. Bioequivalence was analyzed using geometric mean ratios (GMRs) of the 2 formulations and their corresponding 90% confidence intervals (CIs). The safety of the 2 formulations was assessed under both fasting and fed conditions. Forty-eight subjects completed the study, 24 each in the fasting and feeding groups. The average plasma concentration-time patterns of linezolid were similar for both medications under both conditions. The GMR and 90% CIs of the maximum plasma concentration and the area under the plasma concentration-time curve of linezolid were ranged from 0.80 to 1.25. Both drugs were well tolerated with a similar incidence of adverse drug reactions. In conclusion, the PK and safety profiles of the 2 formulations were comparable. Food intake did not influence the PK profiles of linezolid. These results suggest that the test drug can be used as an alternative to reference drugs.
Collapse
Affiliation(s)
- Hanjing Chen
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongrong Xu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Sheng
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Liu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weili Chen
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuening Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Tebano G, Zaghi I, Baldasso F, Calgarini C, Capozzi R, Salvadori C, Cricca M, Cristini F. Antibiotic Resistance to Molecules Commonly Prescribed for the Treatment of Antibiotic-Resistant Gram-Positive Pathogens: What Is Relevant for the Clinician? Pathogens 2024; 13:88. [PMID: 38276161 PMCID: PMC10819222 DOI: 10.3390/pathogens13010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Antibiotic resistance in Gram-positive pathogens is a relevant concern, particularly in the hospital setting. Several antibiotics are now available to treat these drug-resistant pathogens, such as daptomycin, dalbavancin, linezolid, tedizolid, ceftaroline, ceftobiprole, and fosfomycin. However, antibiotic resistance can also affect these newer molecules. Overall, this is not a frequent phenomenon, but it is a growing concern in some settings and can compromise the effectiveness of these molecules, leaving few therapeutic options. We reviewed the available evidence about the epidemiology of antibiotic resistance to these antibiotics and the main molecular mechanisms of resistance, particularly methicillin-resistant Sthaphylococcus aureus, methicillin-resistant coagulase-negative staphylococci, vancomycin-resistant Enterococcus faecium, and penicillin-resistant Streptococcus pneumoniae. We discussed the interpretation of susceptibility tests when minimum inhibitory concentrations are not available. We focused on the risk of the emergence of resistance during treatment, particularly for daptomycin and fosfomycin, and we discussed the strategies that can be implemented to reduce this phenomenon, which can lead to clinical failure despite appropriate antibiotic treatment. The judicious use of antibiotics, epidemiological surveillance, and infection control measures is essential to preserving the efficacy of these drugs.
Collapse
Affiliation(s)
- Gianpiero Tebano
- Infectious Diseases Unit, AUSL Romagna, Ravenna Hospital, 48121 Ravenna, Italy; (I.Z.); (C.C.); (C.S.)
| | - Irene Zaghi
- Infectious Diseases Unit, AUSL Romagna, Ravenna Hospital, 48121 Ravenna, Italy; (I.Z.); (C.C.); (C.S.)
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
| | - Francesco Baldasso
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, 47121 Forlì and Cesena, Italy; (F.B.); (R.C.); (F.C.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Chiara Calgarini
- Infectious Diseases Unit, AUSL Romagna, Ravenna Hospital, 48121 Ravenna, Italy; (I.Z.); (C.C.); (C.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Roberta Capozzi
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, 47121 Forlì and Cesena, Italy; (F.B.); (R.C.); (F.C.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Caterina Salvadori
- Infectious Diseases Unit, AUSL Romagna, Ravenna Hospital, 48121 Ravenna, Italy; (I.Z.); (C.C.); (C.S.)
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Francesco Cristini
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, 47121 Forlì and Cesena, Italy; (F.B.); (R.C.); (F.C.)
| |
Collapse
|
4
|
Misiakou MA, Hertz FB, Schønning K, Häussler S, Nielsen KL. Emergence of linezolid-resistant Enterococcus faecium in a tertiary hospital in Copenhagen. Microb Genom 2023; 9:mgen001055. [PMID: 37410656 PMCID: PMC10438815 DOI: 10.1099/mgen.0.001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Linezolid is used as first-line treatment of infections caused by vancomycin-resistant Enterococcus faecium. However, resistance to linezolid is increasingly detected. The aim of the present study was to elucidate the causes and mechanisms for the increase in linezolid-resistant E. faecium at Copenhagen University Hospital - Rigshospitalet. We therefore combined patient information on linezolid treatment with whole-genome sequencing data for vancomycin- or linezolid-resistant E. faecium isolates that had been systematically collected since 2014 (n=458). Whole-genome sequencing was performed for multilocus sequence typing (MLST), identification of linezolid resistance-conferring genes/mutations and determination of phylogenetically closely related strains. The collection of E. faecium isolates belonged to prevalent vancomycin-resistant MLST types. Among these, we identified clusters of closely related linezolid-resistant strains compatible with nosocomial transmission. We also identified linezolid-resistant enterococcus isolates not genetically closely related to other isolates compatible with de novo generation of linezolid resistance. Patients with the latter isolates were significantly more frequently exposed to linezolid treatment than patients with related linezolid-resistant enterococcus isolates. We also identified six patients who initially carried a vancomycin-resistant, linezolid-sensitive enterococcus, but from whom vancomycin-resistant, linezolid-resistant enterococci (LVRE) closely related to their initial isolate were recovered after linezolid treatment. Our data illustrate that linezolid resistance may develop in the individual patient subsequent to linezolid exposure and can be transmitted between patients in a hospital setting.
Collapse
Affiliation(s)
| | | | - Kristian Schønning
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Häussler
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Karen Leth Nielsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Azzam A, Khaled H, Mosa M, Refaey N, AlSaifi M, Elsisi S, Elagezy FK, Mohsen M. Epidemiology of clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) and its susceptibility to linezolid and vancomycin in Egypt: a systematic review with meta-analysis. BMC Infect Dis 2023; 23:263. [PMID: 37101125 PMCID: PMC10134521 DOI: 10.1186/s12879-023-08202-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen that causes severe morbidity and mortality worldwide. For the establishment of national strategies to combat MRSA infection in each country, accurate and current statistics characterizing the epidemiology of MRSA are essential. The purpose of this study was to determine the prevalence of MRSA among Staphylococcus aureus clinical isolates in Egypt. In addition, we aimed to compare different diagnostic methods for MRSA and determine the pooled resistance rate of linezolid and vancomycin to MRSA. To address this knowledge gap, we conducted a systematic review with meta-analysis. METHODS A comprehensive literature search from inception to October 2022 of the following databases was performed: MEDLINE [PubMed], Scopus, Google Scholar, and Web of Science. The review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement. Based on the random effects model, results were reported as proportions with a 95% confidence interval (CI). Analyses of the subgroups were conducted. A sensitivity analysis was conducted to test the robustness of the results. RESULTS A total of sixty-four (64) studies were included in the present meta-analysis, with a total sample size of 7171 subjects. The overall prevalence of MRSA was 63% [95% CI: 55-70]. Fifteen (15) studies used both PCR and cefoxitin disc diffusion for MRSA detection, with a pooled prevalence rate of 67% [95% CI: 54-79] and 67% [95% CI: 55-80], respectively. While nine (9) studies used both PCR and Oxacillin disc diffusion for MRSA detection, the pooled prevalences were 60% [95% CI: 45-75] and 64% [95% CI: 43-84], respectively. Furthermore, MRSA appeared to be less resistant to linezolid than vancomycin, with a pooled resistance rate of 5% [95% CI: 2-8] to linezolid and 9% [95% CI: 6-12] to vancomycin, respectively. CONCLUSION Our review highlights Egypt's high MRSA prevalence. The cefoxitin disc diffusion test results were found to be consistent with PCR identification of the mecA gene. A prohibition on antibiotic self-medication and efforts to educate healthcare workers and patients about the proper use of antimicrobials may be required to prevent further increases.
Collapse
Affiliation(s)
- Ahmed Azzam
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| | - Heba Khaled
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha Mosa
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Neveen Refaey
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Mohammed AlSaifi
- Department of Orthopedic and Trauma, Faculty of Medicine, 21 September University for Medicine and Applied Sciences, Sana, Yemen
| | - Sarah Elsisi
- Department of Clinical Pharmacy Surgery, Alexandria Main University Hospital, Alexandria, Egypt
| | - Fatma Khaled Elagezy
- Department of Biotechnology, Faculty of Fisheries and Aquaculture Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - May Mohsen
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Johari SA, Mohtar M, Mohammat MF, Abdul Rashid FNA, Bacho MZ, Mohamed A, Mohamad Ridhwan MJ, Syed Mohamad SA. Investigating the Antibacterial Effects of Synthetic Gamma-Lactam Heterocycles on Methicillin-Resistant Staphylococcus aureus Strains and Assessing the Safety and Effectiveness of Lead Compound MFM514. Molecules 2023; 28:molecules28062575. [PMID: 36985547 PMCID: PMC10058495 DOI: 10.3390/molecules28062575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) continues to be one of the main causes of hospital-acquired infections in all regions of the world, while linezolid is one of the only commercially available oral antibiotics available against this dangerous gram-positive pathogen. In this study, the antibacterial activity from 32 analogues of synthetic gamma-lactam heterocycles against MRSA was determined. Amongst screened analogues for the minimum inhibitory concentration (MIC) assay, compound MFM514 displayed good inhibitory activity with MIC values of 7.8–15.6 µg/mL against 30 MRSA and 12 methicillin-sensitive S. aureus (MSSA) clinical isolates, while cytotoxicity evaluations displayed a mean inhibitory concentration (IC50) value of > 625 µg/mL, displaying a potential to becoming as a lead compound. In subsequent animal studies for MFM514, a single-dose oral acute toxicity test revealed an estimated mean lethal dose (LD50) value of <5000 mg/kg, while in the mice infection test, a mean effective dose (ED50) value of 29.39 mg/kg was obtained via oral administration. These results suggest that gamma-lactam carbon skeleton, particularly MFM514, is highly recommended to be evaluated further as a new safe and efficacious orally delivered antibacterial agent against MRSA.
Collapse
Affiliation(s)
- Saiful Azmi Johari
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Selangor, Malaysia
| | - Mastura Mohtar
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Selangor, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Puncak Alam, Kuala Selangor 42300, Selangor, Malaysia
- Correspondence:
| | - Fatin Nur Ain Abdul Rashid
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Puncak Alam, Kuala Selangor 42300, Selangor, Malaysia
| | - Muhamad Zulfaqar Bacho
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Puncak Alam, Kuala Selangor 42300, Selangor, Malaysia
| | - Azman Mohamed
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Selangor, Malaysia
| | | | | |
Collapse
|
7
|
Li W, Yang Z, Hu J, Wang B, Rong H, Li Z, Sun Y, Wang Y, Zhang X, Wang M, Xu H. Evaluation of culturable 'last-resort' antibiotic resistant pathogens in hospital wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129477. [PMID: 35780736 DOI: 10.1016/j.jhazmat.2022.129477] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/02/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance has been recognized as an important emerging environmental pollutant. 'Last-resort' antibiotics including tigecycline, polymyxin E, daptomycin, vancomycin and linezolid are the 'last line of defence' for antibiotic resistant pathogen infections. Therefore, the presence of 'last-resort' antibiotic resistant pathogens in hospital environments and the nosocomial transmission of 'last-resort' antibiotic resistance poses a grave threat to the well-being of patients. In this work, the extent of resistance to 'last-resort' antibiotics in culturable pathogens in hospital wastewater was investigated. Resistance to 'last-resort' antibiotics were quantified for 1384 culturable Enterobacteriaceae, Enterococcus, Staphylococcus, and Pseudomonas strains. With these investigations, several significant findings were made: (1) a very high level of resistance to 'last-resort' antibiotics was found; (2) multiple resistance to antibiotics, including 'last-resort' antibiotics, was prevalent; (3) a high level of 'last-resort' antibiotic resistance phenotype-genotype inconsistency was found, suggesting knowledge gap for resistance mechanisms; 4) tet(X4)-containing tigecycline-resistant Gram-positive pathogens were found for the first time; 5) wastewater treatment processes are effective in preventing the release of 'last-resort' antibiotic resistant pathogens to the environment. This investigation reveals the severe situation on 'last-resort' resistance in the hospital environment, and implies high risk for nosocomial transmission of 'last-resort' antibiotic resistant pathogens.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China; Division of Science and Technology, Ludong University, Yantai, Shandong 264025, China
| | - Zhongjun Yang
- Department of Stomatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, China
| | - Jiamin Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Bianfang Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Hao Rong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Ziyun Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yuqing Sun
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yunkun Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xuhua Zhang
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
8
|
Carvalhaes CG, Sader HS, Streit JM, Mendes RE. Five-year analysis of the in vitro activity of tedizolid against a worldwide collection of indicated species causing clinical infections: results from the Surveillance of Tedizolid Activity and Resistance (STAR) programme. JAC Antimicrob Resist 2022; 4:dlac088. [PMID: 36072303 PMCID: PMC9442614 DOI: 10.1093/jacamr/dlac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives The Surveillance of Tedizolid Activity and Resistance (STAR) programme monitored the tedizolid activity against Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus anginosus group. We evaluated the antimicrobial susceptibility of 47 400 unique Gram-positive clinical isolates from the STAR programme collected from USA (21 243), Europe (17 674), Asia-Pacific (4954) and Latin America (3529) medical centres (2015–19). Methods All isolates were tested for susceptibility by reference broth microdilution method. WGS and in silico analysis were performed on linezolid-non-susceptible (NS) isolates. Results Tedizolid was active against ≥99.9% of S. aureus (100.0% of MSSA and >99.9% of MRSA), E. faecalis, S. pyogenes, S. agalactiae and S. anginosus group isolates, with MIC50 values ranging from 0.12 to 0.25 mg/L and MIC90 values of 0.25 mg/L. Linezolid, vancomycin and daptomycin were also active agents against these organisms. Tedizolid inhibited all VRE and 73.1% of linezolid-NS E. faecalis isolates. Ampicillin and daptomycin retained 100.0% activity against VRE and linezolid-NS E. faecalis isolates. Linezolid-NS E. faecalis isolates carried mostly the optrA gene. G2576T alterations in the 23S rRNA were observed in one linezolid-NS S. aureus isolate and one linezolid-NS E. faecalis isolate. Conclusions No resistance trends were observed for tedizolid during the study period.
Collapse
|
9
|
Li P, Gao M, Feng C, Yan T, Sheng Z, Shi W, Liu S, Zhang L, Li A, Lu J, Lin X, Li K, Xu T, Bao Q, Sun C. Molecular characterization of florfenicol and oxazolidinone resistance in Enterococcus isolates from animals in China. Front Microbiol 2022; 13:811692. [PMID: 35958123 PMCID: PMC9360786 DOI: 10.3389/fmicb.2022.811692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Florfenicol is widely used for the treatment of bacterial infections in domestic animals. The aim of this study was to analyze the molecular mechanisms of florfenicol and oxazolidinone resistance in Enterococcus isolates from anal feces of domestic animals. The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method. Polymerase chain reaction (PCR) was performed to analyze the distribution of the resistance genes. Whole-genome sequencing and comparative plasmid analysis was conducted to analyze the resistance gene environment. A total of 351 non-duplicated enteric strains were obtained. Among these isolates, 22 Enterococcus isolates, including 19 Enterococcus. faecium and 3 Enterococcus. faecalis, were further studied. 31 florfenicol resistance genes (13 fexA, 3 fexB, 12 optrA, and 3 poxtA genes) were identified in 15 of the 19 E. faecium isolates, and no florfenicol or oxazolidinone resistance genes were identified in 3 E. faecalis isolates. Whole-genome sequencing of E. faecium P47, which had all four florfenicol and oxazolidinone resistance genes and high MIC levels for both florfenicol (256 mg/L) and linezolid (8 mg/L), revealed that it contained a chromosome and 3 plasmids (pP47-27, pP47-61, and pP47-180). The four florfenicol and oxazolidinone resistance genes were all related to the insertion sequences IS1216 and located on two smaller plasmids. The genes fexB and poxtA encoded in pP47-27, while fexA and optrA encoded in the conjugative plasmid pP47-61. Comparative analysis of homologous plasmids revealed that the sequences with high identities were plasmid sequences from various Enterococcus species except for the Tn6349 sequence from a Staphylococcus aureus chromosome (MH746818.1). The current study revealed that florfenicol and oxazolidinone resistance genes (fexA, fexB, poxtA, and optrA) were widely distributed in Enterococcus isolates from animal in China. The mobile genetic elements, including the insertion sequences and conjugative plasmid, played an important role in the horizontal transfer of florfenicol and oxazolidinone resistance.
Collapse
Affiliation(s)
- Pingping Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Zhoukou Maternal and Child Health Hospital, Zhoukou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tielun Yan
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiqiong Sheng
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Anqi Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
- Teng Xu,
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Qiyu Bao,
| | - Caixia Sun
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Caixia Sun,
| |
Collapse
|
10
|
Egan SA, Shore AC, O'Connell B, Brennan GI, Coleman DC. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: high prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. J Antimicrob Chemother 2021; 75:1704-1711. [PMID: 32129849 PMCID: PMC7303821 DOI: 10.1093/jac/dkaa075] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To investigate the prevalence of the optrA, poxtA and cfr linezolid resistance genes in linezolid-resistant enterococci from Irish hospitals and to characterize associated plasmids. METHODS One hundred and fifty-four linezolid-resistant isolates recovered in 14 hospitals between June 2016 and August 2019 were screened for resistance genes by PCR. All isolates harbouring resistance genes, and 20 without, underwent Illumina MiSeq WGS. Isolate relatedness was assessed using enterococcal whole-genome MLST. MinION sequencing (Oxford Nanopore) and hybrid assembly were used to resolve genetic environments/plasmids surrounding resistance genes. RESULTS optrA and/or poxtA were identified in 35/154 (22.7%) isolates, the highest prevalence reported to date. Fifteen isolates with diverse STs harboured optrA only; one Enterococcus faecium isolate harboured optrA (chromosome) and poxtA (plasmid). Seven Enterococcus faecalis and one E. faecium harboured optrA on a 36 331 bp plasmid with 100% identity to the previously described optrA-encoding conjugative plasmid pE349. Variations around optrA were also observed, with optrA located on plasmids in five isolates and within the chromosome in three isolates. Nine E. faecium and 10 E. faecalis harboured poxtA, flanked by IS1216E, within an identical 4001 bp region on plasmids exhibiting 72.9%-100% sequence coverage to a 21 849 bp conjugative plasmid. E. faecalis isolates belonged to ST480, whereas E. faecium isolates belonged to diverse STs. Of the remaining 119 linezolid-resistant isolates without linezolid resistance genes, 20 investigated representatives all harboured the G2576T 23S RNA gene mutation associated with linezolid resistance. CONCLUSIONS This high prevalence of optrA and poxtA in diverse enterococcal lineages in Irish hospitals indicates significant selective pressure(s) for maintenance.
Collapse
Affiliation(s)
- Sarah A Egan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Lincoln Place, Dublin 2, Ireland
| | - Anna C Shore
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Lincoln Place, Dublin 2, Ireland
| | - Brian O'Connell
- Department of Clinical Microbiology, School of Medicine, University of Dublin, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.,National MRSA Reference Laboratory, St. James's Hospital, James's Street, Dublin 8, Ireland
| | - Grainne I Brennan
- National MRSA Reference Laboratory, St. James's Hospital, James's Street, Dublin 8, Ireland
| | - David C Coleman
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Lincoln Place, Dublin 2, Ireland
| |
Collapse
|
11
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Markwart R, Willrich N, Eckmanns T, Werner G, Ayobami O. Low Proportion of Linezolid and Daptomycin Resistance Among Bloodborne Vancomycin-Resistant Enterococcus faecium and Methicillin-Resistant Staphylococcus aureus Infections in Europe. Front Microbiol 2021; 12:664199. [PMID: 34135877 PMCID: PMC8203336 DOI: 10.3389/fmicb.2021.664199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VREF) and methicillin-resistant Staphylococcus aureus (MRSA) are associated with significant health burden. We investigated linezolid and daptomycin resistance among VREF and MRSA in the EU/EEA between 2014 and 2018. Descriptive statistics and multivariable logistic regression were used to analyze 6,949 VREF and 35,131 MRSA blood isolates from patients with bloodstream infection. The population-weighted mean proportion of linezolid resistance in VREF and MRSA between 2014 and 2018 was 1.6% (95% CI 1.33–2.03%) and 0.28% (95% CI 0.32–0.38%), respectively. Daptomycin resistance in MRSA isolates was similarly low [1.1% (95% CI 0.75–1.6%)]. On the European level, there was no temporal change of daptomycin and linezolid resistance in MRSA and VREF. Multivariable regression analyses showed that there was a higher likelihood of linezolid and daptomycin resistance in MRSA (aOR: 2.74, p < 0.001; aOR: 2.25, p < 0.001) and linezolid in VREF (aOR: 1.99, p < 0.001) compared to their sensitive isolates. The low proportion of linezolid and daptomycin resistance in VREF and MRSA suggests that these last-resort antibiotics remain effective and will continue to play an important role in the clinical management of these infections in Europe. However, regional and national efforts to contain antimicrobial resistance should continue to monitor the trend through strengthened surveillance that includes genomic surveillance for early warning and action.
Collapse
Affiliation(s)
- Robby Markwart
- Jena University Hospital, Institute of General Practice and Family Medicine, Jena, Germany
| | - Niklas Willrich
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Tim Eckmanns
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Guido Werner
- Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany
| | - Olaniyi Ayobami
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
13
|
Kim MH, Moon DC, Kim SJ, Mechesso AF, Song HJ, Kang HY, Choi JH, Yoon SS, Lim SK. Nationwide Surveillance on Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Food Animals in South Korea, 2010 to 2019. Microorganisms 2021; 9:microorganisms9050925. [PMID: 33925822 PMCID: PMC8144984 DOI: 10.3390/microorganisms9050925] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Intestinal commensal bacteria are considered good indicators for monitoring antimicrobial resistance. We investigated the antimicrobial resistance profiles and resistance trends of Enterococcus faecium and Enterococcus faecalis isolated from food animals in Korea between 2010 and 2019. E. faecium and E. faecalis, isolated from chickens and pigs, respectively, presented a relatively high resistance rate to most of the tested antimicrobials. We observed high ciprofloxacin (67.9%), tetracycline (61.7%), erythromycin (59.5%), and tylosin (53.0%) resistance in E. faecium isolated from chickens. Similarly, more than half of the E. faecalis isolates from pigs and chickens were resistant to erythromycin, tetracycline and tylosin. Notably, we observed ampicillin, daptomycin, tigecycline and linezolid resistance in a relatively small proportion of enterococcal isolates. Additionally, the enterococcal strains exhibited an increasing but fluctuating resistance trend (p < 0.05) to some of the tested antimicrobials including daptomycin and/or linezolid. E. faecalis showed higher Multidrug resistance (MDR) rates than E. faecium in cattle (19.7% vs. 8.6%, respectively) and pigs (63.6% vs. 15.6%, respectively), whereas a comparable MDR rate (≈60.0%) was noted in E. faecium and E. faecalis isolated from chickens. Collectively, the presence of antimicrobial-resistant Enterococcus in food animals poses a potential risk to public health.
Collapse
|
14
|
Yoon S, Son SH, Kim YB, Seo KW, Lee YJ. Molecular characteristics of optrA-carrying Enterococcus faecalis from chicken meat in South Korea. Poult Sci 2020; 99:6990-6996. [PMID: 33248615 PMCID: PMC7704738 DOI: 10.1016/j.psj.2020.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to identify the genetic environment of optrA gene in linezolid (LZD)-resistant Enterococcus faecalis from chicken meat and to describe the probable mechanism of dissemination of the optrA gene through plasmid or chromosomal integration. Whole genome sequencing and analysis revealed that all 3 E. faecalis isolates confirmed as LZD- and chloramphenicol-resistant carried fexA adjacent to the optrA gene as well as a variety of resistance genes for macrolides, tetracyclines, and aminoglycosides, simultaneously. But, the other genes conferring LZD resistance, cfr and poxtA, were not detected in those strains. Two isolates harboring the optrA gene in their chromosomal DNA showed >99% similarity in arrangement to the transposon Tn6674 and the transposase genes, tnpA, tnpB, and tnpC and were located in the first open reading frame for transposase. One isolate harboring an optrA-carrying plasmid also showed >99% similarity with the previously reported pE439 plasmid but had 2 amino acid changes (Thr96Lys and Tyr160Asp) and a higher minimum inhibitory concentration against LZD of 16 mg/L than that of pE439 (8 mg/L). Mobile genetic elements such as transposons or plasmids flanking the optrA gene conduct a crucial role in the dissemination of antimicrobial resistance genes. Further investigations are required to identify the way by which optrA is integrated into chromosomal DNA and plasmids.
Collapse
Affiliation(s)
- Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Hyun Son
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
15
|
Yang XX, Tian TT, Qiao W, Tian Z, Yang M, Zhang Y, Li JY. Prevalence and characterization of oxazolidinone and phenicol cross-resistance gene optrA in enterococci obtained from anaerobic digestion systems treating swine manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115540. [PMID: 32898731 DOI: 10.1016/j.envpol.2020.115540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The use of the phenicol antibiotic florfenicol in livestock can select for the optrA gene, which also confers resistance to the critically important oxazolidinone antibiotic linezolid. However, the occurrence and dissemination of florfenicol and linezolid cross-resistance genes in anaerobic treatment systems for livestock waste are unknown. Herein, the phenotypes and genotypes (optrA, fexA, fexB, and cfr) of florfenicol and linezolid cross-resistance were investigated in 339 enterococci strains isolated from lab- and full-scale mesophilic anaerobic digestion systems treating swine waste. It was found that optrA, fexA, and fexB were frequently detected in isolated enterococci in both systems by PCR screening, whereas cfr was not detected. The most abundant gene was optrA, which was detected in 73.5% (n = 50) and 38.9% (n = 23) of enterococci isolates in the full-scale influent and effluent, respectively. Most strains carried more than two resistance genes, and the average percentage of co-occurrence of optrA/fexA was 16.6%. Based on minimum inhibitory concentrations of the enterococci strain phenotypes, 85.7%, 77.5%, and 77.5% of strains in influent were resistant to chloramphenicol, florfenicol, and linezolid, respectively, while 56.3%, 65.2%, and 13% in the effluent isolates were found, respectively, which was consistent with the genotype results. The phenotypes and genotypes of florfenicol and linezolid resistance were relative stable in the enterococci isolated from the influent and effluent in lab-scale anaerobic digestion system. The findings signify the enterococci isolates harboring the optrA gene remained in effluents of both full- and lab-scale swine waste anaerobic digestion system; hence, effective management strategies should be implemented to prevent the discharge of antibiotic resistance from the livestock waste treatment systems.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tian-Tian Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jiu-Yi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
16
|
Kang HY, Moon DC, Mechesso AF, Choi JH, Kim SJ, Song HJ, Kim MH, Yoon SS, Lim SK. Emergence of cfr-Mediated Linezolid Resistance in Staphylococcus aureus Isolated from Pig Carcasses. Antibiotics (Basel) 2020; 9:E769. [PMID: 33147717 PMCID: PMC7692708 DOI: 10.3390/antibiotics9110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Altogether, 2547 Staphylococcus aureus isolated from cattle (n = 382), pig (n = 1077), and chicken carcasses (n = 1088) during 2010-2017 were investigated for linezolid resistance and were further characterized using molecular methods. We identified linezolid resistance in only 2.3% of pig carcass isolates. The linezolid-resistant (LR) isolates presented resistance to multiple antimicrobials, including chloramphenicol, clindamycin, and tiamulin. Molecular investigation exhibited no mutations in the 23S ribosomal RNA. Nevertheless, we found mutations in ribosomal proteins rplC (G121A) and rplD (C353T) in one and seven LR strains, respectively. All the LR isolates carried the multi-resistance gene cfr, and six of them co-carried the mecA gene. Additionally, all the LR isolates co-carried the phenicol exporter gene, fexA, and presented a high level of chloramphenicol resistance. LR S. aureus isolates represented 10 genotypes, including major genotypes ST433-t318, ST541-t034, ST5-t002, and ST9-t337. Staphylococcal enterotoxin and leukotoxin-encoding genes, alone or in combination, were detected in 68% of LR isolates. Isolates from different farms presented identical or different pulsed-field gel electrophoresis patterns. Collectively, toxigenic and LR S. aureus strains pose a crisis for public health. This study is the first to describe the mechanism of linezolid resistance in S. aureus isolated from food animal products in Korea.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; (H.Y.K.); (D.C.M.); (A.F.M.); (J.-H.C.); (S.-J.K.); (H.-J.S.); (M.H.K.); (S.-S.Y.)
| |
Collapse
|
17
|
Yoon S, Kim YB, Seo KW, Ha JS, Noh EB, Lee YJ. Characteristics of linezolid-resistant Enterococcus faecalis isolates from broiler breeder farms. Poult Sci 2020; 99:6055-6061. [PMID: 33142524 PMCID: PMC7647823 DOI: 10.1016/j.psj.2020.06.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Linezolid is an oxazolidinone class antibiotic used for treatment infections caused by various multidrug-resistant gram-positive pathogens including enterococci. However, recently, linezolid-resistant isolates in animals are considered as a human health hazard. In a broiler operation system, antimicrobial resistance can be transferred to the environment and commercial broiler via the fecal-oral route. Therefore, this study was conducted to investigate the prevalence and characteristics of linezolid-resistant Enterococcus faecalis (E. faecalis) from broiler parent stock in a broiler operation system. Among 297 E. faecalis isolates from 85 flocks in 8 broiler breeder farms, the prevalence of chloramphenicol- and linezolid-resistant isolates was 0 to 12.1% and 0 to 8.0%, respectively; however, there were no significant differences between farms. Therefore, a total of 14 (4.7%) chloramphenicol- and/or linezolid-resistant E. faecalis showed resistance to 7 or more antimicrobial classes. The drug-resistance gene optrA, which can confer resistance to linezolid, tedizolid, and phenicols, was found in 8 (2.69%) isolates, and 7 (2.36%) of the 8 optrA-positive isolates co-carried the phenicol exporter gene fexA. However, E. faecalis isolates from 3 of 8 broiler breeder farms only carried the optrA and/or fexA genes. As linezolid is one of the last antimicrobial treatments of choice for multidrug-resistant gram-positive pathogens including E. faecalis, the presence of antibiotic-resistant E. faecalis in broiler breeder farms should be monitored to prevent the introduction of linezolid-resistant strains to the food chain.
Collapse
Affiliation(s)
- Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jong Su Ha
- Quality Management Department, Samhwa GPS Breeding Agri. Inc., Hongseong 32291, Republic of Korea
| | - Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Zou J, Xia Y. Molecular characteristics and risk factors associated with linezolid-resistant Enterococcus faecalis infection in Southwest China. J Glob Antimicrob Resist 2020; 22:504-510. [DOI: 10.1016/j.jgar.2020.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 11/25/2022] Open
|
19
|
Zhanel GG, Adam HJ, Baxter MR, Fuller J, Nichol KA, Denisuik AJ, Golden AR, Hink R, Lagacé-Wiens PRS, Walkty A, Mulvey MR, Schweizer F, Bay D, Hoban DJ, Karlowsky JA. 42936 pathogens from Canadian hospitals: 10 years of results (2007-16) from the CANWARD surveillance study. J Antimicrob Chemother 2020; 74:iv5-iv21. [PMID: 31505641 DOI: 10.1093/jac/dkz283] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES The CANWARD surveillance study was established in 2007 to annually assess the in vitro susceptibilities of a variety of antimicrobial agents against bacterial pathogens isolated from patients receiving care in Canadian hospitals. METHODS 42 936 pathogens were received and CLSI broth microdilution testing was performed on 37 355 bacterial isolates. Limited patient demographic data submitted with each isolate were collated and analysed. RESULTS Of the isolates tested, 43.5%, 33.1%, 13.2% and 10.2% were from blood, respiratory, urine and wound specimens, respectively; 29.9%, 24.8%, 19.0%, 18.1% and 8.2% of isolates were from patients in medical wards, emergency rooms, ICUs, hospital clinics and surgical wards. Patient demographics associated with the isolates were: 54.6% male/45.4% female; 13.1% patients aged ≤17 years, 44.3% 18-64 years and 42.7% ≥65 years. The three most common pathogens were Staphylococcus aureus (21.2%, both methicillin-susceptible and MRSA), Escherichia coli (19.6%) and Pseudomonas aeruginosa (9.0%). E. coli were most susceptible to meropenem and tigecycline (99.9%), ertapenem and colistin (99.8%), amikacin (99.7%) and ceftolozane/tazobactam and plazomicin (99.6%). Twenty-three percent of S. aureus were MRSA. MRSA were most susceptible to ceftobiprole, linezolid and telavancin (100%), daptomycin (99.9%), vancomycin (99.8%) and tigecycline (99.2%). P. aeruginosa were most susceptible to ceftolozane/tazobactam (98.3%) and colistin (95.0%). CONCLUSIONS The CANWARD surveillance study has provided 10 years of reference antimicrobial susceptibility testing data on pathogens commonly causing infections in patients attending Canadian hospitals.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Department of Medicine, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Clinical Microbiology, Health Sciences Centre/Diagnostic Services, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - Melanie R Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Jeff Fuller
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, Victoria Hospital, Room B10-117, London, Ontario, Canada.,Division of Microbiology, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario, Canada
| | - Kimberly A Nichol
- Clinical Microbiology, Health Sciences Centre/Diagnostic Services, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - Andrew J Denisuik
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Alyssa R Golden
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Rachel Hink
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Philippe R S Lagacé-Wiens
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Clinical Microbiology, St. Boniface Hospital/Diagnostic Services, Shared Health Manitoba, L4025-409 Taché Avenue, Winnipeg, Manitoba, Canada
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Department of Medicine, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Manitoba, Canada.,Clinical Microbiology, Health Sciences Centre/Diagnostic Services, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - Michael R Mulvey
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada
| | - Frank Schweizer
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Department of Chemistry, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, Manitoba, Canada
| | - Denice Bay
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Daryl J Hoban
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Clinical Microbiology, Health Sciences Centre/Diagnostic Services, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Clinical Microbiology, St. Boniface Hospital/Diagnostic Services, Shared Health Manitoba, L4025-409 Taché Avenue, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
20
|
Zou J, Tang Z, Yan J, Liu H, Chen Y, Zhang D, Zhao J, Tang Y, Zhang J, Xia Y. Dissemination of Linezolid Resistance Through Sex Pheromone Plasmid Transfer in Enterococcus faecalis. Front Microbiol 2020; 11:1185. [PMID: 32582110 PMCID: PMC7288747 DOI: 10.3389/fmicb.2020.01185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Despite recent recognition of the ATP-binding cassette protein OptrA as an important mediator of linezolid resistance in Enterococcus faecalis worldwide, the mechanisms of optrA gene acquisition and transfer remain poorly understood. In this study, we performed comprehensive molecular and phenotypic profiling of 44 optrA-carrying E. faecalis clinical isolates with linezolid resistance. Pulse-field gel electrophoresis and DNA hybridization revealed the presence of optrA in the plasmid in 26 (59%) isolates and in the chromosome in 18 (41%) isolates. Conjugation experiments showed a successful transfer of optrA in 88.5% (23/26) of isolates carrying optrA in plasmids while no transfer occurred in any isolates carrying optrA in the chromosome (0/18). All 23 transconjugants exhibited in vitro resistance to linezolid and several other antibiotics and were confirmed to contain optrA and other resistance genes. Plasmid typing demonstrated a predominance (18/23,78%) of rep 9-type plasmids (pCF10 prototype) known to be the best studied sex pheromone responsive plasmids. Full plasmid genome sequencing of one isolate revealed the presence of drug resistance genes (optrA and fexA) and multiple sex pheromone response genes in the same plasmid, which represents the first sex pheromone responsive plasmid carrying optrA from a clinical isolate. PCR-based genotyping revealed the presence of three key sex pheromone response genes (prgA, prgB, and prgC) in 23 optrA-carrying isolates. Finally, functional studies of these isolates by clumping induction assay detected different degrees of clumping in 17 isolates. Our analysis suggests that optrA-mediated linezolid resistance can be widely disseminated through sex pheromone plasmid transfer.
Collapse
Affiliation(s)
- Jiaqi Zou
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaobing Tang
- Department of Urologic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Yan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxin Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Egan SA, Corcoran S, McDermott H, Fitzpatrick M, Hoyne A, McCormack O, Cullen A, Brennan GI, O'Connell B, Coleman DC. Hospital outbreak of linezolid-resistant and vancomycin-resistant ST80 Enterococcus faecium harbouring an optrA-encoding conjugative plasmid investigated by whole-genome sequencing. J Hosp Infect 2020; 105:726-735. [PMID: 32439548 DOI: 10.1016/j.jhin.2020.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Linezolid is an antibiotic used to treat infections caused by multi-drug-resistant Gram-positive bacteria. Linezolid resistance in enterococci has been reported with increasing frequency, with a recent rise in resistance encoded by optrA, poxtA or cfr. AIM To investigate a hospital outbreak of linezolid- and vancomycin-resistant Enterococcus faecium (LVREfm) using whole-genome sequencing (WGS). METHODS Thirty-nine VREfm from patient screening (19 isolates, 17 patients) and environmental sites (20 isolates) recovered in October 2019 were investigated. Isolates were screened using polymerase chain reaction for optrA, poxtA and cfr, and underwent Illumina MiSeq WGS. Isolate relatedness was assessed using E. faecium core genome multi-locus sequence typing (cgMLST). One LVREfm underwent MinION long-read WGS (Oxford Nanopore Technologies) and hybrid assembly with MiSeq short-read sequences to resolve an optrA-encoding plasmid. FINDINGS Twenty isolates (51.3%) were LVREfm and optrA-positive, including the LVREfm from the index patient. A closely related cluster of 28 sequence type (ST) 80 isolates was identified by cgMLST, including all 20 LVREfm and eight linezolid-susceptible VREfm, with an average allelic difference of two (range 0-10), indicating an outbreak. Nineteen (95%) LVREfm harboured a 56,684-bp conjugative plasmid (pEfmO_03). The remaining LVREfm exhibited 44.1% sequence coverage to pEfmO_03. The presence of pEfmO_03 in LVREfm and the close relatedness of the outbreak cluster isolates indicated the spread of a single strain. The outbreak was terminated by enhanced infection prevention and control (IPC) and environmental cleaning measures, ceasing ward admissions and ward-dedicated staff. CONCLUSION WGS was central in investigating an outbreak of ST80 LVREfm. The rapid implementation of enhanced IPC measures terminated the outbreak.
Collapse
Affiliation(s)
- S A Egan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Dublin, Ireland
| | - S Corcoran
- Department of Clinical Microbiology, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - H McDermott
- Department of Clinical Microbiology, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - M Fitzpatrick
- Infection Prevention and Control Department, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - A Hoyne
- Department of Clinical Microbiology, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - O McCormack
- Department of Clinical Microbiology, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - A Cullen
- Pharmacy Department, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - G I Brennan
- National MRSA Reference Laboratory, St. James's Hospital, Dublin, Ireland
| | - B O'Connell
- National MRSA Reference Laboratory, St. James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, School of Medicine, University of Dublin, Trinity College, St. James's Hospital, Dublin, Ireland
| | - D C Coleman
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Dublin, Ireland.
| |
Collapse
|
22
|
Chajęcka-Wierzchowska W, Zadernowska A, García-Solache M. Ready-to-eat dairy products as a source of multidrug-resistant Enterococcus strains: Phenotypic and genotypic characteristics. J Dairy Sci 2020; 103:4068-4077. [DOI: 10.3168/jds.2019-17395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
|
23
|
Wenzler E, Santarossa M, Meyer KA, Harrington AT, Reid GE, Clark NM, Albarillo FS, Bulman ZP. In Vitro Pharmacodynamic Analyses Help Guide the Treatment of Multidrug-Resistant Enterococcus faecium and Carbapenem-Resistant Enterobacter cloacae Bacteremia in a Liver Transplant Patient. Open Forum Infect Dis 2020; 7:ofz545. [PMID: 31993456 PMCID: PMC6978998 DOI: 10.1093/ofid/ofz545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background Infections due to multidrug-resistant pathogens are particularly deadly and difficult to treat in immunocompromised patients, where few data exist to guide optimal antimicrobial therapy. In the absence of adequate clinical data, in vitro pharmacokinetic (PK)/pharmacodynamic (PD) analyses can help to design treatment regimens that are bactericidal and may be clinically effective. Methods We report a case in which in vitro pharmacodynamic analyses were utilized to guide the treatment of complex, recurrent bacteremias due to vancomycin-, daptomycin-, and linezolid-resistant Enterococcus faecium and carbapenem-resistant Enterobacter cloacae complex in a liver transplant patient. Results Whole-genome sequencing revealed unique underlying resistance mechanisms and explained the rapid evolution of phenotypic resistance and complicated intrahost genomic dynamics observed in vivo. Performing this comprehensive genotypic and phenotypic testing and time-kill analyses, along with knowledge of institution and patient-specific factors, allowed us to use precision medicine to design a treatment regimen that maximized PK/PD. Conclusions This work provides a motivating example of clinicians and scientists uniting to optimize care in the era of escalating antimicrobial resistance.
Collapse
Affiliation(s)
- Eric Wenzler
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Kevin A Meyer
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Gail E Reid
- Loyola University Medical Center, Maywood, Illinois, USA
| | - Nina M Clark
- Loyola University Medical Center, Maywood, Illinois, USA
| | | | - Zackery P Bulman
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
24
|
Giulieri SG, Tong SYC, Williamson DA. Using genomics to understand meticillin- and vancomycin-resistant Staphylococcus aureus infections. Microb Genom 2020; 6:e000324. [PMID: 31913111 PMCID: PMC7067033 DOI: 10.1099/mgen.0.000324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Resistance to meticillin and vancomycin in Staphylococcus aureus significantly complicates the management of severe infections like bacteraemia, endocarditis or osteomyelitis. Here, we review the molecular mechanisms and genomic epidemiology of resistance to these agents, with a focus on how genomics has provided insights into the emergence and evolution of major meticillin-resistant S. aureus clones. We also provide insights on the use of bacterial whole-genome sequencing to inform management of S. aureus infections and for control of transmission at the hospital and in the community.
Collapse
Affiliation(s)
- Stefano G. Giulieri
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Infectious Disease Department, Austin Health, Melbourne, Australia
| | - Steven Y. C. Tong
- Victorian Infectious Disease Service, Royal Melbourne Hospital, and Doherty Department University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
- Menzies School of Health Research, Darwin, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
- Microbiology, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
25
|
Deshpande LM, Castanheira M, Flamm RK, Mendes RE. Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY Antimicrobial Surveillance Program. J Antimicrob Chemother 2019; 73:2314-2322. [PMID: 29878213 DOI: 10.1093/jac/dky188] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/18/2018] [Indexed: 01/28/2023] Open
Abstract
Objectives This study evaluated the oxazolidinone resistance mechanisms among a global collection of enterococcal clinical isolates. The epidemiology of optrA-carrying isolates and the optrA genetic context were determined. Methods Enterococcal isolates (26 648) from the SENTRY Antimicrobial Surveillance Program (2008-16) were identified by MALDI-TOF MS and MICs were determined by broth microdilution. Isolates with linezolid MICs of ≥4 mg/L were screened for resistance mechanisms. Isolates carrying optrA had their genome sequenced for genetic context and epidemiology information. Results Thirty-six Enterococcus faecalis and 66 Enterococcus faecium had linezolid MICs of ≥4 mg/L (0.38% of surveillance enterococci). E. faecalis had a linezolid MIC range of 4-16 mg/L, while E. faecium displayed higher values (4-64 mg/L). Nine E. faecalis had G2576T mutations and optrA was detected in 26 (72.2%) isolates from the Asia-Pacific region, North America, Latin America and Europe; 3 isolates also produced Cfr [Thailand (1)] or Cfr(B) [Panama (2)]. All E. faecium isolates had G2576T alterations, while three isolates from the USA had concomitant presence of cfr(B). The optrA gene was plasmid- and chromosome-located in 22 and 3 E. faecalis, respectively. One isolate signalled hybridization on plasmid and chromosome. The genetic context of optrA varied. E. faecalis belonging to the same clonal complex were detected in distinct geographical regions. Also, genetically distinct isolates from Ireland had an identical optrA context, indicating plasmid dissemination. Conclusions Alterations in 23S rRNA remained the main oxazolidinone resistance mechanism in E. faecium, while optrA prevailed in E. faecalis. These results demonstrate global dissemination of optrA and warrant surveillance for monitoring.
Collapse
Affiliation(s)
| | | | - R K Flamm
- JMI Laboratories, North Liberty, IA, USA
| | - R E Mendes
- JMI Laboratories, North Liberty, IA, USA
| |
Collapse
|
26
|
Mendes RE, Deshpande L, Streit JM, Sader HS, Castanheira M, Hogan PA, Flamm RK. ZAAPS programme results for 2016: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J Antimicrob Chemother 2019; 73:1880-1887. [PMID: 29659858 DOI: 10.1093/jac/dky099] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
Objectives To report the linezolid activity, resistance mechanisms and epidemiological typing of selected isolates observed during the 2016 Zyvox® Annual Appraisal of Potency and Spectrum (ZAAPS) programme. Methods A total of 8325 organisms were consecutively collected from 76 centres in 42 countries (excluding the USA). Broth microdilution susceptibility testing was performed and isolates displaying linezolid MICs of ≥4 mg/L were molecularly characterized. Results Linezolid inhibited 99.8% of all Gram-positive pathogens at the respective susceptible breakpoints and showed a modal MIC of 1 mg/L, except for CoNS, for which the modal MIC result was 0.5 mg/L. Among isolates displaying linezolid MICs of ≥4 mg/L, one Staphylococcus aureus (linezolid MIC of 4 mg/L) harboured cfr and belonged to ST72, while four CoNS (MICs of 16-32 mg/L; ST2) showed drug target alterations. Two Enterococcus faecium (ST117) from a single site in Rome were linezolid non-susceptible (MICs of 8 mg/L) and had G2576T mutations. Eight linezolid-non-susceptible Enterococcus faecalis (MICs of 4 mg/L; 4 sites in 4 countries; ST256, ST480, ST766 and ST775) carried optrA and isolates carrying optrA from the same medical centre were genetically related. One Streptococcus gallolyticus (MIC of 4 mg/L) and one Streptococcus mitis (MIC of 16 mg/L) carried optrA and G2576T mutations, respectively. Conclusions These results document the continued long-term in vitro potency of linezolid. Alterations in the 23S rRNA and/or L3/L4 proteins remain the main oxazolidinone resistance mechanisms in E. faecium and CoNS, whereas optrA emerged as the sole mechanism in E. faecalis. Surveillance and infection control will be important strategies to detect optrA and prevent it from disseminating.
Collapse
|
27
|
Abstract
The prevalence of antimicrobial resistance among many common bacterial pathogens is increasing. The emergence and global dissemination of these antibiotic-resistant bacteria (ARB) is fuelled by antibiotic selection pressure, inter-organism transmission of resistance determinants, suboptimal infection prevention practices and increasing ease and frequency of international travel, among other factors. Patients with chronic kidney disease, particularly those with end-stage renal disease who require dialysis and/or kidney transplantation, have some of the highest rates of colonization and infection with ARB worldwide. These ARB include methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp. and several multidrug-resistant Gram-negative organisms. Antimicrobial resistance limits treatment options and increases the risk of infection-related morbidity and mortality. Several new antibiotic agents with activity against some of the most common ARB have been developed, but resistance to these agents is already emerging and highlights the dire need for new treatment options as well as consistent implementation and improvement of basic infection prevention practices. Clinicians involved in the care of patients with renal disease must be familiar with the local epidemiology of ARB, remain vigilant for the emergence of novel resistance patterns and adhere strictly to practices proven to prevent transmission of ARB and other pathogens.
Collapse
Affiliation(s)
- Tina Z Wang
- NewYork Presbyterian-Weill Cornell Medical Center, New York, NY, USA
| | | | - David P Calfee
- NewYork Presbyterian-Weill Cornell Medical Center, New York, NY, USA.
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Layer F, Vourli S, Karavasilis V, Strommenger B, Dafopoulou K, Tsakris A, Werner G, Pournaras S. Dissemination of linezolid-dependent, linezolid-resistant Staphylococcus epidermidis clinical isolates belonging to CC5 in German hospitals. J Antimicrob Chemother 2019; 73:1181-1184. [PMID: 29360979 DOI: 10.1093/jac/dkx524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives Linezolid-resistant Staphylococcus epidermidis (LRSE) and linezolid-dependent ST22 strains have been shown to predominate in tertiary care facilities all over Greece. We report herein the dissemination of ST22 but also ST2, ST5 and ST168 linezolid-dependent LRSE clones in four unrelated German hospitals. Methods Fourteen LRSE clinical isolates recovered during 2012-14 from five distantly located German hospitals were tested by for MIC determination broth microdilution and Etest, PCR/sequencing for cfr and for mutations in 23S rRNA, rplC, rplD and rplV genes, MLST, PFGE and growth curves without and with linezolid at 16 and 32 mg/L. Results Most (11, 78.6%) isolates had linezolid MICs >256 mg/L. Five isolates carried the cfr gene. Eight isolates belonged to ST22, two isolates each to ST168 and ST2 and one isolate each to ST5 and ST23. Ten isolates [seven belonging to ST22 and one to each of ST2, ST5 and ST168; all these STs belong to clonal complex (CC) 5] exhibited linezolid-dependent growth, growing significantly faster in linezolid-containing broth. Four isolates were non-dependent (one belonging to each of ST22, ST2, ST23 and ST168). Four isolates came from three different hospitals, whereas four and six isolates were recovered during outbreaks of LRSE in two distinct hospitals. Conclusions The multi-clonal dissemination of CC5 linezolid-dependent LRSE throughout German hospitals along with the clonal expansion of ST22 linezolid-dependent LRSE in Greek hospitals is of particular concern. It is plausible that this characteristic is inherent and provides a selective advantage to CC5 LRSE under linezolid pressure, contributing to their dissemination throughout hospitals in these countries.
Collapse
Affiliation(s)
- Franziska Layer
- Robert Koch Institute, Department of Infectious Diseases, National Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Sophia Vourli
- Laboratory of Clinical Microbiology, ATTIKON University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Birgit Strommenger
- Robert Koch Institute, Department of Infectious Diseases, National Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Konstantina Dafopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Guido Werner
- Robert Koch Institute, Department of Infectious Diseases, National Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Spyros Pournaras
- Laboratory of Clinical Microbiology, ATTIKON University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Bender JK, Fleige C, Klare I, Werner G. Development of a multiplex-PCR to simultaneously detect acquired linezolid resistance genes cfr, optrA and poxtA in enterococci of clinical origin. J Microbiol Methods 2019; 160:101-103. [PMID: 30940534 DOI: 10.1016/j.mimet.2019.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Linezolid-resistant enterococcus spp. are increasingly recognized by diagnostic laboratories. Resistance can be mediated by the expression of cfr, optrA or poxtA. We developed a multiplex-PCR to simultaneously detect all three genes. The PCR is suitable for microbiological diagnostics in order to restrict further spread of resistances in enterococci.
Collapse
Affiliation(s)
- Jennifer K Bender
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany.
| | - Carola Fleige
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Ingo Klare
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
30
|
Zhou W, Gao S, Xu H, Zhang Z, Chen F, Shen H, Zhang C. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China. J Glob Antimicrob Resist 2019; 17:180-186. [PMID: 30641287 DOI: 10.1016/j.jgar.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES Linezolid-resistant Enterococcus have spread worldwide. This study investigated the prevalence of linezolid-non-susceptible Enterococcus (LNSE) and the potential mechanism and molecular epidemiology of LNSE isolates from Nanjing, China. METHODS Linezolid susceptibility of 2555 Enterococcus was retrospectively determined by Etest. Vancomycin and teicoplanin MICs were determined for LNSE by Etest. PCR and DNA sequencing were used to investigate the potential molecular mechanism. Clonal relatedness between LNSE isolates was analysed by MLST. WGS was also performed. RESULTS A total of 27 Enterococcus isolates (24 Enterococcus faecalis, 3 Enterococcus faecium) with linezolid MICs of 4-48μg/mL were identified, among which 20 E. faecalis and 3 E. faecium were positive for optrA. No mutations were found in genes encoding domain V of 23S rRNA or ribosomal proteins L3/L4; the cfr gene was not found. The 24 linezolid-non-susceptible E. faecalis were classified into eight STs (ST16, ST480, ST476, ST631, ST585, ST428, ST25 and ST689). The three linezolid-non-susceptible E. faecium were classified as ST17, ST400 and ST195. Comparison of the deduced OptrA amino acid sequences of the 23 optrA-positive isolates by PCR-based sequencing and WGS with that of the original OptrA from E. faecalis E349 revealed seven variants (KD, EDP, EDM, D, EDD, RDK and DP) in 16 isolates, with no mutations in the remaining 7 isolates. optrA was found downstream of fexA by searching the pE349 sequence based on WGS data. CONCLUSIONS Emergence of LNSE with optrA-mediated resistance and clonal dissemination of ST16 E. faecalis in our hospital may pose a potential public-health threat.
Collapse
Affiliation(s)
- Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Shuo Gao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Hongjing Xu
- Department of Laboratory Medicine, Jiangning District Hospital of Traditional Chinese Medicine, 657# Tianyin Avenue, Jiangning District, Nanjing, Jiangsu Province 211100, PR China
| | - Zhifeng Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Fei Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China.
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, 305# East Zhongshan Road, Qinhuai District, Nanjing, Jiangsu Province 210008, PR China.
| |
Collapse
|
31
|
Greene MH, Harris BD, Nesbitt WJ, Watson ML, Wright PW, Talbot TR, Nelson GE. Risk Factors and Outcomes Associated With Acquisition of Daptomycin and Linezolid-Nonsusceptible Vancomycin-Resistant Enterococcus. Open Forum Infect Dis 2018; 5:ofy185. [PMID: 30320147 PMCID: PMC6176497 DOI: 10.1093/ofid/ofy185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Background Vancomycin-resistant enterococcus (VRE) causes substantial health care–associated infection with increasing reports of resistance to daptomycin or linezolid. We conducted a case–control study reporting 81 cases of daptomycin and linezolid–nonsusceptible VRE (DLVRE), a resistance pattern not previously reported. Methods We reviewed VRE isolates from June 2010 through June 2015 for nonsusceptibility to both daptomycin (minimum inhibitory concentration [MIC] > 4) and linezolid (MIC ≥ 4). We matched cases by year to control patients with VRE susceptible to both daptomycin and linezolid and performed retrospective chart review to gather risk factor and outcome data. Results We identified 81 DLVRE cases. Resistance to both daptomycin and linezolid was more common than resistance to either agent individually. Compared with susceptible VRE, DLVRE was more likely to present as bacteremia without focus (P < 0.01), with DLVRE patients more likely to be immune suppressed (P = .04), to be neutropenic (P = .03), or to have had an invasive procedure in the prior 30 days (P = .04). Any antibiotic exposure over the prior 30 days conferred a 4-fold increased risk for DLVRE (odds ratio [OR], 4.25; 95% confidence interval [CI], 1.43−12.63; P = .01); multivariate analysis implicated daptomycin days of therapy (DOT) over the past year as a specific risk factor (OR, 1.10; 95% CI, 1.01−1.19; P = .03). DLVRE cases had longer hospitalizations (P = .04) but no increased risk for in-hospital death. Conclusions DLVRE is an emerging multidrug-resistant pathogen associated with immune suppression, neutropenia, and recent invasive procedure. Prior antibiotic exposure, specifically daptomycin exposure, confers risk for acquisition of DLVRE.
Collapse
Affiliation(s)
| | - Bryan D Harris
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Patty W Wright
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
32
|
Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid 2018; 99:89-98. [PMID: 30253132 DOI: 10.1016/j.plasmid.2018.09.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
Linezolid is considered a last resort drug in treatment of severe infections caused by Gram-positive pathogens, resistant to other antibiotics, such as vancomycin-resistant enterococci (VRE), methicillin-resistant staphylococci and multidrug resistant pneumococci. Although the vast majority of Gram-positive pathogenic bacteria remain susceptible to linezolid, resistant isolates of enterococci, staphylococci and streptococci have been reported worldwide. In these bacteria, apart from mutations, affecting mostly the 23S rRNA genes, acquisition of such genes as cfr, cfr(B), optrA and poxtA, often associated with mobile genetic elements (MGE), plays an important role for resistance. The purpose of this paper is to provide an overview on diversity and epidemiology of MGE carrying linezolid-resistance genes among clinically-relevant Gram-positive pathogens such as enterococci and streptococci.
Collapse
|
33
|
Bender JK, Fleige C, Lange D, Klare I, Werner G. Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates. Int J Antimicrob Agents 2018; 52:819-827. [PMID: 30236952 DOI: 10.1016/j.ijantimicag.2018.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/07/2018] [Accepted: 09/09/2018] [Indexed: 01/12/2023]
Abstract
The number of linezolid-resistant Enterococcus spp. isolates received by the National Reference Centre for Staphylococci and Enterococci in Germany has been increasing since 2011. Although the majority are E. faecium, clinical linezolid-resistant E. faecalis have also been isolated. With respect to the newly discovered linezolid resistance protein OptrA, the authors conducted a retrospective polymerase chain reaction screening of 698 linezolid-resistant enterococcus clinical isolates. That yielded 43 optrA-positive strains, of which a subset was analysed by whole-genome sequencing in order to infer linezolid resistance-associated mechanisms and phylogenetic relatedness, and to disclose optrA genetic environments. Multiple optrA variants were detected. The originally described variant from China (optrAWT) was the only variant shared between the two Enterococcus spp.; however, distinct optrAWT loci were detected for E. faecium and E. faecalis. Generally, optrA localized to a plethora of genetic backgrounds that differed even for identical optrA variants. This suggests transmission of a mobile genetic element harbouring the resistance locus. Additionally, identical optrA variants detected on presumably identical plasmids, that were present in unrelated strains, indicates dissemination of the entire optrA-containing plasmid. In accordance, in vitro conjugation experiments verified transfer of optrA plasmids between enterococci of the same and of different species. In conclusion, multiple optrA variants located on distinct plasmids and mobile genetic elements with the potential for conjugative transfer are supposedly causative for the emergence of optrA-positive enterococci. Hence, rapid dissemination of the resistance determinant under selective pressure imposed by extensive use of last-resort antibiotics in clinical settings could be expected.
Collapse
Affiliation(s)
- Jennifer K Bender
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Saxony-Anhalt, Germany.
| | - Carola Fleige
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Saxony-Anhalt, Germany
| | - Dominik Lange
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Saxony-Anhalt, Germany
| | - Ingo Klare
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Saxony-Anhalt, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Saxony-Anhalt, Germany
| |
Collapse
|
34
|
Morroni G, Brenciani A, Antonelli A, D'Andrea MM, Di Pilato V, Fioriti S, Mingoia M, Vignaroli C, Cirioni O, Biavasco F, Varaldo PE, Rossolini GM, Giovanetti E. Characterization of a Multiresistance Plasmid Carrying the optrA and cfr Resistance Genes From an Enterococcus faecium Clinical Isolate. Front Microbiol 2018; 9:2189. [PMID: 30271398 PMCID: PMC6142821 DOI: 10.3389/fmicb.2018.02189] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecium E35048, a bloodstream isolate from Italy, was the first strain where the oxazolidinone resistance gene optrA was detected outside China. The strain was also positive for the oxazolidinone resistance gene cfr. WGS analysis revealed that the two genes were linked (23.1 kb apart), being co-carried by a 41,816-bp plasmid that was named pE35048-oc. This plasmid also carried the macrolide resistance gene erm(B) and a backbone related to that of the well-known Enterococcus faecalis plasmid pRE25 (identity 96%, coverage 65%). The optrA gene context was original, optrA being part of a composite transposon, named Tn6628, which was integrated into the gene encoding for the ζ toxin protein (orf19 of pRE25). The cfr gene was flanked by two ISEnfa5 insertion sequences and the element was inserted into an lnu(E) gene. Both optrA and cfr contexts were excisable. pE35048-oc could not be transferred to enterococcal recipients by conjugation or transformation. A plasmid-cured derivative of E. faecium E35048 was obtained following growth at 42°C, and the complete loss of pE35048-oc was confirmed by WGS. pE35048-oc exhibited some similarity but also notable differences from pEF12-0805, a recently described enterococcal plasmid from human E. faecium also co-carrying optrA and cfr; conversely it was completely unrelated to other optrA- and cfr-carrying plasmids from Staphylococcus sciuri. The optrA-cfr linkage is a matter of concern since it could herald the possibility of a co-spread of the two genes, both involved in resistance to last resort agents such as the oxazolidinones.
Collapse
Affiliation(s)
- Gianluca Morroni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Maria D'Andrea
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simona Fioriti
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Carla Vignaroli
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Francesca Biavasco
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
35
|
Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist Updat 2018; 40:25-39. [DOI: 10.1016/j.drup.2018.10.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/10/2018] [Accepted: 10/30/2018] [Indexed: 01/04/2023]
|
36
|
Càmara J, Camoez M, Tubau F, Pujol M, Ayats J, Ardanuy C, Domínguez MÁ. Detection of the Novel optrA Gene Among Linezolid-Resistant Enterococci in Barcelona, Spain. Microb Drug Resist 2018; 25:87-93. [PMID: 30153086 DOI: 10.1089/mdr.2018.0028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to describe the presence of the novel optrA gene among clinical isolates of enterococci in a Spanish teaching hospital (May 2016-April 2017). optrA and cfr genes were screened by PCR in all isolates showing linezolid minimal inhibitory concentration (MIC) ≥4 mg/L. The genetic relatedness of the isolates, the presence of resistance and virulence genes, and the genetic environment of optrA were assessed by whole-genome sequencing (WGS). Six of 1,640 enterococci had linezolid MIC ≥4 mg/L. Among them, the optrA gene was detected in five Enterococcus faecalis isolated from unrelated patients. Although none of them had received linezolid or chloramphenicol, all had antecedents of recent quinolone consumption. WGS analysis revealed the existence of two different genotypes: ST585 and ST474. cfr was not detected in any of the isolates. No mutations were detected among the 23S ribosomal RNA and the ribosomal proteins L3, L4, and L22. Both genotypes also carried genes related to aminoglycoside, lincosamide, macrolide, phenicol, and tetracycline resistance. Detection of optrA in a setting with low linezolid consumption and among patients without antecedents of oxazolidinone therapy is of concern.
Collapse
Affiliation(s)
- Jordi Càmara
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain
| | - Mariana Camoez
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,2 Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III , Madrid, Spain
| | - Fe Tubau
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,3 CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Pujol
- 2 Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III , Madrid, Spain .,4 Infectious Diseases Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain
| | - Josefina Ayats
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,3 CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ardanuy
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,3 CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - M Ángeles Domínguez
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,2 Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III , Madrid, Spain
| |
Collapse
|
37
|
Cai J, Schwarz S, Chi D, Wang Z, Zhang R, Wang Y. Faecal carriage of optrA-positive enterococci in asymptomatic healthy humans in Hangzhou, China. Clin Microbiol Infect 2018; 25:630.e1-630.e6. [PMID: 30076974 DOI: 10.1016/j.cmi.2018.07.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate the faecal carriage of optrA-positive enterococci among asymptomatic healthy humans in Hangzhou, China, and to characterize the genetic context of optrA. METHODS A total of 3458 stool samples from healthy individuals were collected and cultured on a selective medium containing 10 mg/L florfenicol and resulting enterococci were screened for the presence of optrA by PCR. OptrA variants were determined by amino acid sequence comparison with the original OptrA from Enterococcus faecalis E349. Whole genome sequencing and PCR mapping were performed to obtain and analyse the genetic environment of optrA. RESULTS Similar optrA carriage rates (∼3.5%) were detected in samples from adults (55/1558) and children (66/1900). Linezolid resistance rates for E. faecalis, Enterococcus faecium and other Enterococcus species were 58.5% (38/65), 42.3% (11/26) and 0% (0/31), respectively. Nineteen OptrA variants exhibiting different linezolid MICs were identified. Isolates carrying wild-type OptrA and variants RDK, KLDP, KD, D, RDKP, and EDP generally demonstrated linezolid MICs ≥8 mg/L. The OptrA variants, with fexA upstream and erm(A) downstream, were flanked by IS1216E at one or both ends. The fexA-optrA(wild-type) was located downstream of a Tn554 transposon, and was inserted into the radC gene. The EDM variant was detected in 31/73 enterococci with linezolid MICs ≤4 mg/L. Despite the variable genetic context, Tn558-araC-optrA(EDM)-erm(A)-met was the most common gene array. CONCLUSIONS This study revealed a correlation between linezolid MIC, genetic context and OptrA variant. Intestinal colonization of healthy individuals by optrA-positive enterococci is a concern, and active epidemiological surveillance of optrA is warranted.
Collapse
Affiliation(s)
- J Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - S Schwarz
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China; Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - D Chi
- Department of Laboratory, Children's Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Z Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - R Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Y Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Lazaris A, Coleman DC, Kearns AM, Pichon B, Kinnevey PM, Earls MR, Boyle B, O'Connell B, Brennan GI, Shore AC. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother 2018; 72:3252-3257. [PMID: 28961986 DOI: 10.1093/jac/dkx292] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/19/2017] [Indexed: 11/14/2022] Open
Abstract
Background Linezolid is often the drug of last resort to treat infections caused by Gram-positive cocci. Linezolid resistance can be mutational (23S rRNA or L-protein) or, less commonly, acquired [predominantly cfr, conferring resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A compounds (PhLOPSA) or optrA, encoding oxazolidinone and phenicol resistance]. Objectives To investigate the clonality and genetic basis of linezolid resistance in 13 linezolid-resistant (LZDR) methicillin-resistant Staphylococcus epidermidis (MRSE) isolates recovered during a 2013/14 outbreak in an ICU in an Irish hospital and an LZDR vancomycin-resistant Enterococcus faecium (VRE) isolate from an LZDR-MRSE-positive patient. Methods All isolates underwent PhLOPSA susceptibility testing, 23S rRNA sequencing, DNA microarray profiling and WGS. Results All isolates exhibited the PhLOPSA phenotype. The VRE harboured cfr and optrA on a novel 73 kb plasmid (pEF12-0805) also encoding erm(A), erm(B), lnu(B), lnu(E), aphA3 and aadE. One MRSE (M13/0451, from the same patient as the VRE) harboured cfr on a novel 8.5 kb plasmid (pSEM13-0451). The remaining 12 MRSE lacked cfr but exhibited linezolid resistance-associated mutations and were closely related to (1-52 SNPs) but distinct from M13/0451 (202-223 SNPs). Conclusions Using WGS, novel and distinct cfr and cfr/optrA plasmids were identified in an MRSE and VRE isolate, respectively, as well as a cfr-negative LZDR-MRSE ICU outbreak and a distinct cfr-positive LZDR-MRSE from the same ICU. To our knowledge, this is the first report of cfr and optrA on a single VRE plasmid. Ongoing surveillance of linezolid resistance is essential to maintain its therapeutic efficacy.
Collapse
Affiliation(s)
- Alexandros Lazaris
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - David C Coleman
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Angela M Kearns
- Antimicrobial Resistance and Healthcare Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - Bruno Pichon
- Antimicrobial Resistance and Healthcare Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - Peter M Kinnevey
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Megan R Earls
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Breida Boyle
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Brian O'Connell
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, St James's Hospital, Dublin, Ireland.,National MRSA Reference Laboratory, St James's Hospital, James's St, Dublin, Ireland
| | - Gráinne I Brennan
- National MRSA Reference Laboratory, St James's Hospital, James's St, Dublin, Ireland
| | - Anna C Shore
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Freitas AR, Elghaieb H, León-Sampedro R, Abbassi MS, Novais C, Coque TM, Hassen A, Peixe L. Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters. J Antimicrob Chemother 2018; 72:3245-3251. [PMID: 29029072 DOI: 10.1093/jac/dkx321] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/01/2017] [Indexed: 01/11/2023] Open
Abstract
Objectives Oxazolidinone resistance is a serious limitation in the treatment of MDR Enterococcus infections. Plasmid-mediated oxazolidinone resistance has been strongly linked to animals where the use of phenicols might co-select resistance to both antibiotic families. Our goal was to assess the diversity of genes conferring phenicol/oxazolidinone resistance among diverse enterococci and to characterize the optrA genetic environment. Methods Chloramphenicol-resistant isolates (>16 mg/L, n = 245) from different sources (hospitals/healthy humans/wastewaters/animals) in Portugal, Angola and Tunisia (1996-2016) were selected. Phenicol (eight cat variants, fexA, fexB) or phenicol + oxazolidinone [cfr, cfr(B), optrA] resistance genes were searched for by PCR. Susceptibility (disc diffusion/microdilution), filter mating, stability of antibiotic resistance (500 bacterial generations), plasmid typing (S1-PFGE/hybridization), MLST and WGS (Illumina-HiSeq) were performed for optrA-positive isolates. Results Resistance to phenicols (n = 181, 74%) and phenicols + oxazolidinones (n = 2, 1%) was associated with the presence of cat(A-8) (40%, predominant in hospitals and swine), cat(A-7) (29%, predominant in poultry and healthy humans), cat(A-9) (2%), fexB (2%) and fexA + optrA (1%). fexA and optrA genes were co-located in a transferable plasmid (pAF379, 72 918 bp) of two ST86 MDR Tunisian Enterococcus faecalis (wastewaters) carrying several putative virulence genes. MICs of chloramphenicol, linezolid and tedizolid were stably maintained at 64, 4 and 1 mg/L, respectively. The chimeric pAF379 comprised relics of genetic elements from different Gram-positive bacteria and origins (human/porcine). Conclusions To the best of our knowledge, we report the first detection of optrA in an African country (Tunisia) within a transferable mosaic plasmid of different origins. Its identification in isolates from environmental sources is worrisome and alerts for the need of a concerted global surveillance on the occurrence and spread of optrA.
Collapse
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Houyem Elghaieb
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Ricardo León-Sampedro
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centros de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Barcelona, Spain
| | - Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Teresa M Coque
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centros de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Barcelona, Spain
| | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj Cédria, Soliman, Tunisia
| | - Luisa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China. Eur J Clin Microbiol Infect Dis 2018; 37:1441-1448. [DOI: 10.1007/s10096-018-3269-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
|
41
|
Betts JW, Abdul Momin HF, Phee LM, Wareham DW. Comparative activity of tedizolid and glycopeptide combination therapies for the treatment of Staphylococcus aureus infections: an in vitro and in vivo evaluation against strains with reduced susceptibility to glycopeptides. J Med Microbiol 2018; 67:265-271. [DOI: 10.1099/jmm.0.000671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- J. W. Betts
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - H. F. Abdul Momin
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - L. M. Phee
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Infection, Barts Healthcare NHS Trust, London, UK
| | - D. W. Wareham
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Infection, Barts Healthcare NHS Trust, London, UK
| |
Collapse
|
42
|
Taubert M, Zander J, Frechen S, Scharf C, Frey L, Vogeser M, Fuhr U, Zoller M. Optimization of linezolid therapy in the critically ill: the effect of adjusted infusion regimens. J Antimicrob Chemother 2018; 72:2304-2310. [PMID: 28541510 DOI: 10.1093/jac/dkx149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022] Open
Abstract
Objectives Insufficient linezolid levels, which are associated with a poorer outcome, are often observed in ICU patients who receive standard dosing. Although strategies to overcome these insufficient levels have been discussed, appropriate alternative dosing regimens remain to be identified. Methods Various infusion regimens (1200-3600 mg/day; q6h, q8h, q12h and continuous) were simulated in 67 000 ICU patients. The probability of attaining pharmacodynamic targets ( T >MIC ≥85%, AUC/MIC ≥100, cumulative fraction of response for Staphylococcus aureus and Enterococcus spp., PTA for an MIC of 0.5-4 mg/L) as well as the avoidance of toxic concentrations and concentrations constantly below the MIC (lack of antibiotic effect) or inside a mutant selection window (resistance development) were evaluated. Results Best target attainment according to T >MIC was observed for continuous infusions, followed by q6h, q8h and q12h. A substantially reduced target attainment was observed in patients with acute respiratory distress syndrome (ARDS). In patients without ARDS, 1200 mg/day was insufficient irrespective of the regimen, while a dose of 1400 mg/day administered q6h or by continuous infusions provided an acceptable target attainment (e.g. cumulative fraction of response with regards to T >MIC ≥93%). Higher rates of potentially toxic trough concentrations (28% versus 12%) and concentrations constantly inside the mutant selection window (15% versus <0.1%) were observed with continuous infusions compared with q6h infusions (1400 mg/day, patients without ARDS). Conclusions Irrespective of the regimen, 1200 mg/day linezolid might be insufficient for the treatment of ICU patients. Patients without ARDS might particularly benefit from q6h infusions with increased daily doses (e.g. 1400 mg/day).
Collapse
Affiliation(s)
- Max Taubert
- Department I of Pharmacology, Clinical Pharmacology Unit, Hospital of the University of Cologne, Cologne, Germany
| | - Johannes Zander
- Institute of Laboratory Medicine, Hospital of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Sebastian Frechen
- Department I of Pharmacology, Clinical Pharmacology Unit, Hospital of the University of Cologne, Cologne, Germany
| | - Christina Scharf
- Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lorenz Frey
- Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, Hospital of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Uwe Fuhr
- Department I of Pharmacology, Clinical Pharmacology Unit, Hospital of the University of Cologne, Cologne, Germany
| | - Michael Zoller
- Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
43
|
Lee SM, Huh HJ, Song DJ, Shim HJ, Park KS, Kang CI, Ki CS, Lee NY. Resistance mechanisms of linezolid-nonsusceptible enterococci in Korea: low rate of 23S rRNA mutations in Enterococcus faecium. J Med Microbiol 2017; 66:1730-1735. [PMID: 29111969 DOI: 10.1099/jmm.0.000637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate linezolid-resistance mechanisms in linezolid-nonsusceptible enterococci (LNSE) isolated from a tertiary hospital in Korea. METHODOLOGY Enterococcal isolates exhibiting linezolid MICs ≥4 mg l-1 that were isolated between December 2011 and May 2016 were investigated by PCR and sequencing for mutations in 23S rRNA or ribosomal proteins (L3, L4 and L22) and for the presence of cfr, cfr(B) and optrA genes.Results/Key findings. Among 135 LNSE (87 Enterococcus faecium and 48 Enterococcus faecalis isolates), 39.1 % (34/87) of E. faecium and 18.8 % (9/48) of E. faecalis isolates were linezolid-resistant. The optrA carriage was the dominant mechanism in E. faecalis: 13 isolates, including 10 E. faecalis [70 % (7/10) linezolid-resistant and 30 % (3/10) linezolid-intermediate] and three E. faecium [33.3 % (1/3) linezolid-resistant and 66.7 % (2/3) linezolid-intermediate], contained the optrA gene. G2576T mutations in the 23S rRNA gene were detected only in E. faecium [14 isolates; 71.4 % (10/14) linezolid-resistant and 28.6 % (4/14) linezolid-intermediate]. One linezolid-intermediate E. faecium harboured a L22 protein alteration (Ser77Thr). No isolates contained cfr or cfr(B) genes and any L3 or L4 protein alterations. No genetic mechanism of resistance was identified for 67.6 % (23/34) of linezolid-resistant E. faecium. CONCLUSION A low rate of 23S rRNA mutations and the absence of known linezolid-resistance mechanisms in the majority of E. faecium isolates suggest regional differences in the mechanisms of linezolid resistance and the possibility of additional mechanisms.
Collapse
Affiliation(s)
- Sae-Mi Lee
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jae Huh
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Joon Song
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyang Jin Shim
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | | | - Cheol-In Kang
- Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang-Seok Ki
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Nam Yong Lee
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
44
|
Bi R, Qin T, Fan W, Ma P, Gu B. The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Resist 2017; 13:11-19. [PMID: 29101082 DOI: 10.1016/j.jgar.2017.10.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022] Open
Abstract
Enterococcus is a significant pathogen in numerous infections, particularly in nosocomial infections, and is thus a great challenge to clinicians. Linezolid (LNZ), an oxazolidinone antibiotic, is an important therapeutic option for infections caused by Gram-positive bacterial pathogens, especially vancomycin-resistant enterococci. A systematic review was performed of the available literature on LNZ-resistant enterococci (LRE) to characterise these infections with respect to epidemiological, microbiological and clinical features. The results validated the potency of LNZ against enterococcal infections, with a sustained susceptibility rate of 99.8% in ZAAPS and 99.2% in LEADER surveillance programmes. Patients with LRE had been predominantly exposed to LNZ prior to isolation of LRE, with a mean treatment duration of 29.8±48.8days for Enterococcus faecalis and 23.1±21.4days for Enterococcus faecium. Paradoxically, LRE could also develop in patients without prior LNZ exposure. LNZ resistance was attributed to 23S rRNA (G2576T) mutations (51.2% of E. faecalis and 80.5% of E. faecium) as well as presence of the cfr gene (4.7% and 4.8%, respectively), which could transfer horizontally among the strains. In addition to the cfr gene, 32 cases of optrA-positive LRE were identified. Further study is required to determine the prevalence of novel resistance genes. The emergence of LRE thus hampers the treatment of such infections, which warrants worldwide surveillance.
Collapse
Affiliation(s)
- Ruru Bi
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Tingting Qin
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenting Fan
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Ping Ma
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
45
|
Population Pharmacokinetics and Dosing Considerations for the Use of Linezolid in Overweight and Obese Adult Patients. Clin Pharmacokinet 2017; 57:989-1000. [DOI: 10.1007/s40262-017-0606-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Cavaco LM, Bernal JF, Zankari E, Léon M, Hendriksen RS, Perez-Gutierrez E, Aarestrup FM, Donado-Godoy P. Detection of linezolid resistance due to the optrA gene in Enterococcus faecalis from poultry meat from the American continent (Colombia). J Antimicrob Chemother 2017; 72:678-683. [PMID: 27999039 DOI: 10.1093/jac/dkw490] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 11/13/2022] Open
Abstract
Background Three Enterococcus isolates obtained from retail chicken collected in 2010-11 as part of the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS) showed reduced susceptibility towards linezolid (MIC 8 mg/L). Objectives This study aimed at characterizing the isolates resistant to linezolid and detecting the resistance mechanism. Methods Strains were analysed in 2011-12 without successful detection of the resistance mechanism. All isolates were found negative for the cfr gene and no 23S rRNA mutations were detected. In 2016, with the novel resistance gene optrA being described, the WGS data were re-analysed using in silico genomic tools for confirmation of species, detection of virulence and resistance genes, MLST and SNP analyses and comparison of the genetic environment with the previously published plasmid pE349. Results : Three Enterococcus faecalis isolates were found positive for the optrA gene encoding resistance to linezolid and phenicols. Additional screening of 37 enterococci strains from the same study did not detect any further positives. Typing showed that two of the isolates belong to ST59, while the last belongs to ST489. All isolates carry genes encoding resistance to macrolide-lincosamide-streptogramin B, tetracycline and phenicols. In addition, the ST489 isolate also carries genes conferring aminoglycoside resistance and is resistant to quinolones, but no plasmid-mediated gene was detected. The optrA gene regions of the three plasmids showed high similarity to the originally reported optrA -carrying plasmid pE349. Conclusions To the best of our knowledge, this is the first description of the optrA gene in E. faecalis isolated from poultry meat in the Americas.
Collapse
Affiliation(s)
- L M Cavaco
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance, Kgs Lyngby, Denmark
| | - J F Bernal
- Corporación Colombiana de Investigación Agropecuária (CORPOICA), Food Safety, CI Tibaitata, Cundinamarca, Colombia.,Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), CORPOICA CI Tibaitata, Cundinamarca, Colombia
| | - E Zankari
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance, Kgs Lyngby, Denmark
| | - M Léon
- Corporación Colombiana de Investigación Agropecuária (CORPOICA), Food Safety, CI Tibaitata, Cundinamarca, Colombia.,Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), CORPOICA CI Tibaitata, Cundinamarca, Colombia
| | - R S Hendriksen
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance, Kgs Lyngby, Denmark
| | - E Perez-Gutierrez
- Pan American Health Organization, Regional Office for the Americas of the World Health Organization (PAHO), Washington, DC, USA
| | - F M Aarestrup
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance, Kgs Lyngby, Denmark
| | - P Donado-Godoy
- Corporación Colombiana de Investigación Agropecuária (CORPOICA), Food Safety, CI Tibaitata, Cundinamarca, Colombia.,Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), CORPOICA CI Tibaitata, Cundinamarca, Colombia
| |
Collapse
|
47
|
Karlowsky JA, Hackel MA, Bouchillon SK, Alder J, Sahm DF. In Vitro activities of Tedizolid and comparator antimicrobial agents against clinical isolates of Staphylococcus aureus collected in 12 countries from 2014 to 2016. Diagn Microbiol Infect Dis 2017; 89:151-157. [DOI: 10.1016/j.diagmicrobio.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022]
|
48
|
Distribution of optrA and cfr in florfenicol-resistant Staphylococcus sciuri of pig origin. Vet Microbiol 2017; 210:43-48. [PMID: 29103695 DOI: 10.1016/j.vetmic.2017.07.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022]
Abstract
A novel transferable oxazolidinone-phenicol resistance gene, optrA, which confers resistance to linezolid, the next-generation oxazolidinone tedizolid, and also to chloramphenicol and florfenicol, has been identified in enterococcal and staphylococcal species. Here, we investigated the epidemiology of optrA in florfenicol-resistant Staphylococcus spp. isolates of pig origin, and characterized the genetic context of oxazolidinone resistance genes in 20 optrA-positive florfenicol- and methicillin-resistant S. sciuri isolates, 11 (55%) of which also harbored the multi-resistance gene cfr. Pulsed-field gel electrophoresis and direct repeat unit (dru) typing of the 20 optrA-positive S. sciuri isolates revealed 17 patterns and four distinct dru types, respectively. Nine and six different arrangements of the optrA and cfr gene regions, respectively, were identified among the isolates. The arrangements optrA-araC-Tn558 or optrA-ΔTn558 were present in all optrA-positive isolates, and in three of them, ISEnfa5 and cfr were located immediately downstream of optrA. The cfr-carrying segment in eight isolates was similar to the corresponding region of the staphylococcal plasmid pWo28-3, in which the coexistence of cfr and optrA was identified for the first time.
Collapse
|
49
|
Pfaller MA, Mendes RE, Streit JM, Hogan PA, Flamm RK. ZAAPS Program results for 2015: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 32 countries. J Antimicrob Chemother 2017; 72:3093-3099. [DOI: 10.1093/jac/dkx251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 12/25/2022] Open
|
50
|
Inkster T, Coia J, Meunier D, Doumith M, Martin K, Pike R, Imrie L, Kane H, Hay M, Wiuff C, Wilson J, Deighan C, Hopkins KL, Woodford N, Hill R. First outbreak of colonization by linezolid- and glycopeptide-resistant Enterococcus faecium harbouring the cfr gene in a UK nephrology unit. J Hosp Infect 2017; 97:397-402. [PMID: 28698020 DOI: 10.1016/j.jhin.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023]
Abstract
AIM To describe an outbreak of colonization by linezolid- and glycopeptide-resistant Enterococcus faecium harbouring the cfr gene in a UK nephrology unit. METHODS Isolates of linezolid-resistant E. faecium were typed by pulsed-field gel electrophoresis (PFGE), and examined by polymerase chain reaction (PCR) and sequencing for the transmissible cfr gene that confers resistance to linezolid. Enhanced environmental cleaning, initial and weekly screening of all patients, and monitoring of adherence to standard infection control precautions were implemented. FINDINGS Five patients with pre-existing renal disease were found to have rectal colonization with linezolid-resistant E. faecium over a two-week period. The index case was a 57-year-old male from India who had travelled to the UK. One patient also had a linezolid-resistant E. faecium of a different PFGE profile isolated from a heel wound. All isolates were confirmed to harbour the cfr gene by PCR and Sanger sequencing, and all were resistant to glycopeptides (VanA phenotype). CONCLUSIONS This article describes the first UK outbreak with a single strain of linezolid- and glycopeptide-resistant E. faecium harbouring the cfr gene, affecting five patients in a nephrology unit. Following the implementation of aggressive infection control measures, no further cases were detected beyond a two-week period.
Collapse
Affiliation(s)
- T Inkster
- Queen Elizabeth University Hospital, Glasgow, UK.
| | - J Coia
- Glasgow Royal Infirmary, Glasgow, UK
| | - D Meunier
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - M Doumith
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - K Martin
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - R Pike
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - L Imrie
- Health Protection Scotland, Glasgow, UK
| | - H Kane
- Health Protection Scotland, Glasgow, UK
| | - M Hay
- Glasgow Royal Infirmary, Glasgow, UK
| | - C Wiuff
- Health Protection Scotland, Glasgow, UK
| | - J Wilson
- Health Protection Scotland, Glasgow, UK
| | - C Deighan
- Glasgow Royal Infirmary, Glasgow, UK
| | - K L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - N Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - R Hill
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| |
Collapse
|