1
|
Li X, Liu J, Hong Q, Ma X, Wang L, Xie Z. Validation of male-specific markers confirmed an XY/XX-type sex determination system in Chinese dark sleeper (Odontobutis sinensis). Genomics 2025; 117:111053. [PMID: 40348286 DOI: 10.1016/j.ygeno.2025.111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/29/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Next generation sequencing (NGS) method has been successfully used to identify sex-specific markers in many fish species. The Chinese dark sleeper (Odontobutis sinensis) is a commercially important aquaculture species in China. Here, by conducting whole genome sequencing of three females, three males and one female mixed pool, we initially identified 658 male-specific sequences and 242 female-specific sequences of Chinese dark sleeper. Based on polymerase chain reaction (PCR) confirmation, three markers showed 100 % male-specific amplification in 16 female and 16 male individuals from the Wuhan population, and this result was further validated using an additional 16 females and 16 males from the Guangdong population, demonstrating the reliability of these markers across multiple populations. These findings suggest a male heterogametic sex determination system in Chinese dark sleeper. Moreover, male-specific genes including high mobility group box 3 (hmgxb3) and insulin-like growth factor 2b (igf2b) were identified through NR annotation, which might be candidate sex-determining genes in Chinese dark sleeper. Generally, these validated male-specific markers first demonstrated the existence of an XY-type sex determination system in Chinese dark sleeper and would make a significant contribution to the development of all-male breeding and understanding of sex determination mechanisms.
Collapse
Affiliation(s)
- Xiaocan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jiaxiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qi Hong
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Xilan Ma
- College of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Le Wang
- Molecular Population Genetics Group, Temasek Life sciences Laboratory, 117604, Singapore
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Yang C, Zhao Y, Zhao W, Huang H, Zhang Q, Liu J. CeRNA profiling and the role in regulating gonadal development in gold pompano. BMC Genomics 2025; 26:43. [PMID: 39819203 PMCID: PMC11737251 DOI: 10.1186/s12864-025-11220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The golden pompano (Trachinotus ovatus) is an economically significant warm-water aquaculture species in China. The time required for sexual maturity of T. ovatus is relatively long. Consequently, it has prompted researchers to investigate gonadal development process of this fish. To gain further insight into the function of competing endogenous RNA (ceRNA) in the gonads of T. ovatus and the regulatory mechanism of the ceRNA network, whole transcriptome libraries were constructed from the testes and ovaries. RESULTS Overall, a total of 96 differentially expressed microRNAs (DE-miRNAs), 2,338 differentially expressed messenger RNAs (DE-mRNAs), 973 differentially expressed long non-coding RNAs (DE-lncRNAs), and 94 differentially expressed circular RNAs (DE-circRNAs) were identified. Additionally, a ceRNA network was constructed, and enrichment analysis confirmed the involvement of numerous pathways in reproduction and gonadal development, including the TGF-β signaling pathway and GnRH signaling pathway. The ceRNA network analysis revealed that the oni-let-7d-1-p3 and PC-3p-112794_13 may play significant roles in T. ovatus gonadal development. And we have observed a possible relationship related to gonadal development involving R-spondin-1 (Rspo1), oni-let-7d-1-p3, and MSTRG.14909.1 (lnc-TGFβR). Dual-luciferase gene reporter system and fluorescence in situ hybridization analyses preliminary verified the regulation relationship between Rspo1 and oni-let-7d-1-p3, as well as lnc-TGFβR and oni-let-7d-1-p3 in the cytoplasm of sertoli cells. CONCLUSION It is hypothesized that the lnc-TGFβR functions as a sponge for oni-let-7d-1-p3, participating in regulating the process of testis development. These findings could enhance our understanding of ncRNAs in gonadal development. It also provides new insight into the function of ncRNAs and the regulatory relationship of ceRNA between males and females. These results might contribute to discussions on the regulation of ncRNA during gametogenesis.
Collapse
Affiliation(s)
- Changcan Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China
| | - Yijun Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China
| | - Wendong Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China
| | - Hai Huang
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Jinxiang Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- Hainan Seed Industry Laboratory, Sanya, China.
| |
Collapse
|
3
|
Hashimoto D, Fujimoto K, Kim SW, Lee YS, Nakata M, Suzuki K, Wada Y, Asamura S, Yamada G. Emerging structural and pathological analyses on the erectile organ, corpus cavernous containing sinusoids. Reprod Med Biol 2023; 22:e12539. [PMID: 37663955 PMCID: PMC10472535 DOI: 10.1002/rmb2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background The corpus cavernosum (CC) containing sinusoids plays fundamental roles for erection. Analysis of pathological changes in the erectile system is studied by recent experimental systems. Various in vitro models utilizing genital mesenchymal-derived cells and explant culture systems are summarized. Methods 3D reconstruction of section images of murine CC was created. Ectopic chondrogenesis in aged mouse CC was shown by a gene expression study revealing the prominent expression of Sox9. Various experimental strategies utilizing mesenchyme-derived primary cells and tissue explants are introduced. Main Findings Possible roles of Sox9 in chondrogenesis and its regulation by several signals are suggested. The unique character of genital mesenchyme is shown by various analyses of external genitalia (ExG) derived cells and explant cultures. Such strategies are also applied to the analysis of erectile contraction/relaxation responses to many signals and aging process. Conclusion Erectile dysfunction (ED) is one of the essential topics for the modern aged society. More comprehensive studies are necessary to reveal the nature of the erectile system by combining multiple cell culture strategies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Yoshitaka Wada
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
4
|
Imaimatsu K, Uchida A, Hiramatsu R, Kanai Y. Gonadal Sex Differentiation and Ovarian Organogenesis along the Cortical-Medullary Axis in Mammals. Int J Mol Sci 2022; 23:13373. [PMID: 36362161 PMCID: PMC9655463 DOI: 10.3390/ijms232113373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
In most mammals, the sex of the gonads is based on the fate of the supporting cell lineages, which arises from the proliferation of coelomic epithelium (CE) that surfaces on the bipotential genital ridge in both XY and XX embryos. Recent genetic studies and single-cell transcriptome analyses in mice have revealed the cellular and molecular events in the two-wave proliferation of the CE that produce the supporting cells. This proliferation contributes to the formation of the primary sex cords in the medullary region of both the testis and the ovary at the early phase of gonadal sex differentiation, as well as to that of the secondary sex cords in the cortical region of the ovary at the perinatal stage. To support gametogenesis, the testis forms seminiferous tubules in the medullary region, whereas the ovary forms follicles mainly in the cortical region. The medullary region in the ovary exhibits morphological and functional diversity among mammalian species that ranges from ovary-like to testis-like characteristics. This review focuses on the mechanism of gonadal sex differentiation along the cortical-medullary axis and compares the features of the cortical and medullary regions of the ovary in mammalian species.
Collapse
Affiliation(s)
- Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- RIKEN BioResouce Research Center, Tsukuba 305-0074, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
5
|
Forero-Forero A, López-Ramírez S, Felix R, Hernández-Sánchez J, Tesoro-Cruz E, Orozco-Suárez S, Murbartián J, Soria-Castro E, Olivares A, Bekker-Méndez C, Paredes-Cervantes V, Oviedo N. Down Regulation of Catsper1 Expression by Calmodulin Inhibitor (Calmidazolium): Possible Implications for Fertility. Int J Mol Sci 2022; 23:ijms23158070. [PMID: 35897646 PMCID: PMC9331981 DOI: 10.3390/ijms23158070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The CatSper channel localizes exclusively in the flagella of sperm cells. The Catsper1 protein, together with three pore units, is essential for the CatSper Channel formation, which produces flagellum hyperactivation and confers sperm fertility. Catsper1 expression is dependent on Sox transcription factors, which can recognize in vitro at least three Sox binding sites on the promoter. Sox transcription factors have calmodulin-binding domains for nuclear importation. Calmodulin (CaM) is affected by the specific inhibitor calmidazolium (CMZ), which prevents the nuclear transport of Sox factors. In this work, we assess the regulation of the Catsper1 promoter in vivo by Sox factors in the murine testis and evaluate the effects of the inhibitor calmidazolium on the expression of the Casper genes, and the motility and fertility of the sperm. Catsper1 promoter has significant transcriptional activity in vivo; on the contrary, three Sox site mutants in the Catsper1 promoter reduced transcriptional activity in the testis. CaM inhibition affects Sox factor nuclear transport and has notable implications in the expression and production of Catsper1, as well as in the motility and fertility capability of sperm. The molecular mechanism described here might conform to the basis of a male contraceptive strategy acting at the transcriptional level by affecting the production of the CatSper channel, a fundamental piece of male fertility.
Collapse
Affiliation(s)
- Angela Forero-Forero
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Biología Celular, Ciudad de México 07360, Mexico; (A.F.-F.); (R.F.)
| | - Stephany López-Ramírez
- Instituto Mexicano del Seguro Social (IMSS), Hospital General de Zona Núm. 68, Ecatepec 55400, Mexico;
| | - Ricardo Felix
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Biología Celular, Ciudad de México 07360, Mexico; (A.F.-F.); (R.F.)
| | - Javier Hernández-Sánchez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Genética y Biología Molecular, Ciudad de México 07360, Mexico;
| | - Emiliano Tesoro-Cruz
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología del Centro Médico Nacional La Raza, Unidad de Investigación Médica en Inmunología e Infectología, Ciudad de México 02990, Mexico; (E.T.-C.); (C.B.-M.); (V.P.-C.)
| | - Sandra Orozco-Suárez
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional siglo XXI, Hospital de Especialidades, Unidad de Investigación Médica en Enfermedades Neurológicas, Ciudad de México 06720, Mexico;
| | - Janet Murbartián
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Sede sur, Departamento de Farmacobiología, Ciudad de México 14330, Mexico;
| | - Elizabeth Soria-Castro
- Instituto Nacional de Cardiología “Ignacio Chavéz”, Departamento de Biomedicina Cardiovascular, Ciudad de México 14080, Mexico;
| | - Aleida Olivares
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Gineco Obstetricia No. 4 Luis Castelazo Ayala, Unidad de Investigación Médica en Medicina Reproductiva, Ciudad de México 01090, Mexico;
| | - Carolina Bekker-Méndez
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología del Centro Médico Nacional La Raza, Unidad de Investigación Médica en Inmunología e Infectología, Ciudad de México 02990, Mexico; (E.T.-C.); (C.B.-M.); (V.P.-C.)
| | - Vladimir Paredes-Cervantes
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología del Centro Médico Nacional La Raza, Unidad de Investigación Médica en Inmunología e Infectología, Ciudad de México 02990, Mexico; (E.T.-C.); (C.B.-M.); (V.P.-C.)
| | - Norma Oviedo
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología del Centro Médico Nacional La Raza, Unidad de Investigación Médica en Inmunología e Infectología, Ciudad de México 02990, Mexico; (E.T.-C.); (C.B.-M.); (V.P.-C.)
- Correspondence: ; Tel.: +52-5557821088 (ext. 24315)
| |
Collapse
|
6
|
He Z, Ye L, Yang D, Ma Z, Deng F, He Z, Hu J, Chen H, Zheng L, Pu Y, Jiao Y, Chen Q, Gao K, Xiong J, Lai B, Gu X, Huang X, Yang S, Zhang M, Yan T. Identification, characterization and functional analysis of gonadal long noncoding RNAs in a protogynous hermaphroditic teleost fish, the ricefield eel (Monopterus albus). BMC Genomics 2022; 23:450. [PMID: 35725373 PMCID: PMC9208217 DOI: 10.1186/s12864-022-08679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022] Open
Abstract
Background An increasing number of long noncoding RNAs (lncRNAs) have been found to play important roles in sex differentiation and gonad development by regulating gene expression at the epigenetic, transcriptional and posttranscriptional levels. The ricefield eel, Monopterus albus, is a protogynous hermaphroditic fish that undergoes a sequential sex change from female to male. However, the roles of lncRNA in the sex change is unclear. Results Herein, we performed RNA sequencing to analyse lncRNA expression patterns in five different stages of M. albus development to investigate the roles of lncRNAs in the sex change process. A total of 12,746 lncRNAs (1503 known lncRNAs and 11,243 new lncRNAs) and 2901 differentially expressed lncRNAs (DE-lncRNAs) were identified in the gonads. The target genes of the DE-lncRNAs included foxo1, foxm1, smad3, foxr1, camk4, ar and tgfb3, which were mainly enriched in signalling pathways related to gonadal development, such as the insulin signalling pathway, MAPK signalling pathway, and calcium signalling pathway. We selected 5 highly expressed DE-lncRNAs (LOC109952131, LOC109953466, LOC109954337, LOC109954360 and LOC109958454) for full length amplification and expression pattern verification. They were all expressed at higher levels in ovaries and intersex gonads than in testes, and exhibited specific time-dependent expression in ovarian tissue incubated with follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG). The results of quantitative real-time PCR (qRT-PCR) analysis and a dual-luciferase assay showed that znf207, as the gene targeted by LOC109958454, was expressed in multiple tissues and gonadal developmental stages of M. albus, and its expression was also inhibited by the hormones FSH and hCG. Conclusions These results provide new insights into the role of lncRNAs in gonad development, especially regarding natural sex changes in fish, which will be useful for enhancing our understanding of sequential hermaphroditism and sex changes in the ricefield eel (M. albus) and other teleosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08679-2.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lijuan Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhide He
- Luzhou Municipal Bureau of Agriculture and Rural Affairs, Luzhou, 646000, Sichuan, China
| | - Jiaxiang Hu
- Sichuan Water Conservancy Vocational College, Chengdu, 611231, Sichuan, China
| | - Hongjun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuanyuan Jiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaobin Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
7
|
Li W, Zhu J, Lei L, Chen C, Liu X, Wang Y, Hong X, Yu L, Xu H, Zhu X. The Seasonal and Stage-Specific Expression Patterns of HMGB2 Suggest Its Key Role in Spermatogenesis in the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Biochem Genet 2022; 60:2489-2502. [PMID: 35554782 DOI: 10.1007/s10528-022-10229-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
HMGB2, a member of the high-mobility group (HMG) proteins, was identified as a male-biased gene and plays a crucial role in the germ cells differentiation of mammals. However, its role in spermatogenesis of turtle is still poorly understood. Here, we cloned the Pelodiscus sinensis HMGB2 and analyzed its expression profile in different tissues and in testis at different developmental ages. P. sinensis HMGB2 mRNA was highly expressed in the testis of 3-year-old turtles (P < 0.01), but was hardly detected in ovaries and other somatic tissues. The results of chemical in situ hybridization (CISH) showed that HMGB2 mRNA was specifically expressed in germ cells, where it was mainly distributed in round spermatids and sperm, but not detected in somatic cells, spermatogonia, primary spermatocytes, or secondary spermatocyte. The relative expression of HMGB2 also responded to seasonal changes in testis development in P. sinensis. In different seasons of the year, the relative expression of HMGB2 transcripts in the testis of 1 year and 2 year olds showed an overall upward trend, whereas, in the testis of 3 year old, it peaked in July and then declined in October. Moreover, in April and July, with an increase in ages, the expression of HMGB2 transcripts showed an upward trend. However, in January and October, there was a decline in expression in testis in 3-year-old turtles. These results showed that HMGB2 is closely related to spermatogenesis in P. sinensis.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Luo Lei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Hongyan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China.
| |
Collapse
|
8
|
Skroblyn T, Joedicke JJ, Pfau M, Krüger K, Bourquin JP, Izraeli S, Eckert C, Höpken UE. CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment. J Pathol 2022; 258:12-25. [PMID: 35522562 DOI: 10.1002/path.5924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
The testis is the second most frequent extramedullary site of relapse in pediatric acute lymphoblastic leukemia (ALL). The mechanism for B-cell (B) ALL cell migration towards and survival within the testis remains elusive. Here, we identified CXCL12-CXCR4 as the leading signaling axis for B-ALL cell migration and survival in the testicular leukemic niche. We combined analysis of primary human ALL with a novel patient-derived xenograft (PDX)-ALL mouse model with testicular involvement. Prerequisites for leukemic cell infiltration in the testis were pre-pubertal age of the recipient mice, high surface expression of CXCR4 on PDX-ALL cells, and CXCL12 secretion from the testicular stroma. Analysis of primary pediatric patient samples revealed that CXCR4 was the only chemokine receptor being robustly expressed on B-ALL cells both at the time of diagnosis and relapse. In affected patient testes, leukemic cells localized within the interstitial space in close proximity to testicular macrophages. Mouse macrophages isolated from affected testes, in the PDX model, revealed a macrophage polarization towards a M2-like phenotype in the presence of ALL cells. Therapeutically, blockade of CXCR4-mediated functions using an anti-CXCR4 antibody treatment completely abolished testicular infiltration of PDX-ALL cells and strongly impaired the overall development of leukemia. Collectively, we identified a pre-pubertal condition together with high CXCR4 expression as factors affecting the leukemia permissive testicular microenvironment. We propose CXCR4 as a promising target for therapeutic prevention of testicular relapses in childhood B-ALL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tessa Skroblyn
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125, Berlin, Germany.,Charité-University Medicine, Department of Pediatric Oncology, Campus Virchow Klinikum, 13353, Berlin, Germany
| | - Jara J Joedicke
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Translational Tumorimmunology, 13125, Berlin, Germany
| | - Madlen Pfau
- Charité-University Medicine, Department of Pediatric Oncology, Campus Virchow Klinikum, 13353, Berlin, Germany
| | - Kerstin Krüger
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125, Berlin, Germany
| | - Jean P Bourquin
- Department of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Shai Izraeli
- Schneider Children's Medical Center of Israel, Petach Tiqva, and Tel Aviv University, Israel
| | - Cornelia Eckert
- Charité-University Medicine, Department of Pediatric Oncology, Campus Virchow Klinikum, 13353, Berlin, Germany.,German Cancer Consortium, and German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Uta E Höpken
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125, Berlin, Germany
| |
Collapse
|
9
|
Wisdom KS, Bhat IA, Pathan MA, I. CT, Kumar P, Babu P. G, Walke P, Nayak SK, Sharma R. Teleost Nonapeptides, Isotocin and Vasotocin Administration Released the Milt by Abdominal Massage in Male Catfish, Clarias magur. Front Endocrinol (Lausanne) 2022; 13:899463. [PMID: 35846286 PMCID: PMC9280678 DOI: 10.3389/fendo.2022.899463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the present work the nonapeptides i.e., isotocin and vasotocin alone or in a combination were tested in C. magur to evaluate their effect on stripping by abdominal massage. Also, we used chitosan-carbon nanotube nanocomposites to conjugate the nonapetides isotocin (abbreviated as COOH-SWCNTCSPeP) and isotocin and vasotocin (COOH-SWCNTCSPePs) with the aim of sustaining the effect for a longer duration. The conjugation of nonapeptides with nanocomposites was confirmed by Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Two experiments were conducted to study the effect of naked (without nanoparticles) and conjugated nonapeptides on the milt release by stripping. Both the experiments consisted of eight treatments which included four naked groups two nanoconjugated groups and two controls. Both naked and nonconjugated formulations were successful in stripping the male catfish. The mRNA expression of selected reproductive genes was analysed to decipher the effect of nanopeptides at the molecular level. Nonapeptide treatment either naked or nanoconjugated, resulted in the upregulation of the transcript level of genes. Histological analysis revealed the concentration of spermatozoa was more in peptide injected groups than in the controls. The synergistic effects of nonapeptides and Ovatide had a positive impact on GSI. Thus, the present formulations were successful in stripping the male catfish to obtain the milt with significant reproductive success. Even though the naked groups perform better but the number of males required to fertilize the eggs in nanoconjuagted groups was smaller making it worth using for the delivery of nonapeptides.
Collapse
Affiliation(s)
- K. S. Wisdom
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Irfan Ahmad Bhat
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Mujahidkhan A. Pathan
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Chanu T. I.
- Department of Aquaculture, ICAR-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Pravesh Kumar
- Department of Aquaculture, College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
| | - Gireesh Babu P.
- Animal Biotechnology, ICAR-National Research Centre on Meat Chengicherla, Boduppal Post Hyderabad, India
| | - Pravin Walke
- National Center for Nanoscience and Nanotechnology, University of Mumbai, Mumbai, India
| | - Sunil Kumar Nayak
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
- *Correspondence: Rupam Sharma,
| |
Collapse
|
10
|
Fromme L, Yogui DR, Alves MH, Desbiez AL, Langeheine M, Quagliatto A, Siebert U, Brehm R. Morphology of the genital organs of male and female giant anteaters ( Myrmecophaga tridactyla). PeerJ 2021; 9:e11945. [PMID: 34447632 PMCID: PMC8364315 DOI: 10.7717/peerj.11945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/20/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The giant anteater belongs to the supraorder Xenarthra which occupies a systematically isolated position among placental mammals. The species is categorized as Vulnerable by the International Union for Conservation of Nature, and understanding its reproductive characteristics is critical for future conservation efforts. METHODS Gross and microscopic anatomy of the genital organs of 23 male and 21 female adult and young roadkill giant anteaters in Brazil were studied. RESULTS Male giant anteaters presented a short conical penis, intraabdominal testes, and prostate, vesicular and bulbourethral glands. A tubular remnant of the partially fused Müllerian ducts extended from the seminal colliculus through the prostate gland, continued cranially in the genital fold, bifurcated, and attached with one elongation each to the left and right epididymal corpus. The structure presented a total length of up to 10 cm and contained a yellowish liquid in its lumen. Histologically, the caudal section of this structure resembled the female vagina, the middle portion corresponded to the uterus, and the extensions showed characteristics of uterine tubes. In adult female giant anteaters, ovoid ovaries with occasional seminiferous cord-like structures were observed. The animals possessed a simple uterus, which was directly continuous with the vaginal canal. The caudal portion of the vagina had two lumina, separated by a longitudinal septum and opening into two apertures into the vaginal vestibule, cranial to the urethral opening. In the urethral and the lateral vestibular wall, glandular structures with characteristics of male prostate and bulbourethral glands, respectively, were found. The vestibule opened through a vertical vulvar cleft to the exterior. A pair of well-differentiated Wolffian ducts with a central lumen originated ventrally at the vaginal opening into the vestibule and passed in a cranial direction through the ventral vaginal and uterine wall. Each duct extended highly coiled along the ipsilateral uterine tube until the lateral pole of the ovaries where it merged with the rete ovarii. DISCUSSION The reproductive morphology of giant anteaters reveals characteristics shared with other Xenarthrans: intraabdominal testes, a simple uterus, and a double caudal vagina. The persistence of well-differentiated genital ducts of the opposite sex in both males and females, however, singles them out among other species. These structures are the results of an aberration during fetal sexual differentiation and possess secretory functions. The possibility of a pathological degeneration of these organs should be considered in reproductive medicine of the species. CONCLUSION Knowledge of the unique reproductive characteristics of the giant anteater is essential for future reproductive management of the species. Additionally, further research on the peculiarities of the persisting genital duct structures might help to understand sexual differentiation in placental mammals in general.
Collapse
Affiliation(s)
- Lilja Fromme
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Débora R. Yogui
- Project Anteaters and Highways, Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil
- Nashville Zoo, Nashville, TN, United States of America
| | - Mario Henrique Alves
- Project Anteaters and Highways, Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil
- Fundación Zoológica de Cali, Valle del Cauca, Colombia
| | - Arnaud L.J. Desbiez
- Project Anteaters and Highways, Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil
- Royal Zoological Society of Scotland (RZSS), Edinburgh, United Kingdom
- Instituto de Pesquisas Ecológicas (IPÊ), São Paulo, Brazil
| | - Marion Langeheine
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - André Quagliatto
- Laboratório de Ensino e Pesquisa em Animais Silvestres (LAPAS), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Vining B, Ming Z, Bagheri-Fam S, Harley V. Diverse Regulation but Conserved Function: SOX9 in Vertebrate Sex Determination. Genes (Basel) 2021; 12:genes12040486. [PMID: 33810596 PMCID: PMC8066042 DOI: 10.3390/genes12040486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Sex determination occurs early during embryogenesis among vertebrates. It involves the differentiation of the bipotential gonad to ovaries or testes by a fascinating diversity of molecular switches. In most mammals, the switch is SRY (sex determining region Y); in other vertebrates it could be one of a variety of genes including Dmrt1 or dmy. Downstream of the switch gene, SOX9 upregulation is a central event in testes development, controlled by gonad-specific enhancers across the 2 Mb SOX9 locus. SOX9 is a ‘hub’ gene of gonadal development, regulated positively in males and negatively in females. Despite this diversity, SOX9 protein sequence and function among vertebrates remains highly conserved. This article explores the cellular, morphological, and genetic mechanisms initiated by SOX9 for male gonad differentiation.
Collapse
Affiliation(s)
- Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
- Correspondence: ; Tel.: +61-3-8572-2527
| |
Collapse
|
12
|
Onder S, Hurdogan O, Bayram A, Yilmaz I, Sozen H, Yavuz E. The role of FOXL2, SOX9, and β-catenin expression and DICER1 mutation in differentiating sex cord tumor with annular tubules from other sex cord tumors of the ovary. Virchows Arch 2021; 479:317-324. [PMID: 33566167 DOI: 10.1007/s00428-021-03052-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Sex cord tumor with annular tubules (SCTAT) is a highly rare type of ovarian sex cord-stromal tumor (SCST), the diagnosis of which remains to be challenging. The aim of this study was to scrutinize the utility of three immunohistochemical markers including Forkhead box protein 2 (FOXL2), SOX9, and β-catenin and DICER1 mutation status in distinguishing SCTATs from other ovarian SCSTs. Nine cases of SCTAT, 10 Sertoli-Leydig cell tumor (SCLT), 10 adult-type granulosa cell tumor (AGCT), and 8 juvenile-type granulosa cell tumor (JGCT) were included in the study. SCTATs were characterized by diffuse and strong expression of SOX9, focal and weak expression of FOXL2, and the absence of DICER1 mutation. However, AGCTs and JGCTs displayed strong and diffuse expression of FOXL2, focal/no immunoreaction for SOX9. SLCTs generally showed moderate intensity of FOXL2 and SOX9 expression. Nuclear β-catenin expression was observed in none of SLCT, 1/9 of SCTAT, 6/8 JGCT, and 4/10 AGCT cases, respectively. DICER1 hotspot mutation was detected in only 3 cases of SLCT and 2 cases of JGCT. We conclude that in addition to strong and diffuse SOX9 expression, weak/absent expression of FOXL2 is suggestive for the diagnosis of SCTAT. Hence, we suggest that inclusion of these two markers, SOX-9 and FOXL2, to the immunohistochemical panel helps in differentiation of SCTAT from other SCSTs in addition to morphologic findings. We also conclude that SCTATs of the ovary do not harbor DICER1 hotspot mutation.
Collapse
Affiliation(s)
- Semen Onder
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34093, Istanbul, Turkey
| | - Ozge Hurdogan
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34093, Istanbul, Turkey.
| | - Aysel Bayram
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34093, Istanbul, Turkey
| | - Ismail Yilmaz
- Department of Pathology, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Hamdullah Sozen
- Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ekrem Yavuz
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34093, Istanbul, Turkey
| |
Collapse
|
13
|
Ding W, Cao L, Cao Z, Bing X. Transcriptome analysis of blood for the discovery of sex-related genes in ricefield eel Monopterus albus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1507-1518. [PMID: 32472467 DOI: 10.1007/s10695-020-00809-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The blood acts as a transfer channel for a variety of factors in the whole body. The ricefield eel (Monopterus albus) is a protogynous hermaphrodite vertebrate. Until now, no research has reported an analysis of the blood transcriptome during the process of sexual development in the ricefield eel. In this study, the transcriptome sequencing of blood samples from male and female ricefield eels was completed with a total of 34.70 Gb clean data. The clean data of each sample all reached 5.23 GB, and the percent of the Q30 basic group was 88.62% and above. A total of 106,369 unigenes were obtained after assembly, including 13,296 unigenes with a length of more than 1 kb. Further functional annotation analysis showed that there are 28,522 unigenes that can be annotated. The annotations of genes with differential expression revealed that there were 563 genes with significant differential expression in the blood of male and female ricefield eels, including 91 upregulated genes and 472 downregulated genes. Among which, 14 genes may be closely related to sex differentiation, the qPCR was used to confirmed the expression pattern of those genes and result shown that 11 genes were downregulated and 3 genes were upregulated, consistent with the results of our RNA-Seq analysis. This blood transcript dataset will open future research avenues on ricefield eel sex development and differentiation.
Collapse
Affiliation(s)
- Weidong Ding
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zheming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xuwen Bing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
14
|
Agarwal D, Gireesh-Babu P, Pavan-Kumar A, Koringa P, Joshi CG, Chaudhari A. Transcriptome analysis of Clarias magur brain and gonads suggests neuro-endocrine inhibition of milt release from captive GnRH-induced males. Genomics 2020; 112:4041-4052. [PMID: 32650102 DOI: 10.1016/j.ygeno.2020.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 10/24/2022]
Abstract
Transcriptome analysis of Clarias magur brain and gonads at preparatory, mature, 6 and 16 h post-GnRH injection (hpi) stages yielded 9.5 GB data with 39,738 contigs. Sequences of 45 reproductive genes were identified for the first time in C. magur along with unique and differentially expressed genes. The expression of 20 genes was validated by qRT-PCR. Upregulation of Cyp11A1, Cyp17A1 and FTZF1 genes in the 16hpi testis accompanied by the 17β-HSD3 expression indicates testosterone (T) synthesis in response to LH surge, while reduced expression of CYP11B1 suggests a high T: 11-KT ratio. It is evident by the gene expression analysis that the inhibitory neurotransmitter GABA, altered T: 11-KT, increased testicular bile acids, and oxytocin-like neuropeptide in the male brain, appear to be involved in arresting the pulsatile motion of testicular smooth muscles. The work generates important leads for an effective induced breeding strategy for silurid catfish.
Collapse
Affiliation(s)
- Deepak Agarwal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - P Gireesh-Babu
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - A Pavan-Kumar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Prakash Koringa
- Animal Biotechnology Department, Anand Agricultural University, Anand, India
| | - C G Joshi
- Animal Biotechnology Department, Anand Agricultural University, Anand, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India.
| |
Collapse
|
15
|
Bhat IA, Ahmad I, Mir IN, Bhat RAH, P GB, Goswami M, J K S, Sharma R. Chitosan-eurycomanone nanoformulation acts on steroidogenesis pathway genes to increase the reproduction rate in fish. J Steroid Biochem Mol Biol 2019; 185:237-247. [PMID: 30253226 DOI: 10.1016/j.jsbmb.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
The study was undertaken to explore the molecular mechanism of eurycomanone, a major compound of Eurycoma longifolia plant in increasing the reproductive processes in the male fish model. Chitosan-nanoconjugated eurycomanone nanoparticles with a significant particle size [130 nm (CED1); 144.1 nm (CED2)] and stable zeta potentials (+49.1 mV and +30 mV) were synthesized and evaluated against naked eurycomanone (ED1 and ED2). In present study, short-term and long-term experiments were conducted to evaluate the effect of nano-formulation on expression of endocrine-related genes, circulating hormone concentrations (Follicle stimulating hormone, FSH; luteinizing hormone, LH; progesterone, testosterone and 17-β estradiol) and reproductive capacity of male Clarias magur. In short-term experiment, the sampling of tissues was done on hourly basis after injection of eurycomanone either alone or with chitosan and long-term experiment was carried for 21 days and in this the injection was repeated after 7 days and 14 days. Treatments CED1 and CED2 showed controlled and sustained surge of the transcript level of selected genes (except aromatase) and serum hormones (except 17β-estradiol) compared to ED1 and ED2 groups. The transcript levels of aromatase and serum 17β-estradiol hormone showed the declining trend in the chitosan conjugated groups. The gonadosomatic index (GSI), reproductive capacity, intracellular calcium and selenium and cellular structure of testes were improved in CED1 and CED2 groups compared to other treatments. Furthermore, the effect of chitosan conjugated eurycomanone was evaluated in primary testicular cells and an increase in the mRNA expression level of endocrine-related genes was detected. This is the first report of the use of chitosan conjugated eurycomanone and present study elucidates the molecular mechanism of eurycomanone in increasing the reproductive output in animals.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Irshad Ahmad
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Ishfaq Nazir Mir
- Department of Fish Nutrition, Biochemistry and Physiology, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Raja Aadil Hussain Bhat
- Fish Pathology discipline, ICAR-Directorate of Cold Water Fisheries, Rd to Vikas Bhawan, Block Road Area, Bhimtal, Uttarakhand, 263136, India
| | - Gireesh-Babu P
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mukunda Goswami
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Sundaray J K
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, Odisha, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
16
|
Janssen R, Andersson E, Betnér E, Bijl S, Fowler W, Höök L, Leyhr J, Mannelqvist A, Panara V, Smith K, Tiemann S. Embryonic expression patterns and phylogenetic analysis of panarthropod sox genes: insight into nervous system development, segmentation and gonadogenesis. BMC Evol Biol 2018; 18:88. [PMID: 29884143 PMCID: PMC5994082 DOI: 10.1186/s12862-018-1196-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/18/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sox (Sry-related high-mobility-group box) genes represent important factors in animal development. Relatively little, however, is known about the embryonic expression patterns and thus possible function(s) of Sox genes during ontogenesis in panarthropods (Arthropoda+Tardigrada+Onychophora). To date, studies have been restricted exclusively to higher insects, including the model system Drosophila melanogaster, with no comprehensive data available for any other arthropod group, or any tardigrade or onychophoran. RESULTS This study provides a phylogenetic analysis of panarthropod Sox genes and presents the first comprehensive analysis of embryonic expression patterns in the flour beetle Tribolium castaneum (Hexapoda), the pill millipede Glomeris marginata (Myriapoda), and the velvet worm, Euperipatoides kanangrensis (Onychophora). 24 Sox genes were identified and investigated: 7 in Euperipatoides, 8 in Glomeris, and 9 in Tribolium. Each species possesses at least one ortholog of each of the five expected Sox gene families, B, C, D, E, and F, many of which are differentially expressed during ontogenesis. CONCLUSION Sox gene expression (and potentially function) is highly conserved in arthropods and their closest relatives, the onychophorans. Sox B, C and D class genes appear to be crucial for nervous system development, while the Sox B genes Dichaete (D) and Sox21b likely play an additional conserved role in panarthropod segmentation. The Sox B gene Sox21a likely has a conserved function in foregut and Malpighian tubule development, at least in Hexapoda. The data further suggest that Sox D and E genes are involved in mesoderm differentiation, and that Sox E genes are involved in gonadal development. The new data expand our knowledge about the expression and implied function of Sox genes to Mandibulata (Myriapoda+Pancrustacea) and Panarthropoda (Arthropoda+Onychophora).
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Emil Andersson
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Ellinor Betnér
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sifra Bijl
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Will Fowler
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Lars Höök
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Jake Leyhr
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Alexander Mannelqvist
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Virginia Panara
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Kate Smith
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sydney Tiemann
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
17
|
Imaimatsu K, Fujii W, Hiramatsu R, Miura K, Kurohmaru M, Kanai Y. CRISPR/Cas9-mediated knock-in of the murine Y chromosomal Sry gene. J Reprod Dev 2018; 64:283-287. [PMID: 29657232 PMCID: PMC6021606 DOI: 10.1262/jrd.2017-161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian zygote-mediated genome editing via the clustered regularly interspaced short palindromic repeats/CRISPR-associated endonuclease 9 (CRISPR/Cas9) system is widely used to generate
genome-modified animals. This system allows for the production of loss-of-function mutations in various Y chromosome genes, including Sry, in mice. Here, we report the
establishment of a CRISPR-Cas9-mediated knock-in line of Flag-tag sequences into the Sry locus at the C-terminal coding end of the Y chromosome
(YSry-flag). In the F1 and successive generations, all male pups carrying the YSry-flag chromosome had normal testis differentiation
and proper spermatogenesis at maturity, enabling complete fertility and the production of viable offspring. To our knowledge, this study is the first to produce a stable Sry
knock-in line at the C-terminal region, highlighting a novel approach for examining the significance of amino acid changes at the naive Sry locus in mammals.
Collapse
Affiliation(s)
- Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kento Miura
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masamichi Kurohmaru
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
18
|
Fernández-Pérez D, Brieño-Enríquez MA, Isoler-Alcaraz J, Larriba E, Del Mazo J. MicroRNA dynamics at the onset of primordial germ and somatic cell sex differentiation during mouse embryonic gonad development. RNA (NEW YORK, N.Y.) 2018; 24:287-303. [PMID: 29187591 PMCID: PMC5824349 DOI: 10.1261/rna.062869.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
In mammals, commitment and specification of germ cell lines involves complex programs that include sex differentiation, control of proliferation, and meiotic initiation. Regulation of these processes is genetically controlled by fine-tuned mechanisms of gene regulation in which microRNAs (miRNAs) are involved. We have characterized, by small-RNA-seq and bioinformatics analyses, the miRNA expression patterns of male and female mouse primordial germ cells (PGCs) and gonadal somatic cells at embryonic stages E11.5, E12.5, and E13.5. Differential expression analyses revealed differences in the regulation of key miRNA clusters such as miR-199-214, miR-182-183-96, and miR-34c-5p, whose targets have defined roles during gonadal sexual determination in both germ and somatic cells. Extensive analyses of miRNA sequences revealed an increase in noncanonical isoforms on PGCs at E12.5 and dramatic changes of 3' isomiR expression and 3' nontemplate nucleotide additions in female PGCs at E13.5. Additionally, RT-qPCR analyses of genes encoding proteins involved in miRNA biogenesis and 3' nucleotide addition uncovered sexually and developmentally specific expression, characterized by the decay of Drosha, Dgcr8, and Xpo5 expression along gonadal development. These results demonstrate that miRNAs, their isomiRs, and miRNA machinery are differentially regulated and participate actively in gonadal sexual differentiation in both PGCs and gonadal somatic cells.
Collapse
Affiliation(s)
- Daniel Fernández-Pérez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Miguel A Brieño-Enríquez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Javier Isoler-Alcaraz
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Eduardo Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Jesús Del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| |
Collapse
|
19
|
Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nakamura M. Expression patterns of sex differentiation-related genes during gonadal sex change in the protogynous wrasse, Halichoeres trimaculatus. Gen Comp Endocrinol 2018; 257:67-73. [PMID: 28663108 DOI: 10.1016/j.ygcen.2017.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/21/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023]
Abstract
The three-spot wrasse, Halichoeres trimaculatus, can change sex from female to male (i.e. protogyny) due to sharp decrease in endogenous estrogen. During the sex change, ovarian tissue degenerates and testicular tissue arises newly. Finally, ovarian tissue disappears completely and replaces into mature testis. In order to predict the molecular mechanisms controlling the processes of sex change, we investigated the expression patterns of four genes (rspo1, figla, sox9b and amh), which have been thought to be associated with ovarian/testicular differentiation in vertebrates. Expression levels of rspo1 and figla, which play important roles for ovarian differentiation in vertebrates, were stable until the middle stage of the sex change, and subsequently down-regulated. Therefore, it was indicated that decrease in rspo1 and figla could result from ovarian degeneration. On the other hand, basis on the expression pattern, it was indicated that sox9b and amh, which are involved in testicular differentiation in vertebrates, were implicated in testicular formation and spermatogenesis during the sex change as well. The present results could be fundamental information for investigating the relationship between these factors and E2 depletion, which is crucial trigger for sex change.
Collapse
Affiliation(s)
- Ryo Horiguchi
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Ryo Nozu
- Zoological Laboratory, Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa 905-0206, Japan.
| | - Toshiaki Hirai
- Department of Food Production & Environmental Management, Faculty Agriculture/Sanriku Fisheries Research Center, Iwate University, Iwate 026-0001, Japan
| | - Yasuhisa Kobayashi
- Laboratory for Aquatic Biology, Department of Fisheries, Graduate School of Agriculture, Kindai University, Nara 631-0052, Japan
| | - Masaru Nakamura
- Zoological Laboratory, Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa 905-0206, Japan; Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 905-0227, Japan
| |
Collapse
|
20
|
Pampanini V, Germani D, Puglianiello A, Stukenborg JB, Reda A, Savchuk I, Kjartansdóttir KR, Cianfarani S, Söder O. Impact of uteroplacental insufficiency on postnatal rat male gonad. J Endocrinol 2017; 232:247-257. [PMID: 27885054 PMCID: PMC5184772 DOI: 10.1530/joe-16-0418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/24/2016] [Indexed: 11/30/2022]
Abstract
Prenatal events such as intrauterine growth restriction can affect gonadal development of the offspring and have an impact on reproductive health. To investigate the effects of intrauterine growth restriction induced by uterine artery ligation on the postnatal rat testis. Pregnant rats underwent uterine artery ligation at day 19 of gestation. Offspring were killed at 5, 20 and 40 days post-partum (dpp). At killing, one gonad was snap-frozen in liquid nitrogen and processed for RNA and steroid extraction. The other gonad was formalin-fixed for histology. Gene expression was analyzed by TaqMan Low-Density Array. Intratesticular testosterone, estradiol and serum gonadotrophins were measured. Thirty genes were dysregulated in intrauterine growth-restricted rats compared to controls, among which markers of Sertoli cell and Leydig cell function, cell metabolism and growth factors. Testis weights were significantly reduced at 5 and 20 dpp in intrauterine growth-restricted rats and caught-up by 40 dpp Accordingly, Sertoli cell number was significantly lower in 5 dpp intrauterine growth-restricted rats. At 20 dpp, intratesticular testosterone was significantly increased in intrauterine growth-restricted rats, whereas serum gonadotrophins were unchanged. IUGR altered the gene expression in the rat testes up to peripubertal age and reduced testis size and Sertoli cell number in neonatal age. Multiple mechanisms encompassing genetic changes and steroid production by the testis may be involved in the catch-up growth phase that restored testis size by 40 dpp Permanent consequences on organ function and gamete integrity cannot be excluded and deserve further investigations.
Collapse
Affiliation(s)
- Valentina Pampanini
- Department of Women's and Children's HealthPediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Daniela Germani
- Department of Systems MedicineTor Vergata University, Rome, Italy
| | | | - Jan-Bernd Stukenborg
- Department of Women's and Children's HealthPediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Ahmed Reda
- Department of Women's and Children's HealthPediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Iuliia Savchuk
- Department of Women's and Children's HealthPediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Kristín Rós Kjartansdóttir
- Department of Women's and Children's HealthPediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Stefano Cianfarani
- Department of Women's and Children's HealthPediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Dipartimento Pediatrico Universitario Ospedaliero 'Bambino Gesù' Children's Hospital - Tor Vergata UniversityRome, Italy
| | - Olle Söder
- Department of Women's and Children's HealthPediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Disorders of sex development (DSD) are a diverse group of conditions affecting gonadal development, sexual differentiation, or chromosomal sex. In this review, we will discuss recent literature on the genetic causes of DSD, with a focus on novel genetic sequencing technologies, new phenotypes associated with known DSD genes, and increasing recognition of the role of genetic regulatory elements in DSD. RECENT FINDINGS We performed a comprehensive search of PubMed through August 2016 to identify important peer-reviewed publications from 2015 to 2016 on the topic of DSD genetics. SUMMARY Whole-exome sequencing was used to successfully identify genetic causes of DSD in 35% of a cohort of 46,XY patients who had not previously received a genetic diagnosis. A novel mutation in NR5A1 has been identified as a cause of 46,XX testicular and ovotesticular DSD, demonstrating a previously unappreciated role of NR5A1 in preventing testicular differentiation in 46,XX individuals. Genetic regulatory elements of SOX9 have been identified as causes of 46,XX and 46,XY DSD.
Collapse
|
22
|
Chen S, Zhang H, Wang F, Zhang W, Peng G. nr0b1 (DAX1) mutation in zebrafish causes female-to-male sex reversal through abnormal gonadal proliferation and differentiation. Mol Cell Endocrinol 2016; 433:105-16. [PMID: 27267667 DOI: 10.1016/j.mce.2016.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/16/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023]
Abstract
Sex determinations are diverse in vertebrates. Although many sex-determining genes and pathways are conserved, the mechanistic roles of these genes and pathways in the genetic sex determination are not well understood. DAX1 (encoded by the NR0B1 gene) is a vertebrate specific orphan nuclear receptor that regulates gonadal development and sexual determination. In human, duplication of the NR0B1 gene leads to male-to-female sex reversal. In mice, Nr0b1 shows both pro-testis and anti-testis functions. We generated inheritable nr0b1 mutation in the zebrafish and found the nr0b1 mutation caused homozygous mutants to develop as fertile males due to female-to-male sex reversal. The nr0b1 mutation did not increase Caspase-3 labeling nor tp53 expression in the developing gonads. Introduction of a tp53 mutation into the nr0b1 mutant did not rescue the sex-reversal phenotype. Further examination revealed reduction in cell proliferation and abnormal somatic cell differentiation in the nr0b1 mutant gonads at the undifferentiated and bi-potential ovary stages. Together, our results suggest nr0b1 regulates somatic cell differentiation and cell proliferation to ensure normal sex development in the zebrafish.
Collapse
Affiliation(s)
- Sijie Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Hefei Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Fenghua Wang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Gang Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Peck BCE, Sincavage J, Feinstein S, Mah AT, Simmons JG, Lund PK, Sethupathy P. miR-30 Family Controls Proliferation and Differentiation of Intestinal Epithelial Cell Models by Directing a Broad Gene Expression Program That Includes SOX9 and the Ubiquitin Ligase Pathway. J Biol Chem 2016; 291:15975-84. [PMID: 27261459 PMCID: PMC4965549 DOI: 10.1074/jbc.m116.733733] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Proliferation and differentiation of intestinal epithelial cells (IECs) occur in part through precise regulation of key transcription factors, such as SOX9. MicroRNAs (miRNAs) have emerged as prominent fine-tuners of transcription factor expression and activity. We hypothesized that miRNAs, in part through the regulation of SOX9, may mediate IEC homeostasis. Bioinformatic analyses of the SOX9 3'-UTR revealed highly conserved target sites for nine different miRNAs. Of these, only the miR-30 family members were both robustly and variably expressed across functionally distinct cell types of the murine jejunal epithelium. Inhibition of miR-30 using complementary locked nucleic acids (LNA30bcd) in both human IECs and human colorectal adenocarcinoma-derived Caco-2 cells resulted in significant up-regulation of SOX9 mRNA but, interestingly, significant down-regulation of SOX9 protein. To gain mechanistic insight into this non-intuitive finding, we performed RNA sequencing on LNA30bcd-treated human IECs and found 2440 significantly increased genes and 2651 significantly decreased genes across three time points. The up-regulated genes are highly enriched for both predicted miR-30 targets, as well as genes in the ubiquitin-proteasome pathway. Chemical suppression of the proteasome rescued the effect of LNA30bcd on SOX9 protein levels, indicating that the regulation of SOX9 protein by miR-30 is largely indirect through the proteasome pathway. Inhibition of the miR-30 family led to significantly reduced IEC proliferation and a dramatic increase in markers of enterocyte differentiation. This in-depth analysis of a complex miRNA regulatory program in intestinal epithelial cell models provides novel evidence that the miR-30 family likely plays an important role in IEC homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - P Kay Lund
- From the Curriculum in Genetics & Molecular Biology, Cell Biology and Physiology, and
| | - Praveen Sethupathy
- From the Curriculum in Genetics & Molecular Biology, the Departments of Genetics, the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
24
|
Chanvorachote P, Luanpitpong S. Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells. Am J Physiol Cell Physiol 2016; 310:C728-39. [DOI: 10.1152/ajpcell.00322.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
Evidence has accumulated in support of the critical impact of cancer stem cells (CSCs) behind the chemotherapeutic failure, cancer metastasis, and subsequent disease recurrence and relapse, but knowledge of how CSCs are regulated is still limited. Redox status of the cells has been shown to dramatically influence cell signaling and CSC-like aggressive behaviors. Here, we investigated how subtoxic concentrations of iron, which have been found to specifically induce cellular hydroxyl radical, affected CSC-like subpopulations of human non-small cell lung carcinoma (NSCLC). We reveal for the first time that subchronic iron exposure and higher levels of hydroxyl radical correlated well with increased CSC-like phenotypes. The iron-exposed NSCLC H460 and H292 cells exhibited a remarkable increase in propensities to form CSC spheroids and to proliferate, migrate, and invade in parallel with an increase in level of a well-known CSC marker, ABCG2. We further observed that such phenotypic changes induced by iron were not related to an epithelial-to-mesenchymal transition (EMT). Instead, the sex-determining region Y (SRY)-box 9 protein (SOX9) was substantially linked to iron treatment and hydroxyl radical level. Using gene manipulations, including ectopic SOX9 overexpression and SOX9 short hairpin RNA knockdown, we have verified that SOX9 is responsible for CSC enrichment mediated by iron. These findings indicate a novel role of iron via hydroxyl radical in CSC regulation and its importance in aggressive cancer behaviors and likely metastasis through SOX9 upregulation.
Collapse
Affiliation(s)
- Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Cell-based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand; and
| | - Sudjit Luanpitpong
- Cell-based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand; and
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Bhat IA, Rather MA, Saha R, Pathakota GB, Pavan-Kumar A, Sharma R. Expression analysis of Sox9 genes during annual reproductive cycles in gonads and after nanodelivery of LHRH in Clarias batrachus. Res Vet Sci 2016; 106:100-6. [PMID: 27234545 DOI: 10.1016/j.rvsc.2016.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/07/2016] [Accepted: 03/28/2016] [Indexed: 01/08/2023]
Abstract
Transcription factor Sox9 plays a crucial role in determining the fate of several cell types and is a primary factor in regulation of gonadal development. Present study reports full-length cDNA sequence of Sox9a gene and partial coding sequence (cds) of Sox9b (two duplicate orthologs of Sox9 gene) from Clarias batrachus. The coding region of Sox9a gene encoded a peptide of 460 amino acids. The partial cds of Sox9b with the length of 558bp was amplified that codes for 186 amino acids. Quantitative Real-time PCR (qRT-PCR) analysis revealed that Sox9a and Sox9b mRNA expression was significantly higher in gonads and brain tissues. Furthermore Sox9a and Sox9b mRNA expression levels were high during preparatory and pre-spawning phases and decreased gradually with onset of spawning and post-spawning phases of reproductive cycles in gonads. Chitosan nanoconjugated sLHRH (CsLHRH) of particle size 133.0nm and zeta potential of 34.3mV were synthesized and evaluated against naked sLHRH (salmon luteinizing hormone-releasing hormone). The entrapment efficiency of CsLHRH was 63%. CsLHRH nanoparticles increased the expression level of Sox9 transcripts in gonads and steroid hormonal levels in blood of male and female. Thus, our findings clearly indicate that Sox9 genes play essential role during seasonal variation of gonads. Besides, the current study reports that sustained release delivery-system will be helpful for proper gonadal development of fish. To the best of our knowledge, till date no study has been reported on nanodelivery of sLHRH and their effect on reproductive gene expression in fish.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Ratnadeep Saha
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Gireesh-Babu Pathakota
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Annam Pavan-Kumar
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India.
| |
Collapse
|
26
|
Suzuki H, Kanai-Azuma M, Kanai Y. From Sex Determination to Initial Folliculogenesis in Mammalian Ovaries: Morphogenetic Waves along the Anteroposterior and Dorsoventral Axes. Sex Dev 2015; 9:190-204. [DOI: 10.1159/000440689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
|
27
|
Correa RG, Krajewska M, Ware CF, Gerlic M, Reed JC. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling. Oncotarget 2015; 5:1666-82. [PMID: 24681825 PMCID: PMC4039239 DOI: 10.18632/oncotarget.1850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is among the leading causes of cancer-related death in men. Androgen receptor (AR) signaling plays a seminal role in prostate development and homeostasis, and dysregulation of this pathway is intimately linked to prostate cancer pathogenesis and progression. Here, we identify the cytosolic NLR-related protein NWD1 as a novel modulator of AR signaling. We determined that expression of NWD1 becomes elevated during prostate cancer progression, based on analysis of primary tumor specimens. Experiments with cultured cells showed that NWD1 expression is up-regulated by the sex-determining region Y (SRY) family proteins. Gene silencing procedures, in conjunction with transcriptional profiling, showed that NWD1 is required for expression of PDEF (prostate-derived Ets factor), which is known to bind and co-regulate AR. Of note, NWD1 modulates AR protein levels. Depleting NWD1 in PCa cell lines reduces AR levels and suppresses activity of androgen-driven reporter genes. NWD1 knockdown potently suppressed growth of androgen-dependent LNCaP prostate cancer cells, thus showing its functional importance in an AR-dependent tumor cell model. Proteomic analysis suggested that NWD1 associates with various molecular chaperones commonly related to AR complexes. Altogether, these data suggest a role for tumor-associated over-expression of NWD1 in dysregulation of AR signaling in PCa.
Collapse
|
28
|
Chemes HE, Venara M, del Rey G, Arcari AJ, Musse MP, Papazian R, Forclaz V, Gottlieb S. Is a CIS phenotype apparent in children with Disorders of Sex Development? Milder testicular dysgenesis is associated with a higher risk of malignancy. Andrology 2015; 3:59-69. [DOI: 10.1111/andr.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/01/2022]
Affiliation(s)
- H. E. Chemes
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE); CONICET; Buenos Aires Argentina
| | - M. Venara
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE); CONICET; Buenos Aires Argentina
| | - G. del Rey
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE); CONICET; Buenos Aires Argentina
| | - A. J. Arcari
- División Endocrinología; Hospital de Niños “Dr. Ricardo Gutiérrez”; Buenos Aires Argentina
| | - M. P. Musse
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE); CONICET; Buenos Aires Argentina
| | - R. Papazian
- Servicio de Endocrinología; Hospital Nacional “Prof. Dr. Alejandro Posadas”; Haedo Argentina
| | - V. Forclaz
- Servicio de Endocrinología; Hospital Nacional “Prof. Dr. Alejandro Posadas”; Haedo Argentina
| | - S. Gottlieb
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE); CONICET; Buenos Aires Argentina
| |
Collapse
|
29
|
Teaniniuraitemoana V, Huvet A, Levy P, Klopp C, Lhuillier E, Gaertner-Mazouni N, Gueguen Y, Le Moullac G. Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes. BMC Genomics 2014; 15:491. [PMID: 24942841 PMCID: PMC4082630 DOI: 10.1186/1471-2164-15-491] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Black pearl farming is based on culture of the blacklip pearl oyster Pinctada margaritifera (Mollusca, lophotrochozoa), a protandrous hermaphrodite species. At first maturation, all individuals are males. The female sex appears progressively from two years old, which represents a limitation for broodstock conditioning for aquaculture production. In marine mollusks displaying hermaphroditic features, data on sexual determinism and differentiation, including the molecular sex determining cascade, are scarce. To increase genomic resources and identify the molecular mechanisms whereby gene expression may act in the sexual dimorphism of P. margaritifera, we performed gonad transcriptome analysis. RESULTS The gonad transcriptome of P. margaritifera was sequenced from several gonadic samples of males and females at different development stages, using a Next-Generation-Sequencing method and RNAseq technology. After Illumina sequencing, assembly and annotation, we obtained 70,147 contigs of which 62.2% shared homologies with existing protein sequences, and 9% showed functional annotation with Gene Ontology terms. Differential expression analysis identified 1,993 differentially expressed contigs between the different categories of gonads. Clustering methods of samples revealed that the sex explained most of the variation in gonad gene expression. K-means clustering of differentially expressed contigs showed 815 and 574 contigs were more expressed in male and female gonads, respectively. The analysis of these contigs revealed the presence of known specific genes coding for proteins involved in sex determinism and/or differentiation, such as dmrt and fem-1 like for males, or foxl2 and vitellogenin for females. The specific gene expression profiles of pmarg-fem1-like, pmarg-dmrt and pmarg-foxl2 in different reproductive stages (undetermined, sexual inversion and regression) suggest that these three genes are potentially involved in the sperm-oocyte switch in P. margaritifera. CONCLUSIONS The study provides a new transcriptomic tool to study reproduction in hermaphroditic marine mollusks. It identifies sex differentiation and potential sex determining genes in P. margaritifera, a protandrous hermaphrodite species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gilles Le Moullac
- Ifremer, UMR 241 EIO, Labex CORAIL, BP 7004, 98719 Taravao, Tahiti, Polynésie Française.
| |
Collapse
|
30
|
Zangen D, Kaufman Y, Banne E, Weinberg-Shukron A, Abulibdeh A, Garfinkel BP, Dweik D, Kanaan M, Camats N, Flück C, Renbaum P, Levy-Lahad E. Testicular differentiation factor SF-1 is required for human spleen development. J Clin Invest 2014; 124:2071-5. [PMID: 24905461 DOI: 10.1172/jci73186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 02/20/2014] [Indexed: 01/07/2023] Open
Abstract
The transcription factor steroidogenic factor 1 (SF-1; also known as NR5A1) is a crucial mediator of both steroidogenic and nonsteroidogenic tissue differentiation. Mutations within SF1 underlie different disorders of sexual development (DSD), including sex reversal, spermatogenic failure, ovarian insufficiency, and adrenocortical deficiency. Here, we identified a recessive mutation within SF1 that resulted in a substitution of arginine to glutamine at codon 103 (R103Q) in a child with both severe 46,XY-DSD and asplenia. The R103Q mutation decreased SF-1 transactivation of TLX1, a transcription factor that has been shown to be essential for murine spleen development. Additionally, the SF1 R103Q mutation impaired activation of steroidogenic genes, without affecting synergistic SF-1 and sex-determining region Y (SRY) coactivation of the testis development gene SOX9. Together, our data provide evidence that SF-1 is required for spleen development in humans via transactivation of TLX1 and that mutations that only impair steroidogenesis, without altering the SF1/SRY transactivation of SOX9, can lead to 46,XY-DSD.
Collapse
|
31
|
Guerrero-Bosagna C, Skinner MK. Environmental epigenetics and effects on male fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 791:67-81. [PMID: 23955673 PMCID: PMC8248443 DOI: 10.1007/978-1-4614-7783-9_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposures to factors such as toxicants or nutrition can have impacts on testis biology and male fertility. The ability of these factors to influence epigenetic mechanisms in early life exposures or from ancestral exposures will be reviewed. A growing number of examples suggest environmental epigenetics will be a critical factor to consider in male reproduction.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | | |
Collapse
|
32
|
Böhne A, Heule C, Boileau N, Salzburger W. Expression and sequence evolution of aromatase cyp19a1 and other sexual development genes in East African cichlid fishes. Mol Biol Evol 2013; 30:2268-85. [PMID: 23883521 PMCID: PMC3773371 DOI: 10.1093/molbev/mst124] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sex determination mechanisms are highly variable across teleost fishes and sexual development is often plastic. Nevertheless, downstream factors establishing the two sexes are presumably conserved. Here, we study sequence evolution and gene expression of core genes of sexual development in a prime model system in evolutionary biology, the East African cichlid fishes. Using the available five cichlid genomes, we test for signs of positive selection in 28 genes including duplicates from the teleost whole-genome duplication, and examine the expression of these candidate genes in three cichlid species. We then focus on a particularly striking case, the A- and B-copies of the aromatase cyp19a1, and detect different evolutionary trajectories: cyp19a1A evolved under strong positive selection, whereas cyp19a1B remained conserved at the protein level, yet is subject to regulatory changes at its transcription start sites. Importantly, we find shifts in gene expression in both copies. Cyp19a1 is considered the most conserved ovary-factor in vertebrates, and in all teleosts investigated so far, cyp19a1A and cyp19a1B are expressed in ovaries and the brain, respectively. This is not the case in cichlids, where we find new expression patterns in two derived lineages: the A-copy gained a novel testis-function in the Ectodine lineage, whereas the B-copy is overexpressed in the testis of the speciest-richest cichlid group, the Haplochromini. This suggests that even key factors of sexual development, including the sex steroid pathway, are not conserved in fish, supporting the idea that flexibility in sexual determination and differentiation may be a driving force of speciation.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS One 2013; 8:e63604. [PMID: 23658843 PMCID: PMC3643912 DOI: 10.1371/journal.pone.0063604] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/06/2013] [Indexed: 12/12/2022] Open
Abstract
Four pairs of XX and XY gonads from Nile tilapia were sequenced at four developmental stages, 5, 30, 90, and 180 days after hatching (dah) using Illumina Hiseq(TM) technology. This produced 28 Gb sequences, which were mapped to 21,334 genes. Of these, 259 genes were found to be specifically expressed in XY gonads, and 69 were found to be specific to XX gonads. Totally, 187 XX- and 1,358 XY-enhanced genes were identified, and 2,978 genes were found to be co-expressed in XX and XY gonads. Almost all steroidogenic enzymes, including cyp19a1a, were up-regulated in XX gonads at 5 dah; but in XY gonads these enzymes, including cyp11b2, were significantly up-regulated at 90 dah, indicating that, at a time critical to sex determination, the XX fish produced estrogen and the XY fish did not produce androgens. The most pronounced expression of steroidogenic enzyme genes was observed at 30 and 90 dah for XX and XY gonads, corresponding to the initiation of germ cell meiosis in the female and male gonads, respectively. Both estrogen and androgen receptors were found to be expressed in XX gonads, but only estrogen receptors were expressed in XY gonads at 5 dah. This could explain why exogenous steroid treatment induced XX and XY sex reversal. The XX-enhanced expression of cyp19a1a and cyp19a1b at all stages suggests an important role for estrogen in female sex determination and maintenance of phenotypic sex. This work is the largest collection of gonadal transcriptome data in tilapia and lays the foundation for future studies into the molecular mechanisms of sex determination and maintenance of phenotypic sex in non-model teleosts.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Jing Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Yunlv Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Shijie Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Sheng Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Baofeng Huang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| |
Collapse
|
34
|
McIver SC, Roman SD, Nixon B, Loveland KL, McLaughlin EA. The rise of testicular germ cell tumours: the search for causes, risk factors and novel therapeutic targets. F1000Res 2013; 2:55. [PMID: 24555040 PMCID: PMC3901536 DOI: 10.12688/f1000research.2-55.v1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2013] [Indexed: 12/11/2022] Open
Abstract
Since the beginning of the 20th century there has been a decline in the reproductive vitality of men within the Western world. The declining sperm quantity and quality has been associated with increased overt disorders of sexual development including hypospadias, undescended testes and type II testicular germ cell tumours (TGCTs). The increase in TGCTs cannot be accounted for by genetic changes in the population. Therefore exposure to environmental toxicants appears to be a major contributor to the aetiology of TGCTs and men with a genetic predisposition are particularly vulnerable. In particular, Type II TGCTs have been identified to arise from a precursor lesion Carcinoma
in situ (CIS), identified as a dysfunctional gonocyte; however, the exact triggers for CIS development are currently unknown. Therefore the transition from gonocytes into spermatogonia is key to those studying TGCTs. Recently we have identified seven miRNA molecules (including members of the miR-290 family and miR-136, 463* and 743a) to be significantly changed over this transition period. These miRNA molecules are predicted to have targets within the CXCR4, PTEN, DHH, RAC and PDGF pathways, all of which have important roles in germ cell migration, proliferation and homing to the spermatogonial stem cell niche. Given the plethora of potential targets affected by each miRNA molecule, subtle changes in miRNA expression could have significant consequences e.g. tumourigenesis. The role of non-traditional oncogenes and tumour suppressors such as miRNA in TGCT is highlighted by the fact that the majority of these tumours express wild type p53, a pivotal tumour suppressor usually inactivated in cancer. While treatment of TGCTs is highly successful, the impact of these treatments on fertility means that identification of exact triggers, earlier diagnosis and alternate treatments are essential. This review examines the genetic factors and possible triggers of type II TGCT to highlight target areas for potential new treatments.
Collapse
Affiliation(s)
- Skye C McIver
- ARC Centre of Excellence in Biotechnology & Development, School of Environmental & Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Shaun D Roman
- ARC Centre of Excellence in Biotechnology & Development, School of Environmental & Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Brett Nixon
- ARC Centre of Excellence in Biotechnology & Development, School of Environmental & Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Kate L Loveland
- Department of Biochemistry & Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, 3800, Australia ; Department of Anatomy & Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, 3800, Australia
| | - Eileen A McLaughlin
- ARC Centre of Excellence in Biotechnology & Development, School of Environmental & Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
35
|
Harikae K, Miura K, Kanai Y. Early gonadogenesis in mammals: significance of long and narrow gonadal structure. Dev Dyn 2012; 242:330-8. [PMID: 22987627 DOI: 10.1002/dvdy.23872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 11/11/2022] Open
Abstract
In mammalian embryogenesis, the gonadal primordium arises from the thickening of the coelomic epithelium, which results in a pair of extremely long and narrow gonadal structures along the anteroposterior axis. These gonadal structures are conserved in various mammalian species, suggesting a great advantage in properly receiving migrating primordial germ cells (PGCs) that are widely scattered throughout the hindgut tube. Soon after the PGCs settle, the bipotential gonads undergo sex determination into testes or ovaries by the sex-determining gene, Sry, which is expressed in supporting cell precursors in a center-to-pole manner. Such a long, narrow gonadal structure bestows a considerable time lag on Sry expression between the center and pole regions, but testiculogenesis with cord formation and Leydig cell differentiation occurs synchronously throughout the whole organ. This synchronous testiculogenesis could be explained by a positive-feedback mechanism between SOX9 (another SRY-related transcription factor) and FGF9 downstream of Sry. FGF signals are likely secreted from the center region, rapidly diffuse into the poles, and then induce the establishment of SOX9 expression in Sertoli cells in the pole domains. This work focuses on recent knowledge of the molecular and cellular events of PGC migration, gonadogenesis, and testiculogenesis, and their biological significance in mammalian embryogenesis.
Collapse
Affiliation(s)
- Kyoko Harikae
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
36
|
Yoon JK, Lee JS. Cellular signaling and biological functions of R-spondins. Cell Signal 2012; 24:369-377. [PMID: 21982879 PMCID: PMC3237830 DOI: 10.1016/j.cellsig.2011.09.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
R-spondins (RSPOs) are a family of cysteine-rich secreted proteins containing a single thrombospondin type I repeat (TSR) domain. A vast amount of information regarding cellular signaling and biological functions of RSPOs has emerged over the last several years, especially with respect to their roles in the activation of the WNT signaling pathway. The identification of several classes of RSPO receptors may indicate that this family of proteins can affect several signaling cascades. Herein, we summarize the current understanding of RSPO signaling and its biological functions, and discuss its potential therapeutic implications to human diseases.
Collapse
Affiliation(s)
- Jeong Kyo Yoon
- Program in Stem Cell and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| | - Jin-Seon Lee
- Program in Stem Cell and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
37
|
McIver S, Roman S, Nixon B, McLaughlin E. miRNA and mammalian male germ cells. Hum Reprod Update 2011; 18:44-59. [DOI: 10.1093/humupd/dmr041] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Zarate YA, Dwivedi A, Bartel FO, Corning K, Dupont BR. 47, XY, +der(Y),t(X;Y)(p21.1;p11.2): a unique case of XY sex reversal. Am J Med Genet A 2010; 155A:386-91. [PMID: 21271659 DOI: 10.1002/ajmg.a.33799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/18/2010] [Indexed: 11/06/2022]
Abstract
Translocations involving the short arms of the X and Y chromosomes are rare and can result in a functional disomy of the short arm of the X chromosome, including the dosage-sensitive sex reversal (DSS) locus. A result of such imbalance may be sex reversal with multiple congenital anomalies. We present the clinical and cytogenetic evaluation of a newborn infant with DSS and additional clinical findings of minor facial anomalies, left abdominal mass, 5th finger clinodactyly, and mild hypotonia. The external genitalia appeared to be normal female. The infant had bilateral corneal opacities and findings suggestive of anterior segment dysgenesis. Ultrasonography showed a small uterus with undetectable ovaries, and a left multicystic dysplastic kidney. High-resolution chromosome analysis identified the presence of a derivative Y chromosome, 47,XY, +der(Y)t(X;Y)(p21.1;p11.2), which was confirmed by fluorescence in situ hybridization studies. Array CGH showed a 35.1 Mb copy number gain of chromosome region Xp22.33-p21.1 and a 52.2 Mb copy number gain of Yp11.2-qter, in addition to the intact X and Y chromosomes. Previously reported patients with XY sex reversal have not had DSS with corneal opacities, dysgenesis of the anterior segment of the eye, and unilateral multicystic dysplastic kidney. These findings represent a new form of XY sex reversal due to an Xp duplication.
Collapse
Affiliation(s)
- Yuri A Zarate
- Greenwood Genetic Center, Greenwood, South Carolina, USA.
| | | | | | | | | |
Collapse
|
39
|
Quintana S, Venara M, Rey R, di Clemente N, Chemes HE. Origin and evolution of somatic cell testicular tumours in transgenic mice. J Pathol 2010; 221:443-51. [PMID: 20593483 DOI: 10.1002/path.2731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transgenic mice bearing a construct in which the expression of the SV40 oncogene is directed by the AMH promoter (AT mice) develop testicular tumours in adult life. We aimed to study early steps of tumour development and characterize tumours at different ages by histological, morphometric, and immunohistochemical techniques. One- to 3-month-old AT mice depicted multifocal Leydig cell hyperplasia. The testicular volume occupied by interstitial tissue was significantly higher in 3-month-old AT mice in comparison with littermate controls. Between 5 1/2 and 7 months, microscopic interstitial tumours developed that progressively evolved to form large confluent areas of high mitotic index in 7- to 14-month-old AT mice. Tumour cells had the characteristics and histoarchitecture of Leydig cells, or formed solid cord-like structures reminiscent of those seen in Sertoli cell tumours. Hyperplastic areas and tumours diffusely expressed 3beta-hydroxysteroid dehydrogenase (3beta-HSD) in Leydig cell areas. AMH expression was negative in Leydig cell conglomerates and tumours and variable in cord-like tumours. The SV40 T antigen and markers of cell proliferation (PCNA) were intensely positive in hyperplastic cells and tumours. Control mice of similar ages showed neither hyperplasia nor tumours, and SV40 T expression was always negative. In conclusion, transgenic mice develop large testicular tumours that are preceded by interstitial hyperplasia and microtumours. The histological and immunohistochemical phenotype of tumours (Leydig and Sertoli cell differentiation, positive 3beta-HSD, and variable AMH) suggests a mixed differentiation of somatic cells of the specialized gonadal stroma. The finding that an oncogene directed by a promoter specifically active in fetal Sertoli cells has given rise to testicular tumours of mixed differentiation is compatible with a common origin of Leydig and Sertoli cells from the specific stroma of the gonadal ridge, as supported by double labelling experiments in fetal mice showing co-localization of the transgene with Sertoli and Leydig cell markers.
Collapse
Affiliation(s)
- Silvina Quintana
- Center for Research in Endocrinology (CEDIE-CONICET), Buenos Aires Children's Hospital, Gallo 1330, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
40
|
Barsoum IB, Yao HHC. Fetal Leydig cells: progenitor cell maintenance and differentiation. ACTA ACUST UNITED AC 2009; 31:11-5. [PMID: 19875489 DOI: 10.2164/jandrol.109.008318] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most eutherian mammals, sexually dimorphic masculinization is established by androgen-producing fetal Leydig cells in the embryonic testis. Fetal Leydig cells, which lack expression of the testis-determining gene SRY, arise after the appearance of SRY-expressing Sertoli cells. Therefore, the appearance and differentiation of fetal Leydig cells are probably regulated by factors derived from Sertoli cells. Results from mouse genetic models have revealed that maintenance and differentiation of fetal Leydig cell population depends upon a balance between differentiation-promoting and differentiation-suppressing mechanisms. Although paracrine signaling via Sertoli cell-derived Hedgehog ligands is necessary and sufficient for fetal Leydig cell formation, cell-cell interaction via Notch signaling and intracellular transcription factors such as POD1 are implicated as suppressors of fetal Leydig cell differentiation. This review provides a model that summarizes the recent findings in fetal Leydig cell development.
Collapse
Affiliation(s)
- Ivraym B Barsoum
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61802, USA
| | | |
Collapse
|
41
|
Dupasquier S, Abdel-Samad R, Glazer RI, Bastide P, Jay P, Joubert D, Cavaillès V, Blache P, Quittau-Prévostel C. A new mechanism of SOX9 action to regulate PKCalpha expression in the intestine epithelium. J Cell Sci 2009; 122:2191-6. [PMID: 19509063 DOI: 10.1242/jcs.036483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Variations of protein kinase C (PKC) expression greatly influence the proliferation-to-differentiation transition (PDT) of intestinal epithelial cells and might have an important impact on intestinal tumorigenesis. We demonstrate here that the expression of PKCalpha in proliferating intestinal epithelial cells is repressed both in vitro and in vivo by the SOX9 transcription factor. This repression does not require DNA binding of the SOX9 high-mobility group (HMG) domain but is mediated through a new mechanism of SOX9 action requiring the central and highly conserved region of SOXE members. Because SOX9 expression is itself upregulated by Wnt-APC signaling in intestinal epithelial cells, the present study points out this transcription factor as a molecular link between the Wnt-APC pathway and PKCalpha. These results provide a potential explanation for the decrease of PKCalpha expression in colorectal cancers with constitutive activation of the Wnt-APC pathway.
Collapse
|
42
|
Barsoum IB, Bingham NC, Parker KL, Jorgensen JS, Yao HHC. Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Dev Biol 2009; 329:96-103. [PMID: 19268447 PMCID: PMC2673990 DOI: 10.1016/j.ydbio.2009.02.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 11/16/2022]
Abstract
Proper cell fate determination in mammalian gonads is critical for the establishment of sexual identity. The Hedgehog (Hh) pathway has been implicated in cell fate decision for various organs, including gonads. Desert Hedgehog (Dhh), one of the three mammalian Hh genes, has been implicated with other genes in the establishment of mouse fetal Leydig cells. To investigate whether Hh alone is sufficient to induce fetal Leydig cell differentiation, we ectopically activated the Hh pathway in Steroidogenic factor 1 (SF1)-positive somatic cell precursors of fetal ovaries. Hh activation transformed SF1-positive somatic ovarian cells into functional fetal Leydig cells. These ectopic fetal Leydig cells produced androgens and insulin-like growth factor 3 (INLS3) that cause virilization of female embryos and ovarian descent. However, the female reproductive system remained intact, indicating a typical example of female pseudohermaphroditism. The appearance of fetal Leydig cells was a direct consequence of Hh activation as evident by the absence of other testicular components in the affected ovary. This study provides not only insights into mechanisms of cell lineage specification in gonads, but also a model to understand defects in sexual differentiation.
Collapse
Affiliation(s)
- Ivraym B. Barsoum
- Department of Cell and Developmental Biology, University of Illinois at Urbana- Champaign, IL 61820
| | - Nathan C. Bingham
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Keith L. Parker
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Joan S. Jorgensen
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706
| | - Humphrey H-C Yao
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, IL 61820
| |
Collapse
|
43
|
Nel-Themaat L, Vadakkan TJ, Wang Y, Dickinson ME, Akiyama H, Behringer RR. Morphometric analysis of testis cord formation in Sox9-EGFP mice. Dev Dyn 2009; 238:1100-10. [PMID: 19384968 PMCID: PMC2838451 DOI: 10.1002/dvdy.21954] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sox9-EGFP knockin mice were generated to label Sertoli cells and visualize testis cord formation during development. Confocal microscopy and morphometric analysis of developing cords were performed. Serial histological sections were used for three-dimensional cord reconstruction. Initially, gonad length decreased from embryonic day (E) 11.5 to E13.5, but increased thereafter, while gonad width doubled every 12 hours from E11.5 through E14.5. At E12.5, the average number of cords was 12.5, whereas this decreased to 10.4 at E13.5 and E14.5. Cord number at a given time point varied between gonads and influenced dimensions. The initial cords that formed were complex and branches were common. Time-lapse imaging revealed an intricate behavior of the Sertoli-germ cell mass and cellular exchange between connected neighboring cords. These results suggest that cord formation is a highly dynamic process that subsequently becomes refined to establish the final number of seminiferous tubule precursors.
Collapse
Affiliation(s)
- Liesl Nel-Themaat
- Department of Genetics, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wu N, Lin XK, Liao B, DU WH, Han FT, Zhao JH. [Effect of Sry silencing by siRNA on the expression of sex determining genes in mouse embryos]. YI CHUAN = HEREDITAS 2009; 30:195-202. [PMID: 18244926 DOI: 10.3724/sp.j.1005.2008.00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to investigate Sry regulation network in the development of male embryo, we inhibited the Sry gene expression by RNAi and then examined expression of other sex-related genes. Six genes (Sox9, Wt1, Sf1, Dax1, Gata4 and Amh), which are suggested to be closely related to Sry regulation were studied. Two siRNA expression vectors pSilencer4.1/Sry217 and pSilencer4.1/Sry565 were constructed and injected into gestated mouse through tail vein at 9.5 day of conception (dpc). The inhibition efficiency of Sry and the expression of other six genes were examined in male embryos at 11.5 dpc by RT-PCR and Western-blot. Expressions of the other six genes were analyzed by fluorescence quantity PCR. The results indicated both the pSilencer4.1/Sry217 and pSilencer4.1/Sry565 could inhibit significantly increased after Sry silencing. In contrast, no significant changes were observed in the expression of Sf1, Amh, Gata4, Dax1 and Sox9 when silencing Sry by siRNA. Our results suggested that the Wt1 transcription was regulated by Sry, whereas the Sox9 expression is not directly regulated by Sry in the development of genital ridge.
Collapse
Affiliation(s)
- Ning Wu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, China.
| | | | | | | | | | | |
Collapse
|
45
|
Hiramatsu R, Matoba S, Kanai-Azuma M, Tsunekawa N, Katoh-Fukui Y, Kurohmaru M, Morohashi KI, Wilhelm D, Koopman P, Kanai Y. A critical time window of Sry action in gonadal sex determination in mice. Development 2009; 136:129-38. [DOI: 10.1242/dev.029587] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals, the Y-linked sex-determining gene Srycell-autonomously promotes Sertoli cell differentiation from bipotential supporting cell precursors through SRY-box containing gene 9 (Sox9),leading to testis formation. Without Sry action, the supporting cells differentiate into granulosa cells, resulting in ovarian development. However,how Sry acts spatiotemporally to switch supporting cells from the female to the male pathway is poorly understood. We created a novel transgenic mouse line bearing an inducible Sry transgene under the control of the Hsp70.3 promoter. Analysis of these mice demonstrated that the ability of Sry to induce testis development is limited to approximately 11.0-11.25 dpc, corresponding to a time window of only 6 hours after the normal onset of Sry expression in XY gonads. If Sry was activated after 11.3 dpc, Sox9 activation was not maintained, resulting in ovarian development. This time window is delimited by the ability to engage the high-FGF9/low-WNT4 signaling states required for Sertoli cell establishment and cord organization. Our results indicate the overarching importance of Sry action in the initial 6-hour phase for the female-to-male switching of FGF9/WNT4 signaling patterns.
Collapse
Affiliation(s)
- Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1,Bunkyoku, Tokyo 113-8657, Japan
| | - Shogo Matoba
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1,Bunkyoku, Tokyo 113-8657, Japan
| | - Masami Kanai-Azuma
- Department of Anatomy, Kyorin University School of Medicine, Shinkawa 6-20-2,Mitaka, Tokyo 181-8611, Japan
| | - Naoki Tsunekawa
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1,Bunkyoku, Tokyo 113-8657, Japan
| | - Yuko Katoh-Fukui
- Department of Aging Intervention, National Institute for Longevity Sciences,National Center for Geriatrics and Gerontology, Gengo 36-3, Morioka-cho, Obu,Aichi 474-8511, Japan
| | - Masamichi Kurohmaru
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1,Bunkyoku, Tokyo 113-8657, Japan
| | - Ken-ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medicine, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dagmar Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, St Lucia,Brisbane, QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, St Lucia,Brisbane, QLD 4072, Australia
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1,Bunkyoku, Tokyo 113-8657, Japan
| |
Collapse
|
46
|
Matoba S, Hiramatsu R, Kanai-Azuma M, Tsunekawa N, Harikae K, Kawakami H, Kurohmaru M, Kanai Y. Establishment of testis-specific SOX9 activation requires high-glucose metabolism in mouse sex differentiation. Dev Biol 2008; 324:76-87. [DOI: 10.1016/j.ydbio.2008.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/25/2008] [Accepted: 09/04/2008] [Indexed: 11/27/2022]
|
47
|
Anway MD, Rekow SS, Skinner MK. Comparative anti-androgenic actions of vinclozolin and flutamide on transgenerational adult onset disease and spermatogenesis. Reprod Toxicol 2008; 26:100-6. [PMID: 18762243 DOI: 10.1016/j.reprotox.2008.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/01/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
Exposure of gestating female rats to the anti-androgenic endocrine disruptor vinclozolin has been shown to induce transgenerational adult onset disease phenotypes. The current study, was designed to compare the actions of vinclozolin to the known anti-androgenic compound flutamide. The gestating female rats were exposed to intraperitoneal injections during embryonic day 8-14 (E8-E14) to 100mg/kg/day vinclozolin or flutamide at either 5mg or 20mg/kg/day. As previously observed, vinclozolin induced a transgenerational testis phenotype of increased spermatogenic cell apoptosis and decreased epididymal sperm number. In contrast, the flutamide exposures resulted in a testis phenotype of increased spermatogenic cell apoptosis and decreased epididymal sperm numbers in the F1 generation only, and not the F2 and F3 generation adult males. Interestingly, some of the low dose (5mg/kg) flutamide F2 generation offspring developed spinal agenesis and supernummery development (polymelia) of limbs. Although the actions of vinclozolin and flutamide appear similar in the F1 generation males, the transgenerational effects of vinclozolin do not appear to be acting through the same anti-androgenic mechanism as flutamide.
Collapse
Affiliation(s)
- Matthew D Anway
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA.
| | | | | |
Collapse
|
48
|
Anway MD, Skinner MK. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online 2008; 16:23-5. [PMID: 18252044 DOI: 10.1016/s1472-6483(10)60553-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Epigenetic programming of the germ line occurs during embryonic development in a sex-specific manner. The male germ line becomes imprinted following sex determination. Environmental influences can alter this epigenetic programming and affect not only the developing offspring, but also potentially subsequent generations. Exposure to an endocrine disruptor (i.e. vinclozolin) during embryonic gonadal sex determination can alter the male germ-line epigenetics (e.g. DNA methylation). The epigenetic mechanism involves the alteration of DNA methylation in the germ line that appears to transmit transgenerational adult onset disease, including spermatogenic defects, prostate disease, kidney disease and cancer.
Collapse
Affiliation(s)
- Matthew D Anway
- Centre for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4231, USA
| | | |
Collapse
|
49
|
Du QY, Wang FY, Hua HY, Chang ZJ. Cloning and study of adult-tissue-specific expression of Sox9 in Cyprinus carpio. J Genet 2007; 86:85-91. [PMID: 17968136 DOI: 10.1007/s12041-007-0013-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Sox9 gene is one of the important transcription factors in the development of many tissues and organs, particularly in sex determination and chondrogenesis. We amplified the genomic DNA of Cyprinus carpio using degenerate primers, and found that there were two versions of Sox9 in this species: Sox9a and Sox9b, that differ in having an intron of different length (704 bp and 616 bp, respectively) in the conserved HMG box region that codes for identical amino acid sequences. We used a two-phase rapid amplification of cDNA ends (RACE) for the isolation of full-length cDNA of Sox9b. Sequence analyses revealed a 2447-bp cDNA containing 233-bp 5' untranslated region, a 927-bp 3' untranslated region, including poly(A), and a 1287 bp open reading frame (ORF) encoding a protein of 428 amino acids. The HMG box of 79 amino acid motif was confirmed from positions 96-174. Sequence alignment showed that the identity of amino acids of Sox9 among ten animal species, including C. carpio, is 75%, indicating that the Sox9 gene is evolutionarily quite conserved. The expression level of Sox9b gene varied among several organs of adult C. carpio, with the level of expression being highest in the brain and testis.
Collapse
Affiliation(s)
- Qi-Yan Du
- College of Life Science, Henan Normal University, Xinxiang Henan, 453007, People's Republic of China
| | | | | | | |
Collapse
|
50
|
Pastukh V, Shokolenko I, Wang B, Wilson G, Alexeyev M. Human mitochondrial transcription factor A possesses multiple subcellular targeting signals. FEBS J 2007; 274:6488-99. [PMID: 18028422 DOI: 10.1111/j.1742-4658.2007.06167.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mitochondrial transcription factor A (TFAM) is a member of a high-mobility group (HMG) family represented mostly by nuclear proteins. Although nuclear localization of TFAM has been demonstrated in some tumors and after treatment of tumor cells with anticancer drugs, the significance of these observations has not been fully elucidated. Here we report that both TFAM overexpression and impairment of its mitochondrial targeting can result in nuclear accumulation of the protein. Both M1 and M7 methionines of human TFAM (hTFAM) can be used for translation initiation with almost equal efficiency resulting in two polypeptides. The shorter polypeptide, however, is not located in the nucleus, despite truncation in the mitochondrial targeting sequence, and both isoforms are targeted to mitochondria with similar efficiency. We further demonstrate that nuclear TFAM confers significant cytoprotection against the chemotherapeutic drugs etoposide, camptothecin, and cisplatin. Three regions of hTFAM [HMG-like domain 1 (HMG1) and HMG-like domain 2 (HMG2), as well as the tail region] can effect nuclear accumulation of enhanced green fluorescent protein (EGFP) fusions. The HMG1 domain contains a bipartite nuclear localization sequence whose identity is supported by site-directed mutagenesis. However, this bipartite nuclear localization sequence is weak, and both N-terminal and C-terminal flanking sequences enhance the nuclear targeting of EGFP. Finally, several mutations in the HMG1 domain increased the mitochondrial targeting of the EGFP fusions, suggesting that the mitochondrial targeting sequence of hTFAM may extend beyond the cleavable presequence.
Collapse
Affiliation(s)
- Viktoriya Pastukh
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | |
Collapse
|