1
|
Ding L, Zhai Z, Qin T, Lin Y, Shuang Z, Sun F, Qin C, Luo H, Zhu W, Ye X, Chen Z, Luo X. Improvement in XIa Selectivity of Snake Venom Peptide Analogue BF9-N17K Using P2' Amino Acid Replacements. Toxins (Basel) 2025; 17:23. [PMID: 39852976 PMCID: PMC11769409 DOI: 10.3390/toxins17010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. Here, in order to enhance the selectivity of BF9-N17K toward XIa, four mutants, BF9-N17K-L19A, BF9-N17K-L19S, BF9-N17K-L19D, and BF9-N17K-L19K, were further designed using the P2' amino acid classification scanning strategy. The anticoagulation assay showed that the four P2' single-point mutants still had apparent inhibitory anticoagulation activity that selectively inhibited the human intrinsic coagulation pathway and had no influence on the extrinsic coagulation pathway or common coagulation pathway, which indicated that the single-point mutants had minimal effects on the anticoagulation activity of BF9-N17K. Interestingly, the enzyme inhibitor assay experiments showed that the XIa and plasmin inhibitory activities were significantly changed by the P2' amino acid replacements. The XIa inhibitory activity of BF9-N17K-L19D was apparently enhanced, with an IC50 of 19.28 ± 2.53 nM, and its plasmin inhibitory was significantly weakened, with an IC50 of 459.33 ± 337.40 nM. BF9-N17K-L19K was the opposite to BF9-N17K-L19D, which had enhanced plasmin inhibitory activity and reduced XIa inhibitory activity. For BF9-N17K-L19A and BF9-N17K-L19S, no apparent changes were found in the serine protease inhibitory activity, and they had similar XIa and plasmin inhibitory activities to the template peptide BF9-N17K. These results suggested that the characteristics of the charge of the P2' site might be associated with the drug selectivity between the anticoagulant target XIa and hemostatic target plasmin. In addition, according to the molecular diversity and sequence conservation, a common motif GR/PCR/KA/SXIP-XYGGC is proposed in the XIa-inhibitory Kunitz-type peptides, which might provide a new clue for further peptide engineering. In conclusion, through P2' amino acid classification scanning with the snake venom Kunitz-type peptide scaffold, a new potent and selective XIa inhibitor, BF9-N17K-L19D, was discovered, which provides a new XIa-targeting lead drug template for the treatment of thrombotic-related diseases.
Collapse
Affiliation(s)
- Li Ding
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhiping Zhai
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Tianxiang Qin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Yuexi Lin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Zhicheng Shuang
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Fang Sun
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Chenhu Qin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Hongyi Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Wen Zhu
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Xiangdong Ye
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zongyun Chen
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
2
|
Sun F, Wang W, Li Z, Li Y, Guo W, Kong Y. Design, expression and biological evaluation of DX-88mut as a novel selective factor XIa inhibitor for antithrombosis. Bioorg Chem 2024; 142:106951. [PMID: 37924755 DOI: 10.1016/j.bioorg.2023.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Thrombotic diseases, such as myocardial infarction, stroke, and deep vein thrombosis, severely threaten human health, and anticoagulation is an effective way to prevent such illnesses. However, most anticoagulant drugs in the clinic have different bleeding risks. Previous studies have shown that coagulation factor XI is an ideal target for safe anticoagulant drug development. Here, we designed the FXIa inhibitory peptide DX-88mut by replacing Loop1 (DGPCRAAHPR) and Loop2 (IYGGC) in DX-88, which is a clinical drug targeting PKa for the treatment of hereditary angioedema, using Loop1 (TGPCRAMISR) and Loop2 (FYGGC) in the FXIa inhibitory peptide PN2KPI, respectively. DX-88mut selectively inhibited FXIa against a panel of serine proteases with an IC50 value of 14.840 ± 0.453 nM, dose-dependently prolonged APTT in mouse, rat and human plasma, and potently inhibited FeCl3-induced carotid artery thrombosis in mice at a dose of 1 µmol/kg. Additionally, DX-88mut did not show a significant bleeding risk at a dose of 5 µmol/kg. Taken together, these results show that DX-88mut is a potential candidate for the development of a novel antithrombotic agent.
Collapse
Affiliation(s)
- Feilong Sun
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China
| | - Weihao Wang
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China
| | - Zhengyang Li
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China
| | - Yitong Li
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China
| | - Wei Guo
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China.
| | - Yi Kong
- School of Life Science and Technology, China Pharmaceutical University, Longmian Street 639, Nanjing 211198, China.
| |
Collapse
|
3
|
Tillman BF, Gruber A, McCarty OJT, Gailani D. Plasma contact factors as therapeutic targets. Blood Rev 2018; 32:433-448. [PMID: 30075986 PMCID: PMC6185818 DOI: 10.1016/j.blre.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Direct oral anticoagulants (DOACs) are small molecule inhibitors of the coagulation proteases thrombin and factor Xa that demonstrate comparable efficacy to warfarin for several common indications, while causing less serious bleeding. However, because their targets are required for the normal host-response to bleeding (hemostasis), DOACs are associated with therapy-induced bleeding that limits their use in certain patient populations and clinical situations. The plasma contact factors (factor XII, factor XI, and prekallikrein) initiate blood coagulation in the activated partial thromboplastin time assay. While serving limited roles in hemostasis, pre-clinical and epidemiologic data indicate that these proteins contribute to pathologic coagulation. It is anticipated that drugs targeting the contact factors will reduce risk of thrombosis with minimal impact on hemostasis. Here, we discuss the biochemistry of contact activation, the contributions of contact factors in thrombosis, and novel antithrombotic agents targeting contact factors that are undergoing pre-clinical and early clinical testing.
Collapse
Affiliation(s)
- Benjamin F Tillman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andras Gruber
- Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, OR, USA; Division of Hematology and Medical Oncology School of Medicine, Oregon Health & Sciences University, Portland, OR, USA; Aronora, Inc., Portland, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, OR, USA; Division of Hematology and Medical Oncology School of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - David Gailani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
4
|
Pre-equilibrium competitive library screening for tuning inhibitor association rate and specificity toward serine proteases. Biochem J 2018. [PMID: 29535275 DOI: 10.1042/bcj20180070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High structural and sequence similarity within protein families can pose significant challenges to the development of selective inhibitors, especially toward proteolytic enzymes. Such enzymes usually belong to large families of closely similar proteases and may also hydrolyze, with different rates, protein- or peptide-based inhibitors. To address this challenge, we employed a combinatorial yeast surface display library approach complemented with a novel pre-equilibrium, competitive screening strategy for facile assessment of the effects of multiple mutations on inhibitor association rates and binding specificity. As a proof of principle for this combined approach, we utilized this strategy to alter inhibitor/protease association rates and to tailor the selectivity of the amyloid β-protein precursor Kunitz protease inhibitor domain (APPI) for inhibition of the oncogenic protease mesotrypsin, in the presence of three competing serine proteases, anionic trypsin, cationic trypsin and kallikrein-6. We generated a variant, designated APPIP13W/M17G/I18F/F34V, with up to 30-fold greater specificity relative to the parental APPIM17G/I18F/F34V protein, and 6500- to 230 000-fold improved specificity relative to the wild-type APPI protein in the presence of the other proteases tested. A series of molecular docking simulations suggested a mechanism of interaction that supported the biochemical results. These simulations predicted that the selectivity and specificity are affected by the interaction of the mutated APPI residues with nonconserved enzyme residues located in or near the binding site. Our strategy will facilitate a better understanding of the binding landscape of multispecific proteins and will pave the way for design of new drugs and diagnostic tools targeting proteases and other proteins.
Collapse
|
5
|
Kayode O, Wang R, Pendlebury DF, Cohen I, Henin RD, Hockla A, Soares AS, Papo N, Caulfield TR, Radisky ES. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis. J Biol Chem 2016; 291:26304-26319. [PMID: 27810896 DOI: 10.1074/jbc.m116.758417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/01/2016] [Indexed: 01/13/2023] Open
Abstract
The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.
Collapse
Affiliation(s)
| | | | | | - Itay Cohen
- the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | | | | | - Alexei S Soares
- the Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973
| | - Niv Papo
- the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Thomas R Caulfield
- Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224,
| | | |
Collapse
|
6
|
García-Fernández R, Ziegelmüller P, González L, Mansur M, Machado Y, Redecke L, Hahn U, Betzel C, Chávez MDLÁ. Two variants of the major serine protease inhibitor from the sea anemone Stichodactyla helianthus, expressed in Pichia pastoris. Protein Expr Purif 2016; 123:42-50. [PMID: 26993255 DOI: 10.1016/j.pep.2016.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022]
Abstract
The major protease inhibitor from the sea anemone Stichodactyla helianthus (ShPI-1) is a non-specific inhibitor that binds trypsin and other trypsin-like enzymes, as well as chymotrypsin, and human neutrophil elastase. We performed site-directed mutagenesis of ShPI-1 to produce two variants (rShPI-1/K13L and rShPI/Y15S) that were expressed in Pichia pastoris, purified, and characterized. After a single purification step, 65 mg and 15 mg of protein per liter of culture supernatant were obtained for rShPI-1/K13L and rShPI/Y15S, respectively. Functional studies demonstrated a 100-fold decreased trypsin inhibitory activity as result of the K13L substitution at the reactive (P1) site. This protein variant has a novel tight-binding inhibitor activity of pancreatic elastase and increased activity toward neutrophil elastase in comparison to rShPI-1A. In contrast, the substitution Y15S at P2' site did not affect the Ki value against trypsin, but did reduce activity 10-fold against chymotrypsin and neutrophil elastase. Our results provide two new ShPI-1 variants with modified inhibitory activities, one of them with increased biomedical potential. This study also offers new insight into the functional impact of the P1 and P2' sites on ShPI-1 specificity.
Collapse
Affiliation(s)
| | - Patrick Ziegelmüller
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, Faculty for Mathematics Informatics and Natural Sciences, University of Hamburg, Germany
| | - Lidice González
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de la Habana, Cuba
| | | | - Yoan Machado
- Centro de Inmunología Molecular, La Habana, Cuba
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany
| | - Ulrich Hahn
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, Faculty for Mathematics Informatics and Natural Sciences, University of Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, Faculty for Mathematics Informatics and Natural Sciences, University of Hamburg, Germany
| | | |
Collapse
|
7
|
Combinatorial protein engineering of proteolytically resistant mesotrypsin inhibitors as candidates for cancer therapy. Biochem J 2016; 473:1329-41. [PMID: 26957636 DOI: 10.1042/bj20151410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023]
Abstract
Engineered protein therapeutics offer advantages, including strong target affinity, selectivity and low toxicity, but like natural proteins can be susceptible to proteolytic degradation, thereby limiting their effectiveness. A compelling therapeutic target is mesotrypsin, a protease up-regulated with tumour progression, associated with poor prognosis, and implicated in tumour growth and progression of many cancers. However, with its unique capability for cleavage and inactivation of proteinaceous inhibitors, mesotrypsin presents a formidable challenge to the development of biological inhibitors. We used a powerful yeast display platform for directed evolution, employing a novel multi-modal library screening strategy, to engineer the human amyloid precursor protein Kunitz protease inhibitor domain (APPI) simultaneously for increased proteolytic stability, stronger binding affinity and improved selectivity for mesotrypsin inhibition. We identified a triple mutant APPIM17G/I18F/F34V, with a mesotrypsin inhibition constant (Ki) of 89 pM, as the strongest mesotrypsin inhibitor yet reported; this variant displays 1459-fold improved affinity, up to 350 000-fold greater specificity and 83-fold improved proteolytic stability compared with wild-type APPI. We demonstrated that APPIM17G/I18F/F34V acts as a functional inhibitor in cell-based models of mesotrypsin-dependent prostate cancer cellular invasiveness. Additionally, by solving the crystal structure of the APPIM17G/I18F/F34V-mesotrypsin complex, we obtained new insights into the structural and mechanistic basis for improved binding and proteolytic resistance. Our study identifies a promising mesotrypsin inhibitor as a starting point for development of anticancer protein therapeutics and establishes proof-of-principle for a novel library screening approach that will be widely applicable for simultaneously evolving proteolytic stability in tandem with desired functionality for diverse protein scaffolds.
Collapse
|
8
|
Chen W, Carvalho LPD, Chan MY, Kini RM, Kang TS. Fasxiator, a novel factor XIa inhibitor from snake venom, and its site-specific mutagenesis to improve potency and selectivity. J Thromb Haemost 2015; 13:248-61. [PMID: 25418421 DOI: 10.1111/jth.12797] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/11/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Bleeding remains a major limitation of standard anticoagulant drugs that target the extrinsic and common coagulation pathways. Recently, intrinsic coagulation factors are increasingly being investigated as alternative targets for developing anticoagulant drugs with lower bleeding risk. OBJECTIVES Goals were to (i) identify novel anticoagulants selectively targeting intrinsic coagulation pathway and (ii) characterize and further improve the properties of the identified anticoagulants. METHODS AND RESULTS We have isolated and sequenced a specific factor XIa (FXIa) inhibitor, henceforth named Fasxiator, from the venom of the banded krait snake, Bungarus fasciatus. It is a Kunitz-type protease inhibitor that prolonged activated partial thromboplastin time without significant effects on prothrombin time. Fasxiator was recombinantly expressed (rFasxiator), purified, and characterized to be a slow-type inhibitor of FXIa that exerts its anticoagulant activities (doubled activated partial thromboplastin time at ~ 3 μmol L(-1) ) by selectively inhibiting human FXIa in in vitro assays. A series of mutants were subsequently generated to improve the potency and selectivity of recombinant rFasxiator. rFasxiatorN17R,L19E showed the best balance between potency (IC50 ~ 1 nmol L(-1) ) and selectivity (> 100 times). rFasxiatorN17R,L19E is a competitive slow-type inhibitor of FXIa (Ki = 0.86 nmol L(-1) ), possesses anticoagulant activity that is ~ 10 times stronger in human plasma than in murine plasma, and prolonged the occlusion time of mice carotid artery in FeCl3 -induced thrombosis models. CONCLUSION We have isolated an exogenous FXIa specific inhibitor, engineered it to improve its potency by ~ 1000 times and demonstrated its in vitro and in vivo efficacy. These proof-of-principle data supported the further development of Fasxiator as a novel anticoagulant candidate.
Collapse
Affiliation(s)
- W Chen
- Department of Pharmacy, National University of Singapore, Singapore City, Singapore
| | | | | | | | | |
Collapse
|
9
|
Kluft C, van Leuven CJM. Consequences for the APTT due to direct action of factor XIa on factor X, resulting in bypassing factors VIII-IX. Thromb Res 2014; 135:198-204. [PMID: 25467084 DOI: 10.1016/j.thromres.2014.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/15/2014] [Accepted: 11/07/2014] [Indexed: 11/26/2022]
Abstract
BACK GROUND It has recently been reported that factor XIa can activate factor X directly and can bypass factors VIII-IX. We evaluated the consequences for factor analysis with the one-stage APTT. METHODS APTT was performed with the Actin FS reagent with ellagic acid as the standard. Silica, high lipid (PTT-A) or low lipid (PTT-LA) were also tested. Factor depleted and deficient plasma's were obtained from commercial sources. RESULTS The APTT clotting times in factor XII, XI, High Molecular Weight Kininogen, factor X and factor V deficient plasma's were all significantly longer (>100s) than the clotting times of factor VIII- and IX-depleted or deficient plasma's (<100s). That the shorter times for factor VIII and IX deficient plasmas were due to contact activation was supported by biphasic inhibition of the clotting times with addition of Corn Trypsin Inhibitor and Trasylol. The role of factor XI and the by-passing of factor VIII/IX was shown by the use of quenching antibodies towards factor XI and VIII. Enriching factor VIII or IX depleted plasma with purified factor XI and addition of factor XIa showed a strong dependence on factor XI level. Calibration curves for factor analysis were steeper for factors FXII, HMWK, FX and FV, compared to those of both factors VIII and IX. Curves for VIII/IX were found steeper by the use of APTT-A/silica-based, 50% diluted substrate plasma and low factor XI in the substrate plasma. CONCLUSIONS In factors VIII and IX deficient plasmas, the APTT shows an activity which can be attributed to contact activation of factor X by factor XIa. This direct activity is lower with silica reagent compared to ellagic acid, dilution of plasma and low factor XI in substrate plasma.
Collapse
Affiliation(s)
- C Kluft
- Good Biomarker Sciences, Zernikedreef 8, 2333CL Leiden, The Netherlands.
| | - C J M van Leuven
- Good Biomarker Sciences, Zernikedreef 8, 2333CL Leiden, The Netherlands.
| |
Collapse
|
10
|
Pendlebury D, Wang R, Henin RD, Hockla A, Soares AS, Madden BJ, Kazanov MD, Radisky ES. Sequence and conformational specificity in substrate recognition: several human Kunitz protease inhibitor domains are specific substrates of mesotrypsin. J Biol Chem 2014; 289:32783-97. [PMID: 25301953 DOI: 10.1074/jbc.m114.609560] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mesotrypsin is an isoform of trypsin that is uniquely resistant to polypeptide trypsin inhibitors and can cleave some inhibitors rapidly. Previous studies have shown that the amyloid precursor protein Kunitz protease inhibitor domain (APPI) is a specific substrate of mesotrypsin and that stabilization of the APPI cleavage site in a canonical conformation contributes to recognition by mesotrypsin. We hypothesized that other proteins possessing potential cleavage sites stabilized in a similar conformation might also be mesotrypsin substrates. Here we evaluated a series of candidate substrates, including human Kunitz protease inhibitor domains from amyloid precursor-like protein 2 (APLP2), bikunin, hepatocyte growth factor activator inhibitor type 2 (HAI2), tissue factor pathway inhibitor-1 (TFPI1), and tissue factor pathway inhibitor-2 (TFPI2), as well as E-selectin, an unrelated protein possessing a potential cleavage site displaying canonical conformation. We find that Kunitz domains within APLP2, bikunin, and HAI2 are cleaved by mesotrypsin with kinetic profiles of specific substrates. TFPI1 and TFPI2 Kunitz domains are cleaved less efficiently by mesotrypsin, and E-selectin is not cleaved at the anticipated site. Cocrystal structures of mesotrypsin with HAI2 and bikunin Kunitz domains reveal the mode of mesotrypsin interaction with its canonical substrates. Our data suggest that major determinants of mesotrypsin substrate specificity include sequence preferences at the P1 and P'2 positions along with conformational stabilization of the cleavage site in the canonical conformation. Mesotrypsin up-regulation has been implicated previously in cancer progression, and proteolytic clearance of Kunitz protease inhibitors offers potential mechanisms by which mesotrypsin may mediate pathological effects in cancer.
Collapse
Affiliation(s)
- Devon Pendlebury
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Ruiying Wang
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Rachel D Henin
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Alexandra Hockla
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Alexei S Soares
- the Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Benjamin J Madden
- the Medical Genome Facility Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Marat D Kazanov
- the A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Evette S Radisky
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224,
| |
Collapse
|
11
|
Szabó A, Salameh MA, Ludwig M, Radisky ES, Sahin-Tóth M. Tyrosine sulfation of human trypsin steers S2' subsite selectivity towards basic amino acids. PLoS One 2014; 9:e102063. [PMID: 25010489 PMCID: PMC4092071 DOI: 10.1371/journal.pone.0102063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/15/2014] [Indexed: 01/29/2023] Open
Abstract
Human cationic and anionic trypsins are sulfated on Tyr154, a residue which helps to shape the prime side substrate-binding subsites. Here, we used phage display technology to assess the significance of tyrosine sulfation for the specificity of human trypsins. The prime side residues P1′–P4′ in the binding loop of bovine pancreatic trypsin inhibitor (BPTI) were fully randomized and tight binding inhibitor phages were selected against non-sulfated and sulfated human cationic trypsin. The selection pattern for the two targets differed mostly at the P2′ position, where variants selected against non-sulfated trypsin contained primarily aliphatic residues (Leu, Ile, Met), while variants selected against sulfated trypsin were enriched also for Arg. BPTI variants carrying Arg, Lys, Ile, Leu or Ala at the P2′ position of the binding loop were purified and equilibrium dissociation constants were determined against non-sulfated and sulfated cationic and anionic human trypsins. BPTI variants harboring apolar residues at P2′ exhibited 3–12-fold lower affinity to sulfated trypsin relative to the non-sulfated enzyme, whereas BPTI variants containing basic residues at P2′ had comparable affinity to both trypsin forms. Taken together, the observations demonstrate that the tyrosyl sulfate in human trypsins interacts with the P2′ position of the substrate-like inhibitor and this modification increases P2′ selectivity towards basic side chains.
Collapse
Affiliation(s)
- András Szabó
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | - Moh’d A. Salameh
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida, United States of America
| | - Maren Ludwig
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Pediatric Nutritional Medicine & EKFZ, Technische Universität München (TUM), Munich, Germany
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida, United States of America
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
|
13
|
Protease inhibitors from marine venomous animals and their counterparts in terrestrial venomous animals. Mar Drugs 2013; 11:2069-112. [PMID: 23771044 PMCID: PMC3721222 DOI: 10.3390/md11062069] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/04/2023] Open
Abstract
The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared.
Collapse
|
14
|
Abstract
The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices, which constrain fluids to a small (typically submillimeter) scale, facilitate analysis of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, and pharmacology and, as a result, can be an invaluable tool for clinical diagnostics. An experimental session can accommodate hundreds to thousands of unique clotting, or thrombotic, events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor, under constant flow rate or constant pressure drop conditions. Distinct shear rates can be generated on a device using a single perfusion pump. Microfluidics facilitated both the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidic devices are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics.
Collapse
Affiliation(s)
- Thomas V Colace
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
15
|
Navaneetham D, Wu W, Li H, Sinha D, Tuma RF, Walsh PN. P1 and P2' site mutations convert protease nexin-2 from a factor XIa inhibitor to a plasmin inhibitor. J Biochem 2012; 153:221-31. [PMID: 23172304 DOI: 10.1093/jb/mvs133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The kunitz protease inhibitor domain of PN2 (PN2KPI) is a potent and specific inhibitor (K(i) 0.5-2 nM) of factor XIa (FXIa) and inhibits cerebrovascular thrombosis in mice. To determine whether the antithrombotic properties of PN2KPI arise from its FXIa-inhibitory activity, we have now prepared mutant forms of PN2KPI. Mutations at the P1 (Arg(15)) site in combination with P2' (Met(17)) mutations profoundly affect inhibition of FXIa, plasmin, kallikrein, factor Xa and thrombin. The mutant proteins PN2KPI-R(15)K, -M(17)K, -R(15)K,M(17)K and -R(15)K,M(17)R lost inhibitory activity against FXIa (K(i) 34, 94, 3081 and 707 nM, respectively) and kallikrein (no inhibition) and gained inhibitory activity against plasmin (K(i) 108, 7, 8 and 8 nM, respectively). The intravenous administration of rPN2KPI into mice dramatically decreased thrombus formation in a murine model of FeCl(3)-induced carotid injury, whereas rPN2KPI-R(15)K,M(17)K failed to inhibit thrombus formation. Molecular modelling studies showed that fine structural variations explain the observed functional differences in FXIa and plasmin inhibition. PN2KPI has potent antithrombotic activity due to its specific FXIa anticoagulant activity, whereas PN2KPI-R(15)K,M(17)K and PN2KPI-R(15)K,M(17)R have potent antifibrinolytic (antiplasmin) activity without anticoagulant or antithrombotic activity.
Collapse
Affiliation(s)
- Duraiswamy Navaneetham
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
16
|
García-Fernández R, Pons T, Perbandt M, Valiente PA, Talavera A, González-González Y, Rehders D, Chávez MA, Betzel C, Redecke L. Structural insights into serine protease inhibition by a marine invertebrate BPTI Kunitz-type inhibitor. J Struct Biol 2012; 180:271-9. [PMID: 22975140 DOI: 10.1016/j.jsb.2012.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Proteins isolated from marine invertebrates are frequently characterized by exceptional structural and functional properties. ShPI-1, a BPTI Kunitz-type inhibitor from the Caribbean Sea anemone Stichodactyla helianthus, displays activity not only against serine-, but also against cysteine-, and aspartate proteases. As an initial step to evaluate the molecular basis of its activities, we describe the crystallographic structure of ShPI-1 in complex with the serine protease bovine pancreatic trypsin at 1.7Å resolution. The overall structure and the important enzyme-inhibitor interactions of this first invertebrate BPTI-like Kunitz-type inhibitor:trypsin complex remained largely conserved compared to mammalian BPTI-Kunitz inhibitor complexes. However, a prominent stabilizing role within the interface was attributed to arginine at position P3. Binding free-energy calculations indicated a 10-fold decrease for the inhibitor affinity against trypsin, if the P3 residue of ShPI-1 is mutated to alanine. Together with the increased role of Arg(11) at P3 position, slightly reduced interactions at the prime side (Pn') of the primary binding loop and at the secondary binding loop of ShPI-1 were detected. In addition, the structure provides important information for site directed mutagenesis to further optimize the activity of rShPI-1A for biotechnological applications.
Collapse
Affiliation(s)
- Rossana García-Fernández
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de la Habana, Calle 25 No 411, Havana, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis. Blood 2012; 120:671-7. [PMID: 22674803 DOI: 10.1182/blood-2012-03-419523] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl(3)-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy.
Collapse
|
18
|
Markowska A, Bruzgo M, Surażyński A, Midura-Nowaczek K. Tripeptides with non-code amino acids as potential serine proteases inhibitors. J Enzyme Inhib Med Chem 2012; 28:639-43. [PMID: 22299583 DOI: 10.3109/14756366.2011.651463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eight peptides of the general H-D-Ser-AA-Arg-OH formula, where AA = phenylglycine, phenylalanine, homophenylalanine, cyclohexylglycine, cyclohexylalanine, homocyclohexylalanine, α-methylphenylalanine and 1-aminocyclohexyl carboxylic acid were obtained and tested for their effect on the amidolytic activities of urokinase, thrombin, trypsin, plasmin, t-PA and kallikrein. We tested the hemolytic activity of the peptides against porcine erythrocytes and the antitumor activity against the human breast cancer cells, standard MCF-7 and estrogen-independent MDA-MB-231. The most active compounds were H-D-Ser-Chg-Arg-OH towards thrombin and H-D-Ser-Phg-Arg-OH towards plasmin with K(i) value 5.02 μM and 5.7 μM, respectively.
Collapse
|
19
|
The P(2)' residue is a key determinant of mesotrypsin specificity: engineering a high-affinity inhibitor with anticancer activity. Biochem J 2011; 440:95-105. [PMID: 21806544 PMCID: PMC3380622 DOI: 10.1042/bj20110788] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PRSS3/mesotrypsin is an atypical isoform of trypsin, the up-regulation of which has been implicated in promoting tumour progression. Mesotrypsin inhibitors could potentially provide valuable research tools and novel therapeutics, but small-molecule trypsin inhibitors have low affinity and little selectivity, whereas protein trypsin inhibitors bind poorly and are rapidly degraded by mesotrypsin. In the present study, we use mutagenesis of a mesotrypsin substrate, APPI (amyloid precursor protein Kunitz protease inhibitor domain), and of a poor mesotrypsin inhibitor, BPTI (bovine pancreatic trypsin inhibitor), to dissect mesotrypsin specificity at the key P(2)' position. We find that bulky and charged residues strongly disfavour binding, whereas acidic residues facilitate catalysis. Crystal structures of mesotrypsin complexes with BPTI variants provide structural insights into mesotrypsin specificity and inhibition. Through optimization of the P(1) and P(2)' residues of BPTI, we generate a stable high-affinity mesotrypsin inhibitor with an equilibrium binding constant K(i) of 5.9 nM, a >2000-fold improvement in affinity over native BPTI. Using this engineered inhibitor, we demonstrate the efficacy of pharmacological inhibition of mesotrypsin in assays of breast cancer cell malignant growth and pancreatic cancer cell invasion. Although further improvements in inhibitor selectivity will be important before clinical potential can be realized, the results of the present study support the feasibility of engineering protein protease inhibitors of mesotrypsin and highlight their therapeutic potential.
Collapse
|
20
|
Su YC, Miller TN, Navaneetham D, Schoonmaker RT, Sinha D, Walsh PN. The role of factor XIa (FXIa) catalytic domain exosite residues in substrate catalysis and inhibition by the Kunitz protease inhibitor domain of protease nexin 2. J Biol Chem 2011; 286:31904-14. [PMID: 21778227 DOI: 10.1074/jbc.m111.257527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu(98), Tyr(143), Ile(151), Arg(3704), Lys(192), and Tyr(5901)) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal K(m) values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of k(cat) for S-2366 hydrolysis. All six Ala mutants displayed deficient k(cat) values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of K(i) except for K192A, and Y5901A, which displayed increased values of K(i). The integrity of the S1 binding site residue, Asp(189), utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr(143), Ile(151), Arg(3704), and Tyr(5901)) are important for S-2366 hydrolysis; Glu(98) and Lys(192) are essential for FIX but not S-2366 hydrolysis; and Lys(192) and Tyr(5901) are required for both inhibitor and macromolecular substrate interactions.
Collapse
Affiliation(s)
- Ya-Chi Su
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | |
Collapse
|
21
|
Salameh MA, Soares AS, Navaneetham D, Sinha D, Walsh PN, Radisky ES. Determinants of affinity and proteolytic stability in interactions of Kunitz family protease inhibitors with mesotrypsin. J Biol Chem 2010; 285:36884-96. [PMID: 20861008 DOI: 10.1074/jbc.m110.171348] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P(1) (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P'(2) favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P(1) and P'(2) substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin·APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.
Collapse
Affiliation(s)
- Moh'd A Salameh
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | | | |
Collapse
|