1
|
Li Q, Liu Q, Li S, Zuo X, Zhou H, Gao Z, Xia B. Golgi-derived extracellular vesicle production induced by SARS-CoV-2 envelope protein. Apoptosis 2025; 30:197-209. [PMID: 39580578 DOI: 10.1007/s10495-024-02035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/25/2024]
Abstract
Extracellular vesicles facilitate cell-to-cell communication, and some enveloped viruses utilize these vesicles as carriers to mediate viral transmission. SARS-CoV-2 envelope protein (2-E) forms a cation channel and overexpression of 2-E led to the generation of a distinct type of large extracellular vesicles (2-E-EVs). Although 2-E-EVs have been demonstrated to facilitate viral transmission in a receptor-independent way, the characteristics and biogenesis mechanism remain enigmatic. Via lipidomics and proteomic analysis, we found 2-E-EVs are distinct from endosome-derived exosomes. 2-E-EVs are notably enriched in Golgi apparatus components, aligning with the observed fragmentation in Golgi morphology. Through live cell imaging, we established a connection between 2-E-EVs formation, Golgi fragmentation, and channel activity, emphasizing the role of 2-E-EVs as ion channel-induced extracellular vesicles. Our work highlights 2-E-EVs as distinctive Golgi-derived vesicles, contributing to a deeper understanding of 2-E channel-mediated virus-host dynamics, with implications for therapeutic strategies and drug delivery.
Collapse
Affiliation(s)
- Qiguang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Shuangqu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoli Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China.
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Massudi H, Luo JS, Holien JK, Gadde S, Krishan S, Herath M, Koach J, Stevenson BW, Gorman MA, Venkat P, Mayoh C, Luo XQ, Parker MW, Cheung BB, Marshall GM. Inhibitors of the Oncogenic PA2G4-MYCN Protein-Protein Interface. Cancers (Basel) 2023; 15:cancers15061822. [PMID: 36980710 PMCID: PMC10046377 DOI: 10.3390/cancers15061822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
MYCN is a major oncogenic driver for neuroblastoma tumorigenesis, yet there are no direct MYCN inhibitors. We have previously identified PA2G4 as a direct protein-binding partner of MYCN and drive neuroblastoma tumorigenesis. A small molecule known to bind PA2G4, WS6, significantly decreased tumorigenicity in TH-MYCN neuroblastoma mice, along with the inhibition of PA2G4 and MYCN interactions. Here, we identified a number of novel WS6 analogues, with 80% structural similarity, and used surface plasmon resonance assays to determine their binding affinity. Analogues #5333 and #5338 showed direct binding towards human recombinant PA2G4. Importantly, #5333 and #5338 demonstrated a 70-fold lower toxicity for normal human myofibroblasts compared to WS6. Structure-activity relationship analysis showed that a 2,3 dimethylphenol was the most suitable substituent at the R1 position. Replacing the trifluoromethyl group on the phenyl ring at the R2 position, with a bromine or hydrogen atom, increased the difference between efficacy against neuroblastoma cells and normal myofibroblast toxicity. The WS6 analogues inhibited neuroblastoma cell phenotype in vitro, in part through effects on apoptosis, while their anti-cancer effects required both PA2G4 and MYCN expression. Collectively, chemical inhibition of PA2G4-MYCN binding by WS6 analogues represents a first-in-class drug discovery which may have implications for other MYCN-driven cancers.
Collapse
Affiliation(s)
- Hassina Massudi
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Jie-Si Luo
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Jessica K. Holien
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Satyanarayana Gadde
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Sukriti Krishan
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Mika Herath
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Jessica Koach
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Brendan W. Stevenson
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael A. Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pooja Venkat
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Chelsea Mayoh
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Xue-Qun Luo
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Belamy B. Cheung
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2750, Australia
- Correspondence: (B.B.C.); (G.M.M.); Tel.: +61-(02)-9385-2450 (B.B.C.); +61-(02)-9382-1721 (G.M.M.); Fax: +61-(02)-9662-6584 (B.B.C.); +61-(02)-9382-1789 (G.M.M.)
| | - Glenn M. Marshall
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Correspondence: (B.B.C.); (G.M.M.); Tel.: +61-(02)-9385-2450 (B.B.C.); +61-(02)-9382-1721 (G.M.M.); Fax: +61-(02)-9662-6584 (B.B.C.); +61-(02)-9382-1789 (G.M.M.)
| |
Collapse
|
3
|
The unfolding role of ceramide in coordinating retinoid-based cancer therapy. Biochem J 2021; 478:3621-3642. [PMID: 34648006 DOI: 10.1042/bcj20210368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022]
Abstract
Sphingolipid-mediated regulation in cancer development and treatment is largely ceramide-centered with the complex sphingolipid metabolic pathways unfolding as attractive targets for anticancer drug discovery. The dynamic interconversion of sphingolipids is tightly controlled at the level of enzymes and cellular compartments in response to endogenous or exogenous stimuli, such as anticancer drugs, including retinoids. Over the past two decades, evidence emerged that retinoids owe part of their potency in cancer therapy to modulation of sphingolipid metabolism and ceramide generation. Ceramide has been proposed as a 'tumor-suppressor lipid' that orchestrates cell growth, cell cycle arrest, cell death, senescence, autophagy, and metastasis. There is accumulating evidence that cancer development is promoted by the dysregulation of tumor-promoting sphingolipids whereas cancer treatments can kill tumor cells by inducing the accumulation of endogenous ceramide levels. Resistance to cancer therapy may develop due to a disrupted equilibrium between the opposing roles of tumor-suppressor and tumor-promoter sphingolipids. Despite the undulating effect and complexity of sphingolipid pathways, there are emerging opportunities for a plethora of enzyme-targeted therapeutic interventions that overcome resistance resulting from perturbed sphingolipid pathways. Here, we have revisited the interconnectivity of sphingolipid metabolism and the instrumental role of ceramide-biosynthetic and degradative enzymes, including bioactive sphingolipid products, how they closely relate to cancer treatment and pathogenesis, and the interplay with retinoid signaling in cancer. We focused on retinoid targeting, alone or in combination, of sphingolipid metabolism nodes in cancer to enhance ceramide-based therapeutics. Retinoid and ceramide-based cancer therapy using novel strategies such as combination treatments, synthetic retinoids, ceramide modulators, and delivery formulations hold promise in the battle against cancer.
Collapse
|
4
|
Bielsa N, Casasampere M, Aseeri M, Casas J, Delgado A, Abad JL, Fabriàs G. Discovery of deoxyceramide analogs as highly selective ACER3 inhibitors in live cells. Eur J Med Chem 2021; 216:113296. [PMID: 33677352 DOI: 10.1016/j.ejmech.2021.113296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Acid (AC), neutral (NC) and alkaline ceramidase 3 (ACER3) are the most ubiquitous ceramidases and their therapeutic interest as targets in cancer diseases has been well sustained. This supports the importance of discovering potent and specific inhibitors for further use in combination therapies. Although several ceramidase inhibitors have been reported, most of them target AC and a few focus on NC. In contrast, well characterized ACER3 inhibitors are lacking. Here we report on the synthesis and screening of two series of 1-deoxy(dihydro)ceramide analogs on the three enzymes. Activity was determined using fluorogenic substrates in recombinant human NC (rhNC) and both lysates and intact cells enriched in each enzyme. None of the molecules elicited a remarkable AC inhibitory activity in either experimental setup, while using rhNC, several compounds of both series were active as non-competitive inhibitors with Ki values between 1 and 5 μM. However, a dramatic loss of potency occurred in NC-enriched cell lysates and no activity was elicited in intact cells. Interestingly, several compounds of Series 2 inhibited ACER3 dose-dependently in both cell lysates and intact cells with IC50's around 20 μM. In agreement with their activity in live cells, they provoked a significant increase in the amounts of ceramides. Overall, this study identifies highly selective ACER3 activity blockers in intact cells, opening the door to further medicinal chemistry efforts aimed at developing more potent and specific compounds.
Collapse
Affiliation(s)
- Núria Bielsa
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Mazen Aseeri
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, 28029, Madrid, Spain
| | - Antonio Delgado
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain; Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC). Faculty of Pharmacy. University of Barcelona (UB). Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - José Luis Abad
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Inoue C, Sobue S, Mizutani N, Kawamoto Y, Nishizawa Y, Ichihara M, Takeuchi T, Hayakawa F, Suzuki M, Ito T, Nozawa Y, Murate T. Vaticanol C, a phytoalexin, induces apoptosis of leukemia and cancer cells by modulating expression of multiple sphingolipid metabolic enzymes. NAGOYA JOURNAL OF MEDICAL SCIENCE 2020; 82:261-280. [PMID: 32581406 PMCID: PMC7276413 DOI: 10.18999/nagjms.82.2.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Resveratrol (RSV) has recently attracted keen interest because of its pleiotropic effects. It exerts a wide range of health-promoting effects. In addition to health-promoting effects, RSV possesses anti-carcinogenic activity. However, a non-physiological concentration is needed to achieve an anti-cancer effect, and its in vivo bioavailability is low. Therefore, the clinical application of phytochemicals requires alternative candidates that induce the desired effects at a lower concentration and with increased bioavailability. We previously reported a low IC50 of vaticanol C (VTC), an RSV tetramer, among 12 RSV derivatives (Ito T. et al, 2003). However, the precise mechanism involved remains to be determined. Here, we screened an in-house chemical library bearing RSV building blocks ranging from dimers to octamers for cytotoxic effects in several leukemia and cancer cell lines and their anti-cancer drug-resistant sublines. Among the compounds, VTC exhibited the highest cytotoxicity, which was partially inhibited by a caspase 3 inhibitor, Z-VAD-FMK. VTC decreased the expression of sphingosine kinase 1, sphingosine kinase 2 and glucosylceramide synthase by transcriptional or post-transcriptional mechanisms, and increased cellular ceramides/dihydroceramides and decreased sphingosine 1-phosphate (S1P). VTC-induced sphingolipid rheostat modulation (the ratio of ceramide/S1P) is thought to be involved in cellular apoptosis. Indeed, exogenous S1P addition modulated VTC cytotoxicity significantly. A combination of SPHK1, SPHK2, and GCS chemical inhibitors induced sphingolipid rheostat modulation, cell growth suppression, and cytotoxicity similar to that of VTC. These results suggest the involvement of sphingolipid metabolism in VTC-induced cytotoxicity, and indicate VTC is a promising prototype for translational research.
Collapse
Affiliation(s)
- Chisato Inoue
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Sayaka Sobue
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Naoki Mizutani
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Yuji Nishizawa
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Toshiyuki Takeuchi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Fumihiko Hayakawa
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Tetsuro Ito
- Gifu Pharmaceutical University, Gifu, Japan.,Gifu Prefectural Research Institute for Health and Environmental Sciences, Kakamigahara, Japan
| | | | - Takashi Murate
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
6
|
Zhao K, Liu J, Dong G, Xia H, Wang P, Xiao X, Chen Z. Preliminary research on the effects and mechanisms of umbilical cord‑derived mesenchymal stem cells in streptozotocin‑induced diabetic retinopathy. Int J Mol Med 2020; 46:849-858. [PMID: 32626946 DOI: 10.3892/ijmm.2020.4623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/16/2020] [Indexed: 11/05/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most prevalent microvascular complications of diabetes, and a common cause of blindness in working‑age individuals. Mesenchymal stem cell (MSC) transplantation has been considered a promising intervention therapy for DR, wherein the differentiation of MSCs into nerve cells plays an essential role. However, research into the role of MSCs in DR treatment remains incomplete, and the mechanisms of retinal repair at the molecular level have yet to be clarified. In the present study, all‑trans retinoic acid (ATRA) was used to promote the proliferation of rat umbilical cord (UC)‑derived MSCs and their differentiation into nerve cells. Furthermore, the effects and mechanisms of UC‑MSCs with or without ATRA treatment were investigated in rats subjected to streptozocin (STZ)‑induced DR. The results demonstrated that the transplantation of UC‑MSCs treated with or without ATRA attenuated DR in rats, and alleviated retinal tissue damage and apoptosis. In addition, the transplantation of UC‑MSCs treated with or without ATRA attenuated angiogenesis and inflammation in the retina by regulating the levels of relevant cytokines. UC‑MSCs treated with ATRA exerted a more prominent therapeutic effect than the untreated UC‑MSCs. On the whole, these findings indicate that UC‑MSCs alleviate STZ‑induced DR in rats by regulating angiogenesis and the inflammatory response at the molecular level. Thus, the findings of the present study may provide a theoretical basis for the application of MSCs in the treatment of DR.
Collapse
Affiliation(s)
- Ken Zhao
- Department of Ophthalmology, People's Hospital of Daye, The Second Affiliated Hospital of Hubei Polytechnic College, Daye, Hubei 435100, P.R. China
| | - Jie Liu
- Department of Ophthalmology, People's Hospital of Daye, The Second Affiliated Hospital of Hubei Polytechnic College, Daye, Hubei 435100, P.R. China
| | - Gang Dong
- Department of Ophthalmology, People's Hospital of Daye, The Second Affiliated Hospital of Hubei Polytechnic College, Daye, Hubei 435100, P.R. China
| | - Huan Xia
- Department of Ophthalmology, People's Hospital of Daye, The Second Affiliated Hospital of Hubei Polytechnic College, Daye, Hubei 435100, P.R. China
| | - Pingan Wang
- Wuhan Myhalic Biotechnology Co., Ltd., Wuhan, Hubei 430206, P.R. China
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhen Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Coant N, Hannun YA. Neutral ceramidase: Advances in mechanisms, cell regulation, and roles in cancer. Adv Biol Regul 2018; 71:141-146. [PMID: 30389354 DOI: 10.1016/j.jbior.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/11/2023]
Abstract
Extensive research conducted in the last three decades has identified the roles for the main bioactive sphingolipids, namely ceramide, sphingosine, and sphingosine 1-phosphate (S1P) as key regulators of cellular homeostasis, growth and death. One of the major groups of enzymes in the ceramide pathway, ceramidases, converts ceramide into sphingosine and fatty acids, with sphingosine being further metabolized to S1P. Thus, these enzymes play important roles in the network controlling the functions associated with these bioactive sphingolipids. Among the family of ceramidases, neutral ceramidase (nCDase), which is named according to its optimal pH for catalytic activity, has received increased attention in the last decade. The goal of this review is to provide a brief background on bioactive sphingolipids and the ceramidases. We then describe more recent advances on nCDase, specifically the resolution of its crystal structure and understanding its roles in cell biology and physiology.
Collapse
Affiliation(s)
- Nicolas Coant
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 182, 11794, Stony Brook, NY, USA.
| |
Collapse
|
8
|
Abstract
Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
- Northport Veterans Affairs Medical Center, Northport, New York 11768, USA
| |
Collapse
|
9
|
Chaudhari N, Talwar P, Lefebvre D'hellencourt C, Ravanan P. CDDO and ATRA Instigate Differentiation of IMR32 Human Neuroblastoma Cells. Front Mol Neurosci 2017; 10:310. [PMID: 29018329 PMCID: PMC5623017 DOI: 10.3389/fnmol.2017.00310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common solid extra cranial tumor in infants. Improving the clinical outcome of children with aggressive tumors undergoing one of the multiple treatment options has been a major concern. Differentiating neuroblastoma cells holds promise in inducing tumor growth arrest and treating minimal residual disease. In this study, we investigated the effect of partial PPARγ agonist 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) on human neuroblastoma IMR32 cells. Our results demonstrate that treatment with low concentration of CDDO and particularly in combination with all trans retinoic acid (ATRA) induced neurite outgrowth, increased the percentage of more than two neurites bearing cells, and decreased viability in IMR32 cells. These morphological changes were associated with an increase in expression of bonafide differentiation markers like β3-tubulin and Neuron Specific Enolase (NSE). The differentiation was accompanied by a decrease in the expression of MYCN whose amplification is known to contribute to the pathogenesis of neuroblastoma. MYCN is known to negatively regulate NMYC downstream-regulated gene 1 (NDRG1) in neuroblastomas. MYCN down-regulation induced by CDDO correlated with increased expression of NDRG1. CDDO decreased Anaplastic Lymphoma Kinase (ALK) mRNA expression without affecting its protein level, while ATRA significantly down-regulated ALK. Antagonism of PPARγ receptor by T0070907 meddled with differentiation inducing effects of CDDO as observed by stunted neurite growth, increased viability and decreased expression of differentiation markers. Our findings indicate that IMR32 differentiation induced by CDDO in combination with ATRA enhances, differentiation followed by cell death via cAMP-response-element binding protein (CREB) independent and PPARγ dependent signaling mechanisms.
Collapse
Affiliation(s)
- Namrata Chaudhari
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| | - Christian Lefebvre D'hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR Diabète Athérothombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
10
|
Murillo JR, Goto-Silva L, Sánchez A, Nogueira FCS, Domont GB, Junqueira M. Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells. EUPA OPEN PROTEOMICS 2017; 16:1-11. [PMID: 29900121 PMCID: PMC5965715 DOI: 10.1016/j.euprot.2017.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/07/2017] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
Differentiation analysis of SH-SY5Y cells with iTRAQ strategy is proposed. Differentiated SH-SY5Y cells are more appropriated as a neuronal model. Upregulated proteins are mainly related to ECM-interaction and apoptosis. Proteins to explore as differentiation markers: AGRN, EMILIM-1, AIFM, STMN1.
SH-SY5Y neuroblastoma cells are susceptible to differentiation using retinoic acid (RA) and brain-derived neurotrophic factor (BDNF), providing a model of neuronal differentiation. We compared SH-SY5Y cells proteome before and after RA/BDNF treatment using iTRAQ and phosphopeptide enrichment strategies. We identified 5587 proteins, 366 of them with differential abundance. Differentiated cells expressed proteins related to neuronal development, and, undifferentiated cells expressed proteins involved in cell proliferation. Interactive network covered focal adhesion, cytoskeleton dynamics and neurodegenerative diseases processes and regulation of mitogen-activated protein kinase-related signaling pathways; key proteins involved in those processes might be explored as markers for neuronal differentiation.
Collapse
Affiliation(s)
- Jimmy Rodriguez Murillo
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), 22281-100, Rio de Janeiro, Brazil
| | - Aniel Sánchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Center of Excellence in Biological and Medical Mass Spectrometry, Biomedical Center D13, Lund University, 221 84 Lund, Sweden
| | - Fábio C S Nogueira
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Magno Junqueira
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Aoyama Y, Sobue S, Mizutani N, Inoue C, Kawamoto Y, Nishizawa Y, Ichihara M, Kyogashima M, Suzuki M, Nozawa Y, Murate T. Modulation of the sphingolipid rheostat is involved in paclitaxel resistance of the human prostate cancer cell line PC3-PR. Biochem Biophys Res Commun 2017; 486:551-557. [PMID: 28322796 DOI: 10.1016/j.bbrc.2017.03.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 01/01/2023]
Abstract
Taxoids are anti-cancer drugs frequently used to treat solid tumors, but they are sometimes ineffective and tumors may become resistant to their action. Here, we examined the involvement of sphingolipid metabolic enzymes in paclitaxel (PTX) resistance using a human prostate cancer cell line, PC3, and its PTX-resistant subline, PC3-PR. PTX (20 nM) suppressed cell proliferation and increased various ceramide species in PC3, but not PC3-PR, cells. PC3-PR contained higher S1P levels than did PC3, regardless of PTX treatment. Western blotting revealed that PC3-PR cells expressed higher levels of sphingosine kinase 1 (SPHK1) and glucosylceramide synthase (GCS) but lower levels of acid sphingomyelinase (ASMase) and neutral sphingomyelinase 2 than did PC3 cells. Inhibition of SPHK1 using siRNA or a pharmacological inhibitor decreased S1P levels in PC3-PR cells and inhibited proliferation in the presence or absence of PTX, suggesting that SPHK1 is at least partially responsible for PTX resistance. Similarly, GCS inhibitors (PDMP and PPMP) increased cellular ceramides and suppressed the proliferation of PC3-PR. However, inhibition of proteasome function or histone deacetylase activity increased SMase and ceramide levels and suppressed PC3-PR proliferation. These results suggest that modulation of metabolic enzyme expression and alteration of the sphingolipid rheostat protects cancer cells against PTX.
Collapse
Affiliation(s)
- Yuka Aoyama
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Sayaka Sobue
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Naoki Mizutani
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Chisato Inoue
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Yoshiyuki Kawamoto
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Yuji Nishizawa
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Masatoshi Ichihara
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Mamoru Kyogashima
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, 466-0064, Japan
| | - Motoshi Suzuki
- Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama, 362-0806, Japan
| | | | - Takashi Murate
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan.
| |
Collapse
|
12
|
Tam KT, Chan PK, Zhang W, Law PP, Tian Z, Fung Chan GC, Philipsen S, Festenstein R, Tan-Un KC. Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach. Nucleic Acids Res 2017; 45:115-126. [PMID: 27651453 PMCID: PMC5224503 DOI: 10.1093/nar/gkw820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022] Open
Abstract
Neuroglobin (NGB) is predominantly expressed in the brain and retina. Studies suggest that NGB exerts protective effects to neuronal cells and is implicated in reducing the severity of stroke and Alzheimer's disease. However, little is known about the mechanisms which regulate the cell type-specific expression of the gene. In this study, we hypothesized that distal regulatory elements (DREs) are involved in optimal expression of the NGB gene. By chromosome conformation capture we identified two novel DREs located -70 kb upstream and +100 kb downstream from the NGB gene. ENCODE database showed the presence of DNaseI hypersensitive and transcription factors binding sites in these regions. Further analyses using luciferase reporters and chromatin immunoprecipitation suggested that the -70 kb region upstream of the NGB gene contained a neuronal-specific enhancer and GATA transcription factor binding sites. Knockdown of GATA-2 caused NGB expression to drop dramatically, indicating GATA-2 as an essential transcription factor for the activation of NGB expression. The crucial role of the DRE in NGB expression activation was further confirmed by the drop in NGB level after CRISPR-mediated deletion of the DRE. Taken together, we show that the NGB gene is regulated by a cell type-specific loop formed between its promoter and the novel DRE.
Collapse
MESH Headings
- Binding Sites
- CRISPR-Cas Systems
- Cell Line, Tumor
- Chromosomes, Human, Pair 14/chemistry
- Deoxyribonuclease I/genetics
- Deoxyribonuclease I/metabolism
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Gene Editing
- Gene Expression Regulation
- Genes, Reporter
- Globins/antagonists & inhibitors
- Globins/genetics
- Globins/metabolism
- HeLa Cells
- Humans
- K562 Cells
- Luciferases/genetics
- Luciferases/metabolism
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroglobin
- Neurons/cytology
- Neurons/metabolism
- Organ Specificity
- Protein Binding
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Regulatory Elements, Transcriptional
- Signal Transduction
Collapse
Affiliation(s)
- Kin Tung Tam
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College School of Medicine, London W12 0NN, United Kingdom
| | - Wei Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Pui Pik Law
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College School of Medicine, London W12 0NN, United Kingdom
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Zhipeng Tian
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- School of Professional and Continuing Education (HKU SPACE), The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Richard Festenstein
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College School of Medicine, London W12 0NN, United Kingdom
| | - Kian Cheng Tan-Un
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- School of Professional and Continuing Education (HKU SPACE), The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
| |
Collapse
|
13
|
Ceramidases, roles in sphingolipid metabolism and in health and disease. Adv Biol Regul 2016; 63:122-131. [PMID: 27771292 DOI: 10.1016/j.jbior.2016.10.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 01/14/2023]
Abstract
Over the past three decades, extensive research has been able to determine the biologic functions for the main bioactive sphingolipids, namely ceramide, sphingosine, and sphingosine 1-phosphate (S1P) (Hannun, 1996; Hannun et al., 1986; Okazaki et al., 1989). These studies have managed to define the metabolism, regulation, and function of these bioactive sphingolipids. This emerging body of literature has also implicated bioactive sphingolipids, particularly S1P and ceramide, as key regulators of cellular homeostasis. Ceramidases have the important role of cleaving fatty acid from ceramide and producing sphingosine, thereby controlling the interconversion of these two lipids. Thus far, five human ceramidases encoded by five different genes have been identified: acid ceramidase (AC), neutral ceramidase (NC), alkaline ceramidase 1 (ACER1), alkaline ceramidase 2 (ACER2), and alkaline ceramidase 3 (ACER3). These ceramidases are classified according to their optimal pH for catalytic activity. AC, which is localized to the lysosomal compartment, has been associated with Farber's disease and is involved in the regulation of cell viability. Neutral ceramidase, which is localized to the plasma membrane and primarily expressed in the small intestine and colon, is involved in digestion, and has been implicated in colon carcinogenesis. ACER1 which can be found in the endoplasmic reticulum and is highly expressed in the skin, plays an important role in keratinocyte differentiation. ACER2, localized to the Golgi complex and highly expressed in the placenta, is involved in programed cell death in response to DNA damage. ACER3, also localized to the endoplasmic reticulum and the Golgi complex, is ubiquitously expressed, and is involved in motor coordination-associated Purkinje cell degeneration. This review seeks to consolidate the current knowledge regarding these key cellular players.
Collapse
|
14
|
García-Barros M, Coant N, Kawamori T, Wada M, Snider AJ, Truman JP, Wu BX, Furuya H, Clarke CJ, Bialkowska AB, Ghaleb A, Yang VW, Obeid LM, Hannun YA. Role of neutral ceramidase in colon cancer. FASEB J 2016; 30:4159-4171. [PMID: 27609772 DOI: 10.1096/fj.201600611r] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022]
Abstract
Alterations in sphingolipid metabolism, especially ceramide and sphingosine 1-phosphate, have been linked to colon cancer, suggesting that enzymes of sphingolipid metabolism may emerge as novel regulators and targets in colon cancer. Neutral ceramidase (nCDase), a key enzyme in sphingolipid metabolism that hydrolyzes ceramide into sphingosine, is highly expressed in the intestine; however, its role in colon cancer has not been defined. Here we show that molecular and pharmacological inhibition of nCDase in colon cancer cells increases ceramide, and this is accompanied by decreased cell survival and increased apoptosis and autophagy, with minimal effects on noncancerous cells. Inhibition of nCDase resulted in loss of β-catenin and inhibition of ERK, components of pathways relevant for colon cancer development. Furthermore, inhibition of nCDase in a xenograft model delayed tumor growth and increased ceramide while decreasing proliferation. It is noteworthy that mice lacking nCDase treated with azoxymethane were protected from tumor formation. Taken together, these studies show that nCDase is pivotal for regulating initiation and development of colon cancer, and these data suggest that this enzyme is a suitable and novel target for colon cancer therapy.-García-Barros, M., Coant, N., Kawamori, T., Wada, M., Snider, A. J., Truman, J.-P., Wu, B. X., Furuya, H., Clarke, C. J., Bialkowska, A. B., Ghaleb, A., Yang, V. W., Obeid, L. M., Hannun, Y. A. Role of neutral ceramidase in colon cancer.
Collapse
Affiliation(s)
- Mónica García-Barros
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Nicolas Coant
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Toshihiko Kawamori
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.,Research Institute for Cancer Prevention and Pathologic Diagnosis at Tokyo Leon Clinics, Nagoya, Japan
| | - Masayuki Wada
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Ashley J Snider
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Jean-Philip Truman
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hideki Furuya
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Christopher J Clarke
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | | | - Amr Ghaleb
- Department of Medicine, Stony Brook University, New York, USA
| | - Vincent W Yang
- Department of Medicine, Stony Brook University, New York, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, New York, USA; .,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA.,Department of Biochemistry, Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacology, Stony Brook University, Stony Brook, New York, USA; and.,Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
15
|
Mizutani N, Omori Y, Kawamoto Y, Sobue S, Ichihara M, Suzuki M, Kyogashima M, Nakamura M, Tamiya-Koizumi K, Nozawa Y, Murate T. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells. Biochem Biophys Res Commun 2016; 470:851-6. [PMID: 26809095 DOI: 10.1016/j.bbrc.2016.01.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/18/2022]
Abstract
Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5'-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment.
Collapse
Affiliation(s)
- Naoki Mizutani
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan; College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yukari Omori
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Sayaka Sobue
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Kyogashima
- Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama, Japan
| | - Mitsuhiro Nakamura
- Department of Drug Information, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | - Takashi Murate
- College of Life and Health Sciences, Chubu University, Kasugai, Japan.
| |
Collapse
|
16
|
Mizutani N, Inoue M, Omori Y, Ito H, Tamiya-Koizumi K, Takagi A, Kojima T, Nakamura M, Iwaki S, Nakatochi M, Suzuki M, Nozawa Y, Murate T. Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP. J Biochem 2015; 158:309-19. [PMID: 25888580 DOI: 10.1093/jb/mvv039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023] Open
Abstract
Acid ceramidase (ACDase) metabolizes ceramide to sphingosine, leading to sphingosine 1-phosphate production. Reportedly, ACDase has been upregulated in prostate cancer. However, its regulatory mechanism remains unclear. LNCaP (androgen-sensitive prostate cancer cell line) but not PC3 and DU-145, (androgen-unresponsive cell lines) exhibited the highest ACDase protein. Among three cell lines, ASAH1 mRNA level was not correlated with ACDase protein expression, and the 5'-promoter activity did not show androgen dependency, suggesting the post-transcriptional regulation of ACDase in LNCaP cells. Based on these results, LNCaP was analysed further. Casodex, androgen receptor antagonist, and charcoal-stripped FCS (CS-FCS) decreased ACDase protein and activity, whereas dihydrotestosterone in CS-FCS culture increased ACDase protein and enzyme activity. MG132, a proteasome inhibitor, prevented the decrease of ACDase protein when cultured in CS-FCS, suggesting the involvement of ubiquitin/proteasome system. Reportedly, USP2, a deubiquitinase, plays an important role in LNCaP cells. USP2 siRNA decreased ACDase protein, whereas USP2 overexpression increased ACDase protein of LNCaP cells. However, SKP2, an ubiquitin E3 ligase known to be active in prostate cancer, did not affect androgen-dependent ACDase expression in LNCaP cells. Thus, ACDase regulation by androgen in androgen-sensitive LNCaP cells is mainly due to its prolonged protein half-life by androgen-stimulated USP2 expression.
Collapse
Affiliation(s)
- Naoki Mizutani
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Minami Inoue
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Yukari Omori
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Hiromi Ito
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Keiko Tamiya-Koizumi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Akira Takagi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Tetsuhito Kojima
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Mitsuhiro Nakamura
- Department of Drug Information, Gifu Pharmaceutical University, Gifu 501-1196
| | - Soichiro Iwaki
- Department of Molecular and Cellular Pathophysiology and Therapeutics, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 467-8603
| | - Masahiro Nakatochi
- Bioinformatics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya 466-8560; and
| | - Yoshinori Nozawa
- Department of Food and Health Science, Tokai Gakuin University, Kakamigahara 504-8511, Japan
| | - Takashi Murate
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673;
| |
Collapse
|
17
|
Xu H, Malinin NL, Awasthi N, Schwarz RE, Schwarz MA. The N terminus of pro-endothelial monocyte-activating polypeptide II (EMAP II) regulates its binding with the C terminus, arginyl-tRNA synthetase, and neurofilament light protein. J Biol Chem 2015; 290:9753-66. [PMID: 25724651 DOI: 10.1074/jbc.m114.630533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Pro-endothelial monocyte-activating polypeptide II (EMAP II), one component of the multi-aminoacyl tRNA synthetase complex, plays multiple roles in physiological and pathological processes of protein translation, signal transduction, immunity, lung development, and tumor growth. Recent studies have determined that pro-EMAP II has an essential role in maintaining axon integrity in central and peripheral neural systems where deletion of the C terminus of pro-EMAP II has been reported in a consanguineous Israeli Bedouin kindred suffering from Pelizaeus-Merzbacher-like disease. We hypothesized that the N terminus of pro-EMAP II has an important role in the regulation of protein-protein interactions. Using a GFP reporter system, we defined a putative leucine zipper in the N terminus of human pro-EMAP II protein (amino acid residues 1-70) that can form specific strip-like punctate structures. Through GFP punctum analysis, we uncovered that the pro-EMAP II C terminus (amino acids 147-312) can repress GFP punctum formation. Pulldown assays confirmed that the binding between the pro-EMAP II N terminus and its C terminus is mediated by a putative leucine zipper. Furthermore, the pro-EMAP II 1-70 amino acid region was identified as the binding partner of arginyl-tRNA synthetase, a polypeptide of the multi-aminoacyl tRNA synthetase complex. We also determined that the punctate GFP pro-EMAP II 1-70 amino acid aggregate colocalizes and binds to the neurofilament light subunit protein that is associated with pathologic neurofilament network disorganization and degeneration of motor neurons. These findings indicate the structure and binding interaction of pro-EMAP II protein and suggest a role of this protein in pathological neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiming Xu
- From the Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 and
| | - Nikolay L Malinin
- the Indiana University School of Medicine, South Bend, Indiana 46617
| | - Niranjan Awasthi
- the Indiana University School of Medicine, South Bend, Indiana 46617
| | | | - Margaret A Schwarz
- From the Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 and the Indiana University School of Medicine, South Bend, Indiana 46617
| |
Collapse
|
18
|
Ito M, Okino N, Tani M. New insight into the structure, reaction mechanism, and biological functions of neutral ceramidase. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:682-91. [PMID: 24064302 DOI: 10.1016/j.bbalip.2013.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/08/2013] [Accepted: 09/16/2013] [Indexed: 12/27/2022]
Abstract
Ceramidase (CDase) is an enzyme that hydrolyzes the N-acyl linkage between the sphingoid base and fatty acid of ceramide. These enzymes are classified into three distinct groups, acid (Asah1), neutral (Asah2), and alkaline (Asah3) CDases, based on their primary structure and optimum pH. Acid CDase catabolizes ceramide in lysosomes and is found only in vertebrates. In contrast, the distribution of neutral and alkaline CDases is broad, with both being found in species ranging from lower eukaryotes to mammals; however, only neutral CDase is found in prokaryotes, including some pathogenic bacteria. Neutral CDase is thought to have gained a specific domain (mucin box) in the N-terminal region after the vertebrate split, allowing the enzyme to be stably expressed at the plasma membrane as a type II membrane protein. The X-ray crystal structure of neutral CDase was recently solved, uncovering a unique structure and reaction mechanism for the enzyme. Neutral CDase contains a zinc ion in the active site that functions as a catalytic center, and the hydrolysis of the N-acyl linkage in ceramide proceeds through a mechanism that is similar to that described for zinc-dependent carboxypeptidase. This review describes the structure, reaction mechanism, and biological functions of neutral CDase in association with the molecular evolution, topology, and mechanical conformation. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Motohiro Tani
- Department of Chemistry, Faculty of Science, Kyushu University, 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
19
|
Abstract
Establishing extracellular milieus to stimulate neuronal regeneration is a critical need in neuronal tissue engineering. Many studies have used a soluble factor (such as nerve growth factor or retinoic acid [RA]), micropatterned substrate, and electrical stimulation to induce enhanced neurogenesis in neuronal precursor cells. However, little attention has been paid to mechanical stimulation because neuronal cells are not generally recognized as being mechanically functional, a characteristic of mechanoresponsive cells such as osteoblasts, chondrocytes, and muscle cells. In this study, we performed proof-of-concept experiments to demonstrate the potential anabolic effects of mechanical stretch to enhance cellular neurogenesis. We cultured human neuroblastoma (SH-SY5Y) cells on collagen-coated membrane and applied 10% equibiaxial dynamic stretch (0.25 Hz, 120 min/d for 7 days) using a Flexcell device. Interestingly, cell stretch alone, even without a soluble neurogenic stimulatory factor (RA), produced significantly more and longer neurites than the non-RA-treated, static control. Specific neuronal differentiation and cytoskeletal markers (e.g., microtubule-associated protein 2 and neurofilament light chain) displayed compatible variations with respect to stretch stimulation.
Collapse
Affiliation(s)
- Suzanne Higgins
- Department of Biological Systems Engineering, University of Nebraska , Lincoln, Nebraska
| | | | | | | |
Collapse
|
20
|
Trillo MÁ, Martínez MA, Cid MA, Úbeda A. Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells. Oncol Rep 2013; 29:885-94. [PMID: 23292364 PMCID: PMC3597587 DOI: 10.3892/or.2012.2212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/22/2012] [Indexed: 12/23/2022] Open
Abstract
We previously reported that intermittent exposure to a 50‑Hz magnetic field (MF) at 100 µT stimulates cell proliferation in the human neuroblastoma cell line NB69. The present study aimed to investigate whether the magnetic field-induced growth promotion also occurs at a lower magnetic flux density of 10 µT. To this purpose, NB69 cells were subjected for 42 h to intermittent exposure, 3 h on/3 h off, to a 50‑Hz MF at a 10 or 100 µT magnetic flux density. The field exposure took place either in the presence or in the absence of the antiproliferative agent retinoic acid. At the end of the treatment and/or incubation period, the cell growth was estimated by hemocytometric counting and spectrophotometric analysis of total protein and DNA contents. Potential changes in DNA synthesis were also assessed through proliferating cell nuclear antigen (PCNA) immunolabeling. The results confirmed previously reported data that a 42-h exposure to a 50‑Hz sine wave MF at 100 µT promotes cell growth in the NB69 cell line, and showed that 10 µT induces a similar proliferative response. This effect, which was significantly associated and linearly correlated with PCNA expression, was abolished by the presence of retinoic acid in the culture medium.
Collapse
Affiliation(s)
- María Ángeles Trillo
- Department of Research-BEM, IRYCIS, Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | | | | | | |
Collapse
|
21
|
Gong M, Bi Y, Jiang W, Zhang Y, Chen L, Hou N, Chen J, Li T. Retinoic acid receptor beta mediates all-trans retinoic acid facilitation of mesenchymal stem cells neuronal differentiation. Int J Biochem Cell Biol 2013; 45:866-75. [PMID: 23318218 DOI: 10.1016/j.biocel.2013.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/01/2013] [Accepted: 01/06/2013] [Indexed: 12/27/2022]
Abstract
All-trans retinoic acid plays an important role in nervous system development. However, the effects of all-trans retinoic acid on the neuronal differentiation of mesenchymal stem cells and the mechanisms through which this differentiation takes place are still poorly understood. Here, we investigated the biological effects of all-trans retinoic acid on the neuronal differentiation of mesenchymal stem cells and the signaling pathways that mediated these effects. We found that the neuronal differentiation efficiency of mesenchymal stem cells following all-trans retinoic acid pre-induction was greater and the axonal length was longer than was observed with mesenchymal stem cells that were not pre-induced. mRNA and protein levels of the neural-markers Nestin, NSE, MAP-2, Tau and Tuj1 were stronger in neural-like cells derived from all-trans retinoic acid-pretreated mesenchymal stem cells than in those not pre-induction. Interestingly, the neuronal excitability of differentiated neural-like cells exhibited the same patterns between these two groups. Clear expression of retinoic acid receptor alpha and gamma in mesenchymal stem cells was observed, while retinoic acid receptor beta was barely detected. However, retinoic acid receptor beta expression in mesenchymal stem cells after neuronal induction increased dramatically, in contrast with retinoic acid receptor alpha and gamma expression, and retinoic acid receptor beta expression in mesenchymal stem cells receiving all-trans retinoic acid pre-induction was even stronger. Next, retinoic acid receptor alpha, beta and gamma were over-expressed by recombinant adenovirus infection prior to neuronal induction. Retinoic acid receptor alpha and gamma over-expression did not impact the neuronal differentiation of mesenchymal stem cells. However, retinoic acid receptor beta over-expression promoted neuronal differentiation to a similar level as observed following all-trans retinoic acid pre-induction. The neuronal differentiation promoting effects of all-trans retinoic acid on mesenchymal stem cells could be inhibited by siRNA silencing of retinoic acid receptor beta and by LE135, an inhibitor of retinoic acid receptor beta. Taken together, these results suggest that all-trans retinoic acid pre-induction facilitates the neuronal differentiation of mesenchymal stem cells. These facilitation effects are achieved by activating the retinoic acid receptor beta signaling pathway.
Collapse
Affiliation(s)
- Min Gong
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | | | | | | | | | | | | | | |
Collapse
|