1
|
El Hady R, Fattouh N, Finianos M, Bitar I, Fakih T, Husni R, Khalaf RA. Phenotypic and genotypic characterization of Candida parapsilosis complex isolates from a Lebanese hospital. Sci Rep 2025; 15:4853. [PMID: 39924528 PMCID: PMC11808099 DOI: 10.1038/s41598-024-84535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
The opportunistic pathogen Candida parapsilosis is a major causative agent of candidiasis leading to death in immunocompromised individuals. Azoles are the first line of defense in their treatment. The purpose of this study was to characterize eight fluconazole-resistant and sensitive C. parapsilosis hospital isolates through a battery of phenotypic tests that target pathogenicity attributes such as virulence, biofilm formation, stress resistance, and ergosterol content. Whole genome sequencing was carried out to identify mutations in key pathogenicity and resistance genes. Phylogenetic comparison was performed to determine strain relatedness and clonality. Genomic data and phylogenetic analysis revealed that two isolates were C. orthopsilosis and C. metapsilosis misidentified as C. parapsilosis. Whole genome sequencing analysis revealed known and novel mutations in key drug resistance and pathogenicity genes such as ALS6, ALS7, SAPP3, SAP7, SAP9, CDR1, ERG6, ERG11 and UPC2. Phylogenetic analysis revealed a high degree of relatedness and clonality within our C. parapsilosis isolates. Our results showed that resistant isolates exhibited an increase in biofilm content compared to the sensitive isolates. In conclusion, our study is the first of its kind in Lebanon to describe phenotypic and genotypic characteristics of nosocomial C. parapsilosis complex isolates having a remarkable ability to form biofilms.
Collapse
Affiliation(s)
- Reine El Hady
- Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nour Fattouh
- Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
- Department of Biology, Saint George University of Beirut, Beirut, Lebanon
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Tarek Fakih
- Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Rola Husni
- School of Medicine, Lebanese American University, Beirut, Lebanon
- Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| | - Roy A Khalaf
- Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon.
| |
Collapse
|
2
|
Daneshnia F, Floyd DJ, Ryan AP, Ghahfarokhy PM, Ebadati A, Jusuf S, Munoz J, Jeffries NE, Elizabeth Yvanovich E, Apostolopoulou A, Perry AM, Lass-Flörl C, Birinci A, Hilmioğlu-Polat S, Ilkit M, Butler G, Nobile CJ, Arastehfar A, Mansour MK. Evaluation of outbreak persistence caused by multidrug-resistant and echinocandin-resistant Candida parapsilosis using multidimensional experimental and epidemiological approaches. Emerg Microbes Infect 2024; 13:2322655. [PMID: 38380673 PMCID: PMC10916928 DOI: 10.1080/22221751.2024.2322655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Candida parapsilosis is known to cause severe and persistent outbreaks in clinical settings. Patients infected with multidrug-resistant C. parapsilosis (MDR Cp) isolates were identified in a large Turkish hospital from 2017-2020. We subsequently identified three additional patients infected with MDR Cp isolates in 2022 from the same hospital and two echinocandin-resistant (ECR) isolates from a single patient in another hospital. The increasing number of MDR and ECR isolates contradicts the general principle that the severe fitness cost associated with these phenotypes could prevent their dominance in clinical settings. Here, we employed a multidimensional approach to systematically assess the fitness costs of MDR and ECR C. parapsilosis isolates. Whole-genome sequencing revealed a novel MDR genotype infecting two patients in 2022. Despite severe in vitro defects, the levels and tolerances of the biofilms of our ECR and MDR isolates were generally comparable to those of susceptible wild-type isolates. Surprisingly, the MDR and ECR isolates showed major alterations in their cell wall components, and some of the MDR isolates consistently displayed increased tolerance to the fungicidal activities of primary human neutrophils and were more immunoevasive during exposure to primary human macrophages. Our systemic infection mouse model showed that MDR and ECR C. parapsilosis isolates had comparable fungal burden in most organs relative to susceptible isolates. Overall, we observed a notable increase in the genotypic diversity and frequency of MDR isolates and identified MDR and ECR isolates potentially capable of causing persistent outbreaks in the future.
Collapse
Affiliation(s)
- Farnaz Daneshnia
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel J. Floyd
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam P. Ryan
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Pegah Mosharaf Ghahfarokhy
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California – Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California – Merced, Merced, CA, USA
| | - Arefeh Ebadati
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California – Merced, Merced, CA, USA
| | - Sebastian Jusuf
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Julieta Munoz
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California – Merced, Merced, CA, USA
| | | | | | - Anna Apostolopoulou
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California – Merced, Merced, CA, USA
| | - Cornelia Lass-Flörl
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Innsbruck, Austria
| | - Asuman Birinci
- Department of Medical Microbiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye
| | | | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California – Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California – Merced, Merced, CA, USA
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Schikora-Tamarit MÀ, Gabaldón T. Recent gene selection and drug resistance underscore clinical adaptation across Candida species. Nat Microbiol 2024; 9:284-307. [PMID: 38177305 PMCID: PMC10769879 DOI: 10.1038/s41564-023-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Understanding how microbial pathogens adapt to treatments, humans and clinical environments is key to infer mechanisms of virulence, transmission and drug resistance. This may help improve therapies and diagnostics for infections with a poor prognosis, such as those caused by fungal pathogens, including Candida. Here we analysed genomic variants across approximately 2,000 isolates from six Candida species (C. glabrata, C. auris, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis) and identified genes under recent selection, suggesting a highly complex clinical adaptation. These involve species-specific and convergently affected adaptive mechanisms, such as adhesion. Using convergence-based genome-wide association studies we identified known drivers of drug resistance alongside potentially novel players. Finally, our analyses reveal an important role of structural variants and suggest an unexpected involvement of (para)sexual recombination in the spread of resistance. Our results provide insights on how opportunistic pathogens adapt to human-related environments and unearth candidate genes that deserve future attention.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
4
|
Govrins M, Lass-Flörl C. Candida parapsilosis complex in the clinical setting. Nat Rev Microbiol 2024; 22:46-59. [PMID: 37674021 DOI: 10.1038/s41579-023-00961-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Representatives of the Candida parapsilosis complex are important yeast species causing human infections, including candidaemia as one of the leading diseases. This complex comprises C. parapsilosis, Candida orthopsilosis and Candida metapsilosis, and causes a wide range of clinical presentations from colonization to superficial and disseminated infections with a high prevalence in preterm-born infants and the potential to cause outbreaks in hospital settings. Compared with other Candida species, the C. parapsilosis complex shows high minimal inhibitory concentrations for echinocandin drugs due to a naturally occurring FKS1 polymorphism. The emergence of clonal outbreaks of strains with resistance to commonly used antifungals, such as fluconazole, is causing concern. In this Review, we present the latest medical data covering epidemiology, diagnosis, resistance and current treatment approaches for the C. parapsilosis complex. We describe its main clinical manifestations in adults and children and highlight new treatment options. We compare the three sister species, examining key elements of microbiology and clinical characteristics, including the population at risk, disease manifestation and colonization status. Finally, we provide a comprehensive resource for clinicians and researchers focusing on Candida species infections and the C. parapsilosis complex, aiming to bridge the emerging translational knowledge and future therapeutic challenges associated with this human pathogen.
Collapse
Affiliation(s)
- Miriam Govrins
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
CRISPR-Cas9 Editing Induces Loss of Heterozygosity in the Pathogenic Yeast Candida parapsilosis. mSphere 2022; 7:e0039322. [PMID: 36416551 PMCID: PMC9769790 DOI: 10.1128/msphere.00393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genetic manipulation is often used to study gene function. However, unplanned genome changes (including single nucleotide polymorphisms [SNPs], aneuploidy, and loss of heterozygosity [LOH]) can affect the phenotypic traits of the engineered strains. Here, we compared the effect of classical deletion methods (replacing target alleles with selectable markers by homologous recombination) with CRISPR-Cas9 editing in the diploid human-pathogenic yeast Candida parapsilosis. We sequenced the genomes of 9 isolates that were modified using classic recombination methods and 12 that were edited using CRISPR-Cas9. As a control, the genomes of eight isolates that were transformed with a Cas9-expressing plasmid in the absence of a guide RNA were also sequenced. Following gene manipulation using classic homologous recombination, only one strain exhibited extensive LOH near the targeted gene (8.9 kb), whereas another contained multiple LOH events not associated with the intended modification. In contrast, large regions of LOH (up to >1,100 kb) were observed in most CRISPR-Cas9-edited strains. LOH most commonly occurred adjacent to the Cas9 cut site and extended to the telomere in four isolates. In two isolates, we observed LOH on chromosomes that were not targeted by CRISPR-Cas9. Among the CRISPR-edited isolates, two exhibited cysteine and methionine auxotrophy caused by LOH at a heterozygous site in MET10, approximately 11 and 157 kb downstream from the Cas9 target site, respectively. C. parapsilosis isolates have relatively low levels of heterozygosity. However, our results show that mutation complementation to confirm observed phenotypes is required when using CRISPR-Cas9. IMPORTANCE CRISPR-Cas9 has greatly streamlined gene editing and is now the gold standard and first choice for genetic engineering. However, we show that in diploid species, extra care should be taken in confirming the cause of any phenotypic changes observed. We show that the Cas9-induced double-strand break is often associated with loss of heterozygosity in the asexual diploid human fungal pathogen Candida parapsilosis. This can result in deleterious heterozygous variants (e.g., stop gain in one allele) becoming homozygous, resulting in unplanned phenotypic changes. Our results stress the importance of mutation complementation even when using CRISPR-Cas9.
Collapse
|
6
|
Daneshnia F, de Almeida Júnior JN, Arastehfar A, Lombardi L, Shor E, Moreno L, Verena Mendes A, Goreth Barberino M, Thomaz Yamamoto D, Butler G, Perlin DS, Colombo AL. Determinants of fluconazole resistance and echinocandin tolerance in C. parapsilosis isolates causing a large clonal candidemia outbreak among COVID-19 patients in a Brazilian ICU. Emerg Microbes Infect 2022; 11:2264-2274. [PMID: 36066554 PMCID: PMC9542950 DOI: 10.1080/22221751.2022.2117093] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/21/2022] [Indexed: 11/03/2022]
Abstract
Patients presenting with severe COVID-19 are predisposed to acquire secondary fungal infections such as COVID-19-associated candidemia (CAC), which are associated with poor clinical outcomes despite antifungal treatment. The extreme burden imposed on clinical facilities during the COVID-19 pandemic has provided a permissive environment for the emergence of clonal outbreaks of multiple Candida species, including C. auris and C. parapsilosis. Here we report the largest clonal CAC outbreak to date caused by fluconazole resistant (FLZR) and echinocandin tolerant (ECT) C. parapsilosis. Sixty C. parapsilosis strains were obtained from 57 patients at a tertiary care hospital in Brazil, 90% of them were FLZR and ECT. Although only 35.8% of FLZR isolates contained an ERG11 mutation, all of them contained the TAC1L518F mutation and significantly overexpressed CDR1. Introduction of TAC1L518F into a susceptible background increased the MIC of fluconazole and voriconazole 8-fold and resulted in significant basal overexpression of CDR1. Additionally, FLZR isolates exclusively harboured E1939G outside of Fks1 hotspot-2, which did not confer echinocandin resistance, but significantly increased ECT. Multilocus microsatellite typing showed that 51/60 (85%) of the FLZR isolates belonged to the same cluster, while the susceptible isolates each represented a distinct lineage. Finally, biofilm production in FLZR isolates was significantly lower than in susceptible counterparts Suggesting that it may not be an outbreak determinant. In summary, we show that TAC1L518F and FKS1E1393G confer FLZR and ECT, respectively, in CAC-associated C. parapsilosis. Our study underscores the importance of antifungal stewardship and effective infection control strategies to mitigate clonal C. parapsilosis outbreaks.
Collapse
Affiliation(s)
- Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - João N. de Almeida Júnior
- Special Mycology Laboratory, Federal University of São Paulo, São Paulo, Brazil
- Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Lis Moreno
- Hospital São Rafael, Salvador, Brazil
- Instituto D’OR de Pesquisa e Ensino (IDOR)
| | - Ana Verena Mendes
- Hospital São Rafael, Salvador, Brazil
- Instituto D’OR de Pesquisa e Ensino (IDOR)
| | | | - Danilo Thomaz Yamamoto
- Mycology Laboratory, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Arnaldo Lopes Colombo
- Special Mycology Laboratory, Federal University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Curtis A, Binder U, Kavanagh K. Galleria mellonella Larvae as a Model for Investigating Fungal-Host Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:893494. [PMID: 37746216 PMCID: PMC10512315 DOI: 10.3389/ffunb.2022.893494] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 09/26/2023]
Abstract
Galleria mellonella larvae have become a widely accepted and utilised infection model due to the functional homology displayed between their immune response to infection and that observed in the mammalian innate immune response. Due to these similarities, comparable results to murine studies can be obtained using G. mellonella larvae in assessing the virulence of fungal pathogens and the in vivo toxicity or efficacy of anti-fungal agents. This coupled with their low cost, rapid generation of results, and lack of ethical/legal considerations make this model very attractive for analysis of host-pathogen interactions. The larvae of G. mellonella have successfully been utilised to analyse various fungal virulence factors including toxin and enzyme production in vivo providing in depth analysis of the processes involved in the establishment and progression of fungal pathogens (e.g., Candida spps, Aspergillus spp., Madurella mycetomatis, Mucormycetes, and Cryptococcus neoformans). A variety of experimental endpoints can be employed including analysis of fungal burdens, alterations in haemocyte density or sub-populations, melanisation, and characterisation of infection progression using proteomic, histological or imaging techniques. Proteomic analysis can provide insights into both sides of the host-pathogen interaction with each respective proteome being analysed independently following infection and extraction of haemolymph from the larvae. G. mellonella can also be employed for assessing the efficacy and toxicity of antifungal strategies at concentrations comparable to those used in mammals allowing for early stage investigation of novel compounds and combinations of established therapeutic agents. These numerous applications validate the model for examination of fungal infection and development of therapeutic approaches in vivo in compliance with the need to reduce animal models in biological research.
Collapse
Affiliation(s)
- Aaron Curtis
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
8
|
Abstract
CRISPR-Cas9 technology radically changed the approach to genetic manipulation of both medically and industrially relevant Candida species, as attested by the ever-increasing number of applications to the study of pathogenesis, drug resistance, gene expression, and host pathogen interaction and drug discovery. Here, we describe the use of plasmid-based systems for high efficiency CRISPR-Cas9 gene editing into any strain of four non-albicans Candida species, namely, Candida parapsilosis, Candida orthopsilosis, Candida metapsilosis, and Candida tropicalis. The plasmids pCP-tRNA and pCT-tRNA contain all the elements necessary for expressing the CRISPR-Cas9 machinery, and they can be used in combination with a repair template for disrupting gene function by insertion of a premature stop codon or by gene deletion. The plasmids are easily lost in the absence of selection, allowing scarless gene editing and minimizing detrimental effects of prolonged Cas9 expression.
Collapse
Affiliation(s)
- Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland.
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Uthayakumar D, Sharma J, Wensing L, Shapiro RS. CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Front Genome Ed 2021; 2:606281. [PMID: 34713231 PMCID: PMC8525362 DOI: 10.3389/fgeed.2020.606281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
The Candida genus encompasses a diverse group of ascomycete fungi that have captured the attention of the scientific community, due to both their role in pathogenesis and emerging applications in biotechnology; the development of gene editing tools such as CRISPR, to analyze fungal genetics and perform functional genomic studies in these organisms, is essential to fully understand and exploit this genus, to further advance antifungal drug discovery and industrial value. However, genetic manipulation of Candida species has been met with several distinctive barriers to progress, such as unconventional codon usage in some species, as well as the absence of a complete sexual cycle in its diploid members. Despite these challenges, the last few decades have witnessed an expansion of the Candida genetic toolbox, allowing for diverse genome editing applications that range from introducing a single point mutation to generating large-scale mutant libraries for functional genomic studies. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is among the most recent of these advancements, bringing unparalleled versatility and precision to genetic manipulation of Candida species. Since its initial applications in Candida albicans, CRISPR-Cas9 platforms are rapidly evolving to permit efficient gene editing in other members of the genus. The technology has proven useful in elucidating the pathogenesis and host-pathogen interactions of medically relevant Candida species, and has led to novel insights on antifungal drug susceptibility and resistance, as well as innovative treatment strategies. CRISPR-Cas9 tools have also been exploited to uncover potential applications of Candida species in industrial contexts. This review is intended to provide a historical overview of genetic approaches used to study the Candida genus and to discuss the state of the art of CRISPR-based genetic manipulation of Candida species, highlighting its contributions to deciphering the biology of this genus, as well as providing perspectives for the future of Candida genetics.
Collapse
Affiliation(s)
- Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Genetic Manipulation as a Tool to Unravel Candida parapsilosis Species Complex Virulence and Drug Resistance: State of the Art. J Fungi (Basel) 2021; 7:jof7060459. [PMID: 34200514 PMCID: PMC8228522 DOI: 10.3390/jof7060459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023] Open
Abstract
An increase in the rate of isolation of Candida parapsilosis in the past decade, as well as increased identification of azole-resistant strains are concerning, and require better understanding of virulence-like factors and drug-resistant traits of these species. In this regard, the present review “draws a line” on the information acquired, thus far, on virulence determinants and molecular mechanisms of antifungal resistance in these opportunistic pathogens, mainly derived from genetic manipulation studies. This will provide better focus on where we stand in our understanding of the C. parapsilosis species complex–host interaction, and how far we are from defining potential novel targets or therapeutic strategies—key factors to pave the way for a more tailored management of fungal infections caused by these fungal pathogens.
Collapse
|
11
|
Arazoe T. CRISPR-based pathogenic fungal genome editing for control of infection and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:161-196. [PMID: 33785176 DOI: 10.1016/bs.pmbts.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungi play important roles in many aspects of human life, such as in various food, beverage, agricultural, chemical, and pharmaceutical industries. Meanwhile, some fungal species cause several severe diseases in plants, humans and animals. Fungal and fungal-like diseases pose a severe threat to human health, food security, and ecosystem health worldwide. This chapter introduces CRISPR-based genome editing technologies for pathogenic fungi and their application in controlling fungal diseases.
Collapse
Affiliation(s)
- Takayuki Arazoe
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda-shi, Chiba, Japan.
| |
Collapse
|
12
|
Binder U, Arastehfar A, Schnegg L, Hörtnagl C, Hilmioğlu-Polat S, Perlin DS, Lass-Flörl C. Efficacy of LAMB against Emerging Azole- and Multidrug-Resistant Candida parapsilosis Isolates in the Galleria mellonella Model. J Fungi (Basel) 2020; 6:E377. [PMID: 33353200 PMCID: PMC7767002 DOI: 10.3390/jof6040377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
While being the third leading cause of candidemia worldwide, numerous studies have shown severe clonal outbreaks due to fluconazole-resistant (FLCR) Candida parapsilosis isolates associated with fluconazole therapeutic failure (FTF) with enhanced mortality. More recently, multidrug resistant (MDR) C. parapsilosis blood isolates have also been identified that are resistant to both azole and echinocandin drugs. Amphotericin B (AMB) resistance is rarely reported among C. parapsilosis isolates and proper management of bloodstream infections due to FLZR and MDR isolates requires prompt action at the time of outbreak. Therefore, using a well-established Galleria mellonella model, we assessed whether (a) laboratory-based findings on azole or echinocandin (micafungin) resistance in C. parapsilosis lead to therapeutic failure, (b) LAMB could serve as an efficient salvage treatment option, and (c) distinct mutations in ERG11 impact mortality. Our in vivo data confirm fluconazole inefficacy against FLCR C. parapsilosis isolates carrying Y132F, Y132F + K143R, Y132F + G307A, and G307A + G458S in Erg11p, while LAMB proved to be an efficacious accessible option against both FLCR and MDR C. parapsilosis isolates. Moreover, positive correlation of in vitro and in vivo data further highlights the utility of G. melonella as a reliable model to investigate azole and polyene drug efficacy.
Collapse
Affiliation(s)
- Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria; (L.S.); (C.H.); (C.L.-F.)
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (D.S.P.)
| | - Lisa Schnegg
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria; (L.S.); (C.H.); (C.L.-F.)
| | - Caroline Hörtnagl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria; (L.S.); (C.H.); (C.L.-F.)
| | | | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (D.S.P.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria; (L.S.); (C.H.); (C.L.-F.)
| |
Collapse
|
13
|
First Report of Candidemia Clonal Outbreak Caused by Emerging Fluconazole-Resistant Candida parapsilosis Isolates Harboring Y132F and/or Y132F+K143R in Turkey. Antimicrob Agents Chemother 2020; 64:AAC.01001-20. [PMID: 32690638 DOI: 10.1128/aac.01001-20] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Clonal outbreaks of fluconazole-resistant (FLZR) Candida parapsilosis isolates have been reported in several countries. Despite its being the second leading cause of candidemia, the azole resistance mechanisms and the clonal expansion of FLZR C. parapsilosis blood isolates have not been reported in Turkey. In this study, we consecutively collected C. parapsilosis blood isolates (n = 225) from the fifth largest hospital in Turkey (2007 to 2019), assessed their azole susceptibility pattern using CLSI M27-A3/S4, and sequenced ERG11 for all and MRR1, TAC1, and UPC2 for a selected number of C. parapsilosis isolates. The typing resolution of two widely used techniques, amplified fragment length polymorphism typing (AFLP) and microsatellite typing (MST), and the biofilm production of FLZR isolates with and without Y132F were compared. Approximately 27% of isolates were FLZR (60/225), among which 90% (54/60) harbored known mutations in Erg11, including Y132F (24/60) and Y132F+K143R (19/60). Several mutations specific to FLZR isolates were found in MRR1, TAC1, and UPC2 AFLP grouped isolates into two clusters, while MST revealed several clusters. The majority of Y132F/Y132F+K143R isolates grouped in clonal clusters, which significantly expanded throughout 2007 to 2019 in neonatal wards. Candida parapsilosis isolates carrying Y132F were associated with significantly higher mortality and less biofilm production than other FLZR isolates. Collectively, we documented the first outbreak of FLZR C. parapsilosis blood isolates in Turkey. The MRR1, TAC1, and UPC2 mutations exclusively found in FLZR isolates establishes a basis for future studies, which will potentially broaden our knowledge of FLZR mechanisms in C. parapsilosis MST should be a preferred method for clonal analysis of C. parapsilosis isolates in outbreak scenarios.
Collapse
|
14
|
Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020. [DOI: 10.3390/microorganisms8030390
expr 890942362 + 917555800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
|
15
|
Jemel S, Guillot J, Kallel K, Botterel F, Dannaoui E. Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020; 8:microorganisms8030390. [PMID: 32168839 PMCID: PMC7142887 DOI: 10.3390/microorganisms8030390] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
Affiliation(s)
- Sana Jemel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Jacques Guillot
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Kalthoum Kallel
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Françoise Botterel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Eric Dannaoui
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Hôpital Européen Georges Pompidou, APHP, Unité de Parasitologie-Mycologie, Service de Microbiologie, 75015 Paris, France
- Université René Descartes, Faculté de médecine, 75006 Paris, France
- Correspondence: ; Tel.: +33-1-56-09-39-48; Fax: +33-1-56-09-24-46
| |
Collapse
|
16
|
Abstract
Fungal pathogens represent a major human threat affecting more than a billion people worldwide. Invasive infections are on the rise, which is of considerable concern because they are accompanied by an escalation of antifungal resistance. Deciphering the mechanisms underlying virulence traits and drug resistance strongly relies on genetic manipulation techniques such as generating mutant strains carrying specific mutations, or gene deletions. However, these processes have often been time-consuming and cumbersome in fungi due to a number of complications, depending on the species (e.g., diploid genomes, lack of a sexual cycle, low efficiency of transformation and/or homologous recombination, lack of cloning vectors, nonconventional codon usage, and paucity of dominant selectable markers). These issues are increasingly being addressed by applying clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mediated genetic manipulation to medically relevant fungi. Here, we summarize the state of the art of CRISPR-Cas9 applications in four major human fungal pathogen lineages: Candida spp., Cryptococcus neoformans, Aspergillus fumigatus, and Mucorales. We highlight the different ways in which CRISPR has been customized to address the critical issues in different species, including different strategies to deliver the CRISPR-Cas9 elements, their transient or permanent expression, use of codon-optimized CAS9, and methods of marker recycling and scarless editing. Some approaches facilitate a more efficient use of homology-directed repair in fungi in which nonhomologous end joining is more commonly used to repair double-strand breaks (DSBs). Moreover, we highlight the most promising future perspectives, including gene drives, programmable base editors, and nonediting applications, some of which are currently available only in model fungi but may be adapted for future applications in pathogenic species. Finally, this review discusses how the further evolution of CRISPR technology will allow mycologists to tackle the multifaceted issue of fungal pathogenesis.
Collapse
Affiliation(s)
- Florent Morio
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Université, EA1155 –IICiMed, Nantes, France
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
17
|
Zoppo M, Luca MD, Villarreal SN, Poma N, Barrasa MI, Bottai D, Vyas VK, Tavanti A. A CRISPR/Cas9-based strategy to simultaneously inactivate the entire ALS gene family in Candida orthopsilosis. Future Microbiol 2019; 14:1383-1396. [PMID: 31659913 DOI: 10.2217/fmb-2019-0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: In this study, the CRISPR gene-editing approach was used to simultaneously inactivate all three members of the ALS gene family in the opportunistic pathogen Candida orthopsilosis. Materials & methods: Using a single gRNA and repair template, CRISPR-edited clones were successfully generated in a one-step process in both C. orthopsilosis reference and clinical strains. Results: The phenotypic characterization of the ALS triple-edited strains revealed no impact on growth in liquid or solid media. However, pseudohyphal formation and the ability to adhere to human buccal epithelial cells were significantly decreased in triple-edited clones. Conclusion: Our CRISPR/Cas9 system is a powerful tool for simultaneous editing of fungal gene families, which greatly accelerates the generation of multiple gene-edited Candida strains. Data deposition: Nucleotide sequence data are available in the GenBank databases under the accession numbers MK875971, MK875972, MK875973, MK875974, MK875975, MK875976, MK875977.
Collapse
Affiliation(s)
- Marina Zoppo
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| | | | | | - Noemi Poma
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| | | | - Daria Bottai
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| | - Valmik K Vyas
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| |
Collapse
|
18
|
Zoppo M, Di Luca M, Franco M, Rizzato C, Lupetti A, Stringaro A, De Bernardis F, Schaudinn C, Barrasa MI, Bottai D, Vyas VK, Tavanti A. CpALS4770 and CpALS4780 contribution to the virulence of Candida parapsilosis. Microbiol Res 2019; 231:126351. [PMID: 31707298 DOI: 10.1016/j.micres.2019.126351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022]
Abstract
The ability of yeast to adhere to biotic and abiotic surfaces represents an essential trait during the early stages of infection. Agglutinin-like sequence (Als) cell-wall proteins play a key role in adhesion of Candida species. Candida parapsilosis genome encompasses 5 ALS members, of which only the role of CPAR2_404800 has been elucidated. The present project was aimed at investigating the contribution of C. parapsilosis Als proteins by generating edited strains lacking functional Als proteins. CPAR2_404770 and CPAR2_404780, further indicated as CpALS4770 and CpALS4780, were selected for the generation of single and double edited strains using an episomal CRISPR/Cas9 technology. Phenotypic characterization of mutant strains revealed that editing of both genes had no impact on the in vitro growth of C. parapsilosis or on morphogenesis. Notably, CpALS4770-edited strain showed a reduction of biofilm formation and adhesive properties to human buccal cells (HBECs). Conversely, single CpALS4780-edited strain did not show any difference compared to the wild-type strain in all the assays performed, while the double CpALS4770-CpALS4780 mutant revealed an increased ability to produce biofilm, a hyper-adhesive phenotype to HBECs, and a marked tendency to form cellular aggregates. Murine vaginal infection experiments indicated a significant reduction in CFUs recovered from BALC/c mice infected with single and double edited strains, compared to those infected with the wild-type strain. These finding clearly indicate that CpAls4770 plays a role in adhesion to biotic and abiotic surfaces, while both CpALS4770 and CpALS4780 genes are required for C. parapsilosis ability to colonize and persist in the vaginal mucosa.
Collapse
Affiliation(s)
- Marina Zoppo
- Department of Biology, University of Pisa, Pisa, Italy.
| | | | - Mauro Franco
- Department of Biology, University of Pisa, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Rome, Italy
| | - Flavia De Bernardis
- Department of Infectious Diseases, Italian National Institute of Health, Rome, Italy
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | | | - Daria Bottai
- Department of Biology, University of Pisa, Pisa, Italy
| | - Valmik K Vyas
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
19
|
Minimal Inhibitory Concentration (MIC)-Phenomena in Candida albicans and Their Impact on the Diagnosis of Antifungal Resistance. J Fungi (Basel) 2019; 5:jof5030083. [PMID: 31487830 PMCID: PMC6787722 DOI: 10.3390/jof5030083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Antifungal susceptibility testing (AFST) of clinical isolates is a tool in routine diagnostics to facilitate decision making on optimal antifungal therapy. The minimal inhibitory concentration (MIC)-phenomena (trailing and paradoxical effects (PXE)) observed in AFST complicate the unambiguous and reproducible determination of MICs and the impact of these phenomena on in vivo outcome are not fully understood. We aimed to link the MIC-phenomena with in vivo treatment response using the alternative infection model Galleria mellonella. We found that Candida albicans strains exhibiting PXE for caspofungin (CAS) had variable treatment outcomes in the Galleria model. In contrast, C. albicans strains showing trailing for voriconazole failed to respond in vivo. Caspofungin- and voriconazole-susceptible C. albicans strains responded to the respective antifungal therapy in vivo. In conclusion, MIC data and subsequent susceptibility interpretation of strains exhibiting PXE and/or trailing should be carried out with caution, as both effects are linked to drug adaptation and treatment response is uncertain to predict.
Collapse
|