1
|
González-Buenfil R, Vieyra-Sánchez S, Quinto-Cortés CD, Oppenheimer SJ, Pomat W, Laman M, Cervantes-Hernández MC, Barberena-Jonas C, Auckland K, Allen A, Allen S, Phipps ME, Huerta-Sanchez E, Ioannidis AG, Mentzer AJ, Moreno-Estrada A. Genetic Signatures of Positive Selection in Human Populations Adapted to High Altitude in Papua New Guinea. Genome Biol Evol 2024; 16:evae161. [PMID: 39173139 PMCID: PMC11339866 DOI: 10.1093/gbe/evae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Papua New Guinea (PNG) hosts distinct environments mainly represented by the ecoregions of the Highlands and Lowlands that display increased altitude and a predominance of pathogens, respectively. Since its initial peopling approximately 50,000 years ago, inhabitants of these ecoregions might have differentially adapted to the environmental pressures exerted by each of them. However, the genetic basis of adaptation in populations from these areas remains understudied. Here, we investigated signals of positive selection in 62 highlanders and 43 lowlanders across 14 locations in the main island of PNG using whole-genome genotype data from the Oceanian Genome Variation Project (OGVP) and searched for signals of positive selection through population differentiation and haplotype-based selection scans. Additionally, we performed archaic ancestry estimation to detect selection signals in highlanders within introgressed regions of the genome. Among highland populations we identified candidate genes representing known biomarkers for mountain sickness (SAA4, SAA1, PRDX1, LDHA) as well as candidate genes of the Notch signaling pathway (PSEN1, NUMB, RBPJ, MAML3), a novel proposed pathway for high altitude adaptation in multiple organisms. We also identified candidate genes involved in oxidative stress, inflammation, and angiogenesis, processes inducible by hypoxia, as well as in components of the eye lens and the immune response. In contrast, candidate genes in the lowlands are mainly related to the immune response (HLA-DQB1, HLA-DQA2, TAAR6, TAAR9, TAAR8, RNASE4, RNASE6, ANG). Moreover, we find two candidate regions to be also enriched with archaic introgressed segments, suggesting that archaic admixture has played a role in the local adaptation of PNG populations.
Collapse
Affiliation(s)
- Ram González-Buenfil
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Sofía Vieyra-Sánchez
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Consuelo D Quinto-Cortés
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - William Pomat
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Mayté C Cervantes-Hernández
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Carmina Barberena-Jonas
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - Angela Allen
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, Headley Way, Headington, Oxford, OX3 9DS, UK
| | - Stephen Allen
- Department of Clinical Sciences,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Emilia Huerta-Sanchez
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Alexander G Ioannidis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | | | - Andrés Moreno-Estrada
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| |
Collapse
|
2
|
DeHaro-Arbona FJ, Roussos C, Baloul S, Townson J, Gómez Lamarca MJ, Bray S. Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind. eLife 2024; 12:RP92083. [PMID: 38727722 PMCID: PMC11087053 DOI: 10.7554/elife.92083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.
Collapse
Affiliation(s)
- F Javier DeHaro-Arbona
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Charalambos Roussos
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Jonathan Townson
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - María J Gómez Lamarca
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC/Universidad de Sevilla, Departamento de Biologıa CelularSevilleSpain
| | - Sarah Bray
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
3
|
Gumede DB, Abrahamse H, Houreld NN. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun Signal 2024; 22:244. [PMID: 38671406 PMCID: PMC11046856 DOI: 10.1186/s12964-024-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Wound healing is a tightly regulated process that ensures tissue repair and normal function following injury. It is modulated by activation of pathways such as the transforming growth factor-beta (TGF-β), Notch, and Wnt/β-catenin signaling pathways. Dysregulation of this process causes poor wound healing, which leads to tissue fibrosis and ulcerative wounds. The Wnt/β-catenin pathway is involved in all phases of wound healing, primarily in the proliferative phase for formation of granulation tissue. This review focuses on the role of the Wnt/β-catenin signaling pathway in wound healing, and its transcriptional regulation of target genes. The crosstalk between Wnt/β-catenin, Notch, and the TGF-β signaling pathways, as well as the deregulation of Wnt/β-catenin signaling in chronic wounds are also considered, with a special focus on diabetic ulcers. Lastly, we discuss current and prospective therapies for chronic wounds, with a primary focus on strategies that target the Wnt/β-catenin signaling pathway such as photobiomodulation for healing diabetic ulcers.
Collapse
Affiliation(s)
- Dimakatso B Gumede
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
4
|
Dietrich B, Kunihs V, Lackner AI, Meinhardt G, Koo BK, Pollheimer J, Haider S, Knöfler M. NOTCH3 signalling controls human trophoblast stem cell expansion and differentiation. Development 2023; 150:dev202152. [PMID: 37905445 DOI: 10.1242/dev.202152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Failures in growth and differentiation of the early human placenta are associated with severe pregnancy disorders such as pre-eclampsia and fetal growth restriction. However, regulatory mechanisms controlling development of placental epithelial cells, the trophoblasts, remain poorly elucidated. Using trophoblast stem cells (TSCs), trophoblast organoids (TB-ORGs) and primary cytotrophoblasts (CTBs) of early pregnancy, we herein show that autocrine NOTCH3 signalling controls human placental expansion and differentiation. The NOTCH3 receptor was specifically expressed in proliferative CTB progenitors and its active form, the nuclear NOTCH3 intracellular domain (NOTCH3-ICD), interacted with the transcriptional co-activator mastermind-like 1 (MAML1). Doxycycline-inducible expression of dominant-negative MAML1 in TSC lines provoked cell fusion and upregulation of genes specific for multinucleated syncytiotrophoblasts, which are the differentiated hormone-producing cells of the placenta. However, progenitor expansion and markers of trophoblast stemness and proliferation were suppressed. Accordingly, inhibition of NOTCH3 signalling diminished growth of TB-ORGs, whereas overexpression of NOTCH3-ICD in primary CTBs and TSCs showed opposite effects. In conclusion, the data suggest that canonical NOTCH3 signalling plays a key role in human placental development by promoting self-renewal of CTB progenitors.
Collapse
Affiliation(s)
- Bianca Dietrich
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Victoria Kunihs
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Andreas I Lackner
- Maternal-Fetal Immunology Group, Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gudrun Meinhardt
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Yuseong-Gu, Daejeon 34126, Republic of Korea
| | - Jürgen Pollheimer
- Maternal-Fetal Immunology Group, Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sandra Haider
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Knöfler
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
5
|
Rammah M, Théveniau-Ruissy M, Sturny R, Rochais F, Kelly RG. PPARγ and NOTCH Regulate Regional Identity in the Murine Cardiac Outflow Tract. Circ Res 2022; 131:842-858. [PMID: 36205127 DOI: 10.1161/circresaha.122.320766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/14/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The arterial pole of the heart is a hotspot for life-threatening forms of congenital heart defects (CHDs). Development of this cardiac region occurs by addition of Second Heart Field (SHF) progenitor cells to the embryonic outflow tract (OFT) and subsequently the base of the ascending aorta and pulmonary trunk. Understanding the cellular and genetic mechanisms driving arterial pole morphogenesis is essential to provide further insights into the cause of CHDs. METHODS A synergistic combination of bioinformatic analysis and mouse genetics as well as embryo and explant culture experiments were used to dissect the cross-regulatory transcriptional circuitry operating in future subaortic and subpulmonary OFT myocardium. RESULTS Here, we show that the lipid sensor PPARγ (peroxisome proliferator-activated receptor gamma) is expressed in future subpulmonary myocardium in the inferior wall of the OFT and that PPARγ signaling-related genes display regionalized OFT expression regulated by the transcription factor TBX1 (T-box transcription factor 1). Modulating PPARγ activity in ex vivo cultured embryos treated with a PPARγ agonist or antagonist or deleting Pparγ in cardiac progenitor cells using Mesp1-Cre reveals that Pparγ is required for addition of future subpulmonary myocardium and normal arterial pole development. Additionally, the non-canonical DLK1 (delta-like noncanonical Notch ligand 1)/NOTCH (Notch receptor 1)/HES1 (Hes family bHLH transcription factor 1) pathway negatively regulates Pparγ in future subaortic myocardium in the superior OFT wall. CONCLUSIONS Together these results identify Pparγ as a regulator of regional transcriptional identity in the developing heart, providing new insights into gene interactions involved in congenital heart defects.
Collapse
Affiliation(s)
- Mayyasa Rammah
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
| | - Magali Théveniau-Ruissy
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
- Aix Marseille Univ, INSERM, MMG, Marseille, France (M.T.R., F.R.)
| | - Rachel Sturny
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
| | - Francesca Rochais
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
- Aix Marseille Univ, INSERM, MMG, Marseille, France (M.T.R., F.R.)
| | - Robert G Kelly
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille, France (M.R., M.T.R., R.S., F.R., R.G.K.)
| |
Collapse
|
6
|
Mittal V, Reid RW, Machado DJ, Mashanov V, Janies DA. EchinoDB: an update to the web-based application for genomic and transcriptomic data on echinoderms. BMC Genom Data 2022; 23:75. [PMID: 36274129 PMCID: PMC9590158 DOI: 10.1186/s12863-022-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Here we release a new version of EchinoDB, EchinoDB v2.0 ( https://echinodb.uncc.edu ). EchinoDB is a database of genomic and transcriptomic data on echinoderms. The initial database consisted of groups of 749,397 orthologous and paralogous transcripts arranged in orthoclusters by sequence similarity. RESULTS The updated version of EchinoDB includes two new major datasets: the RNA-Seq data of the brittle star Ophioderma brevispinum and the high-quality genomic assembly data of the green sea urchin Lytechinus variegatus. In addition, we enabled keyword searches for annotated data and installed an updated version of Sequenceserver to allow Basic Local Alignment Search Tool (BLAST) searches. The data are downloadable in FASTA format. The first version of EchinoDB appeared in 2016 and was implemented in GO on a local server. The new version has been updated using R Shiny to include new features and improvements in the application. Furthermore, EchinoDB now runs entirely in the cloud for increased reliability and scaling. CONCLUSION EchinoDB serves a user base drawn from the fields of phylogenetics, developmental biology, genomics, physiology, neurobiology, and regeneration. As use cases, we illustrate the function of EchinoDB in retrieving components of signaling pathways involved in the tissue regeneration process of different echinoderms, including the emerging model species Ophioderma brevispinum. Moreover, we use EchinoDB to shed light on the conservation of the molecular components involved in two echinoderm-specific phenomena: spicule matrix proteins involved in the formation of stereom endoskeleton and the tensilin protein that contributes to the capacity of the connective tissues to quickly change its mechanical properties. The genes involved in the former had been previously studied in echinoids, while gene sequences involved in the latter had been previously described in holothuroids. Specifically, we ask (a) if the biomineralization-related proteins previously reported only in sea urchins are also present in other, non-echinoid, echinoderms and (b) if tensilin, the protein responsible for the control of stiffness of the mutable collagenous tissue, previously described in sea cucumbers, is conserved across the phylum.
Collapse
Affiliation(s)
- Varnika Mittal
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA.
| | - Robert W Reid
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| | - Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 91 Technology Way NE, Winston-Salem, NC, 27101, USA
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| |
Collapse
|
7
|
Vasileva NS, Kuligina EV, Dymova MA, Savinovskaya YI, Zinchenko ND, Ageenko AB, Mishinov SV, Dome AS, Stepanov GA, Richter VA, Semenov DV. Transcriptome Changes in Glioma Cells Cultivated under Conditions of Neurosphere Formation. Cells 2022; 11:cells11193106. [PMID: 36231068 PMCID: PMC9563256 DOI: 10.3390/cells11193106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma is the most common and heterogeneous primary brain tumor. The development of a new relevant preclinical models is necessary. As research moves from cultures of adherent gliomas to a more relevant model, neurospheres, it is necessary to understand the changes that cells undergo at the transcriptome level. In the present work, we used three patient-derived gliomas and two immortalized glioblastomas, while their cultivation was carried out under adherent culture and neurosphere (NS) conditions. When comparing the transcriptomes of monolayer (ML) and NS cell cultures, we used Enrichr genes sets enrichment analysis to describe transcription factors (TFs) and the pathways involved in the formation of glioma NS. It was observed that NS formation is accompanied by the activation of five common gliomas of TFs, SOX2, UBTF, NFE2L2, TCF3 and STAT3. The sets of transcripts controlled by TFs MYC and MAX were suppressed in NS. Upregulated genes are involved in the processes of the epithelial-mesenchymal transition, cancer stemness, invasion and migration of glioma cells. However, MYC/MAX-dependent downregulated genes are involved in translation, focal adhesion and apical junction. Furthermore, we found three EGFR and FGFR signaling feedback regulators common to all analyzed gliomas-SPRY4, ERRFI1, and RAB31-which can be used for creating new therapeutic strategies of suppressing the invasion and progression of gliomas.
Collapse
Affiliation(s)
- Natalia S. Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Elena V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Yulya I. Savinovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Nikita D. Zinchenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Alisa B. Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Sergey V. Mishinov
- Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Department of Neurosurgery, Frunze Street 17, Novosibirsk 630091, Russia
| | - Anton S. Dome
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Dmitry V. Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +73-833635189
| |
Collapse
|
8
|
Mashanov V, Machado DJ, Reid R, Brouwer C, Kofsky J, Janies DA. Twinkle twinkle brittle star: the draft genome of Ophioderma brevispinum (Echinodermata: Ophiuroidea) as a resource for regeneration research. BMC Genomics 2022; 23:574. [PMID: 35953768 PMCID: PMC9367165 DOI: 10.1186/s12864-022-08750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. Results We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. Conclusions The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08750-y).
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, 27101, NC, USA. .,University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, 32224, FL, USA.
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Robert Reid
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Cory Brouwer
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Daniel A Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| |
Collapse
|
9
|
Giuli MV, Mancusi A, Giuliani E, Screpanti I, Checquolo S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:805-836. [PMID: 35582386 PMCID: PMC8992449 DOI: 10.20517/cdr.2021.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the main challenges in cancer therapy, including in the treatment of female-specific malignancies, which account for more than 60% of cancer cases among women. Therefore, elucidating the underlying molecular mechanisms is an urgent need in gynecological cancers to foster novel therapeutic approaches. Notably, Notch signaling, including either receptors or ligands, has emerged as a promising candidate given its multifaceted role in almost all of the hallmarks of cancer. Concerning the connection between Notch pathway and drug resistance in the afore-mentioned tumor contexts, several studies focused on the Notch-dependent regulation of the cancer stem cell (CSC) subpopulation or the induction of the epithelial-to-mesenchymal transition (EMT), both features implicated in either intrinsic or acquired resistance. Indeed, the present review provides an up-to-date overview of the published results on Notch signaling and EMT- or CSC-driven drug resistance. Moreover, other drug resistance-related mechanisms are examined such as the involvement of the Notch pathway in drug efflux and tumor microenvironment. Collectively, there is a long way to go before every facet will be fully understood; nevertheless, some small pieces are falling neatly into place. Overall, the main aim of this review is to provide strong evidence in support of Notch signaling inhibition as an effective strategy to evade or reverse resistance in female-specific cancers.
Collapse
Affiliation(s)
- Maria V Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Angelica Mancusi
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Eugenia Giuliani
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, Rome 00144, Italy
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina 04100, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
10
|
Thierauf JC, Farahani AA, Indave BI, Bard AZ, White VA, Smith CR, Marble H, Hyrcza MD, Chan JKC, Bishop J, Shi Q, Ely K, Agaimy A, Martinez-Lage M, Nose V, Rivera M, Nardi V, Dias-Santagata D, Garg S, Sadow P, Le LP, Faquin W, Ritterhouse LL, Cree IA, Iafrate AJ, Lennerz JK. Diagnostic Value of MAML2 Rearrangements in Mucoepidermoid Carcinoma. Int J Mol Sci 2022; 23:4322. [PMID: 35457138 PMCID: PMC9026998 DOI: 10.3390/ijms23084322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Mucoepidermoid carcinoma (MEC) is often seen in salivary glands and can harbor MAML2 translocations (MAML2+). The translocation status has diagnostic utility as an objective confirmation of the MEC diagnosis, for example, when distinction from the more aggressive adenosquamous carcinoma (ASC) is not straightforward. To assess the diagnostic relevance of MAML2, we examined our 5-year experience in prospective testing of 8106 solid tumors using RNA-seq panel testing in combinations with a two-round Delphi-based scenario survey. The prevalence of MAML2+ across all tumors was 0.28% (n = 23/8106) and the majority of MAML2+ cases were found in head and neck tumors (78.3%), where the overall prevalence was 5.9% (n = 18/307). The sensitivity of MAML2 for MEC was 60% and most cases (80%) were submitted for diagnostic confirmation; in 24% of cases, the MAML2 results changed the working diagnosis. An independent survey of 15 experts showed relative importance indexes of 0.8 and 0.65 for "confirmatory MAML2 testing" in suspected MEC and ASC, respectively. Real-world evidence confirmed that the added value of MAML2 is a composite of an imperfect confirmation test for MEC and a highly specific exclusion tool for the diagnosis of ASC. Real-world evidence can help move a rare molecular-genetic biomarker from an emerging tool to the clinic.
Collapse
Affiliation(s)
- Julia C. Thierauf
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital and Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alex A. Farahani
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
| | - B. Iciar Indave
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (B.I.I.); (V.A.W.); (I.A.C.)
| | - Adam Z. Bard
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
| | - Valerie A. White
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (B.I.I.); (V.A.W.); (I.A.C.)
| | - Cameron R. Smith
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (C.R.S.); (M.M.-L.); (V.N.); (P.S.); (W.F.)
| | - Hetal Marble
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
| | - Martin D. Hyrcza
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB 2500, Canada;
| | - John K. C. Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China;
| | - Justin Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Qiuying Shi
- Department of Pathology, Emory University Hospital, Atlanta, GA 30322, USA;
| | - Kim Ely
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Abbas Agaimy
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, 91054 Erlangen, Germany;
| | - Maria Martinez-Lage
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (C.R.S.); (M.M.-L.); (V.N.); (P.S.); (W.F.)
| | - Vania Nose
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (C.R.S.); (M.M.-L.); (V.N.); (P.S.); (W.F.)
| | - Miguel Rivera
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (C.R.S.); (M.M.-L.); (V.N.); (P.S.); (W.F.)
| | - Valentina Nardi
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
| | - Dora Dias-Santagata
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
| | - Salil Garg
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
| | - Peter Sadow
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (C.R.S.); (M.M.-L.); (V.N.); (P.S.); (W.F.)
| | - Long P. Le
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (C.R.S.); (M.M.-L.); (V.N.); (P.S.); (W.F.)
| | - William Faquin
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (C.R.S.); (M.M.-L.); (V.N.); (P.S.); (W.F.)
| | - Lauren L. Ritterhouse
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
| | - Ian A. Cree
- International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France; (B.I.I.); (V.A.W.); (I.A.C.)
| | - A. John Iafrate
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (C.R.S.); (M.M.-L.); (V.N.); (P.S.); (W.F.)
| | - Jochen K. Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (J.C.T.); (A.A.F.); (A.Z.B.); (H.M.); (M.R.); (V.N.); (D.D.-S.); (S.G.); (L.P.L.); (L.L.R.); (A.J.I.)
| |
Collapse
|
11
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Rosano S, Parab S, Noghero A, Corà D, Bussolino F. Long Non-Coding RNA LINC02802 Regulates In Vitro Sprouting Angiogenesis by Sponging microRNA-486-5p. Int J Mol Sci 2022; 23:ijms23031653. [PMID: 35163581 PMCID: PMC8836176 DOI: 10.3390/ijms23031653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
In the last several years, accumulating evidence indicates that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play essential roles in regulating angiogenesis. However, the contribution of lncRNA-mediated competing-endogenous RNA (ceRNA) activity in the control of capillary sprouting from the pre-existing ones has not been described so far. Here, by exploiting the transcriptomic profile of VEGF-A-activated endothelial cells in a consolidate three-dimensional culture system, we identified a list of lncRNAs whose expression was modified during the sprouting process. By crossing the lncRNAs with a higher expression level and the highest fold change value between unstimulated and VEGF-A-stimulated endothelial cells, we identified the unknown LINC02802 as the best candidate to take part in sprouting regulation. LINC02802 was upregulated after VEGF-A stimulation and its knockdown resulted in a significant reduction in sprouting activity. Mechanistically, we demonstrated that LINC02802 acts as a ceRNA in the post-transcriptional regulation of Mastermind-like-3 (MAML3) gene expression through a competitive binding with miR-486-5p. Taken together, these results suggest that LINC02802 plays a critical role in preventing the miR-486-5p anti-angiogenic effect and that this inhibitory effect results from the reduction in MAML3 expression.
Collapse
Affiliation(s)
- Stefania Rosano
- Department of Oncology, University of Torino, 10124 Orbassano, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
- Correspondence:
| | - Sushant Parab
- Department of Oncology, University of Torino, 10124 Orbassano, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA;
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, 28100 Novara, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10124 Orbassano, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
| |
Collapse
|
13
|
Sun YY, Chen WJ, Huang ZP, Yang G, Wu ML, Xu DE, Yang WL, Luo YC, Xiao ZC, Xu RX, Ma QH. TRIM32 Deficiency Impairs the Generation of Pyramidal Neurons in Developing Cerebral Cortex. Cells 2022; 11:449. [PMID: 35159260 PMCID: PMC8834167 DOI: 10.3390/cells11030449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Excitatory-inhibitory imbalance (E/I) is a fundamental mechanism underlying autism spectrum disorders (ASD). TRIM32 is a risk gene genetically associated with ASD. The absence of TRIM32 causes impaired generation of inhibitory GABAergic interneurons, neural network hyperexcitability, and autism-like behavior in mice, emphasizing the role of TRIM32 in maintaining E/I balance, but despite the description of TRIM32 in regulating proliferation and differentiation of cultured mouse neural progenitor cells (NPCs), the role of TRIM32 in cerebral cortical development, particularly in the production of excitatory pyramidal neurons, remains unknown. The present study observed that TRIM32 deficiency resulted in decreased numbers of distinct layer-specific cortical neurons and decreased radial glial cell (RGC) and intermediate progenitor cell (IPC) pool size. We further demonstrated that TRIM32 deficiency impairs self-renewal of RGCs and IPCs as indicated by decreased proliferation and mitosis. A TRIM32 deficiency also affects or influences the formation of cortical neurons. As a result, TRIM32-deficient mice showed smaller brain size. At the molecular level, RNAseq analysis indicated reduced Notch signalling in TRIM32-deficient mice. Therefore, the present study indicates a role for TRIM32 in pyramidal neuron generation. Impaired generation of excitatory pyramidal neurons may explain the hyperexcitability observed in TRIM32-deficient mice.
Collapse
Affiliation(s)
- Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China; (Y.-Y.S.); (Z.-P.H.); (M.-L.W.)
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wen-Jin Chen
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ze-Ping Huang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China; (Y.-Y.S.); (Z.-P.H.); (M.-L.W.)
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou 215123, China;
| | - Ming-Lei Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China; (Y.-Y.S.); (Z.-P.H.); (M.-L.W.)
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - De-En Xu
- Wuxi No. 2 People’s Hospital, Wuxi 214001, China;
| | - Wu-Lin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yong-Chun Luo
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100028, China;
| | - Zhi-Cheng Xiao
- Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia;
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China; (Y.-Y.S.); (Z.-P.H.); (M.-L.W.)
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Deng Y, Li R, Wang H, Yang B, Shi P, Zhang Y, Yang Q, Li G, Bian L. Biomaterial-Mediated Presentation of Jagged-1 Mimetic Ligand Enhances Cellular Activation of Notch Signaling and Bone Regeneration. ACS NANO 2022; 16:1051-1062. [PMID: 34967609 DOI: 10.1021/acsnano.1c08728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development from stem cells to adult tissues requires the delicate presentation of numerous crucial inductive cues and the activation of associated signaling pathways. The Notch signaling pathways triggered by ligands such as Jagged-1 have been demonstrated to be essential in various development processes especially in osteogenesis and ossification. However, few studies have capitalized on the osteoinductivity of the Jagged-1 mimetic ligands to enhance the osteogenesis and skeleton regeneration. In this study, we conjugate the porous hyaluronic acid hydrogels with a Jagged-1 mimetic peptide ligand (Jagged-1) and investigate the efficacy of such biomimetic functionalization to promote the mechanotransduction and osteogenesis of human mesenchymal stem cells by activating the Notch signaling pathway. Our findings indicate that the immobilized Jagged-1 mimetic ligand activates Notch signaling via the upregulation of NICD and downstream MSX2, leading to the enhanced mechanotransduction and osteogenesis of stem cells. We further demonstrate that the functionalization of the Jagged-1 ligand in the porous scaffold promotes angiogenesis, regulates macrophage recruitment and polarization, and enhances in situ regeneration of rat calvarial defects. Our findings provide valuable guidance to the design of development-inspired bioactive biomaterials for diverse biomedical applications.
Collapse
Affiliation(s)
- Yingrui Deng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P.R. China
| | - Rui Li
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, P.R China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P.R. China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, P.R China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
15
|
Wang YP, Liu IJ, Chen KC, Wu HC. NOTCH1 signaling promotes protein stability of HER3 through the AKT pathway in squamous cell carcinoma of head and neck. Oncogenesis 2021; 10:59. [PMID: 34465724 PMCID: PMC8408252 DOI: 10.1038/s41389-021-00348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) remains the sole druggable molecular target other than the PD1/PD-L1 pathway with meaningful clinical benefit in squamous cell carcinoma of head and neck (SCCHN). Human epidermal growth factor receptor 3 (HER3) confers the resistance to EGFR-targeted treatment in SCCHN. Thus, it is essential to determine the distribution and regulatory mechanisms of HER3 in SCCHN. We explored the prevalence of HER3 expression and its distribution within SCCHN by immunohistochemical staining and clinicopathological correlations were analyzed. The regulatory mechanism of HER3 expression was then dissected in vitro, using RT-PCR, Western blotting, and immunoprecipitation in a set of SCCHN cell lines. Subsequent in vivo validation in the murine model was also performed. We found that concomitant high expression of HER3 and its ligand NRG1 in SCCHN is associated with the increased presence of regional lymphatic metastasis and the majority of HER3 is located on the differentiated tumor cells. Further investigation revealed that HER3 is under positive control of NOTCH1 through transcriptional activation and inhibition of protein degradation through the polyubiquitination machinery via AKT pathway and USP8 deubiquitinating enzyme. In addition, loss of function of NOTCH1 suppresses HER3 expression through increased phosphorylation of serine 473 of AKT in SCCHN cells, and promotes the aggressiveness of the tumor cells. These data indicated that the level of HER3 is regulated by NOTCH1 in SCCHN both transcriptionally and post-translationally, and NOTCH1 is in a higher hierarchy in the regulatory system of the AKT pathway. Since NOTCH1 is inactivated in approximately 10% of SCCHN cases and this aberration strongly impacts the AKT pathway and diminishes HER3, exclusion of patients with NOTCH1-inactivated SCCHN may be beneficial for future clinical trials of HER3-targeting antibodies.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Faculty of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan. .,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kai-Chi Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan. .,Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Arnett A, Moo KG, Flynn KJ, Sundberg TB, Johannessen L, Shamji AF, Gray NS, Decker T, Zheng Y, Gersuk VH, Rahman ZS, Levy DE, Marié IJ, Linsley PS, Xavier RJ, Khor B. The Cyclin-Dependent Kinase 8 (CDK8) Inhibitor DCA Promotes a Tolerogenic Chemical Immunophenotype in CD4 + T Cells via a Novel CDK8-GATA3-FOXP3 Pathway. Mol Cell Biol 2021; 41:e0008521. [PMID: 34124936 PMCID: PMC8384069 DOI: 10.1128/mcb.00085-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Immune health requires innate and adaptive immune cells to engage precisely balanced pro- and anti-inflammatory forces. We employ the concept of chemical immunophenotypes to classify small molecules functionally or mechanistically according to their patterns of effects on primary innate and adaptive immune cells. The high-specificity, low-toxicity cyclin-dependent kinase 8 (CDK8) inhibitor 16-didehydro-cortistatin A (DCA) exerts a distinct tolerogenic profile in both innate and adaptive immune cells. DCA promotes regulatory T cells (Treg) and Th2 differentiation while inhibiting Th1 and Th17 differentiation in both murine and human cells. This unique chemical immunophenotype led to mechanistic studies showing that DCA promotes Treg differentiation in part by regulating a previously undescribed CDK8-GATA3-FOXP3 pathway that regulates early pathways of Foxp3 expression. These results highlight previously unappreciated links between Treg and Th2 differentiation and extend our understanding of the transcription factors that regulate Treg differentiation and their temporal sequencing. These findings have significant implications for future mechanistic and translational studies of CDK8 and CDK8 inhibitors.
Collapse
Affiliation(s)
- Azlann Arnett
- Benaroya Research Institute, Seattle, Washington, USA
| | - Keagan G. Moo
- Benaroya Research Institute, Seattle, Washington, USA
| | | | - Thomas B. Sundberg
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
| | - Liv Johannessen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alykhan F. Shamji
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Decker
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California, USA
| | | | - Ziaur S. Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - David E. Levy
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Isabelle J. Marié
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Bernard Khor
- Benaroya Research Institute, Seattle, Washington, USA
| |
Collapse
|
17
|
Huang KY, Petretto E. Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 321:L491-L506. [PMID: 34132117 DOI: 10.1152/ajplung.00594.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Single-cell transcriptomics analyses of the fibrotic lung uncovered two cell states critical to lung injury recovery in the alveolar epithelium-a reparative transitional cell state in the mouse and a disease-specific cell state (KRT5-/KRT17+) in human idiopathic pulmonary fibrosis (IPF). The murine transitional cell state lies between the differentiation from type 2 (AT2) to type 1 pneumocyte (AT1), and the human KRT5-/KRT17+ cell state may arise from the dysregulation of this differentiation process. We review major findings of single-cell transcriptomics analyses of the fibrotic lung and reanalyzed data from seven single-cell RNA sequencing studies of human and murine models of IPF, focusing on the alveolar epithelium. Our comparative and cross-species single-cell transcriptomics analyses allowed us to further delineate the differentiation trajectories from AT2 to AT1 and AT2 to the KRT5-/KRT17+ cell state. We observed AT1 cells in human IPF retain the transcriptional signature of the murine transitional cell state. Using pseudotime analysis, we recapitulated the differentiation trajectories from AT2 to AT1 and from AT2 to KRT5-/KRT17+ cell state in multiple human IPF studies. We further delineated transcriptional programs underlying cell-state transitions and determined the molecular phenotypes at terminal differentiation. We hypothesize that in addition to the reactivation of developmental programs (SOX4, SOX9), senescence (TP63, SOX4) and the Notch pathway (HES1) are predicted to steer intermediate progenitors to the KRT5-/KRT17+ cell state. Our analyses suggest that activation of SMAD3 later in the differentiation process may explain the fibrotic molecular phenotype typical of KRT5-/KRT17+ cells.
Collapse
Affiliation(s)
- Kevin Y Huang
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke-NUS Medical School, Singapore, Republic of Singapore
| |
Collapse
|
18
|
Sabol HM, Delgado-Calle J. The multifunctional role of Notch signaling in multiple myeloma. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:20. [PMID: 34778567 PMCID: PMC8589324 DOI: 10.20517/2394-4722.2021.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by uncontrolled growth of malignant plasma cells in the bone marrow and currently is incurable. The bone marrow microenvironment plays a critical role in MM. MM cells reside in specialized niches where they interact with multiple marrow cell types, transforming the bone/bone marrow compartment into an ideal microenvironment for the migration, proliferation, and survival of MM cells. In addition, MM cells interact with bone cells to stimulate bone destruction and promote the development of bone lesions that rarely heal. In this review, we discuss how Notch signals facilitate the communication between adjacent MM cells and between MM cells and bone/bone marrow cells and shape the microenvironment to favor MM progression and bone disease. We also address the potential and therapeutic approaches used to target Notch signaling in MM.
Collapse
Affiliation(s)
- Hayley M Sabol
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
19
|
Zafir S, Zhou W, Menkhorst E, Santos L, Dimitriadis E. MAML1: a coregulator that alters endometrial epithelial cell adhesive capacity. FERTILITY RESEARCH AND PRACTICE 2021; 7:8. [PMID: 33773601 PMCID: PMC8004388 DOI: 10.1186/s40738-021-00100-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Abnormalities in endometrial receptivity has been identified as a major barrier to successful embryo implantation. Endometrial receptivity refers to the conformational and biochemical changes occurring in the endometrial epithelial layer which make it adhesive and receptive to blastocyst attachment. This takes place during the mid-secretory phase of woman's menstrual cycle and is a result of a delicate interplay between numerous hormones, cytokines and other factors. Outside of this window, the endometrium is refractory to an implanting blastocyst. It has been shown that Notch ligands and receptors are dysregulated in the endometrium of infertile women. Mastermind Like Transcriptional Coactivator 1 (MAML1) is a known coactivator of the Notch signaling pathway. This study aimed to determine the role of MAML1 in regulating endometrial receptivity. METHODS The expression and localization of MAML1 in the fertile human endometrium (non-receptive proliferative phase versus receptive mid-secretory phase) were determined by immunohistochemistry. Ishikawa cells were used as an endometrial epithelial model to investigate the functional consequences of MAML1 knockdown on endometrial adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids. After MAML1 knockdown in Ishikawa cells, the expression of endometrial receptivity markers and Notch dependent and independent pathway members were assessed by qPCR. Two-tailed unpaired or paired student's t-test were used for statistical analysis with a significance threshold of P < 0.05. RESULTS MAML1 was localized in the luminal epithelium, glandular epithelium and stroma of human endometrium and the increased expression identified in the mid-secretory phase was restricted only to the luminal epithelium (P < 0.05). Functional analysis using Ishikawa cells demonstrated that knockdown of MAML1 significantly reduced epithelial adhesive capacity (P < 0.01) to HTR8/SVneo (trophoblast cell line) spheroids compared to control. MAML1 knockdown significantly affected the expression of classical receptivity markers (SPP1, DPP4) and this response was not directly via hormone receptors. The expression level of Hippo pathway target Ankyrin repeat domain-containing protein 1 (ANKRD1) was also affected after MAML1 knockdown in Ishikawa cells. CONCLUSION Our data strongly suggest that MAML1 is involved in regulating the endometrial adhesive capacity and may facilitate embryo attachment, either directly or indirectly through the Notch signaling pathway.
Collapse
Affiliation(s)
- Sadaf Zafir
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Leilani Santos
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia. .,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
20
|
Pensold D, Gehrmann J, Pitschelatow G, Walberg A, Braunsteffer K, Reichard J, Ravaei A, Linde J, Lampert A, Costa IG, Zimmer-Bensch G. The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling. Int J Mol Sci 2021; 22:1332. [PMID: 33572758 PMCID: PMC7866228 DOI: 10.3390/ijms22031332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma.
Collapse
Affiliation(s)
- Daniel Pensold
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Gehrmann
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Georg Pitschelatow
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Asa Walberg
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Kai Braunsteffer
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Reichard
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44100 Ferrara, Italy;
| | - Jenice Linde
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Angelika Lampert
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
- RWTH Aachen Medical Faculty, Institute of Physiology, 52074 Aachen, Germany
| | - Ivan G. Costa
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
21
|
Robinson-Thiewes S, McCloskey J, Kimble J. Two classes of active transcription sites and their roles in developmental regulation. Proc Natl Acad Sci U S A 2020; 117:26812-26821. [PMID: 33033228 PMCID: PMC7604424 DOI: 10.1073/pnas.2013163117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of genes encoding powerful developmental regulators is exquisitely controlled, often at multiple levels. Here, we investigate developmental expression of three conserved genes, Caenorhabditis elegans mpk-1, lag-1, and lag-3/sel-8, which encode homologs of ERK/MAPK and core components of the Notch-dependent transcription complex, respectively. We use single-molecule FISH (smFISH) and MATLAB to visualize and quantify nuclear nascent transcripts and cytoplasmic mRNAs as a function of position along the germline developmental axis. Using differentially labeled probes, one spanning an exceptionally long first intron and the other spanning exons, we identify two classes of active transcription sites (ATS). The iATS class, for "incomplete" ATS, harbors only partial nascent transcripts; the cATS class, for "complete" ATS, harbors full-length nascent transcripts. Remarkably, the frequencies of iATS and cATS are patterned along the germline axis. For example, most mpk-1 ATS are iATS in hermaphrodite germline stem cells, but most are cATS in differentiating stem cell daughters. Thus, mpk-1 ATS class frequencies switch in a graded manner as stem cell daughters begin differentiation. Importantly, the patterns of ATS class frequency are gene-, stage-, and sex-specific, and cATS frequency strongly correlates with transcriptional output. Although the molecular mechanism underlying ATS classes is not understood, their primary difference is the extent of transcriptional progression. To generate only partial nascent transcripts in iATS, progression must be slowed, paused, or aborted midway through the gene. We propose that regulation of ATS class can be a critical mode of developmental gene regulation.
Collapse
Affiliation(s)
| | - John McCloskey
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
22
|
Yosef N, Xi Y, McCarty JH. Isolation and transcriptional characterization of mouse perivascular astrocytes. PLoS One 2020; 15:e0240035. [PMID: 33031376 PMCID: PMC7544046 DOI: 10.1371/journal.pone.0240035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
In the post-natal mammalian brain perivascular astrocytes (PAs) ensheath blood vessels to regulate their unique permeability properties known as the blood-brain barrier (BBB). Very little is known about PA-expressed genes and signaling pathways that mediate contact and communication with endothelial cells (ECs) to regulate BBB physiology. This is due, in part, to lack of suitable models to distinguish PAs from other astrocyte sub-populations in the brain. To decipher the unique biology of PAs, we used in vivo gene knock-in technology to fluorescently label these cells in the adult mouse brain followed by fractionation and quantitative single cell RNA sequencing. In addition, PAs and non-PAs were also distinguished with transgenic fluorescent reporters followed by gene expression comparisons using bulk RNA sequencing. These efforts have identified several genes and pathways in PAs with potential roles in contact and communication with brain ECs. These genes encode various extracellular matrix (ECM) proteins and adhesion receptors, secreted growth factors, and intracellular signaling enzymes. Collectively, our experimental data reveal a set of genes that are expressed in PAs with putative roles in BBB physiology.
Collapse
Affiliation(s)
- Nejla Yosef
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Joseph H. McCarty
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
23
|
Leyria J, Orchard I, Lange AB. What happens after a blood meal? A transcriptome analysis of the main tissues involved in egg production in Rhodnius prolixus, an insect vector of Chagas disease. PLoS Negl Trop Dis 2020; 14:e0008516. [PMID: 33057354 PMCID: PMC7591069 DOI: 10.1371/journal.pntd.0008516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/27/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The blood-sucking hemipteran Rhodnius prolixus is a vector of Chagas disease, one of the most neglected tropical diseases affecting several million people, mostly in Latin America. The blood meal is an event with a high epidemiological impact since adult mated females feed several times, with each meal resulting in a bout of egg laying, and thereby the production of hundreds of offspring. By means of RNA-Sequencing (RNA-Seq) we have examined how a blood meal influences mRNA expression in the central nervous system (CNS), fat body and ovaries in order to promote egg production, focusing on tissue-specific responses under controlled nutritional conditions. We illustrate the cross talk between reproduction and a) lipids, proteins and trehalose metabolism, b) neuropeptide and neurohormonal signaling, and c) the immune system. Overall, our molecular evaluation confirms and supports previous studies and provides an invaluable molecular resource for future investigations on different tissues involved in successful reproductive events. These analyses serve as a starting point for new investigations, increasing the chances of developing novel strategies for vector population control by translational research, with less impact on the environment and more specificity for a particular organism.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
24
|
Morrugares R, Correa-Sáez A, Moreno R, Garrido-Rodríguez M, Muñoz E, de la Vega L, Calzado MA. Phosphorylation-dependent regulation of the NOTCH1 intracellular domain by dual-specificity tyrosine-regulated kinase 2. Cell Mol Life Sci 2020; 77:2621-2639. [PMID: 31605148 PMCID: PMC7320039 DOI: 10.1007/s00018-019-03309-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
Abstract
NOTCH proteins constitute a receptor family with a widely conserved role in cell cycle, growing and development regulation. NOTCH1, the best characterised member of this family, regulates the expression of key genes in cell growth and angiogenesis, playing an essential role in cancer development. These observations provide a relevant rationale to propose the inhibition of the intracellular domain of NOTCH1 (Notch1-IC) as a strategy for treating various types of cancer. Notch1-IC stability is mainly controlled by post-translational modifications. FBXW7 ubiquitin E3 ligase-mediated degradation is considered one of the most relevant, being the previous phosphorylation at Thr-2512 residue required. In the present study, we describe for the first time a new regulation mechanism of the NOTCH1 signalling pathway mediated by DYRK2. We demonstrate that DYRK2 phosphorylates Notch1-IC in response to chemotherapeutic agents and facilitates its proteasomal degradation by FBXW7 ubiquitin ligase through a Thr-2512 phosphorylation-dependent mechanism. We show that DYRK2 regulation by chemotherapeutic agents has a relevant effect on the viability, motility and invasion capacity of cancer cells expressing NOTCH1. In summary, we reveal a novel mechanism of regulation for NOTCH1 which might help us to better understand its role in cancer biology.
Collapse
Affiliation(s)
- Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rita Moreno
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, James Arrott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Innohealth Group, Madrid, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laureano de la Vega
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, James Arrott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
25
|
Pleomorphic adenomas and mucoepidermoid carcinomas of the breast are underpinned by fusion genes. NPJ Breast Cancer 2020; 6:20. [PMID: 32550265 PMCID: PMC7275089 DOI: 10.1038/s41523-020-0164-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Primary pleomorphic adenomas (PAs) and mucoepidermoid carcinomas (MECs) of the breast are vanishingly rare. Here we sought to determine whether breast PAs and MECs would be underpinned by the fusion genes reported to occur in their salivary gland counterparts. Our study included three breast PAs and one breast MEC, which were subjected to RNA sequencing (PAs, n = 2; MEC, n = 1) or to Archer FusionPlex sequencing (PA, n = 1). Our analyses revealed the presence of the HMGA2-WIF1 fusion gene in breast PA3, the CTNNB1-PLAG1 fusion gene in breast PA2, and the CRTC1-MAML2 fusion gene in the breast MEC analyzed (1/1). No oncogenic fusion genes were detected in breast PA1, and no additional oncogenic fusion genes were detected in the cases studied. The presence of the fusion genes identified was validated by fluorescence in situ hybridization (n = 1), reverse transcription-PCR (n = 1), or by both methods (n = 1). Taken together, our findings indicate that PAs and MECs arising in the breast resemble their salivary gland counterparts not only phenotypically but also at the genetic level. Furthermore, our data suggest that the molecular analysis of breast PAs and MECs might constitute a useful tool to aid in their differential diagnosis.
Collapse
|
26
|
Agaimy A, Stoehr R, Tögel L, Hartmann A, Cramer T. YAP1-MAML2-Rearranged Poroid Squamous Cell Carcinoma (Squamoid Porocarcinoma) Presenting as a Primary Parotid Gland Tumor. Head Neck Pathol 2020; 15:361-367. [PMID: 32504288 PMCID: PMC8010054 DOI: 10.1007/s12105-020-01181-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Porocarcinoma (synonym: malignant eccrine poroma) is a rare aggressive carcinoma type with terminal sweat gland duct differentiation. The squamous variant of porocarcinoma is even less frequent and might be indistinguishable from conventional squamous cell carcinoma (SCC). We herein describe the first case of a carcinoma presenting as a primary parotid gland malignancy in a 24-year-old male without any other primary tumor. Total parotidectomy and neck dissection were performed followed by adjuvant chemoradiation. The patient remained alive and well 10 months after diagnosis. Histology showed keratinizing SCC infiltrating extensively the parotid gland with subtle poroid cell features. Oncogenic HPV infection was excluded by DNA-based testing. NGS analysis using the TruSight RNA fusion panel (Illumina) revealed a novel YAP1-MAML2 gene fusion. This gene fusion was reported recently in a subset of cutaneous porocarcinoma and poroma. This case of poroid SCC (or squamoid porocarcinoma) adds to the differential diagnosis of SCC presenting as parotid gland tumor and highlights the value of molecular testing in cases with unusual presentation.
Collapse
Affiliation(s)
- Abbas Agaimy
- grid.411668.c0000 0000 9935 6525Institute of Pathology, University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Robert Stoehr
- grid.411668.c0000 0000 9935 6525Institute of Pathology, University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Lars Tögel
- grid.411668.c0000 0000 9935 6525Institute of Pathology, University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Arndt Hartmann
- grid.411668.c0000 0000 9935 6525Institute of Pathology, University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Thomas Cramer
- Department of Otorhinolaryngology, Head and Neck Surgery, Bundeswehrkrankenhaus, Berlin, Germany
| |
Collapse
|
27
|
Liu X, Zhao J, Zhang Y, Ubarretxena-Belandia I, Forth S, Lieberman RL, Wang C. Substrate-Enzyme Interactions in Intramembrane Proteolysis: γ-Secretase as the Prototype. Front Mol Neurosci 2020; 13:65. [PMID: 32508589 PMCID: PMC7248309 DOI: 10.3389/fnmol.2020.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/03/2020] [Indexed: 11/15/2022] Open
Abstract
Intramembrane-cleaving proteases (I-CLiPs) catalyze the hydrolysis of peptide bonds within the transmembrane regions of membrane protein substrates, releasing bioactive fragments that play roles in many physiological and pathological processes. Based on their catalytic mechanism and nucleophile, I-CLiPs are classified into metallo, serine, aspartyl, and glutamyl proteases. Presenilin is the most prominent among I-CLiPs, as the catalytic subunit of γ-secretase (GS) complex responsible for cleaving the amyloid precursor protein (APP) and Notch, as well as many other membrane substrates. Recent cryo-electron microscopy (cryo-EM) structures of GS provide new details on how presenilin recognizes and cleaves APP and Notch. First, presenilin transmembrane helix (TM) 2 and 6 are dynamic. Second, upon binding to GS, the substrate TM helix is unwound from the C-terminus, resulting in an intermolecular β-sheet between the substrate and presenilin. The transition of the substrate C-terminus from α-helix to β-sheet is proposed to expose the scissile peptide bond in an extended conformation, leaving it susceptible to protease cleavage. Despite the astounding new insights in recent years, many crucial questions remain unanswered regarding the inner workings of γ-secretase, however. Key unanswered questions include how the enzyme recognizes and recruits substrates, how substrates are translocated from an initial docking site to the active site, how active site aspartates recruit and coordinate catalytic water, and the nature of the mechanisms of processive trimming of the substrate and product release. Answering these questions will have important implications for drug discovery aimed at selectively reducing the amyloid load in Alzheimer's disease (AD) with minimal side effects.
Collapse
Affiliation(s)
- Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, United States
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Scott Forth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
28
|
Otani Y, Yoo JY, Chao S, Liu J, Jaime-Ramirez AC, Lee TJ, Hurwitz B, Yan Y, Dai H, Glorioso JC, Caligiuri MA, Yu J, Kaur B. Oncolytic HSV-Infected Glioma Cells Activate NOTCH in Adjacent Tumor Cells Sensitizing Tumors to Gamma Secretase Inhibition. Clin Cancer Res 2020; 26:2381-2392. [PMID: 32139403 PMCID: PMC7325527 DOI: 10.1158/1078-0432.ccr-19-3420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To examine the effect of oncolytic herpes simplex virus (oHSV) on NOTCH signaling in central nervous system tumors. EXPERIMENTAL DESIGN Bioluminescence imaging, reverse phase protein array proteomics, fluorescence microscopy, reporter assays, and molecular biology approaches were used to evaluate NOTCH signaling. Orthotopic glioma-mouse models were utilized to evaluate effects in vivo. RESULTS We have identified that herpes simplex virus-1 (HSV-1; oncolytic and wild-type)-infected glioma cells induce NOTCH signaling, from inside of infected cells into adjacent tumor cells (inside out signaling). This was canonical NOTCH signaling, which resulted in activation of RBPJ-dependent transcriptional activity that could be rescued with dnMAML. High-throughput screening of HSV-1-encoded cDNA and miRNA libraries further uncovered that HSV-1 miR-H16 induced NOTCH signaling. We further identified that factor inhibiting HIF-1 (FIH-1) is a direct target of miR-H16, and that FIH-1 downregulation by virus encoded miR-H16 induces NOTCH activity. FIH-1 binding to Mib1 has been reported, but this is the first report that shows FIH-1 sequester Mib1 to suppress NOTCH activation. We observed that FIH-1 degradation induced NOTCH ligand ubiquitination and NOTCH activity. REMBRANDT and The Cancer Genome Atlas data analysis also uncovered a significant negative regulation between FIH-1 and NOTCH. Furthermore, combination of oHSV with NOTCH-blocking gamma secretase inhibitor (GSI) had a therapeutic advantage in two different intracranial glioma models treated with oncolytic HSV, without affecting safety profile of the virus in vivo. CONCLUSIONS To our knowledge this is the first report to identify impact of HSV-1 on NOTCH signaling and highlights the significance of combining oHSV and GSI for glioblastoma therapy.
Collapse
Affiliation(s)
- Yoshihiro Otani
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Samantha Chao
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
- Rice University, Houston, Texas
| | - Joseph Liu
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tae Jin Lee
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Brian Hurwitz
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Yuanqing Yan
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hongsheng Dai
- City of Hope National Medical Center, Duarte, California
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Jianhua Yu
- City of Hope National Medical Center, Duarte, California
| | - Balveen Kaur
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
29
|
Picking Winners and Losers: Cell Competition in Tissue Development and Homeostasis. Trends Genet 2020; 36:490-498. [PMID: 32418713 DOI: 10.1016/j.tig.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
Viable cells with reduced fitness are often eliminated by neighboring cells with greater fitness. This phenomenon, called cell competition, is an important mechanism for maintaining a high-quality population of cells in tissues. Foundational studies characterizing cellular competition and its molecular underpinnings were first carried out utilizing Drosophila as a model system. More recently, competitive behavior studies have extended into mammalian cell types. In this review, we highlight recent advances in the field, focusing on new insights into the molecular mechanisms regulating competitive behavior in various cellular contexts and in cancer. Throughout the review, we highlight new avenues to expand our understanding of the molecular underpinnings of cell competition and its role in tissue development and homeostasis.
Collapse
|
30
|
Vinckier NK, Patel NA, Geusz RJ, Wang A, Wang J, Matta I, Harrington AR, Wortham M, Wetton N, Wang J, Jhala US, Rosenfeld MG, Benner CW, Shih HP, Sander M. LSD1-mediated enhancer silencing attenuates retinoic acid signalling during pancreatic endocrine cell development. Nat Commun 2020; 11:2082. [PMID: 32350257 PMCID: PMC7190832 DOI: 10.1038/s41467-020-16017-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/07/2020] [Indexed: 01/22/2023] Open
Abstract
Developmental progression depends on temporally defined changes in gene expression mediated by transient exposure of lineage intermediates to signals in the progenitor niche. To determine whether cell-intrinsic epigenetic mechanisms contribute to signal-induced transcriptional responses, here we manipulate the signalling environment and activity of the histone demethylase LSD1 during differentiation of hESC-gut tube intermediates into pancreatic endocrine cells. We identify a transient requirement for LSD1 in endocrine cell differentiation spanning a short time-window early in pancreas development, a phenotype we reproduced in mice. Examination of enhancer and transcriptome landscapes revealed that LSD1 silences transiently active retinoic acid (RA)-induced enhancers and their target genes. Furthermore, prolonged RA exposure phenocopies LSD1 inhibition, suggesting that LSD1 regulates endocrine cell differentiation by limiting the duration of RA signalling. Our findings identify LSD1-mediated enhancer silencing as a cell-intrinsic epigenetic feedback mechanism by which the duration of the transcriptional response to a developmental signal is limited.
Collapse
Affiliation(s)
- Nicholas K Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nisha A Patel
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ryan J Geusz
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Allen Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jinzhao Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ileana Matta
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Austin R Harrington
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nichole Wetton
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jianxun Wang
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ulupi S Jhala
- Department of Pediatrics and Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Christopher W Benner
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hung-Ping Shih
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
31
|
Lobo-Pecellín M, Marín-Menguiano M, González-Reyes A. mastermind regulates niche ageing independently of the Notch pathway in the Drosophila ovary. Open Biol 2019; 9:190127. [PMID: 31744422 PMCID: PMC6893403 DOI: 10.1098/rsob.190127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023] Open
Abstract
Proper stem cell activity in tissues ensures the correct balance between proliferation and differentiation, thus allowing tissue homeostasis and repair. The Drosophila ovary develops well-defined niches that contain on average 2-4 germline stem cells (GSCs), whose maintenance depends on systemic signals and local factors. A known player in the decline of tissue homeostasis is ageing, which correlates with the waning of resident stem cell populations. In Drosophila, ovaries from old females contain fewer GSCs than those from young flies. We isolated niche cells of aged ovaries, performed a transcriptomic analysis and identified mastermind (mam) as a factor for Drosophila ovarian niche functionality during ageing. We show that mam is upregulated in aged niche cells and that we can induce premature GSC loss by overexpressing mam in otherwise young niche cells. High mam levels in niche cells induce reduced Hedgehog amounts, a decrease in cadherin levels and a likely increase in reactive oxygen species, three scenarios known to provoke GSC loss. Mam is a canonical co-activator of the Notch pathway in many Drosophila tissues. However, we present evidence to support a Notch-independent role for mam in the ovarian germline niche.
Collapse
Affiliation(s)
| | | | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| |
Collapse
|
32
|
Goel PN, Moharrer Y, Hebb JH, Egol AJ, Kaur G, Hankenson KD, Ahn J, Ashley JW. Suppression of Notch Signaling in Osteoclasts Improves Bone Regeneration and Healing. J Orthop Res 2019; 37:2089-2103. [PMID: 31166033 PMCID: PMC6739141 DOI: 10.1002/jor.24384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Owing to the central role of osteoclasts in bone physiology and remodeling, manipulation of their maturation process provides a potential therapeutic strategy for treating bone diseases. To investigate this, we genetically inhibited the Notch signaling pathway in the myeloid lineage, which includes osteoclast precursors, using a dominant negative form of MAML (dnMAML) that inhibits the transcriptional complex required for downstream Notch signaling. Osteoclasts derived from dnMAML mice showed no significant differences in early osteoclastic gene expression compared to the wild type. Further, these demonstrated significantly lowered resorption activity using bone surfaces while retaining their osteoblast stimulating ability using ex vivo techniques. Using in vivo approaches, we detected significantly higher bone formation rates and osteoblast gene expression in dnMAML cohorts. Further, these mice exhibited increased bone/tissue mineral density compared to wild type and larger bony calluses in later stages of fracture healing. These observations suggest that therapeutic suppression of osteoclast Notch signaling could reduce, but not eliminate, osteoclastic resorption without suppression of restorative bone remodeling and, therefore, presents a balanced paradigm for increasing bone formation, regeneration, and healing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2089-2103, 2019.
Collapse
Affiliation(s)
- Peeyush N Goel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Yasaman Moharrer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - John H Hebb
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Georgetown University School of Medicine, Washington D.C
| | - Alexander J Egol
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | | | | | - Jaimo Ahn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Co-corresponding Author: Jaimo Ahn, MD, PhD, FACS, FAOA, Advisory Dean, MSTP Steering Committee, Perelman School of Medicine, Co-Director, Orthopaedic Trauma, University of Pennsylvania Health System, Perelman School of Medicine, University of Pennsylvania, Investigator, Translational Musculoskeletal Research Center, Philadelphia Veterans Affairs Medical Center, 3737 Market Street, Floor 6, Philadelphia, PA-19104, Phone # +1 (215)-662-3340, Fax # +1 (215)-349-5890,
| | - Jason W Ashley
- Eastern Washington University, Cheney, WA,Corresponding Author: Jason Waid Ashley, PhD, Assistant Professor, Biology Department, 526 5th Street, SCI236, Eastern Washington University, Cheney, WA 99004, Phone # +1(509)-359-4665,
| |
Collapse
|
33
|
Goel PN, Egol AJ, Moharrer Y, Brandfield-Harvey B, Ahn J, Ashley JW. Notch signaling inhibition protects against LPS mediated osteolysis. Biochem Biophys Res Commun 2019; 515:538-543. [PMID: 31176486 DOI: 10.1016/j.bbrc.2019.05.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory responses have profound effects on the differentiation and activity of both the bone-forming osteoblasts and bone-resorbing osteoclasts. Importantly, inflammatory bone diseases characterized by clinical osteolysis promote bone resorption and decrease bone formation by uncoupling the process in favor of excess resorption. Notch signaling regulates osteoclast development and thus its manipulation has the potential to suppress resorptive potential. Here, we have utilized a genetic model of Notch inhibition in osteoclasts by expression of dnMAML to prevent formation of transcriptional complex essential for downstream Notch signaling. Using this model and LPS as a tool for experimental inflammatory osteolysis, we have demonstrated that dnMAML-expressing osteoclasts exhibited significantly lower maturation and resorption/functional potential ex vivo using TRAP staining and calcium phosphate coated surfaces. Moreover, we observed that while LPS stimulated the formation of wildtype osteoclasts pre-treated with RANKL, dnMAML expression produced resistance to osteoclast maturation after LPS stimulation. Genetically, Notch-inhibited animals showed a significantly lower TRAP and CTX-1 levels in serum after LPS treatment compared to the control groups in addition to a marked reduction in osteoclast surfaces in calvaria sections. This report provides evidence for modulation of Notch signaling activity to protect against inflammatory osteolysis. Taken together, the findings of this study will help guide the development of Notch signaling-based therapeutic approaches to prevent bone loss.
Collapse
Affiliation(s)
- Peeyush N Goel
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Alexander J Egol
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Yasaman Moharrer
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Beatrix Brandfield-Harvey
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Jaimo Ahn
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| | | |
Collapse
|
34
|
Transcriptional characterisation of the Exaiptasia pallida pedal disc. BMC Genomics 2019; 20:581. [PMID: 31299887 PMCID: PMC6626399 DOI: 10.1186/s12864-019-5917-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biological adhesion (bioadhesion), enables organisms to attach to surfaces as well as to a range of other targets. Bioadhesion evolved numerous times independently and is ubiquitous throughout the kingdoms of life. To date, investigations have focussed on various taxa of animals, plants and bacteria, but the fundamental processes underlying bioadhesion and the degree of conservation in different biological systems remain poorly understood. This study had two aims: 1) To characterise tissue-specific gene regulation in the pedal disc of the model cnidarian Exaiptasia pallida, and 2) to elucidate putative genes involved in pedal disc adhesion. RESULTS Five hundred and forty-seven genes were differentially expressed in the pedal disc compared to the rest of the animal. Four hundred and twenty-seven genes were significantly upregulated and 120 genes were significantly downregulated. Forty-one condensed gene ontology terms and 19 protein superfamily classifications were enriched in the pedal disc. Eight condensed gene ontology terms and 11 protein superfamily classifications were depleted. Enriched superfamilies were consistent with classifications identified previously as important for the bioadhesion of unrelated marine invertebrates. A host of genes involved in regulation of extracellular matrix generation and degradation were identified, as well as others related to development and immunity. Ab initio prediction identified 173 upregulated genes that putatively code for extracellularly secreted proteins. CONCLUSION The analytical workflow facilitated identification of genes putatively involved in adhesion, immunity, defence and development of the E. pallida pedal disc. When defence, immunity and development-related genes were identified, those remaining corresponded most closely to formation of the extracellular matrix (ECM), implicating ECM in the adhesion of anemones to surfaces. This study therefore provides a valuable high-throughput resource for the bioadhesion community and lays a foundation for further targeted research to elucidate bioadhesion in the Cnidaria.
Collapse
|
35
|
Johnston KJA, Adams MJ, Nicholl BI, Ward J, Strawbridge RJ, Ferguson A, McIntosh AM, Bailey MES, Smith DJ. Genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet 2019; 15:e1008164. [PMID: 31194737 PMCID: PMC6592570 DOI: 10.1371/journal.pgen.1008164] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/25/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is highly prevalent worldwide and represents a significant socioeconomic and public health burden. Several aspects of chronic pain, for example back pain and a severity-related phenotype 'chronic pain grade', have been shown previously to be complex heritable traits with a polygenic component. Additional pain-related phenotypes capturing aspects of an individual's overall sensitivity to experiencing and reporting chronic pain have also been suggested as a focus for investigation. We made use of a measure of the number of sites of chronic pain in individuals within the UK general population. This measure, termed Multisite Chronic Pain (MCP), is a complex trait and its genetic architecture has not previously been investigated. To address this, we carried out a large-scale genome-wide association study (GWAS) of MCP in ~380,000 UK Biobank participants. Our findings were consistent with MCP having a significant polygenic component, with a Single Nucleotide Polymorphism (SNP) heritability of 10.2%. In total 76 independent lead SNPs at 39 risk loci were associated with MCP. Additional gene-level association analyses identified neurogenesis, synaptic plasticity, nervous system development, cell-cycle progression and apoptosis genes as enriched for genetic association with MCP. Genetic correlations were observed between MCP and a range of psychiatric, autoimmune and anthropometric traits, including major depressive disorder (MDD), asthma and Body Mass Index (BMI). Furthermore, in Mendelian randomisation (MR) analyses a causal effect of MCP on MDD was observed. Additionally, a polygenic risk score (PRS) for MCP was found to significantly predict chronic widespread pain (pain all over the body), indicating the existence of genetic variants contributing to both of these pain phenotypes. Overall, our findings support the proposition that chronic pain involves a strong nervous system component with implications for our understanding of the physiology of chronic pain. These discoveries may also inform the future development of novel treatment approaches.
Collapse
Affiliation(s)
- Keira J. A. Johnston
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
- Deanery of Molecular, Genetic and Population Health Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Scotland, United Kingdom
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Mark J. Adams
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, United Kingdom
| | - Barbara I. Nicholl
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Amy Ferguson
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Andrew M. McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, United Kingdom
| | - Mark E. S. Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
36
|
Picco G, Chen ED, Alonso LG, Behan FM, Gonçalves E, Bignell G, Matchan A, Fu B, Banerjee R, Anderson E, Butler A, Benes CH, McDermott U, Dow D, Iorio F, Stronach E, Yang F, Yusa K, Saez-Rodriguez J, Garnett MJ. Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Nat Commun 2019; 10:2198. [PMID: 31097696 PMCID: PMC6522557 DOI: 10.1038/s41467-019-09940-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Many gene fusions are reported in tumours and for most their role remains unknown. As fusions are used for diagnostic and prognostic purposes, and are targets for treatment, it is crucial to assess their function in cancer. To systematically investigate the role of fusions in tumour cell fitness, we utilized RNA-sequencing data from 1011 human cancer cell lines to functionally link 8354 fusion events with genomic data, sensitivity to >350 anti-cancer drugs and CRISPR-Cas9 loss-of-fitness effects. Established clinically-relevant fusions were identified. Overall, detection of functional fusions was rare, including those involving cancer driver genes, suggesting that many fusions are dispensable for tumour fitness. Therapeutically actionable fusions involving RAF1, BRD4 and ROS1 were verified in new histologies. In addition, recurrent YAP1-MAML2 fusions were identified as activators of Hippo-pathway signaling in multiple cancer types. Our approach discriminates functional fusions, identifying new drivers of carcinogenesis and fusions that could have clinical implications. Gene fusions are observed in many cancers but their link to tumour fitness is largely unknown. Here, transcriptomic analysis combined with pharmacological and CRISPR-Cas9 screening of cancer cell lines was used to evaluate the functional linkage between fusions and tumour fitness.
Collapse
Affiliation(s)
- Gabriele Picco
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Elisabeth D Chen
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Luz Garcia Alonso
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.,Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Fiona M Behan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Emanuel Gonçalves
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Graham Bignell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Angela Matchan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Beiyuan Fu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Ruby Banerjee
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Elizabeth Anderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Adam Butler
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Cyril H Benes
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Ultan McDermott
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,AstraZeneca, CRUK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - David Dow
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Research and Development, GlaxoSmithKline, Stevenage, SG1 2NY, UK.,Research and Development, GlaxoSmithKline, Collegeville, PA, 19426-0989, USA
| | - Francesco Iorio
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.,Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Euan Stronach
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Research and Development, GlaxoSmithKline, Stevenage, SG1 2NY, UK.,Research and Development, GlaxoSmithKline, Collegeville, PA, 19426-0989, USA
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.,Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Institute for Computational Biomedicine, Faculty of Medicine, Bioquant, Heidelberg University, 69120, Heidelberg, Germany
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK. .,Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
| |
Collapse
|
37
|
Maier D. The evolution of transcriptional repressors in the Notch signaling pathway: a computational analysis. Hereditas 2019; 156:5. [PMID: 30679936 PMCID: PMC6337844 DOI: 10.1186/s41065-019-0081-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 11/18/2022] Open
Abstract
Background The Notch signaling pathway governs the specification of different cell types in flies, nematodes and vertebrates alike. Principal components of the pathway that activate Notch target genes are highly conserved throughout the animal kingdom. Despite the impact on development and disease, repression mechanisms are less well studied. Repressors are known from arthropods and vertebrates that differ strikingly by mode of action: whereas Drosophila Hairless assembles repressor complexes with CSL transcription factors, competition between activator and repressors occurs in vertebrates (for example SHARP/MINT and KyoT2). This divergence raises questions on the evolution: Are there common ancestors throughout the animal kingdom? Results Available genome databases representing all animal clades were searched for homologues of Hairless, SHARP and KyoT2. The most distant species with convincing Hairless orthologs belong to Myriapoda, indicating its emergence after the Mandibulata-Chelicarata radiation about 500 million years ago. SHARP shares motifs with SPEN and SPENITO proteins, present throughout the animal kingdom. The CSL interacting domain of SHARP, however, is specific to vertebrates separated by roughly 600 million years of evolution. KyoT2 bears a C-terminal CSL interaction domain (CID), present only in placental mammals but highly diverged already in marsupials, suggesting introduction roughly 100 million years ago. Based on the LIM-domains that characterize KyoT2, homologues can be found in Drosophila melanogaster (Limpet) and Hydra vulgaris (Prickle 3 like). These lack the CID of KyoT2, however, contain a PET and additional LIM domains. Conservation of intron/exon boundaries underscores the phylogenetic relationship between KyoT2, Limpet and Prickle. Most strikingly, Limpet and Prickle proteins carry a tetra-peptide motif resembling that of several CSL interactors. Overall, KyoT2 may have evolved from prickle and Limpet to a Notch repressor in mammals. Conclusions Notch repressors appear to be specific to either chordates or arthropods. Orthologues of experimentally validated repressors were not found outside the phylogenetic group they have been originally identified. However, the data provide a hypothesis on the evolution of mammalian KyoT2 from Prickle like ancestors. The finding of a potential CSL interacting domain in Prickle homologues points to a novel, very ancestral CSL interactor present in the entire animal kingdom. Electronic supplementary material The online version of this article (10.1186/s41065-019-0081-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dieter Maier
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
38
|
Rajaei S, Fatahi Y, Dabbagh A. Meeting Between Rumi and Shams in Notch Signaling; Implications for Pain Management: A Narrative Review. Anesth Pain Med 2019; 9:e85279. [PMID: 30881911 PMCID: PMC6412915 DOI: 10.5812/aapm.85279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023] Open
Abstract
The meeting between Rumi and Shams, in the 13th century, was a turning point in the life of Rumi leading to a revolutionary effect in his thoughts, ideas, and poems. This was an ever-inspiring meeting with many results throughout the centuries. This meeting has created some footprints in cellular and molecular medicine: The discovery of two distinct genes in Drosophila, i.e. Rumi and Shams and their role in controlling Notch signaling, which has a critical role in cell biology. This nomination and the interactions between the two genes has led us to a number of novel studies during the last years. This article reviews the interactions between Rumi and Shams and their effects on Notch signaling in order to find potential novel drugs for pain control through drug development studies in the future.
Collapse
Affiliation(s)
- Samira Rajaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Lee SY, Long F. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation. J Clin Invest 2018; 128:5573-5586. [PMID: 30284985 DOI: 10.1172/jci96221] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/02/2018] [Indexed: 01/02/2023] Open
Abstract
Notch signaling critically controls cell fate decisions in mammals, both during embryogenesis and in adults. In the skeleton, Notch suppresses osteoblast differentiation and sustains bone marrow mesenchymal progenitors during postnatal life. Stabilizing mutations of Notch2 cause Hajdu-Cheney syndrome, which is characterized by early-onset osteoporosis in humans, but the mechanism whereby Notch inhibits bone accretion is not fully understood. Here, we report that activation of Notch signaling by either Jagged1 or the Notch2 intracellular domain suppresses glucose metabolism and osteoblast differentiation in primary cultures of bone marrow mesenchymal progenitors. Importantly, deletion of Notch2 in the limb mesenchyme increases both glycolysis and bone formation in the long bones of postnatal mice, whereas pharmacological reduction of glycolysis abrogates excessive bone formation. Mechanistically, Notch reduces the expression of glycolytic and mitochondrial complex I genes, resulting in a decrease in mitochondrial respiration, superoxide production, and AMPK activity. Forced activation of AMPK restores glycolysis in the face of Notch signaling. Thus, suppression of glucose metabolism contributes to the mechanism, whereby Notch restricts osteoblastogenesis from bone marrow mesenchymal progenitors.
Collapse
Affiliation(s)
| | - Fanxin Long
- Department of Orthopaedic Surgery, and.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Smith J, Kulkarni A, Birkeland AC, McHugh JB, Brenner JC. Whole-Exome Sequencing of Sinonasal Small Cell Carcinoma Arising within a Papillary Schneiderian Carcinoma In Situ. Otolaryngol Head Neck Surg 2018; 159:859-865. [PMID: 29734873 PMCID: PMC6212311 DOI: 10.1177/0194599818774004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The pathogenetic underpinnings of extrapulmonary small cell carcinomas (EPSCCs) of the head and neck are poorly understood. We sought to describe the clinical case and whole-exome DNA sequencing data of a patient with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma (SCC). STUDY DESIGN Case report and whole-exome sequencing of tumor DNA. SETTING Academic medical center. SUBJECTS AND METHODS A 52-year-old man with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma. We performed whole-exome genetic sequencing and copy-number variation (CNV) analysis of tumor and normal DNA extracted from flash-frozen, paraffin-embedded (FFPE) samples. RESULTS A total of 93 high-confidence, nonsynonymous somatic mutation events were identified in sinonasal SCC, including loss-of-function mutations in TP53, MAML3, a transcriptional coactivator of the Notch pathway, and GAS6, an activating ligand of the TAM family of tyrosine kinase receptors. Focal amplifications of chromosomal regions 6p25-11.1, containing SOX4 and VEGFA, and 14q32.1-32.3, containing AKT1 and the Notch inhibitory ligand DLK1, were also seen. Further CNV analysis revealed deletions in the critical cell cycle regulators CDKN2A, RB1, RBL1, and RBL2 and the chromatin modifier EP300. CONCLUSIONS Small cell carcinoma may rarely arise from sinonasal Schneiderian carcinoma in situ and exhibits similar genomic aberrations (eg, SOX amplification, Notch pathway inactivation) to pulmonary small cell carcinoma.
Collapse
Affiliation(s)
- Joshua Smith
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Aditi Kulkarni
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Andrew C Birkeland
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Jonathan B. McHugh
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - J. Chad Brenner
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
41
|
Forghany Z, Robertson F, Lundby A, Olsen JV, Baker DA. Control of endothelial cell tube formation by Notch ligand intracellular domain interactions with activator protein 1 (AP-1). J Biol Chem 2017; 293:1229-1242. [PMID: 29196606 DOI: 10.1074/jbc.m117.819045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/30/2017] [Indexed: 01/08/2023] Open
Abstract
Notch signaling is a ubiquitous signal transduction pathway found in most if not all metazoan cell types characterized to date. It is indispensable for cell differentiation as well as tissue growth, tissue remodeling, and apoptosis. Although the canonical Notch signaling pathway is well characterized, accumulating evidence points to the existence of multiple, less well-defined layers of regulation. In this study, we investigated the function of the intracellular domain (ICD) of the Notch ligand Delta-like 4 (DLL4). We provide evidence that the DLL4 ICD is required for normal DLL4 subcellular localization. We further show that it is cleaved and interacts with the JUN proto-oncogene, which forms part of the activator protein 1 (AP-1) transcription factor complex. Mechanistically, the DLL4 ICD inhibited JUN binding to DNA and thereby controlled the expression of JUN target genes, including DLL4 Our work further demonstrated that JUN strongly stimulates endothelial cell tube formation and that DLL4 constrains this process. These results raise the possibility that Notch/DLL4 signaling is bidirectional and suggest that the DLL4 ICD could represent a point of cross-talk between Notch and receptor tyrosine kinase (RTK) signaling.
Collapse
Affiliation(s)
- Zary Forghany
- From the Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands and
| | - Francesca Robertson
- From the Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands and
| | - Alicia Lundby
- Novo Nordisk Foundation Center for Protein Research and.,the Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - David A Baker
- From the Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands and
| |
Collapse
|
42
|
Identification and characterization of a novel Sso7d scaffold-based binder against Notch1. Sci Rep 2017; 7:12021. [PMID: 28931897 PMCID: PMC5607287 DOI: 10.1038/s41598-017-12246-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 09/06/2017] [Indexed: 12/18/2022] Open
Abstract
Notch signaling has important functions in regulating cell growth and development, misregulation of which has been implicated in various cancers. Monoclonal antibodies (mAbs) targeting Notch protein activity have already moved into clinical trials. However due to the limitations associated with cost and productivity of mAbs, there has been a surge in the development of complementary approaches that are based on non-antibody scaffolds. Non-antibody scaffolds are small proteins that are stable and can be engineered to develop high-affinity binders against specific targets of interest. Here we describe the isolation and characterization of a novel Notch1-binding protein, N9, obtained by screening of a combinatorial library based on the ultra-stable Sso7d scaffold. N9 targets the extracellular EGF-like repeats (ELR) 11–13 in Notch1, and therefore serves as a competitive inhibitor for Notch ligands to decrease expression of Notch target genes. We demonstrate that N9 recognizes surface expression of Notch1 on the plasma membrane and binds preferentially to cell lines misexpressing Notch1. Although N9 was selected against Notch1, we also observe cross-reactivity against other Notch receptors, including Notch2/3. Finally, we demonstrate that N9 inhibits proliferation and generation of tumorspheres in Notch expressing cancer cell lines, suggesting its potential as a therapeutic agent in Notch-associated malignancies.
Collapse
|
43
|
Bhattacharya A, Li K, Quiquand M, Rimesso G, Baker NE. The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins. Dev Biol 2017; 431:309-320. [PMID: 28919436 DOI: 10.1016/j.ydbio.2017.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Notch regulates both neurogenesis and cell cycle activity to coordinate precursor cell generation in the differentiating Drosophila eye. Mosaic analysis with mitotic clones mutant for Notch components was used to identify the pathway of Notch signaling that regulates the cell cycle in the Second Mitotic Wave. Although S phase entry depends on Notch signaling and on the transcription factor Su(H), the transcriptional co-activator Mam and the bHLH repressor genes of the E(spl)-Complex were not essential, although these are Su(H) coactivators and targets during the regulation of neurogenesis. The Second Mitotic Wave showed little dependence on ubiquitin ligases neuralized or mindbomb, and although the ligand Delta is required non-autonomously, partial cell cycle activity occurred in the absence of known Notch ligands. We found that myc was not essential for the Second Mitotic Wave. The Second Mitotic Wave did not require the HLH protein Extra macrochaetae, and the bHLH protein Daughterless was required only cell-nonautonomously. Similar cell cycle phenotypes for Daughterless and Atonal were consistent with requirement for neuronal differentiation to stimulate Delta expression, affecting Notch activity in the Second Mitotic Wave indirectly. Therefore Notch signaling acts to regulate the Second Mitotic Wave without activating bHLH gene targets.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
44
|
Liu Y, Nie H, Liu C, Zhai X, Sang Q, Wang Y, Shi D, Wang L, Xu Z. Angulin proteins ILDR1 and ILDR2 regulate alternative pre-mRNA splicing through binding to splicing factors TRA2A, TRA2B, or SRSF1. Sci Rep 2017; 7:7466. [PMID: 28785060 PMCID: PMC5547134 DOI: 10.1038/s41598-017-07530-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023] Open
Abstract
Angulin proteins are a group of evolutionally conserved type I transmembrane proteins that contain an extracellular Ig-like domain. In mammals, three angulin proteins have been identified, namely immunoglobulin-like domain containing receptor 1 (ILDR1), immunoglobulin-like domain containing receptor 2 (ILDR2), and lipolysis-stimulated lipoprotein receptor (LSR). All three proteins have been shown to localize at tight junctions (TJs) and are important for TJ formation. Mutations in ILDR1 gene have been shown to cause non-syndromic hearing loss (NSHL). In the present work, we show that ILDR1 binds to splicing factors TRA2A, TRA2B, and SRSF1, and translocates into the nuclei when the splicing factors are present. Moreover, ILDR1 affects alternative splicing of Tubulin delta 1 (TUBD1), IQ motif containing B1 (IQCB1), and Protocadherin 19 (Pcdh19). Further investigation show that ILDR2, but not LSR, also binds to the splicing factors and regulates alternative splicing. When endogenous ILDR1 and ILDR2 expression is knockdown with siRNAs in cultured cells, alternative splicing of TUBD1 and IQCB1 is affected. In conclusion, we show here that angulin proteins ILDR1 and ILDR2 are involved in alternative pre-mRNA splicing via binding to splicing factors TRA2A, TRA2B, or SRSF1.
Collapse
Affiliation(s)
- Yueyue Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, Shandong, 250100, China
| | - Hongyun Nie
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, Shandong, 250100, China
| | - Chengcheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, Shandong, 250100, China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, Shandong, 250100, China
| | - Qing Sang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, Shandong, 250100, China
| | - Deli Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, Shandong, 250100, China.,Laboratoire de Biologie du Développement, Institut de Biologie Paris-Seine, Sorbonne Universités, Paris, France
| | - Lei Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, Shandong, 250100, China.
| |
Collapse
|
45
|
Rippe C, Zhu B, Krawczyk KK, Bavel EV, Albinsson S, Sjölund J, Bakker ENTP, Swärd K. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep 2017; 7:1334. [PMID: 28465505 PMCID: PMC5430981 DOI: 10.1038/s41598-017-01392-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a dominating risk factor for cardiovascular disease. To characterize the genomic response to hypertension, we administered vehicle or angiotensin II to mice and performed gene expression analyses. AngII treatment resulted in a robust increase in blood pressure and altered expression of 235 genes in the aorta, including Gucy1a3 and Gucy1b3 which encode subunits of soluble guanylyl cyclase (sGC). Western blotting and immunohistochemistry confirmed repression of sGC associated with curtailed relaxation via sGC activation. Analysis of transcription factor binding motifs in promoters of differentially expressed genes identified enrichment of motifs for RBPJ, a component of the Notch signaling pathway, and the Notch coactivators FRYL and MAML2 were reduced. Gain and loss of function experiments demonstrated that JAG/NOTCH signaling controls sGC expression together with MAML2 and FRYL. Reduced expression of sGC, correlating with differential expression of MAML2, in stroke prone and spontaneously hypertensive rats was also seen, and RNA-Seq data demonstrated correlations between JAG1, NOTCH3, MAML2 and FRYL and the sGC subunits GUCY1A3 and GUCY1B3 in human coronary artery. Notch signaling thus provides a constitutive drive on expression of the major nitric oxide receptor (GUCY1A3/GUCY1B3) in arteries from mice, rats, and humans, and this control mechanism is disturbed in hypertension.
Collapse
Affiliation(s)
- Catarina Rippe
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Baoyi Zhu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Ed Van Bavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Jonas Sjölund
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
46
|
Abstract
The highly conserved Notch signalling pathway functions in many different developmental and homeostatic processes, which raises the question of how this pathway can achieve such diverse outcomes. With a direct route from the membrane to the nucleus, the Notch pathway has fewer opportunities for regulation than do many other signalling pathways, yet it generates exquisitely patterned structures, including sensory hair cells and branched arterial networks. More confusingly, its activity promotes tissue growth and cancers in some circumstances but cell death and tumour suppression in others. Many different regulatory mechanisms help to shape the activity of the Notch pathway, generating functional outputs that are appropriate for each context. These mechanisms include the receptor-ligand landscape, the tissue topology, the nuclear environment and the connectivity of the regulatory networks.
Collapse
Affiliation(s)
- Sarah J Bray
- Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|