1
|
Giorgio RT, Helaine S. Antibiotic-recalcitrant Salmonella during infection. Nat Rev Microbiol 2025; 23:276-287. [PMID: 39558126 DOI: 10.1038/s41579-024-01124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Antibiotic-recalcitrant infections, defined as the prolonged carriage of pathogenic bacteria even in the presence of antibiotics, are often caused by bacteria that are genetically susceptible to the drug. These recalcitrant bacteria fail to proliferate in the presence of antibiotics but remain viable such that they may recolonize their niche following antibiotic withdrawal. Significant progress has been made in our understanding of antibiotic-recalcitrant Salmonella, which are thought to be the source of infection relapse. In recent years, it has been shown that recalcitrant bacteria manipulate host immune defences and could directly contribute to the spread of antimicrobial resistance. In this Review, we provide an overview of what is currently known about the antibiotic recalcitrance of Salmonella during infection and highlight knowledge gaps requiring additional research in the future.
Collapse
Affiliation(s)
- Rachel T Giorgio
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Prieto A, Miró L, Margolles Y, Bernabeu M, Salguero D, Merino S, Tomas J, Corbera JA, Perez-Bosque A, Huttener M, Fernández LÁ, Juarez A. Targeting plasmid-encoded proteins that contain immunoglobulin-like domains to combat antimicrobial resistance. eLife 2024; 13:RP95328. [PMID: 39046772 PMCID: PMC11268884 DOI: 10.7554/elife.95328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.
Collapse
Affiliation(s)
- Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Luïsa Miró
- Department of Biochemistry and Physiology, Universitat de BarcelonaBarcelonaSpain
- Institut de Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelonaSpain
| | - Yago Margolles
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC)MadridSpain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - David Salguero
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Susana Merino
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Joan Tomas
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Juan Alberto Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de ArucasLas PalmasSpain
| | - Anna Perez-Bosque
- Department of Biochemistry and Physiology, Universitat de BarcelonaBarcelonaSpain
- Institut de Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelonaSpain
| | - Mario Huttener
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC)MadridSpain
| | - Antonio Juarez
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
3
|
Greve NB, Slotved HC, Olsen JE, Thomsen LE. Identification of antibiotic induced persister cells in Streptococcus agalactiae. PLoS One 2024; 19:e0303271. [PMID: 38924011 PMCID: PMC11207178 DOI: 10.1371/journal.pone.0303271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/23/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic persistence is a phenomenon, where a small fraction of a bacterial population expresses a phenotypic variation that allows them to survive antibiotic treatment, which is lethal to the rest of the population. These cells are called persisters cells, and their occurrence has been associated with recurrent disease. Streptococcus agalactiae is a human pathobiont, able to cause invasive infections, and recurrent infections have been reported to occur in both newborns and adults. In this study, we demonstrated that S. agalactiae NEM316 can form persister cells when exposed to antibiotics from different classes. The frequency of persister cell formation was dependent on bacterial growth phase and the class of antibiotics. The ability to form persister cells in response to penicillin was shown to be a general trait among different clinical S. agalactiae isolates, independent of sero- and sequence-type. Taken together, this study shows the existence of antibiotic tolerant S. agalactiae persister cells, which may explain why this bacterial species frequently persists after treatment of invasive infection and can be associated with recurrent disease.
Collapse
Affiliation(s)
- Nanna Boll Greve
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Hans-Christian Slotved
- Department of Bacteria, Division of Infectious Disease Preparedness, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - John Elmerdahl Olsen
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Line Elnif Thomsen
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
4
|
Amoura A, Pistien C, Chaligné C, Dion S, Magnan M, Bridier-Nahmias A, Baron A, Chau F, Bourgogne E, Le M, Denamur E, Ingersoll MA, Fantin B, Lefort A, El Meouche I. Variability in cell division among anatomical sites shapes Escherichia coli antibiotic survival in a urinary tract infection mouse model. Cell Host Microbe 2024; 32:900-912.e4. [PMID: 38759643 DOI: 10.1016/j.chom.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Urinary tract infection (UTI), mainly caused by Escherichia coli, are frequent and have a recurrent nature even after antibiotic treatment. Potential bacterial escape mechanisms include growth defects, but probing bacterial division in vivo and establishing its relation to the antibiotic response remain challenging. Using a synthetic reporter of cell division, we follow the temporal dynamics of cell division for different E. coli clinical strains in a UTI mouse model with and without antibiotics. We show that more bacteria are actively dividing in the kidneys and urine compared with the bladder. Bacteria that survive antibiotic treatment are consistently non-dividing in three sites of infection. Additionally, we demonstrate how both the strain in vitro persistence profile and the microenvironment impact infection and treatment dynamics. Understanding the relative contribution of the host environment, growth heterogeneity, non-dividing bacteria, and antibiotic persistence is crucial to improve therapies for recurrent infections.
Collapse
Affiliation(s)
- Ariane Amoura
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Claire Pistien
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Camille Chaligné
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Sara Dion
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Mélanie Magnan
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | | | - Alexandra Baron
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Françoise Chau
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Emmanuel Bourgogne
- AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France; Université Paris Cité, Faculté de Santé, Pharmacie, Laboratoire de Toxicologie, 75018 Paris, France
| | - Minh Le
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France
| | - Erick Denamur
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, 75018 Paris, France
| | - Molly A Ingersoll
- Université Paris Cité, CNRS, Inserm, Institut Cochin, 75014 Paris, France; Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Bruno Fantin
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Agnès Lefort
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Beaujon, Service de Médecine Interne, 92110 Clichy, France
| | - Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France.
| |
Collapse
|
5
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
6
|
Boeck L. Antibiotic tolerance: targeting bacterial survival. Curr Opin Microbiol 2023; 74:102328. [PMID: 37245488 DOI: 10.1016/j.mib.2023.102328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023]
Abstract
Antimicrobial susceptibility testing is the cornerstone of antibiotic treatments. Yet, active drugs are frequently unsuccessful in vivo and most clinical trials investigating antibiotics fail. So far, bacterial survival strategies, other than drug resistance, have been largely ignored. As such, drug tolerance and persisters, allowing bacterial populations to survive during antibiotic treatments, could fill a gap in antibiotic susceptibility testing. Therefore, it remains critical to establish robust and scalable bacterial viability measures and to define the clinical relevance of bacterial survivors across various bacterial infections. If successful, these tools could improve drug design and development to prevent tolerance formation or target bacterial survivors, to ultimately reduce treatment failures and curb resistance evolution.
Collapse
Affiliation(s)
- Lucas Boeck
- Department of Biomedicine, University Basel, Basel, Switzerland; Clinic of Pulmonary Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Newson JP, Gaissmaier MS, McHugh SC, Hardt WD. Studying antibiotic persistence in vivo using the model organism Salmonella Typhimurium. Curr Opin Microbiol 2022; 70:102224. [PMID: 36335713 DOI: 10.1016/j.mib.2022.102224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Antibiotic persistence permits a subpopulation of susceptible bacteria to survive lethal concentrations of bactericidal antibiotics. This prolongs antibiotic therapy, promotes the evolution of antibiotic-resistant pathogen strains and can select for pathogen virulence within infected hosts. Here, we review the literature exploring antibiotic persistence in vivo, and describe the consequences of recalcitrant subpopulations, with a focus on studies using the model pathogen Salmonella Typhimurium. In vitro studies have established a concise set of features distinguishing true persisters from other forms of bacterial recalcitrance to bactericidal antibiotics. We discuss how animal infection models are useful for exploring these features in vivo, and describe how technical challenges can sometimes prevent the conclusive identification of true antibiotic persistence within infected hosts. We propose using two complementary working definitions for studying antibiotic persistence in vivo: the strict definition for studying the mechanisms of persister formation, and an operative definition for functional studies assessing the links between invasive virulence and persistence as well as the consequences for horizontal gene transfer, or the emergence of antibiotic-resistant mutants. This operative definition will enable further study of how antibiotic persisters arise in vivo, and of how surviving populations contribute to diverse downstream effects such as pathogen transmission, horizontal gene transfer and the evolution of virulence and antibiotic resistance. Ultimately, such studies will help to improve therapeutic control of antibiotic- recalcitrant populations.
Collapse
Affiliation(s)
- Joshua Pm Newson
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Marla S Gaissmaier
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sarah C McHugh
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Duneau D, Ferdy JB. Pathogen within-host dynamics and disease outcome: what can we learn from insect studies? CURRENT OPINION IN INSECT SCIENCE 2022; 52:100925. [PMID: 35489681 DOI: 10.1016/j.cois.2022.100925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Parasite proliferations within/on the host form the basis of the outcome of all infectious diseases. However, within-host dynamics are difficult to study in vertebrates, as it requires regularly following pathogen proliferation from the start of the infection and at the organismal level. Invertebrate models allow for this monitoring under controlled conditions using population approaches. These approaches offer the possibility to describe many parameters of the within-host dynamics, such as rate of proliferation, probability to control the infection, and average time at which the pathogen is controlled. New parameters such as the Pathogen Load Upon Death and the Set-Point Pathogen Load have emerged to characterize within-host dynamics and better understand disease outcome. While contextualizing the potential of studying within-host dynamics in insects to build fundamental knowledge, we review what we know about within-host dynamics using insect models, and what it can offer to our knowledge of infectious diseases.
Collapse
Affiliation(s)
- David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780 Oeiras, Portugal.
| | - Jean-Baptiste Ferdy
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.
| |
Collapse
|
9
|
Abstract
During infection, the rates of pathogen replication, death, and migration affect disease progression, dissemination, transmission, and resistance evolution. Here, we follow the population dynamics of Vibrio cholerae in a mouse model by labeling individual bacteria with one of >500 unique, fitness-neutral genomic tags. Using the changes in tag frequencies and CFU numbers, we inform a mathematical model that describes the within-host spatiotemporal bacterial dynamics. This allows us to disentangle growth, death, forward, and retrograde migration rates continuously during infection. Our model has robust predictive power across various experimental setups. The population dynamics of V. cholerae shows substantial spatiotemporal heterogeneity in replication, death, and migration. Importantly, we find that the niche available to V. cholerae in the host increases with inoculum size, suggesting cooperative effects during infection. Therefore, it is not enough to consider just the likelihood of exposure (50% infectious dose) but rather the magnitude of exposure to predict outbreaks. IMPORTANCE Determining the rates of bacterial migration, replication, and death during infection is important for understanding how infections progress. Separately measuring these rates is often difficult in systems where multiple processes happen simultaneously. Here, we use next-generation sequencing to measure V. cholerae migration, replication, death, and niche size along the mouse gastrointestinal tract. We show that the small intestine of the mouse is a heterogeneous environment, and the population dynamic characteristics change substantially between adjacent gut sections. Our approach also allows us to characterize the effect of inoculum size on these processes. We find that the niche size in mice increases with the infectious dose, hinting at cooperative effects in larger inocula. The dose-response relationship between inoculum size and final pathogen burden is important for the infected individual and is thought to influence the progression of V. cholerae epidemics.
Collapse
|
10
|
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, Bumann D. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci U S A 2021; 118:e2113951118. [PMID: 34911764 PMCID: PMC8713819 DOI: 10.1073/pnas.2113951118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.
Collapse
Affiliation(s)
- Jiagui Li
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Joseph Fanous
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
11
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
12
|
Kanvatirth P, Rossi O, Restif O, Blacklaws BA, Tonks P, Grant AJ, Mastroeni P. Dual role of splenic mononuclear and polymorphonuclear cells in the outcome of ciprofloxacin treatment of Salmonella enterica infections. J Antimicrob Chemother 2021; 75:2914-2918. [PMID: 32613238 DOI: 10.1093/jac/dkaa249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES To determine the immune cell populations associated with Salmonella enterica serovar Typhimurium before and after ciprofloxacin treatment using a murine model of systemic infection. The effect of depletion of immune cells associating with Salmonella on treatment outcome was also determined. METHODS We infected mice with a Salmonella enterica serovar Typhimurium strain expressing GFP and used multicolour flow cytometry to identify splenic immune cell populations associating with GFP-positive Salmonella before and after treatment with ciprofloxacin. This was followed by depletion of different immune cell populations using antibodies and liposomes. RESULTS Our results identified CD11b+CD11chi/lo (dendritic cells/macrophages) and Ly6G+CD11b+ (neutrophils) leucocytes as the main host cell populations that are associated with Salmonella after ciprofloxacin treatment. We therefore proceeded to test the effects of depletion of such populations during treatment. We show that depletion of Ly6G+CD11b+ populations resulted in an increase in the number of viable bacterial cells in the spleen at the end of ciprofloxacin treatment. Conversely, treatment with clodronate liposomes during antimicrobial treatment, which depleted the CD11b+CD11chi/lo populations, resulted in lower numbers of viable bacteria in the tissues. CONCLUSIONS Our study identified host cells where Salmonella bacteria persist during ciprofloxacin treatment and revealed a dual and opposing effect of removal of Ly6G+CD11b+ and CD11b+CD11chi/lo host cells on the efficacy of antimicrobial treatment. This suggests a dichotomy in the role of these populations in clearance/persistence of Salmonella during antimicrobial treatment.
Collapse
Affiliation(s)
- P Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - O Rossi
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - O Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - B A Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - P Tonks
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - A J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - P Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
13
|
Ouali BEF, Chiou TH, Chen JW, Lin IC, Liu CC, Chiang YC, Ho TS, Wang HV. Correlation Between Pathogenic Determinants Associated with Clinically Isolated Non-Typhoidal Salmonella. Pathogens 2021; 10:pathogens10010074. [PMID: 33467782 PMCID: PMC7830680 DOI: 10.3390/pathogens10010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
Non-typhoidal and Typhoidal Salmonella are bacterial pathogens source of worldwide and major disease burden. Virulent determinants of specific serovars belonging to non-typhoidal Salmonella have been extensively studied in different models, yet the pathogenesis of this group of bacteria and the development of clinical symptoms globally remains underexplored. Herein, we implemented microbiological and molecular procedures to investigate isolate virulence traits and molecular diversity, likely in association with disease severity. Our results show that selected clinical isolates from a tertiary referring hospital, depending on the richness of the environment and isolate serotypes, exhibited different, and sometimes controversial, virulence properties. The tested strains were susceptible to Ceftriaxone (90%) with decreasing reactivity to Trimethoprim–Sulfamethoxazole (72%), Chloramphenicol (64%), Ampicillin (48%), Gentamicin (44%), and Ciprofloxacin (2%). Disc susceptibility results partially correlated with minimum inhibitory concentration (MIC); however, special attention must be given to antimicrobial treatment, as a rise in multi-resistant isolates to Trimethoprim–Sulfamethoxazole (2/38 µg/mL), Minocycline (8 µg/mL) and Ampicillin (16 µg/mL) has been noticed, with two isolates resistant to Ceftazidime (16 µg/mL). By comparison to previous molecular epidemiology studies, the variation in the gene profiles of endemic pathogens supports the need for continuous and up-to-date microbiological and molecular reports.
Collapse
Affiliation(s)
| | - Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan; (B.E.F.O.); (T.-H.C.); (I-C.L.)
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
| | - I-Chu Lin
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan; (B.E.F.O.); (T.-H.C.); (I-C.L.)
| | - Ching-Chuan Liu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (Y.-C.C.); (T.-S.H.); (H.-V.W.)
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (Y.-C.C.); (T.-S.H.); (H.-V.W.)
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan; (B.E.F.O.); (T.-H.C.); (I-C.L.)
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (Y.-C.C.); (T.-S.H.); (H.-V.W.)
| |
Collapse
|
14
|
De Ste Croix M, Holmes J, Wanford JJ, Moxon ER, Oggioni MR, Bayliss CD. Selective and non-selective bottlenecks as drivers of the evolution of hypermutable bacterial loci. Mol Microbiol 2020; 113:672-681. [PMID: 32185830 PMCID: PMC7154626 DOI: 10.1111/mmi.14453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022]
Abstract
Bottlenecks reduce the size of the gene pool within populations of all life forms with implications for their subsequent survival. Here, we examine the effects of bottlenecks on bacterial commensal-pathogens during transmission between, and dissemination within, hosts. By reducing genetic diversity, bottlenecks may alter individual or population-wide adaptive potential. A diverse range of hypermutable mechanisms have evolved in infectious agents that allow for rapid generation of genetic diversity in specific genomic loci as opposed to the variability arising from increased genome-wide mutation rates. These localised hypermutable mechanisms include multi-gene phase variation (PV) of outer membrane components, multi-allele PV of restriction systems and recombination-driven antigenic variation. We review selected experimental and theoretical (mathematical) models pertaining to the hypothesis that localised hypermutation (LH) compensates for fitness losses caused by bottlenecks and discuss whether bottlenecks have driven the evolution of hypermutable loci.
Collapse
Affiliation(s)
- Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jonathan Holmes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - E Richard Moxon
- Department of Paediatrics, University of Oxford Medical Sciences Division, John Radcliffe Hospital, Oxford, UK
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
15
|
Hausmann A, Hardt WD. Elucidating host-microbe interactions in vivo by studying population dynamics using neutral genetic tags. Immunology 2020; 162:341-356. [PMID: 32931019 PMCID: PMC7968395 DOI: 10.1111/imm.13266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022] Open
Abstract
Host–microbe interactions are highly dynamic in space and time, in particular in the case of infections. Pathogen population sizes, microbial phenotypes and the nature of the host responses often change dramatically over time. These features pose particular challenges when deciphering the underlying mechanisms of these interactions experimentally, as traditional microbiological and immunological methods mostly provide snapshots of population sizes or sparse time series. Recent approaches – combining experiments using neutral genetic tags with stochastic population dynamic models – allow more precise quantification of biologically relevant parameters that govern the interaction between microbe and host cell populations. This is accomplished by exploiting the patterns of change of tag composition in the microbe or host cell population under study. These models can be used to predict the effects of immunodeficiencies or therapies (e.g. antibiotic treatment) on populations and thereby generate hypotheses and refine experimental designs. In this review, we present tools to study population dynamics in vivo using genetic tags, explain examples for their implementation and briefly discuss future applications.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Moldoveanu AL, Rycroft JA, Helaine S. Impact of bacterial persisters on their host. Curr Opin Microbiol 2020; 59:65-71. [PMID: 32866708 DOI: 10.1016/j.mib.2020.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023]
Abstract
The rise of antibiotic failure poses a severe threat to global health. There is growing concern that this failure is not solely driven by stable antibiotic resistance but also by a subpopulation of transiently non-growing, antibiotic tolerant bacteria. These 'persisters' have been proposed to seed relapsing infections, an important clinical outcome of treatment failure - although definitive evidence for this direct link remains elusive. Recent advances in the field have revealed the complex nature of intra-host persisters which drive their high adaptability through biosynthetic activity. These features of persisters contribute to evolution of antimicrobial resistance and modulation of host immune responses, despite clinically efficacious treatment.
Collapse
Affiliation(s)
- Ana L Moldoveanu
- Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Julian A Rycroft
- Department of Microbiology, Harvard Medical School, 77 Ave Pasteur, Boston, MA 02115, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, 77 Ave Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Rossi O, Vlazaki M, Kanvatirth P, Restif O, Mastroeni P. Within-host spatiotemporal dynamic of systemic salmonellosis: Ways to track infection, reaction to vaccination and antimicrobial treatment. J Microbiol Methods 2020; 176:106008. [PMID: 32707153 DOI: 10.1016/j.mimet.2020.106008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
During the last two decades our understanding of the complex in vivo host-pathogen interactions has increased due to technical improvements and new research tools. The rapid advancement of molecular biology, flow cytometry and microscopy techniques, combined with mathematical modelling, have empowered in-depth studies of systemic bacterial infections across scales from single molecules, to cells, to organs and systems to reach the whole organism level. By tracking subpopulations of bacteria in vivo using molecular or fluorescent tags, it has been possible to reconstruct the spread of infection within and between organs, allowing unprecedented quantification of the effects of antimicrobial treatment and vaccination. This review illustrates recent advances in the study of heterogeneous traits of the infection process and illustrate approaches to investigate the reciprocal interactions between antimicrobial treatments, bacterial growth/death as well as inter- and intra-organ spread. We also discuss how vaccines impact the in vivo behaviour of bacteria and how these findings can guide vaccine design and rational antimicrobial treatment.
Collapse
Affiliation(s)
- Omar Rossi
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK.
| | - Myrto Vlazaki
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK
| | - Panchali Kanvatirth
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK
| | - Olivier Restif
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK
| | - Pietro Mastroeni
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK.
| |
Collapse
|
18
|
Vlazaki M, Rossi O, Price DJ, McLean C, Grant AJ, Mastroeni P, Restif O. A data-based mathematical modelling study to quantify the effects of ciprofloxacin and ampicillin on the within-host dynamics of Salmonella enterica during treatment and relapse. J R Soc Interface 2020; 17:20200299. [PMID: 32634369 DOI: 10.1098/rsif.2020.0299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotic therapy has drastically reduced the mortality and sequelae of bacterial infections. From naturally occurring to chemically synthesized, different classes of antibiotics have been successfully used without detailed knowledge of how they affect bacterial dynamics in vivo. However, a proportion of patients receiving antimicrobial therapy develop recrudescent infections post-treatment. Relapsing infections are attributable to incomplete clearance of bacterial populations following antibiotic administration; the metabolic profile of this antibiotic-recalcitrant bacterial subpopulation, the spatio-temporal context of its emergence and the variance of antibiotic-bacterial interactions in vivo remain unclear. Here, we develop and apply a mechanistic mathematical model to data from a study comparing the effects of ciprofloxacin and ampicillin on the within-host dynamics of Salmonella enterica serovar Typhimurium in murine infections. Using the inferential capacity of our model, we show that the antibiotic-recalcitrant bacteria following ampicillin, but not ciprofloxacin, treatment belong to a non-replicating phenotype. Aligning with previous studies, we independently estimate that the lymphoid tissues and spleen are important reservoirs of non-replicating bacteria. Finally, we predict that post-treatment, the progenitors of the non-growing and growing bacterial populations replicate and die at different rates. Ultimately, the liver, spleen and mesenteric lymph nodes are all repopulated by progenitors of the previously non-growing phenotype in ampicillin-treated mice.
Collapse
Affiliation(s)
- Myrto Vlazaki
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - David J Price
- Centre of Epidemiology and Biostatistics, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.,The Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Callum McLean
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
19
|
Vlazaki M, Huber J, Restif O. Integrating mathematical models with experimental data to investigate the within-host dynamics of bacterial infections. Pathog Dis 2020; 77:5704399. [PMID: 31942996 PMCID: PMC6986552 DOI: 10.1093/femspd/ftaa001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial infections still constitute a major cause of mortality and morbidity worldwide. The unavailability of therapeutics, antimicrobial resistance and the chronicity of infections due to incomplete clearance contribute to this phenomenon. Despite the progress in antimicrobial and vaccine development, knowledge about the effect that therapeutics have on the host–bacteria interactions remains incomplete. Insights into the characteristics of bacterial colonization and migration between tissues and the relationship between replication and host- or therapeutically induced killing can enable efficient design of treatment approaches. Recently, innovative experimental techniques have generated data enabling the qualitative characterization of aspects of bacterial dynamics. Here, we argue that mathematical modeling as an adjunct to experimental data can enrich the biological insight that these data provide. However, due to limited interdisciplinary training, efforts to combine the two remain limited. To promote this dialogue, we provide a categorization of modeling approaches highlighting their relationship to data generated by a range of experimental techniques in the area of in vivo bacterial dynamics. We outline common biological themes explored using mathematical models with case studies across all pathogen classes. Finally, this review advocates multidisciplinary integration to improve our mechanistic understanding of bacterial infections and guide the use of existing or new therapies.
Collapse
Affiliation(s)
- Myrto Vlazaki
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - John Huber
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| |
Collapse
|
20
|
Tanner JR, Kingsley RA. Evolution of Salmonella within Hosts. Trends Microbiol 2018; 26:986-998. [PMID: 29954653 PMCID: PMC6249985 DOI: 10.1016/j.tim.2018.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 11/18/2022]
Abstract
Within-host evolution has resulted in thousands of variants of Salmonella that exhibit remarkable diversity in host range and disease outcome, from broad host range to exquisite host restriction, causing gastroenteritis to disseminated disease such as typhoid fever. Within-host evolution is a continuing process driven by genomic variation that occurs during each infection, potentiating adaptation to a new niche resulting from changes in animal husbandry, the use of antimicrobials, and emergence of immune compromised populations. We discuss key advances in our understanding of the evolution of Salmonella within the host, inferred from (i) the process of host adaptation of Salmonella pathovars in the past, and (ii) direct observation of the generation of variation and selection of beneficial traits during single infections. Salmonella is a bacterial pathogen with remarkable diversity in its host range and pathogenicity due to past within-host evolution in vertebrate species that modified ancestral mechanisms of pathogenesis. Variation arising during infection includes point mutations, new genes acquired through horizontal gene transfer (HGT), deletions, and genomic rearrangements. Beneficial mutations increase in frequency within the host and, if they retain the ability to be transmitted to subsequent hosts, may become fixed in the population. Whole-genome sequencing of sequential isolates from clinical infections reveals within-host HGT and point mutations that impact therapy and clinical management. HGT is the primary mechanism for evolution in prokaryotes and is synergised by complex networks of transfer involving the microbiome. Within-host evolution of Salmonella, resulting in new pathovars, can proceed in the absence of HGT.
Collapse
Affiliation(s)
- Jennifer R Tanner
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, UK
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, UK.
| |
Collapse
|