1
|
Qin J, Liu Y, Cao M, Zhang Y, Bai G, Shi B. Bacillus subtilis MZ-01 alleviates diarrhea caused by ETEC K88 by reducing inflammation and promoting intestinal health. J Appl Microbiol 2025; 136:lxaf018. [PMID: 39821304 DOI: 10.1093/jambio/lxaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
AIMS The purpose of this study was to investigate the effects of Bacillus subtilis supplementation on the health of weaned piglets and whether B. subtilis supplementation can reduce the damage of piglets induced by ETEC K88. METHODS AND RESULTS The experiment was designed with a 2 × 2 factorial arrangement, comprising the control group, B. subtilis (PRO) group, Escherichia coli K88 (ETEC) group, and B. subtilis + ETEC (PRO + ETEC) group. Regardless of the presence of ETEC, the addition of PRO increased the piglets' final body weight, average daily gain, and daily feed intake. Additionally, PRO primarily achieves a reduction in heat-stable enterotoxin (ST) levels, suppresses the expression of NF-κB, TLR4, and MyD88 mRNA in the jejunum and ileum, lowers pro-inflammatory factors in the blood and small intestine, enhances the expression of tight junction proteins in the small intestine, improves the composition of the colonic microbiota, increases colonic short-chain fatty acid contents, thereby alleviating diarrhea and mitigating bodily damage caused by ETEC K88 infection. CONCLUSION The addition of B. subtilis MZ-01 alleviated ETEC K88-induced piglet diarrhea by reducing ST levels, decreasing pro-inflammatory factors in the blood and intestine, and enhancing the intestinal barrier and tight junction proteins.
Collapse
Affiliation(s)
- Jianwei Qin
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Yang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Yue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road, Harbin, 150030, PR China
| |
Collapse
|
2
|
Song JC, Peng Z, Ning YQ, Refaie A, Wang CF, Liu M, Sun LH. A novel zearalenone lactonase can effectively mitigate zearalenone-induced reproductive toxicity in gilts. Toxicon 2025; 255:108257. [PMID: 39832570 DOI: 10.1016/j.toxicon.2025.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Zymdetox Z-2000 is a novel zearalenone (ZEN) lactonase produced by Bacillus subtilis that can biodegrade ZEN to hydrolyzed ZEN and decarboxylated hydrolyzed ZEN with much lower estrogenic activity. This study aims to evaluate the efficacy of Zymdetox Z-2000 in mitigating the adverse effects of ZEN on the growth performance and reproductive health of gilts. A total of 80 crossbred Landrace × Yorkshire gilts (9.82 ± 0.79 kg) were allocated into five groups and received a basal diet (BD; CON), BD supplemented with 0.4 mg/kg ZEN (ZEN), BD plus ZEN with 0.01% Zymdetox Z-2000 (ZEN-Zym), BD plus ZEN with 0.01% coated Zymdetox Z-2000 (ZEN-CoZym), and BD plus ZEN with 0.1% B. subtilis (ZEN-Bs), respectively, for 28 days. Compared to the CON group, ZEN treatment reduced the body weight gain of the gilts, increased vulva area and vaginal and uterus indices, and increased serum aspartate aminotransferase (AST) activity and estradiol (E2) concentration. ZEN treatment also induced ovaries histopathology changes, decreased the total antioxidant capacity (T-AOC) in uterus but increased T-AOC in ovaries, and increased ZEN concentration in stomach and duodenum than those of the CON group. Interestingly, dietary supplementation with the three products effectively alleviated these ZEN-induced adverse effects, as Zymdetox Z-2000 and coated Zymdetox Z-2000 showed better mitigating effects than B. subtilis. In conclusion, ZEN exposure impaired the growth and reproductive health of gilts, while dietary supplementation with Zymdetox Z-2000 and coated Zymdetox Z-2000 can effectively alleviate ZEN-induced reproductive toxicity in gilts.
Collapse
Affiliation(s)
- Jun-Chao Song
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhe Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yan-Qi Ning
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Alainaa Refaie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cheng-Fei Wang
- Jiangsu Aomai Bio-Technology Co., Ltd., Nanjing, 211226, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
He F, Jin X, E T, Zhao L, Yang W, Zhao Y, Pan L, Bao N, Sun H. Bacillus subtilis JATP3 improved the immunity of weaned piglets by improving intestinal flora and producing citalopram. Microb Pathog 2024; 195:106852. [PMID: 39147213 DOI: 10.1016/j.micpath.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The purpose of this study was to evaluate the ability of Bacillus subtilis JATP3 to stimulate immune response and improve intestinal health in piglets during the critical weaning period. Twelve 28-day-old weaned piglets were randomly divided into two groups. One group was fed a basal diet, while the other group was fed a basal diet supplemented with B. subtilis JATP3 (1 × 109 CFU/mL; 10 mL) for 28 days. The results revealed a significant increase in the intestinal villus gland ratio of weaned piglets following the inclusion of B. subtilis JATP3 (P < 0.05). Inclusion of a probiotic supplement improve the intestinal flora of jejunum and ileum of weaned piglets. Metabolomics analysis demonstrated a notable rise in citalopram levels in the jejunum and ileum, along with elevated levels of isobutyric acid and isocitric acid in the ileum. The results of correlation analysis show that indicated a positive correlation between citalopram and microbial changes. Furthermore, the probiotic-treated group exhibited a significant upregulation in the relative expression of Claudin, Zonula Occludens 1 (ZO-1), and Interleukin 10 (IL-10) in the jejunum and ileum, while displaying a noteworthy reduction in the relative expression of Interleukin 1β (IL-1β). Overall, these findings suggest that B. subtilis JATP3 can safeguard intestinal health by modulating the structure of the intestinal microbiota and their metabolites, wherein citalopram might be a key component contributing to the therapeutic effects of B. subtilis JATP3.
Collapse
Affiliation(s)
- Feng He
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xueying Jin
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Tianjiao E
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Li Pan
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
4
|
Xie Z, Yun Y, Yu G, Zhang X, Zhang H, Wang T, Zhang L. Bacillus subtilis alleviates excessive apoptosis of intestinal epithelial cells in intrauterine growth restriction suckling piglets via the members of Bcl-2 and caspase families. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6924-6932. [PMID: 38597265 DOI: 10.1002/jsfa.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The intestine is a barrier resisting various stress responses. Intrauterine growth restriction (IUGR) can cause damage to the intestinal barrier via destroying the balance of intestinal epithelial cells' proliferation and apoptosis. Bacillus subtilis has been reported to regulate intestinal epithelial cells' proliferation and apoptosis. Thus, the purpose of this study was to determine if B. subtilis could regulate intestinal epithelial cells' proliferation and apoptosis in intrauterine growth restriction suckling piglets. RESULTS Compared with the normal birth weight group, the IUGR group showed greater mean optical density values of Ki-67-positive cells in the ileal crypt (P < 0.05). IUGR resulted in higher ability of proliferation and apoptosis of intestinal epithelial cells, by upregulation of the messenger RNA (mRNA) or proteins expression of leucine rich repeat containing G protein coupled receptor 5, Caspase-3, Caspase-7, β-catenin, cyclinD1, B-cell lymphoma-2 associated agonist of cell death, and BCL2 associated X (P < 0.05), and downregulation of the mRNA or protein expression of B-cell lymphoma-2 and B-cell lymphoma-2-like 1 (P < 0.05). However, B. subtilis supplementation decreased the mRNA or proteins expression of leucine rich repeat containing G protein coupled receptor 5, SPARC related modular calcium binding 2, tumor necrosis factor receptor superfamily member 19, cyclinD1, Caspase-7, β-catenin, B-cell lymphoma-2 associated agonist of cell death, and Caspase-3 (P < 0.05), and increased the mRNA expression of B-cell lymphoma-2 (P < 0.05). CONCLUSION IUGR led to excessive apoptosis of intestinal epithelial cells, which induced compensatory proliferation. However, B. subtilis treatment prevented intestinal epithelial cells of IUGR suckling piglets from excessive apoptosis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zechen Xie
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|
5
|
Tang X, Zeng Y, Xiong K, Zhong J. Bacillus spp. as potential probiotics: promoting piglet growth by improving intestinal health. Front Vet Sci 2024; 11:1429233. [PMID: 39132437 PMCID: PMC11310147 DOI: 10.3389/fvets.2024.1429233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The application of Bacillus spp. as probiotics in the swine industry, particularly for piglet production, has garnered significant attention in recent years. This review aimed to summarized the role and mechanisms of Bacillus spp. in promoting growth and maintaining gut health in piglets. Bacillus spp. can enhance intestinal barrier function by promoting the proliferation and repair of intestinal epithelial cells and increasing mucosal barrier integrity, thereby reducing the risk of pathogenic microbial invasion. Additionally, Bacillus spp. can activate the intestinal immune system of piglets, thereby enhancing the body's resistance to diseases. Moreover, Bacillus spp. can optimize the gut microbial community structure, enhance the activity of beneficial bacteria such as Lactobacillus, and inhibit the growth of harmful bacteria such as Escherichia coli, ultimately promoting piglet growth performance and improving feed efficiency. Bacillus spp. has advantages as well as challenges as an animal probiotic, and safety evaluation should be conducted when using the newly isolated Bacillus spp. This review provides a scientific basis for the application of Bacillus spp. in modern piglet production, highlighting their potential in improving the efficiency of livestock production and animal welfare.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| |
Collapse
|
6
|
Zhou B, Li J, Zhang J, Liu H, Chen S, He Y, Wang T, Wang C. Effects of Long-Term Dietary Zinc Oxide Nanoparticle on Liver Function, Deposition, and Absorption of Trace Minerals in Intrauterine Growth Retardation Pigs. Biol Trace Elem Res 2023; 201:4746-4757. [PMID: 36585599 DOI: 10.1007/s12011-022-03547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
To investigate the long-term effects of dietary zinc oxide nanoparticle (Nano-ZnO, 20-40 nm) on the relative organ weight, liver function, deposition, and absorption of trace minerals in intrauterine growth retardation (IUGR) pigs, piglets were allocated to NBW (6 normal birth weight piglets fed basal diets), IUGR (6 IUGR piglets fed basal diets) and IUGR+NZ (6 IUGR piglets fed basal diets + 600 mg Zn/kg from Nano-ZnO) groups at weaning (21 days of age), which were sampled at 163 days of age. There were no noteworthy changes in the relative weight of organs, hepatic histomorphology, serum alkaline phosphatase, glutamic pyruvic transaminase and glutamic oxalacetic transaminase activities, and Mn, Cu, and Fe concentrations in leg muscle, the liver, the tibia, and feces among the IUGR, NBW, and IUGR+NZ groups (P>0.05), and no intact Nano-ZnO in the jejunum, liver, and muscle was observed, while dietary Nano-ZnO increased the Zn concentrations in the tibia, the liver, serum, and feces (P<0.05) and mRNA expression of metallothionein (MT) 1A, MT2A, solute carrier family 39 member (ZIP) 4, ZIP14, ZIP8, divalent metal transporter 1, solute carrier family 30 member (ZnT) 1, ZnT4 and metal regulatory transcription factor 1, and ZIP8 protein expression in jejunal mucosa (P<0.05). Immunohistochemistry showed that dietary Nano-ZnO increased the relative optical density of ZIP8 (mainly expressed in cells of brush border) and MT2A (mainly expressed in villus lamina propria and gland/crypt) (P<0.05). In conclusion, long-term dietary Nano-ZnO showed no obvious side effects on the development of the major organs, liver function, and metabolism of Cu, Fe, and Mn in IUGR pigs, while it increased the Zn absorption and deposition via enhancing the expression of transporters (MT, ZIP, and ZnT families) in the jejunum, rather than via endocytosis as the form of intact nanoparticles.
Collapse
Affiliation(s)
- Binbin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huijuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yudan He
- Department of Animal Science, Jiangxi Biotech Vocational College, 608 Nanlian Road, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
7
|
Zou D, Yang Y, Ji F, Lv R, Xu T, Hu C. DUOX2-Induced Oxidative Stress Inhibits Intestinal Angiogenesis through MMP3 in a Low-Birth-Weight Piglet Model. Antioxidants (Basel) 2023; 12:1800. [PMID: 37891879 PMCID: PMC10603984 DOI: 10.3390/antiox12101800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Intestinal vessels play a critical role in nutrient absorption, whereas the effect and mechanism of low birth weight (LBW) on its formation remain unclear. Here, twenty newborn piglets were assigned to the control (CON) group (1162 ± 98 g) and LBW group (724 ± 31 g) according to their birth weight. Results showed that the villus height and the activity of maltase in the jejunum were lower in the LBW group than in the CON group. LBW group exhibited a higher oxidative stress level and impaired mitochondrial function in the jejunum and was lower than the CON group in the intestinal vascular density. To investigate the role of oxidative stress in intestinal angiogenesis, H2O2 was employed to induce oxidative stress in porcine intestinal epithelial cells (IPEC-J2). The results showed that the conditioned media from IPEC-J2 with H2O2 treatment decreased the angiogenesis of porcine vascular endothelial cells (PVEC). Transcriptome analysis revealed that a higher expression level of dual oxidase 2 (DUOX2) was found in the intestine of LBW piglets. Knockdown of DUOX2 in IPEC-J2 increased the proliferation and decreased the oxidative stress level. In addition, conditioned media from IPEC-J2 with DUOX2-knockdown was demonstrated to promote the angiogenesis of PVEC. Mechanistically, the knockdown of DUOX2 decreased the reactive oxygen species (ROS) level, thus increasing the angiogenesis in a matrix metalloproteinase 3 (MMP3) dependent manner. Conclusively, our results indicated that DUOX2-induced oxidative stress inhibited intestinal angiogenesis through MMP3 in a LBW piglet model.
Collapse
Affiliation(s)
- Dongbin Zou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
- College of Life Sciences, Hainan University, Haikou 571101, China
| | - Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
| |
Collapse
|
8
|
Liu Y, Azad MAK, Ding S, Zhu Q, Blachier F, Yu Z, Gao H, Kong X. Dietary bile acid supplementation in weaned piglets with intrauterine growth retardation improves colonic microbiota, metabolic activity, and epithelial function. J Anim Sci Biotechnol 2023; 14:99. [PMID: 37438768 DOI: 10.1186/s40104-023-00897-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) is one of the major constraints in animal production. Our previous study showed that piglets with IUGR are associated with abnormal bile acid (BA) metabolism. This study explored whether dietary BA supplementation could improve growth performance and colonic development, function, microbiota, and metabolites in the normal birth weight (NBW) and IUGR piglets. A total of 48 weaned piglets (24 IUGR and 24 NBW) were allocated to four groups (12 piglets per group): (i) NBW group, (ii) NBW + BA group, (iii) IUGR group, and (iv) IUGR + BA group. Samples were collected after 28 days of feeding. RESULTS The results showed that dietary BA supplementation increased the length and weight of the colon and colon weight to body weight ratio, while decreased the plasma diamine oxidase (DAO) concentration in the NBW piglets (P < 0.05). Dietary BA supplementation to IUGR piglets decreased (P < 0.05) the plasma concentrations of D-lactate and endotoxin and colonic DAO and endotoxin, suggesting a beneficial effect on epithelial integrity. Moreover, dietary BA supplementation to NBW and IUGR piglets increased Firmicutes abundance and decreased Bacteroidetes abundance (P < 0.05), whereas Lactobacillus was the dominant genus in the colon. Metabolome analysis revealed 65 and 51 differential metabolites in the colon of piglets fed a diet with/without BA, respectively, which was associated with the colonic function of IUGR piglets. Furthermore, dietary BA supplementation to IUGR piglets upregulated the expressions of CAT, GPX, SOD, Nrf1, IL-2, and IFN-γ in colonic mucosa (P < 0.05). CONCLUSIONS Collectively, dietary BA supplementation could improve the colonic function of IUGR piglets, which was associated with increasing proportions of potentially beneficial bacteria and metabolites. Furthermore, BA shows a promising application prospect in improving the intestinal ecosystem and health of animals.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Sujuan Ding
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Qian Zhu
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Francois Blachier
- Université Paris-SaclayAgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Zugong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Haijun Gao
- College of Medicine, Howard University, Washington, DC, 20059, USA
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
9
|
Yang J, Zhang X, Zhou Z, Li C, Luo R, Liu H, Fu H, Zhong Z, Shen L, Cao S, Luo Y, Li D, Peng G. Protective Effects of Bacillus subtilis HH2 against Oral Enterotoxigenic Escherichia coli in Beagles. Vet Sci 2023; 10:432. [PMID: 37505837 PMCID: PMC10384286 DOI: 10.3390/vetsci10070432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
This study evaluated the protective effect of Bacillus subtilis HH2 on beagles orally challenged with enterotoxigenic Escherichia coli (ETEC). We assessed the physiological parameters and the severity of diarrhea, as well as the changes in three serum immunoglobulins (IgG, IgA, and IgM), plasma diamine oxidase (DAO), D-lactate (D-LA), and the fecal microbiome. Feeding B. subtilis HH2 significantly reduced the severity of diarrhea after the ETEC challenge (p < 0.05) and increased serum levels of IgG, IgA, and IgM (p < 0.01). B. subtilis HH2 administration also reduced serum levels of DAO at 48 h after the ETEC challenge (p < 0.05), but no significant changes were observed in D-LA (p > 0.05). Oral ETEC challenge significantly reduced the richness and diversity of gut microbiota in beagles not pre-fed with B. subtilis HH2 (p < 0.05), while B. subtilis HH2 feeding and oral ETEC challenge significantly altered the gut microbiota structure of beagles (p < 0.01). Moreover, 14 days of B. subtilis HH2 feeding reduced the relative abundance of Deinococcus-Thermus in feces. This study reveals that B. subtilis HH2 alleviates diarrhea caused by ETEC, enhances non-specific immunity, reduces ETEC-induced damage to the intestinal mucosa, and regulates gut microbiota composition.
Collapse
Affiliation(s)
- Jinpeng Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyue Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Caiwu Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Run Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Xie Z, Yu G, Yun Y, Zhang X, Shen M, Jia M, Li A, Zhang H, Wang T, Zhang J, Zhang L. Effects of bamboo leaf extract on energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. J Anim Sci 2023; 101:skac391. [PMID: 36440554 PMCID: PMC9833010 DOI: 10.1093/jas/skac391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The present study was carried out to investigate the effects of bamboo leaf extract (BLE) on energy metabolism, antioxidant capacity, and biogenesis of broilers' small intestine mitochondria. A total of 384 one-day-old male Arbor Acres broiler chicks were randomly divided into four groups with six replicates each for 42 d. The control group was fed a basal diet, whereas the BLE1, BLE2, and BLE3 groups consumed basal diets with 1.0, 2.0, and 4.0 g/kg of BLE, respectively. Some markers of mitochondrial energy metabolism including isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and malate dehydrogenase and some markers of redox system including total superoxide dismutase, malondialdehyde, and glutathione were measured by commercial colorimetric kits. Mitochondrial and cellular antioxidant genes, mitochondrial biogenesis-related genes, and mitochondrial DNA copy number were measured by quantitative real-time-polymerase chain reaction (qRT-PCR). Data were analyzed using the SPSS 19.0, and differences were considered as significant at P < 0.05. BLE supplementation linearly increased jejunal mitochondrial isocitrate dehydrogenase (P < 0.05) and total superoxide dismutase (P < 0.05) activity. The ileal manganese superoxide dismutase mRNA expression was linearly affected by increased dietary BLE supplementation (P < 0.05). Increasing BLE supplementation linearly increased jejunal sirtuin 1 (P < 0.05) and nuclear respiratory factor 1 (P < 0.05) mRNA expression. Linear (P < 0.05) and quadratic (P < 0.05) responses of the ileal nuclear respiratory factor 2 mRNA expression occurred with increased dietary BLE levels. In conclusion, BLE supplementation was beneficial to the energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. The dose of 4.0 g/kg BLE demonstrated the best effects.
Collapse
Affiliation(s)
- Zechen Xie
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Mingming Shen
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Minghui Jia
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Anqi Li
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
11
|
Liu J, Ma X, Zhuo Y, Xu S, Hua L, Li J, Feng B, Fang Z, Jiang X, Che L, Zhu Z, Lin Y, Wu D. The Effects of Bacillus subtilis QST713 and β-mannanase on growth performance, intestinal barrier function, and the gut microbiota in weaned piglets. J Anim Sci 2023; 101:skad257. [PMID: 37583344 PMCID: PMC10449409 DOI: 10.1093/jas/skad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
We investigated the effects of different Bacillus subtilis QST713 doses and a B. subtilis QST713 and β-mannanase mix on growth performance, intestinal barrier function, and gut microbiota in weaned piglets. In total, 320 healthy piglets were randomly assigned to four groups: 1) control group (basal diet), 2) BS100 group (basal diet plus 100 mg/kg B. subtilis QST713), 3) BS200 group (basal diet plus 200 mg/kg B. subtilis QST713), and 4) a BS100XT group (basal diet plus 100 mg/kg B. subtilis QST713 and 150 mg/kg β-mannanase). The study duration was 42 d. We showed that feed intake in weaned piglets on days 1 to 21 was increased in group BS100 (P < 0.05), and that the feed conversion ratio in group BS100XT animals decreased throughout the study (P < 0.05). In terms of microbial counts, the BS100XT group showed reduced Escherichia coli and Clostridium perfringens numbers on day 21 (P < 0.05). Moreover, no significant α-diversity differences were observed across all groups during the study (P > 0.05). However, principal coordinates analysis indicated clear separations in bacterial community structures across groups (analysis of similarities: P < 0.05) on days 21 and 42. Additionally, E-cadherin, occludin, and zonula occludens-1 (ZO-1) expression in piglet feces increased (P < 0.05) by adding B. subtilis QST713 and β-mannanase to diets. Notably, this addition decreased short-chain fatty acid concentrations. In conclusion, B. subtilis QST713 addition or combined B. subtilis QST713 plus β-mannanase effectively improved growth performance, intestinal barrier function, and microbial balance in weaned piglets.
Collapse
Affiliation(s)
- Junchen Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangyuan Ma
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lun Hua
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zeyuan Zhu
- Elanco Animal Health, Mutiara Damansara, Selangor, Malaysia
| | - Yan Lin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - De Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
12
|
Liu Y, Gu W, Liu X, Zou Y, Wu Y, Xu Y, Han D, Wang J, Zhao J. Joint Application of Lactobacillus plantarum and Bacillus subtilis Improves Growth Performance, Immune Function and Intestinal Integrity in Weaned Piglets. Vet Sci 2022; 9:vetsci9120668. [PMID: 36548829 PMCID: PMC9781797 DOI: 10.3390/vetsci9120668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to explore the effects of the joint application of Lactobacillus plantarum and Bacillus subtilis on growth performance, immune function, antioxidant capacity, intestinal integrity, and gut microbiota composition in weaned piglets. The piglets were allocated randomly into 4 dietary groups, which were a control diet (NC), NC + 150 ppm mucilage sulfate (PC), and 3 additional diets containing 1 kg/t (LT), 1.5 kg/t (MT), or 2 kg/t (HT) mixture of Lactobacillus plantarum and Bacillus subtilis, respectively. Results showed that joint application of Lactobacillus plantarum and Bacillus subtilis increased ADFI and ADG of weaned piglets in d 14~28 and d 28~42 (p < 0.05), and decreased serum concentrations of DAO, IL-1β, TNF-α, and IL-2. The LT group increased jejunal and colonic sIgA contents compared with the PC group (p < 0.05). Groups of MT and HT increased colonic mRNA expression of host defense peptides and tight junction proteins compared with the NC and PC groups. The joint application of Lactobacillus plantarum and Bacillus subtilis increased the abundance of colonic Lactobacillus compared with NC and PC groups (p < 0.10). In conclusion, the joint application of Lactobacillus plantarum and Bacillus subtilis as an antibiotics alternative improved growth performance via promoting immune function and intestinal integrity of weaned piglets.
Collapse
Affiliation(s)
- Yisi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Gu
- Shandong Provincial Key Laboratory of Animal Microecological Agent, Shandong Baolai Leelai Bioengineering Co., Ltd., Tai’an 271000, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youwei Zou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youhan Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-156-0091-1358
| |
Collapse
|
13
|
Liu Y, Azad MAK, Zhang W, Xiong L, Blachier F, Yu Z, Kong X. Intrauterine growth retardation affects liver bile acid metabolism in growing pigs: effects associated with the changes of colonic bile acid derivatives. J Anim Sci Biotechnol 2022; 13:117. [PMID: 36320049 PMCID: PMC9628178 DOI: 10.1186/s40104-022-00772-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) is associated with severely impaired nutrient metabolism and intestinal development of pigs. Our previous study found that IUGR altered intestinal microbiota and metabolites in the colon. However, the consequences of IUGR on bile acid metabolism in pigs remained unclear. The present study aimed to investigate the bile acid metabolism in the liver and the profile of bile acid derivatives in the colon of growing pigs with IUGR using bile acid targeted metabolomics. Furthermore, we determined correlations between colonic microbiota composition and metabolites of IUGR and normal birth weight (NBW) pigs at different growth stages that were 7, 21, and 28-day-old, and the average body weight (BW) of 25, 50, and 100 kg of the NBW pigs. RESULTS The results showed that the plasma total bile acid concentration was higher (P < 0.05) at the 25 kg BW stage and tended to increase (P = 0.08) at 28-day-old in IUGR pigs. The hepatic gene expressions related to bile acid synthesis (CYP7A1, CYP27A1, and NTCP) were up-regulated (P < 0.05), and the genes related to glucose and lipid metabolism (ATGL, HSL, and PC) were down-regulated (P < 0.05) at the 25 kg BW stage in IUGR pigs when compared with the NBW group. Targeted metabolomics analysis showed that 29 bile acids and related compounds were detected in the colon of pigs. The colonic concentrations of dehydrolithocholic acid and apocholic acid were increased (P < 0.05), while isodeoxycholic acid and 6,7-diketolithocholic acid were decreased (P < 0.05) in IUGR pigs, when compared with the NBW pigs at the 25 kg BW stage. Moreover, Spearman's correlation analysis revealed that colonic Unclassified_[Mogibacteriaceae], Lachnospira, and Slackia abundances were negatively correlated (P < 0.05) with dehydrolithocholic acid, as well as the Unclassified_Clostridiaceae abundance with 6,7-diketolithocholic acid at the 25 kg BW stage. CONCLUSIONS These findings suggest that IUGR could affect bile acid and glucolipid metabolism in growing pigs, especially at the 25 kg BW stage, these effects being paralleled by a modification of bile acid derivatives concentrations in the colonic content. The plausible links between these modified parameters are discussed.
Collapse
Affiliation(s)
- Yang Liu
- grid.9227.e0000000119573309Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan China ,grid.27871.3b0000 0000 9750 7019College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Md. Abul Kalam Azad
- grid.9227.e0000000119573309Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan China
| | - Wanghong Zhang
- grid.9227.e0000000119573309Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan China
| | - Liang Xiong
- grid.9227.e0000000119573309Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan China
| | - Francois Blachier
- grid.507621.7UMR PNCA, Université Paris-Saclay, INRAE, 75005 AgroParisTechParis, France
| | - Zugong Yu
- grid.27871.3b0000 0000 9750 7019College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Xiangfeng Kong
- grid.9227.e0000000119573309Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan China
| |
Collapse
|
14
|
Li Q, Hung I, Bai K, Wang T. Maternal nucleotide supplementation improves the intestinal morphology and immune function in lipopolysaccharide-challenged newborn piglets. Front Vet Sci 2022; 9:1043842. [PMID: 36387380 PMCID: PMC9643262 DOI: 10.3389/fvets.2022.1043842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to evaluate the effects of maternal nucleotide (NT) supplementation on intestinal morphology and immune function in lipopolysaccharide-challenged newborn piglets. At 85 d gestation, 12 sows were selected and assigned to two groups: the CON group (basal diet, n = 6) and the NT group (basal diet with 1 g/kg NT mixture, n = 6). After parturition, newborn piglets were collected without suckling. Piglets from the CON group were intraperitoneally injected with sterile saline or lipopolysaccharide (LPS, 10 mg/kg body weight), and divided into the C-CON (n = 6) and C-LPS groups (n = 6). Piglets from the NT group received the same treatment and were divided into the N-CON (n = 6) and N-LPS groups (n = 6). The blood and small intestinal samples of piglets were collected 1 h after injection. The results showed that: (1) maternal NT supplementation increased the concentrations of serum complement C3 and C4 (P < 0.05), and suppressed the increase in serum hypersensitive C-reactive protein in LPS-challenged newborn piglets (P < 0.05); (2) maternal NT supplementation increased the villus height and the ratio of villus height to crypt depth in the duodenum of newborn piglets (P < 0.05) and inhibited the LPS-induced decrease in the villus height in the jejunum and ileum (P < 0.05). (3) The LPS-induced increased levels of interleukin-6 in the jejunum and tumor necrosis factor-α in the ileum of newborn piglets were suppressed by maternal NT supplementation (P < 0.05). (4) In the jejunum of newborn piglets, maternal NT supplementation inhibited the LPS-induced increase in toll-like receptor 4 (TLR4) mRNA and protein expression (P < 0.05) and the decrease of nuclear factor-κB inhibitor α (IκBα) protein expression (P < 0.05). In the ileum, piglets had a lower nuclear factor-κB (NFκB) mRNA expression in the NT groups than the CON groups (P < 0.05), and maternal NT supplementation suppressed the decrease of IκBα mRNA in LPS-treated piglets (P < 0.05). In conclusion, maternal NT supplementation could promote the intestinal development and immune function of newborn piglets, and may improve LPS-induced intestinal inflammatory responses via the TLR4/IκBα/NFκB pathway.
Collapse
Affiliation(s)
- Qiming Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ifen Hung
- Anyou Biotechnology Group Co., Ltd., Suzhou, China
| | - Kaiwen Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Tian Wang
| |
Collapse
|
15
|
Wang Q, Ren Y, Cui Y, Gao B, Zhang H, Jiang Q, Loor JJ, Deng Z, Xu C. Bacillus subtilis Produces Amino Acids to Stimulate Protein Synthesis in Ruminal Tissue Explants via the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Beta–Serine/Threonine Kinase–Mammalian Target of Rapamycin Complex 1 Pathway. Front Vet Sci 2022; 9:852321. [PMID: 35832333 PMCID: PMC9272757 DOI: 10.3389/fvets.2022.852321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background Bacillus subtilis is a probiotic strain that is widely used as a feed supplement for ruminants. In this study, one B. subtilis strain isolated from the ruminal fluid of Holstein dairy cows was used for an ex vivo study with ruminal tissue explants. The main goal was to assess the potential endosymbiotic links between B. subtilis and the ruminal epithelium using molecular analyses and amino acid profiling. The explant culture protocol was first optimized to determine the ideal conditions in terms of tissue viability before performing the actual experiments involving active and inactive bacteria with or without protein synthesis inhibitors, such as LY294002 (phosphatidylinositol 3-kinase inhibitor) or rapamycin [mammalian target of rapamycin (mTOR) inhibitor]. Results The mRNA levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB), serine/threonine kinase (AKT), mTOR, P70S6K1, and eukaryotic translation initiation factor 4E binding protein 1 were the highest (p < 0.01), while those of programmed cell death 4 were the lowest when the tissue was incubated with 107 of B. subtilis. Compared with the inactivated bacteria, the expression levels of PIK3CB and AKT, and overall changes in mTOR and P70S6K1 were greater in rumen explants with living bacteria (p < 0.05). With an increase in B. subtilis concentration, the trends of protein and corresponding gene changes were consistent. There were differences in the concentrations of individual amino acids in the supernatants of living and inactivated bacterial culture groups, with most amino acids enriched in pathways, such as aminoacyl tRNA biosynthesis, cyanoamino acid metabolism, monobactam biosynthesis, or glycine, serine, and threonine metabolism. The addition of psilocybin upregulated the expression levels of PIK3CB and AKT. A significant decrease (p < 0.05) in PIK3CB and mTOR protein expression levels was detected after the addition of LY294002 and rapamycin. In addition, These responses were associated with the downregulation (p < 0.05) of AKT and P70S6K protein expression levels. Conclusions We confirmed that the in vivo ruminal tissue culture system is a suitable model for studying probiotic-induced alterations in tissue function. As such, this study provides a means for future mechanistic studies related to microbial regulation and the dietary supply of proteins. In addition, living and inactivated B. subtilis can promote protein synthesis in ruminal tissue explants by altering the expression levels of related factors in the PIK3CB–AKT–mTORC1 pathway, which could further aid in optimizing the feed efficiency and increasing the use of inactivated bacteria as additives in dairy cow farming.
Collapse
Affiliation(s)
- Qiuju Wang
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yulong Ren
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yizhe Cui
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bingnan Gao
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao Zhang
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qianming Jiang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Zhaoju Deng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Xu
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Chuang Xu ;
| |
Collapse
|
16
|
Meng H, Song J, Li Y, Li X, Li X, Gou J, Nie Z, Wang J, Zheng Y, Wang M. Monascus vinegar protects against liver inflammation in high-fat-diet rat by alleviating intestinal microbiota dysbiosis and enteritis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|