1
|
Shen S, Zhou Y, Yin M, Liu S, Sun H, Guan Y, Huan C, Zheng X. CitUNE1 inhibits (+)-valencene synthesis by regulating CsTPS1 in 'Newhall' sweet orange. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109854. [PMID: 40194505 DOI: 10.1016/j.plaphy.2025.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
(+)-Valencene is the characteristic volatile compound in 'Newhall' sweet orange, and CsTPS1 is the gene that codes for the (+)-valencene synthase. Here, four transcription factors, including CitUNE1, CitUNE3, CitSCL1, and CitSCL13, were screened as candidate proteins by yeast one-hybrid (Y1H) library screening with CsTPS1 promoter as the bait. Among them, CitUNE1 bound to the G-box on the promoter of CsTPS1 and suppressed CsTPS1 expression, confirmed by Y1H, dual-luciferase assay, point-mutation experiment and EMSA. The expression pattern of CitUNE1 showed a negative correlation with both the content of (+)-valencene and CsTPS1 transcripts level, both during fruit development and after ethylene treatment. Furthermore, the role of CitUNE1 in (+)-valencene synthesis was confirmed using the transient over-expression and silencing in 'Newhall' sweet orange. Transient over-expression of CitUNE1 inhibited CsTPS1 expression and reduced the accumulation of (+)-valencene, while silencing of CitUNE1 induced CsTPS1 expression and triggered (+)-valencene synthesis in 'Newhall' sweet orange.
Collapse
Affiliation(s)
- Shuling Shen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Zhejiang-UK Joint Laboratory of Food Sensory Science, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Yuwei Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Mengyao Yin
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Sijia Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Hui Sun
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Yue Guan
- Hangzhou Food Service Group, Hangzhou, 310001, PR China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Zhejiang-UK Joint Laboratory of Food Sensory Science, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Anwar AF, Chukwurah PN, Amombo E, Mouhib S, Ntui VO. Unlocking the potential of 'Egusi' melon ( Colocynthis citrullus L.) as a crop for biotechnological improvement. FRONTIERS IN PLANT SCIENCE 2025; 16:1547157. [PMID: 40182542 PMCID: PMC11965695 DOI: 10.3389/fpls.2025.1547157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
'Egusi' melon (Colocynthis citrullus L.) plays a critical role in food security and potential biofuel production in West Africa. Its seeds are valued for both their nutritional and potential industrial applications, especially in biodiesel production. However, the crop faces significant challenges, including the impacts of climate change, water scarcity, declining arable land, and increased pressure from pests and diseases. These challenges threaten the stability of 'Egusi' production and may hinder its ability to meet future demand. To address these issues, there is a growing need to complement conventional breeding methods with biotechnological approaches. Molecular approaches; including genomics, transcriptomics, proteomics, and metabolomics; have been utilized for the improvement of several cucurbit species. However, information on molecular breeding of 'Egusi' is very limited. The current review focuses on 'Egusi' melon, its biology, uses, and factors affecting its improvement, and highlights critical knowledge gaps in the molecular breeding of 'Egusi'. The review also examines the potential of omics technologies and outlines the importance of genetic transformation and genome editing methods such as CRISPR that could drive the development of more resilient and high-yielding 'Egusi'varieties that will contribute to sustainability and profitability of 'Egusi' farming.
Collapse
Affiliation(s)
- Aliya Fathima Anwar
- African Genome Center, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | | | - Erick Amombo
- African Sustainable Agriculture Research Institute, University Mohammed VI Polytechnic, Laayounne, Morocco
| | - Salma Mouhib
- African Genome Center, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | | |
Collapse
|
3
|
Lao TD, Nguyen NH, Le TAH, Nguyen PDT. Insights into Sucrose Metabolism and Its Ethylene-Dependent Regulation in Cucumis melo L. Mol Biotechnol 2025; 67:27-35. [PMID: 38102344 DOI: 10.1007/s12033-023-00987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/05/2023] [Indexed: 12/17/2023]
Abstract
The melon (Cucumis melo L.), a fruit crop of significant economic importance, is prized for its sweet and succulent fruits. Among variations of soluble sugars, sucrose, a disaccharide composed of glucose and fructose, is a key carbohydrate present in melon fruits. The sucrose content also determines the quality and value of melon fruits. However, the accumulation of sucrose is a complex process involving the coordinated actions of multiple enzymes and pathways. In melon species, there are two types of fruit ripening modes including climacteric and non-climacteric. Due to this biological characteristic, melon is emerging as a good model for studying the ripening process. Ethylene is a well-known phytohormone regulating the ripening of climacteric fruits. Recently, a few studies have elucidated a primary ethylene-dependent signaling pathway of sucrose accumulation in melon fruits. This review aims to provide a careful overview of the sucrose biosynthesis pathways in melon. It is essential to understand the molecular mechanisms of sucrose metabolism as well as its regulation mode. The information will be useful for developing molecular marker-assisted breeding as well as genetic engineering strategies aiming to improve the sucrose content and quality of melon fruits. In addition, even though limited, the impacts of genetic background and environmental factors on sucrose accumulation in melon fruits are also discussed. These are useful for practical applications in melon cultivation and quality management.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Thuy Ai Huyen Le
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
4
|
Thorough Characterization of ETHQB3.5, a QTL Involved in Melon Fruit Climacteric Behavior and Aroma Volatile Composition. Foods 2023; 12:foods12020376. [PMID: 36673468 PMCID: PMC9858179 DOI: 10.3390/foods12020376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The effect of the QTL involved in climacteric ripening ETHQB3.5 on the fruit VOC composition was studied using a set of Near-Isogenic Lines (NILs) containing overlapping introgressions from the Korean accession PI 16375 on the chromosome 3 in the climacteric 'Piel de Sapo' (PS) genetic background. ETHQB3.5 was mapped in an interval of 1.24 Mb that contained a NAC transcription factor. NIL fruits also showed differences in VOC composition belonging to acetate esters, non-acetate esters, and sulfur-derived families. Cosegregation of VOC composition (23 out of 48 total QTLs were mapped) and climacteric ripening was observed, suggesting a pleiotropic effect of ETHQB3.5. On the other hand, other VOCs (mainly alkanes, aldehydes, and ketones) showed a pattern of variation independent of ETHQB3.5 effects, indicating the presence of other genes controlling non-climacteric ripening VOCs. Network correlation analysis and hierarchical clustering found groups of highly correlated compounds and confirmed the involvement of the climacteric differences in compound classes and VOC differences. The modification of melon VOCs may be achieved with or without interfering with its physiological behavior, but it is likely that high relative concentrations of some type of ethylene-dependent esters could be achieved in climacteric cultivars.
Collapse
|
5
|
Wei S, Jiao H, Wang H, Ran K, Dong R, Dong X, Yan W, Wang S. The mechanism analysis of exogenous melatonin in limiting pear fruit aroma decrease under low temperature storage. PeerJ 2022; 10:e14166. [PMID: 36262407 PMCID: PMC9575684 DOI: 10.7717/peerj.14166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023] Open
Abstract
Exogenous melatonin (MT) is widely used in fruit preservation, and can increase the storage time and delay the quality deterioration. Firstly, it was found that 150 μM MT was the optimal concentration to treat 'Xinli No.7' under storage at 4 °C for 60 days. MT could significantly improve oxidase activity and inhibit the reduction of physiological indexes, including pulp hardness, weight loss, titratable acid and soluble solid content. MT could also reduce ethylene release and limit the reduction of fruit aroma. The average content of fruit aroma substance increased by 43.53%. A relevant RNA-Seq database was built to further explore the regulation mechanism of MT. A total of 2,761 differentially expressed genes (DEGs) were identified. DEGs were enriched in 64 functional groups and 191 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. DEGs were mainly enriched in alpha-linolenic acid metabolism, fatty acid metabolism and plant hormone signal transduction pathway. The gene pycom09g05270 belonging to long chain acyl-CoA synthetase family and participating in fatty acid metabolism pathway was identified, and its expression level was consistent with fragments per kilobase per million mapped reads (FPKM) values, implying that pycom09g05270 might play a vital role in maintaining quality during the storage process.
Collapse
Affiliation(s)
- Shuwei Wei
- Shandong Institute of Pomology, TaiAn, China
| | - Huijun Jiao
- Shandong Institute of Pomology, TaiAn, China
| | | | - Kun Ran
- Shandong Institute of Pomology, TaiAn, China
| | - Ran Dong
- Shandong Institute of Pomology, TaiAn, China
| | | | - Wenjing Yan
- Shandong Agricultural University, TaiAn, China
| | | |
Collapse
|
6
|
Kang J, Gong J, Zhang L, Gao Z, Xie Q, Hu Z, Chen G. A novel E6-like gene, E6-2, affects fruit ripening in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111066. [PMID: 34763858 DOI: 10.1016/j.plantsci.2021.111066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Tomato fruit ripening is a complicated and well-coordinated process with numerous metabolic changes resulted from endogenous hormone and genetic regulators. Although the regulation of MADS-box transcription factor (MADS-RIN) controlling fruit ripening has been widely reported, its mechanisms underlying need to be further improved. Here, we characterized a novel tomato E6-like gene, E6-2, whose transcripts showed a high accumulation in fruit ripening stages (Breaker, Breaker+4 and Breaker+7), but a low level was observed in Never ripe (Nr) and ripening inhibitor (rin) mutants. MADS-RIN directly activates the expression of E6-2 in vivo. Additionally, a remarkable reduction of E6-2 was observed in wild-type (WT) tomato fruits at the MG stage treated with 1-MCP. RNAi-mediated silencing of E6-2 resulted in delayed fruit ripening, reduced accumulation of the total carotenoid and lycopene, reduced content of ethylene production, and increased contents of the total pectin, cellulose, starch and soluble sugar. Moreover, the expression of carotenoid biosynthesis genes (PSY1, PDS and ZDS), ripening-related genes (CNR, PG and ERF4), ethylene biosynthesis genes (ACS2, ACO1 and ACO3), ethylene-responsive genes (E4 and E8) and cell wall metabolism genes (TBG4, PL, EXP1 and XTH5) were inhibited in E6-2 -RNAi lines. These results indicate that E6-2 plays an important role in regulating tomato fruit ripening targeted by RIN.
Collapse
Affiliation(s)
- Jing Kang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jun Gong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zihan Gao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Zhou W, Kong W, Yang C, Feng R, Xi W. Alcohol Acyltransferase Is Involved in the Biosynthesis of C6 Esters in Apricot ( Prunus armeniaca L.) Fruit. FRONTIERS IN PLANT SCIENCE 2021; 12:763139. [PMID: 34868159 PMCID: PMC8636060 DOI: 10.3389/fpls.2021.763139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Short-chain esters derived from fatty acid contribute to the characteristic flavor of apricot fruit, and the biosynthesis of these compounds in fruit is catalyzed by alcohol acyltransferase (AAT). In this work, we investigated the AAT gene family via genome-wide scanning, and three AAT loci were identified in different linkage groups (LGs), with PaAAT1 (PARG22907m01) in LG7, PaAAT2 (PARG15279m01) in LG4, and PaAAT3 (PARG22697m01) in LG6. Phylogenetic analysis showed that PaAAT1 belongs to clade 3, while PaAAT2 and PaAAT3 belong to clade 1 and clade 2, respectively. In contrast, the three AAT genes present different expression patterns. Only PaAAT1 exhibited distinct patterns of fruit-specific expression, and the expression of PaAAT1 sharply increased during fruit ripening, which is consistent with the abundance of C4-C6 esters such as (E)-2-hexenyl acetate and (Z)-3-hexenyl acetate. The transient overexpression of PaAAT1 in Katy (KT) apricot fruit resulted in a remarkable decrease in hexenol, (E)-2-hexenol, and (Z)-3-hexenol levels while significantly increasing the corresponding acetate production (p < 0.01). A substrate assay revealed that the PaAAT1 protein enzyme can produce hexenyl acetate, (E)-2-hexenyl acetate, and (Z)-3-hexenyl acetate when C6 alcohols are used as substrates for the reaction. Taken together, these results indicate that PaAAT1 plays a crucial role in the production of C6 esters in apricot fruit during ripening.
Collapse
Affiliation(s)
- Wanhai Zhou
- Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin University, Yibin, China
| | - Wenbin Kong
- China Chongqing Agricultural Technology Extension Station, Chongqing, China
| | - Can Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ruizhang Feng
- Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin University, Yibin, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Mayobre C, Pereira L, Eltahiri A, Bar E, Lewinsohn E, Garcia-Mas J, Pujol M. Genetic dissection of aroma biosynthesis in melon and its relationship with climacteric ripening. Food Chem 2021; 353:129484. [PMID: 33812162 DOI: 10.1016/j.foodchem.2021.129484] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Aroma is an essential trait in melon fruit quality, but its complexity and genetic basis are still poorly understood. The aim of this study was the identification of quantitative trait loci (QTLs) underlying volatile organic compounds (VOCs) biosynthesis in melon rind and flesh, using a Recombinant Inbred Line (RIL) population from the cross 'Piel de Sapo' (PS) × 'Védrantais' (VED), two commercial varieties segregating for ripening behavior. A total of 82 VOCs were detected by gas chromatography-mass spectrometry (GC-MS), and 166 QTLs were identified. The main QTL cluster was on chromosome 8, collocating with the previously described ripening-related QTL ETHQV8.1, with an important role in VOCs biosynthesis. QTL clusters involved in esters, lipid-derived volatiles and apocarotenoids were also identified, and candidate genes have been proposed for ethyl 3-(methylthio)propanoate and benzaldehyde biosynthesis. Our results provide genetic insights for deciphering fruit aroma in melon and offer new tools for flavor breeding.
Collapse
Affiliation(s)
- Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Lara Pereira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Abdelali Eltahiri
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Einat Bar
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
9
|
Ethylene Sensor-Enabled Dynamic Monitoring and Multi-Strategies Control for Quality Management of Fruit Cold Chain Logistics. SENSORS 2020; 20:s20205830. [PMID: 33076361 PMCID: PMC7602604 DOI: 10.3390/s20205830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 11/29/2022]
Abstract
Due to the presence of bioactive compounds, fruits are an essential part of people’s healthy diet. However, endogenous ethylene produced by climacteric fruits and exogenous ethylene in the microenvironment could play a pivotal role in the physiological and metabolic activities, leading to quality losses during storage or shelf life. Moreover, due to the variety of fruits and complex scenarios, different ethylene control strategies need to be adapted to improve the marketability of fruits and maintain their high quality. Therefore, this study proposed an ethylene dynamic monitoring based on multi-strategies control to reduce the post-harvest quality loss of fruits, which was evaluated here for blueberries, sweet cherries, and apples. The results showed that the ethylene dynamic monitoring had rapid static/dynamic response speed (2 ppm/s) and accurately monitoring of ethylene content (99% accuracy). In addition, the quality parameters evolution (firmness, soluble solids contents, weight loss rate, and chromatic aberration) showed that the ethylene multi-strategies control could effectively reduce the quality loss of fruits studied, which showed great potential in improving the quality management of fruits in the supply chain.
Collapse
|
10
|
Giné-Bordonaba J, Busatto N, Larrigaudière C, Lindo-García V, Echeverria G, Vrhovsek U, Farneti B, Biasioli F, De Quattro C, Rossato M, Delledonne M, Costa F. Investigation of the transcriptomic and metabolic changes associated with superficial scald physiology impaired by lovastatin and 1-methylcyclopropene in pear fruit (cv. "Blanquilla"). HORTICULTURE RESEARCH 2020; 7:49. [PMID: 32257235 PMCID: PMC7109095 DOI: 10.1038/s41438-020-0272-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 05/07/2023]
Abstract
To elucidate the physiology underlying the development of superficial scald in pears, susceptible "Blanquilla" fruit was treated with different compounds that either promoted (ethylene) or repressed (1-methylcyclopropene and lovastatin) the incidence of this disorder after 4 months of cold storage. Our data show that scald was negligible for the fruit treated with 1-methylcyclopropene or lovastatin, but highly manifested in untreated (78% incidence) or ethylene-treated fruit (97% incidence). The comparison between the fruit metabolomic profile and transcriptome evidenced a distinct reprogramming associated with each treatment. In all treated samples, cold storage led to an activation of a cold-acclimation-resistance mechanism, including the biosynthesis of very-long-chain fatty acids, which was especially evident in 1-methylcyclopropane-treated fruit. Among the treatments applied, only 1-methylcyclopropene inhibited ethylene production, hence supporting the involvement of this hormone in the development of scald. However, a common repression effect on the PPO gene combined with higher sorbitol content was found for both lovastatin and 1-methylcyclopropene-treated samples, suggesting also a non-ethylene-mediated process preventing the development of this disorder. The results presented in this work represent a step forward to better understand the physiological mechanisms governing the etiology of superficial scald in pears.
Collapse
Affiliation(s)
- Jordi Giné-Bordonaba
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Nicola Busatto
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Christian Larrigaudière
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Violeta Lindo-García
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Gemma Echeverria
- XaRTA-Postharvest, Institute for Food and Agricultural Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Spain
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Brian Farneti
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Concetta De Quattro
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Trento, Italy
- Center Agriculture Food Environment, University of Trento, via Mach 1, 38010 San Michele all’Adige, Trento Italy
| |
Collapse
|
11
|
|
12
|
|
13
|
A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Sci Rep 2018; 8:3413. [PMID: 29467500 PMCID: PMC5821886 DOI: 10.1038/s41598-018-21672-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
The MADS-box transcription factors play essential roles in many physiological and biochemical processes of plants, especially in fruit ripening. Here, a tomato MADS-box gene, SlCMB1, was isolated. SlCMB1 expression declined with the fruit ripening from immature green to B + 7 (7 days after Breaker) fruits in the wild type (WT) and was lower in Nr and rin mutants fruits. Tomato plants with reduced SlCMB1 mRNA displayed delayed fruit ripening, reduced ethylene production and carotenoid accumulation. The ethylene production in SlCMB1-RNAi fruits decreased by approximately 50% as compared to WT. The transcripts of ethylene biosynthesis genes (ACS2, ACS4, ACO1 and ACO3), ethylene-responsive genes (E4, E8 and ERF1) and fruit ripening-related genes (RIN, TAGL1, FUL1, FUL2, LoxC and PE) were inhibited in SlCMB1-RNAi fruits. The carotenoid accumulation was decreased and two carotenoid synthesis-related genes (PSY1 and PDS) were down-regulated while three lycopene cyclase genes (CYCB, LCYB and LCYE) were up-regulated in transgenic fruits. Furthermore, yeast two-hybrid assay showed that SlCMB1 could interact with SlMADS-RIN, SlMADS1, SlAP2a and TAGL1, respectively. Collectively, these results indicate that SlCMB1 is a new component to the current model of regulatory network that regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening.
Collapse
|
14
|
Gwanpua SG, Verlinden BE, Hertog ML, Nicolai BM, Geeraerd AH. A mechanistic modelling approach to understand 1-MCP inhibition of ethylene action and quality changes during ripening of apples. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3802-3813. [PMID: 28139841 DOI: 10.1002/jsfa.8244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND 1-Methylcyclopropene (1-MCP) inhibits ripening in climacteric fruit by blocking ethylene receptors, preventing ethylene from binding and eliciting its action. The objective of the current study was to use mathematical models to describe 1-MCP inhibition of apple fruit ripening, and to provide a tool for predicting ethylene production, and two important quality indicators of apple fruit, firmness and background colour. RESULTS A model consisting of coupled differential equations describing 1-MCP inhibition of apple ripening was developed. Data on ethylene production, expression of ethylene receptors, firmness, and background colour during ripening of untreated and 1-MCP treated apples were used to calibrate the model. An overall adjusted R2 of 95% was obtained. The impact of time from harvest to treatment, and harvest maturity on 1-MCP efficacy was modelled. Different hypotheses on the partial response of 'Jonagold' apple to 1-MCP treatment were tested using the model. The model was validated using an independent dataset. CONCLUSIONS Low 1-MCP blocking efficacy was shown to be the most likely cause of partial response for delayed 1-MCP treatment, and 1-MCP treatment of late-picked apples. Time from harvest to treatment was a more important factor than maturity for 1-MCP efficacy in 'Jonagold' apples. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sunny George Gwanpua
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
- Centre for Postharvest and Refrigeration Research, Massey University, Palmerston North, New Zealand
| | | | - Maarten Latm Hertog
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
| | - Bart M Nicolai
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| | - Annemie H Geeraerd
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Zhang L, Li H, Gao L, Qi Y, Fu W, Li X, Zhou X, Gao Q, Gao Z, Jia H. Acyl-CoA oxidase 1 is involved in γ-decalactone release from peach (Prunus persica) fruit. PLANT CELL REPORTS 2017; 36:829-842. [PMID: 28238071 DOI: 10.1007/s00299-017-2113-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
γ-Decalactone accumulation in peach mesocarp was highly correlated with ACX enzyme activity and natural PpACX1 content. Adding the purified recombinant PpACX1 induced γ-decalactone biosynthesis in cultured mesocarp discs in vitro. Previous gene expression studies have implied that acyl coenzyme A oxidase (ACX) is related to lactones synthesis, the characteristic aroma compounds of peach. Here, we analysed the correlation between γ-decalactone content and ACX enzyme activity in mesocarp of five different types of fully ripe peach varieties. Furthermore, 'Hu Jing Mi Lu' ('HJ') and 'Feng Hua Yu Lu' ('YL'), which have strong aroma among them, at four ripening stages were selected to study the role of ACX in lactone biosynthesis. The result showed that γ-decalactone was the most abundant lactone compound. γ-Decalactone accumulation was highly correlated with ACX enzyme activity. Mass spectrometry (MS) showed that PpACX1 was the most abundant PpACX protein in fully ripe mesocarp of cv. 'HJ'. To further elucidate the function of the PpACX1 protein, the PpACX1 gene was heterologously expressed in a bacterial system and characterized in vitro. MS identification gave the molecular weight of the recombinant PpACX1 as 94.44 kDa and the coverage rate of the peptide segments was 47.3%. In cultured mesocarp discs in vitro, adding the purified recombinant PpACX1 and C16-CoA substrate induced the expected γ-decalactone biosynthesis. Using a sandwich ELISA based on mixed mono- and polyclonal antibodies against recombinant PpACX1, PpACX1 content in mesocarp was found to be highly correlated with γ-decalactone accumulation in mesocarp of five fully ripe varieties and four ripening stages of 'HJ' and 'YL'. This study revealed the vital function of PpACX1 in γ-decalactone biosynthesis in peach fruit.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Li
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Ling Gao
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Qi
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Wanyi Fu
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Xiongwei Li
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Forest and Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xiang Zhou
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Qikang Gao
- Bio-Macromolecules Analysis Lab, Analysis Center of Agrobiology, Environmental Sciences of Zhejiang University, Hangzhou, 310058, China
| | - Zhongshan Gao
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Huijuan Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2017; 8:475. [PMID: 28421102 PMCID: PMC5378820 DOI: 10.3389/fpls.2017.00475] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
The complex juvenile/maturity transition during a plant's life cycle includes growth, reproduction, and senescence of its fundamental organs: leaves, flowers, and fruits. Growth and senescence of leaves, flowers, and fruits involve several genetic networks where the phytohormone ethylene plays a key role, together with other hormones, integrating different signals and allowing the onset of conditions favorable for stage progression, reproductive success and organ longevity. Changes in ethylene level, its perception, and the hormonal crosstalk directly or indirectly regulate the lifespan of plants. The present review focused on ethylene's role in the development and senescence processes in leaves, flowers and fruits, paying special attention to the complex networks of ethylene crosstalk with other hormones. Moreover, aspects with limited information have been highlighted for future research, extending our understanding on the importance of ethylene during growth and senescence and boosting future research with the aim to improve the qualitative and quantitative traits of crops.
Collapse
Affiliation(s)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilano, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | | | - M. I. R. Khan
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
17
|
Enhanced production of 3-methylthiopropionic ethyl ester in native Iranian Cucumis melo L. Group dudaim under regulated deficit irrigation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Balaguera-López HE, Espinal-Ruiz M, Zacarías L, Herrera AO. Effect of ethylene and 1-methylcyclopropene on the postharvest behavior of cape gooseberry fruits (Physalis peruviana L.). FOOD SCI TECHNOL INT 2016; 23:86-96. [DOI: 10.1177/1082013216658581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022]
Abstract
Cape gooseberry ( Physalis peruviana L.) fruits are highly perishable berries that exhibit a climacteric respiratory behavior. The objective of this study was to evaluate the effect of ethylene and the ethylene action inhibitor 1-methylcyclopropene on the postharvest behavior of cape gooseberry fruits (ecotype Colombia). Fruits were treated with ethylene, in an ethephon application (1000 µL L−1), and pretreated with 1-methylcyclopropene (1 µL L−1), 1-methylcyclopropene+ethylene, and results compared with a control without application. Subsequently, the fruits were maintained at room temperature (20 ℃, 75% RH) for up to 11 days. The pretreatment of the cape gooseberry fruits with 1-methylcyclopropene delayed most of the ripening-associated parameters, with a reduction in the respiration rate and ethylene production, skin color development, total soluble solids, total carotenoid content, loss of firmness, loss of total titratable acidity and emission of volatile compounds such as ethyl octanoate, ethyl butanoate, ethyl decanoate, and hexyl decanoate. Conversely, application of ethephon accelerated most of these physiological changes and also overcame most of the effects prevented by the ethylene action inhibitor. Altogether, the results supported the idea of a climacteric-like behavior for cape gooseberry fruits and pointing out that the pretreatment with 1-methylcyclopropene may be a promising and efficient postharvest treatment to delay maturity and extend the postharvest period.
Collapse
Affiliation(s)
- Helber E Balaguera-López
- Departamento de Agronomía, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
- Departamento de Biología, Universidad del Bosque, Bogotá DC, Colombia
- Departamento de Agronomía, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Mauricio Espinal-Ruiz
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Lorenzo Zacarías
- Departamento de Ciencia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| | - Aníbal O Herrera
- Departamento de Agronomía, Universidad Nacional de Colombia, Bogotá DC, Colombia
| |
Collapse
|
19
|
Shen SL, Yin XR, Zhang B, Xie XL, Jiang Q, Grierson D, Chen KS. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4105-15. [PMID: 27194737 PMCID: PMC5301923 DOI: 10.1093/jxb/erw189] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aroma is a vital characteristic that determines the quality and commercial value of citrus fruits, and characteristic volatiles have been analyzed in different citrus species. In sweet orange, Citrus sinensis, the sesquiterpene (+)-valencene is a key volatile compound in the fruit peel. Valencene synthesis is catalyzed by the terpene synthase CsTPS1, but the transcriptional mechanisms controlling its gene expression are unknown. Here, the AP2/ERF (APETALA2/ethylene response factor) transcription factor, CitAP2.10, is characterized as a regulator of (+)-valencene synthesis. The expression pattern of CitAP2.10 was positively correlated with (+)-valencene content and CsTPS1 expression. Dual-luciferase assays indicated that CitAP2.10 could trans-activate the CsTPS1 promoter. Ethylene enhanced expression of CitAP2.10 and this effect was abolished by the ethylene antagonist 1-methylcyclopropene. The role and function of CitAP2.10 in (+)-valencene biosynthesis were confirmed using the Arabidopsis homolog (AtWRI1), which also transiently activated the CsTPS1 promoter. Furthermore, transient over-expression of CitAP2.10 triggered (+)-valencene biosynthesis in sweet orange fruit. These results indicate that CitAP2.10 regulates (+)-valencene synthesis via induction of CsTPS1 mRNA accumulation.
Collapse
Affiliation(s)
- Shu-Ling Shen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xue-Ren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Bo Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xiu-Lan Xie
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Qian Jiang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
20
|
Shi J, Ma C, Qi D, Lv H, Yang T, Peng Q, Chen Z, Lin Z. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC PLANT BIOLOGY 2015; 15:233. [PMID: 26420557 PMCID: PMC4588909 DOI: 10.1186/s12870-015-0609-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/08/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tea (Camellia sinensis) has long been consumed worldwide for its amazing flavor and aroma. Methyl jasmonate (MeJA), which acts as an effective elicitor among the plant kingdom, could mostly improve the quality of tea aroma by promoting flavor volatiles in tea leaves. Although a variety of volatile secondary metabolites that contribute to aroma quality have been identified, our understanding of the biosynthetic pathways of these compounds has remained largely incomplete. Therefore, information aboaut the transcriptome of tea leaves and, specifically, details of any changes in gene expression in response to MeJA, is required for a better understanding of the biological mechanisms of MeJA-mediated volatiles biosynthesis. Moreover, MeJA treatment could exaggerate the responses of secondary metabolites and some gene expression which offer a better chance to figure out the mechanism. RESULTS The results of two-dimensional gas-chromatograph mass-spectrometry showed that the terpenoids content in MeJA-treated tea leaves increased, especially linalool, geraniol, and phenylethyl alcohol. More importantly, we carried out RNA-seq to identify the differentially expressed genes (DEGs) related to volatiles biosynthesis pathways induced by MeJA treatment (0 h, 12 h, 24 h and 48 h) in tea leaves. We identified 19245, 18614, 11890 DEGs respectively in the MeJA_12h, MeJA_24 h and MeJA_48 h samples. The α-Lenolenic acid degradation pathway was firstly responded resulting in activating the JA-pathway inner tea leaves, and the MEP/DOXP pathway significantly exaggerated. Notably, the expression level of jasmonate O-methyltransferase, which is associated with the central JA biosynthesis pathway, was increased by 7.52-fold in MeJA_24 h tea leaves. Moreover, the genes related to the terpenoid backbone biosynthesis pathway showed different expression patterns compared with the untreated leaves. The expression levels of 1-deoxy-D-xylulose-phosphate synthase (DXS), all-trans-nonaprenyl-diphosphate synthase, geranylgeranyl reductase, geranylgeranyl diphosphate synthase (type II), hydroxymethylglutaryl-CoA reductase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase increased by approximately 2-4-fold. CONCLUSIONS The results of two-dimension gas-chromatography mass-spectrometry analysis suggested that exogenous application of MeJA could induce the levels of volatile components in tea leaves, especially the geraniol, linalool and its oxides. Moreover, the transcriptome analysis showed increased expression of genes in α-Lenolenic acid degradation pathway which produced massive jasmonic acid and quickly activated holistic JA-pathway inner tea leaves, also the terpenoid backbones biosynthesis pathway was significantly affected after MeJA treatment. In general, MeJA could greatly activate secondary metabolism pathways, especially volatiles. The results will deeply increase our understanding of the volatile metabolites biosynthesis pathways of tea leaves in response to MeJA.
Collapse
Affiliation(s)
- Jiang Shi
- />Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South Meiling Road, Hangzhou, Zhejiang 310008 PR China
- />Graduate School of Chinese Academy of Agricultural Sciences, 12 South Street of Zhongguancun, Beijing, 100081 PR China
| | - ChengYing Ma
- />Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South Meiling Road, Hangzhou, Zhejiang 310008 PR China
| | - DanDan Qi
- />Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South Meiling Road, Hangzhou, Zhejiang 310008 PR China
- />Graduate School of Chinese Academy of Agricultural Sciences, 12 South Street of Zhongguancun, Beijing, 100081 PR China
| | - HaiPeng Lv
- />Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South Meiling Road, Hangzhou, Zhejiang 310008 PR China
| | - Ting Yang
- />Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South Meiling Road, Hangzhou, Zhejiang 310008 PR China
- />Graduate School of Chinese Academy of Agricultural Sciences, 12 South Street of Zhongguancun, Beijing, 100081 PR China
| | - QunHua Peng
- />Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South Meiling Road, Hangzhou, Zhejiang 310008 PR China
| | - ZongMao Chen
- />Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South Meiling Road, Hangzhou, Zhejiang 310008 PR China
| | - Zhi Lin
- />Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South Meiling Road, Hangzhou, Zhejiang 310008 PR China
| |
Collapse
|
21
|
Slinski SL, Zakharov F, Gordon TR. The Effect of Resin and Monoterpenes on Spore Germination and Growth in Fusarium circinatum. PHYTOPATHOLOGY 2015; 105:119-25. [PMID: 25163010 DOI: 10.1094/phyto-02-14-0027-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Resin obtained from Pinus radiata and five monoterpene components of resin (limonene, α-pinene, β-pinene, camphene, and myrcene) were tested to determine their effects on mycelial growth and germination and survival of spores of Fusarium circinatum, the cause of pitch canker in pine, and F. temperatum, which is interfertile with F. circinatum but not pathogenic to pine. Averaged across all treatments, F. temperatum sustained the greatest reduction in radial growth (16.9±0.02% of control). The greatest reduction in dry weight also occurred in F. temperatum (11.7±0.01% of control), and all isolates of F. circinatum were significantly less affected (P<0.05). Spore germination rates in a saturated atmosphere of monoterpenes were relatively high for all tested isolates but, when placed in direct contact with resin, spore survival was significantly greater for F. circinatum than for F. temperatum. Our results are consistent with the hypothesis that greater tolerance of resin is one factor distinguishing F. circinatum from the nonpathogenic F. temperatum. However, differential tolerance of monoterpene components of resin is not sufficient to explain the observed variation in virulence to pine in F. circinatum.
Collapse
|
22
|
Kumar R, Khurana A, Sharma AK. Role of plant hormones and their interplay in development and ripening of fleshy fruits. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4561-75. [PMID: 25028558 DOI: 10.1093/jxb/eru277] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant hormones have been extensively studied for their roles in the regulation of various aspects of plant development. However, in the last decade important new insights have been made into their action during development and ripening, in both dry and fleshy fruits. Emerging evidence suggests that relative functions of plant hormones are not restricted to a particular stage, and a complex network of more than one plant hormone is involved in controlling various aspects of fruit development. Though some areas are extensively covered, considerable gaps in our knowledge and understanding still exist in the control of hormonal networks and crosstalk between different hormones during fruit expansion, maturation, and various other aspects of ripening. Here, we evaluate the new knowledge on their relative roles during tomato fruit development with a view to understand their mechanism of action in fleshy fruits. For a better understanding, pertinent evidences available on hormonal crosstalk during fruit development in other species are also discussed. We envisage that such detailed knowledge will help design new strategies for effective manipulation of fruit ripening.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India. Current address: Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ashima Khurana
- Zakir Husain Delhi College, University of Delhi, New Delhi 110002, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
23
|
Paul V, Pandey R. Role of internal atmosphere on fruit ripening and storability-a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:1223-50. [PMID: 24966416 PMCID: PMC4062679 DOI: 10.1007/s13197-011-0583-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/03/2011] [Accepted: 11/07/2011] [Indexed: 11/28/2022]
Abstract
Concentrations of different gases and volatiles present or produced inside a fruit are determined by the permeability of the fruit tissue to these compounds. Primarily, surface morphology and anatomical features of a given fruit determine the degree of permeance across the fruit. Species and varietal variability in surface characteristics and anatomical features therefore influence not only the diffusibility of gases and volatiles across the fruits but also the activity and response of various metabolic and physiological reactions/processes regulated by these compounds. Besides the well-known role of ethylene, gases and volatiles; O2, CO2, ethanol, acetaldehyde, water vapours, methyl salicylate, methyl jasmonate and nitric oxide (NO) have the potential to regulate the process of ripening individually and also in various interactive ways. Differences in the prevailing internal atmosphere of the fruits may therefore be considered as one of the causes behind the existing varietal variability of fruits in terms of rate of ripening, qualitative changes, firmness, shelf-life, ideal storage requirement, extent of tolerance towards reduced O2 and/or elevated CO2, transpirational loss and susceptibility to various physiological disorders. In this way, internal atmosphere of a fruit (in terms of different gases and volatiles) plays a critical regulatory role in the process of fruit ripening. So, better and holistic understanding of this internal atmosphere along with its exact regulatory role on various aspects of fruit ripening will facilitate the development of more meaningful, refined and effective approaches in postharvest management of fruits. Its applicability, specially for the climacteric fruits, at various stages of the supply chain from growers to consumers would assist in reducing postharvest losses not only in quantity but also in quality.
Collapse
Affiliation(s)
- Vijay Paul
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Rakesh Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
24
|
Makkumrai W, Sivertsen H, Sugar D, Ebeler SE, Negre-Zakharov F, Mitcham EJ. Effect of ethylene and temperature conditioning on sensory attributes and chemical composition of 'Comice' pears. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4988-5004. [PMID: 24844943 DOI: 10.1021/jf405047v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
'Comice' is among the pear varieties most difficult to ripen after harvest. Ethylene, cold temperature, and intermediate (10 °C) temperature conditioning have been successfully used to stimulate the ability of 'Comice' pears to ripen. However, the sensory quality of pears stimulated to ripen by different conditioning treatments has not been evaluated. In this study, a descriptive sensory analysis of 'Comice' pears conditioned to soften to 27, 18, and 9 N firmness with ethylene exposure for 3 or 1 days, storage at 0 °C for 25 or 15 days, or storage at 10 °C for 10 days was performed. Sensory attributes were then related to changes in chemical composition, including volatile components, water-soluble polyuronides, soluble solids content (SSC), and titratable acidity (TA). The sensory profile of fruit conditioned with ethylene was predominant in fibrous texture and low in fruity and pear aroma. Fruit conditioned at 0 °C was described as crunchy at 27 and 18 N firmness and became juicy at 9 N firmness. Fruit conditioned at 0 °C produced the highest quantity of alcohols and fewer esters than fruit conditioned at 10 °C, and they had higher fruity and pear aroma than fruit conditioned with ethylene, but lower than fruit conditioned at 10 °C. Fruit held at 10 °C were predominant in fruity and pear aroma and had the highest concentration of esters. Water-soluble polyuronides were strongly, positively correlated (r > 0.9) with sensory attributes generally associated with ripeness, including juiciness, butteriness, and sweetness and negatively correlated (r > -0.9) with sensory attributes generally associated with the unripe stage, such as firmness and crunchiness. However, water-soluble polyuronides were not significantly different among conditioning treatments. Sensory sweetness was not significantly correlated with SSC, but TA and SSC/TA were significantly correlated with sensory tartness. However, there were no significant differences among the conditioning treatments in sweet or sour taste perception when the fruit fully softened. The results indicate that the various methods of conditioning 'Comice' pear fruits for ripening had different effects on their sensory and chemical properties that may influence their sensory quality.
Collapse
Affiliation(s)
- Warangkana Makkumrai
- Department of Plant Sciences, ‡Department of Food Science and Technology, and #Department of Viticulture and Enology, University of California , Davis, California 95616, United States
| | | | | | | | | | | |
Collapse
|
25
|
Allwood JW, Cheung W, Xu Y, Mumm R, De Vos RCH, Deborde C, Biais B, Maucourt M, Berger Y, Schaffer AA, Rolin D, Moing A, Hall RD, Goodacre R. Metabolomics in melon: a new opportunity for aroma analysis. PHYTOCHEMISTRY 2014; 99:61-72. [PMID: 24417788 PMCID: PMC4180013 DOI: 10.1016/j.phytochem.2013.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 05/02/2023]
Abstract
Cucumis melo fruit is highly valued for its sweet and refreshing flesh, however the flavour and value are also highly influenced by aroma as dictated by volatile organic compounds (VOCs). A simple and robust method of sampling VOCs on polydimethylsiloxane (PDMS) has been developed. Contrasting cultivars of C. melo subspecies melo were investigated at commercial maturity: three cultivars of var. Cantalupensis group Charentais (cv. Cézanne, Escrito, and Dalton) known to exhibit differences in ripening behaviour and shelf-life, as well as one cultivar of var. Cantalupensis group Ha'Ogan (cv. Noy Yisre'el) and one non-climacteric cultivar of var. Inodorus (cv. Tam Dew). The melon cultivar selection was based upon fruits exhibiting clear differences (cv. Noy Yisre'el and Tam Dew) and similarities (cv. Cézanne, Escrito, and Dalton) in flavour. In total, 58 VOCs were detected by thermal desorption (TD)-GC-MS which permitted the discrimination of each cultivar via Principal component analysis (PCA). PCA indicated a reduction in VOCs in the non-climacteric cv. Tam Dew compared to the four Cantalupensis cultivars. Within the group Charentais melons, the differences between the short, mid and long shelf-life cultivars were considerable. ¹H NMR analysis led to the quantification of 12 core amino acids, their levels were 3-10-fold greater in the Charentais melons, although they were reduced in the highly fragrant cv. Cézanne, indicating their role as VOC precursors. This study along with comparisons to more traditional labour intensive solid phase micro-extraction (SPME) GC-MS VOC profiling data has indicated that the high-throughput PDMS method is of great potential for the assessment of melon aroma and quality.
Collapse
Affiliation(s)
- J William Allwood
- School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - William Cheung
- School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yun Xu
- School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Roland Mumm
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Ric C H De Vos
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, Netherlands; Centre for BioSystems Genomics, P.O. Box 98, 6700AB Wageningen, Netherlands
| | - Catherine Deborde
- INRA, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France; Metabolome Facility of Bordeaux Functional Genomics Centre, Centre INRA de Bordeaux, IBVM, F-33140 Villenave d'Ornon, France
| | - Benoit Biais
- INRA, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France
| | - Mickael Maucourt
- Metabolome Facility of Bordeaux Functional Genomics Centre, Centre INRA de Bordeaux, IBVM, F-33140 Villenave d'Ornon, France; Université de Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France
| | - Yosef Berger
- Agricultural Research Organisation (ARO), The Volcani Center, Bet Dagan 50250, Israel
| | - Arthur A Schaffer
- Agricultural Research Organisation (ARO), The Volcani Center, Bet Dagan 50250, Israel
| | - Dominique Rolin
- Metabolome Facility of Bordeaux Functional Genomics Centre, Centre INRA de Bordeaux, IBVM, F-33140 Villenave d'Ornon, France; Université de Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France
| | - Annick Moing
- INRA, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France; Metabolome Facility of Bordeaux Functional Genomics Centre, Centre INRA de Bordeaux, IBVM, F-33140 Villenave d'Ornon, France
| | - Robert D Hall
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, Netherlands; Centre for BioSystems Genomics, P.O. Box 98, 6700AB Wageningen, Netherlands
| | - Royston Goodacre
- School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
26
|
Sobolev AP, Neelam A, Fatima T, Shukla V, Handa AK, Mattoo AK. Genetic introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on the primary metabolome. FRONTIERS IN PLANT SCIENCE 2014; 5:632. [PMID: 25538712 PMCID: PMC4257014 DOI: 10.3389/fpls.2014.00632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/24/2014] [Indexed: 05/22/2023]
Abstract
Ethylene regulates a myriad physiological and biochemical processes in ripening fruits and is accepted as the ripening hormone for the climacteric fruits. However, its effects on metabolome and resulting fruit quality are not yet fully understood, particularly when some of the ripening-associated biochemical changes are independent of ethylene action. We have generated a homozygous transgenic tomato genotype (2AS-AS) that exhibits reduced ethylene production as a result of impaired expression of 1-aminocyclopropane-1-carboxylate synthase 2 gene by its antisense RNA and had a longer shelf life. Double transgenic hybrid (2AS-AS × 579HO) developed through a genetic cross between 2AS-AS and 579HO (Mehta et al., 2002) lines resulted in significantly higher ethylene production than either the WT or 2AS-AS fruit. To determine the effects of reduced ethylene and introgression of higher polyamines' trait, the metabolic profiles of ripening fruits from WT (556AZ), 2AS-AS, and 2AS-AS × 579HO lines were determined using (1)H-NMR spectroscopy. The levels of Glu, Asp, AMP, Adenosine, Nucl1, and Nucl2 increased during ripening of the WT fruit. The increases in Glu, Asp, and AMP levels were attenuated in 2AS-AS fruit but recovered in the double hybrid with higher ethylene and polyamine levels. The ripening-associated decreases in Ala, Tyr, Val, Ile, Phe, malate, and myo-inositol levels in the 2AS-AS line were not reversed in the double hybrid line suggesting a developmental/ripening regulated accumulation of these metabolites independent of ethylene. Significant increases in the levels of fumarate, formate, choline, Nucl1, and Nucl2 at most stages of ripening fruit were found in the double transgenic line due to introgression with higher-polyamines trait. Taken together these results show that the ripening-associated metabolic changes are both ethylene dependent and independent, and that the fruit metabolome is under the control of multiple regulators, including ethylene and polyamines.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Laboratory of Magnetic Resonance “Annalaura Segre”, Institute of Chemical Methodologies, National Research CouncilRome, Italy
| | - Anil Neelam
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Tahira Fatima
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Vijaya Shukla
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Avtar K. Handa
- Department of Horticulture, Purdue University, West LafayetteIN, USA
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- *Correspondence: Autar K. Mattoo, Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA e-mail:
| |
Collapse
|
27
|
Vallone S, Sivertsen H, Anthon GE, Barrett DM, Mitcham EJ, Ebeler SE, Zakharov F. An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening. Food Chem 2013; 139:171-83. [DOI: 10.1016/j.foodchem.2012.12.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
|
28
|
Amaro AL, Fundo JF, Oliveira A, Beaulieu JC, Fernández-Trujillo JP, Almeida DPF. 1-methylcyclopropene effects on temporal changes of aroma volatiles and phytochemicals of fresh-cut cantaloupe. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:828-837. [PMID: 22821412 DOI: 10.1002/jsfa.5804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Orange-fleshed cantaloupe melons have intense aroma and flavor but are very perishable during storage life. Fresh-cut processing enhances ethylene-mediated quality losses. Post-cutting 1-methylcyclopene (1-MCP) application to fresh-cut cantaloupe was evaluated for its effects on quality attributes, phytochemical content and aroma volatiles. RESULTS Fresh-cut cantaloupe (Cucumis melo var. cantalupensis 'Fiesta') cubes treated with 1.0 µL L(-1) of 1-MCP for 24 h at 5 °C, packaged in vented plastic clamshells and stored under normal atmosphere at 5 °C for 9 days, preserved their soluble solids, total phenolics, total carotenoids and β-carotene contents, but significant softening occurred. A significant increase of non-acetate esters and a decrease of aldehydes occurred during storage. Most quality attributes of fresh-cut cantaloupe were unaffected by the treatment with 1-MCP. 1-MCP-treated fresh-cut cantaloupe accumulated higher levels of propyl acetate, 2-methylbutyl acetate, methyl butanoate, methyl 2-methyl butanoate, methyl hexanoate, 2-methylbutyl alcohol and phenethyl alcohol, and lower levels of benzyl alcohol and heptanal than untreated controls. CONCLUSION Post-cutting treatment with 1-MCP affected nine of the flavor-important volatiles, particularly those derived from the amino acids isoleucine and phenylalanine, but had no practical effect on phytochemicals or other quality attributes.
Collapse
Affiliation(s)
- Ana L Amaro
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-072 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Goldenberg L, Feygenberg O, Samach A, Pesis E. Ripening attributes of new passion fruit line featuring seasonal non-climacteric behavior. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1810-1821. [PMID: 22248094 DOI: 10.1021/jf203313r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The passion fruit hybrid cultivar 'Passion Dream' (PD) produces two cycles of fruiting per year, in the summer and winter. Self-hybridization of PD created various lines, including 'Ripens during Summer' (RS), which lacks the ability to abscise during winter, suggesting a seasonal nonclimacteric behavior. The two lines were characterized by several quality traits: PD produced high ethylene levels in both seasons; RS produced significantly less ethylene during summer and almost none during winter. The ratio of total soluble solids to titratable acidity (TSS/TA), and aroma volatiles production, as determined by solid-phase microextraction/gas chromatograph-mass spectrometer (SPME/GC-MS) techniques, and taste indices were highest in PD summer fruits and lowest in RS winter fruits. Peel color in PD was affected by environmental and storage temperatures, whereas RS fruits always showed a strong purple color. The present findings suggest that ethylene production levels in passion fruit greatly influence various ripening processes, including acid degradation, increased TSS/TA ratio, accumulation of aroma volatiles, and tastiness.
Collapse
Affiliation(s)
- Livnat Goldenberg
- Department of Postharvest Science of Fresh Produce, the Volcani Center, Bet Dagan, Israel
| | | | | | | |
Collapse
|
30
|
Amaro AL, Beaulieu JC, Grimm CC, Stein RE, Almeida DP. Effect of oxygen on aroma volatiles and quality of fresh-cut cantaloupe and honeydew melons. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.06.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Günther CS, Heinemann K, Laing WA, Nicolau L, Marsh KB. Ethylene-regulated (methylsulfanyl)alkanoate ester biosynthesis is likely to be modulated by precursor availability in Actinidia chinensis genotypes. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:629-38. [PMID: 21071110 DOI: 10.1016/j.jplph.2010.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 05/03/2023]
Abstract
The limiting steps of ethylene-dependent (methylsulfanyl)alkanoate ester biosynthesis have been investigated in this study, using closely related Actinidia chinensis genotypes and the commercial cultivar 'Hort16A'. Quantification of methylsulfanyl-compounds from the headspace of ethylene-producing kiwifruits revealed little variation in their volatile composition but remarkable differences in the magnitude of the fruit volatile levels. To test whether the variations in fruit volatile levels can be correlated with the genotype-specific apparent catalytic efficiency, the initial slope of the substrate response curve (V'(Max)K(M)(-1) where V'(Max) is the apparent V(Max) in a crude extract) was evaluated for total alcohol acyltransferase (EC 2.3.1.84) activity. The V'(Max)K(M)(-1) values of different (methylsulfanyl)alkyl-CoAs were in a similar range for most genotypes, which suggests substrate availability as the limiting factor for (methylsulfanyl)alkanoate ester synthesis in these kiwifruit. Furthermore, gene expression analysis of acyltransferase expressed sequence tags points towards the action of multiple isozymes for (methylsulfanyl)alkanoate ester synthesis, emphasizing the central role of substrate levels on final ester concentrations. Volatile levels of the potential precursor methional were increased in ethylene-producing A. chinensis kiwifruit and a close connection between (methylsulfanyl)alkanoate ester formation and ethylene synthesis in plants is proposed. Finally, a possible biosynthetic pathway is presented.
Collapse
Affiliation(s)
- Catrin S Günther
- The New Zealand Institute for Plant & Food Research Ltd., Private Bag 92169, Auckland 1142, New Zealand.
| | | | | | | | | |
Collapse
|
32
|
The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-An overview. Journal of Food Science and Technology 2011; 49:1-21. [PMID: 23572821 DOI: 10.1007/s13197-011-0293-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/21/2010] [Accepted: 08/22/2010] [Indexed: 10/18/2022]
Abstract
The process of fruit ripening is normally viewed distinctly in climacteric and non-climacteric fruits. But, many fruits such as guava, melon, Japanese plum, Asian pear and pepper show climacteric as well as non-climacteric behaviour depending on the cultivar or genotype. Investigations on in planta levels of CO2 and ethylene at various stages of fruits during ripening supported the role and involvement of changes in the rate of respiration and ethylene production in non-climacteric fruits such as strawberry, grapes and citrus. Non-climacteric fruits are also reported to respond to the exogenous application of ethylene. Comparative analysis of plant-attached and plant-detached fruits did not show similarity in their ripening behaviour. This disparity is being explained in view of 1. Hypothetical ripening inhibitor, 2. Differences in the production, release and endogenous levels of ethylene, 3. Sensitivity of fruits towards ethylene and 4. Variations in the gaseous microenvironment among fruits and their varieties. Detailed studies on genetic and inheritance patterns along with the application of '-omics' research indicated that ethylene-dependent and ethylene-independent pathways coexist in both climacteric and non-climacteric fruits. Auxin levels also interact with ethylene in regulating ripening. These findings therefore reveal that the classification of fruits based on climacteric rise and/or ethylene production status is not very distinct or perfect. However, presence of a characteristic rise in CO2 levels and a burst in ethylene production in some non-climacteric fruits as well as the presence of system 2 of ethylene production point to a ubiquitous role for ethylene in fruit ripening.
Collapse
|
33
|
Ortiz A, Graell J, López ML, Echeverría G, Lara I. Volatile ester-synthesising capacity in ‘Tardibelle’ peach fruit in response to controlled atmosphere and 1-MCP treatment. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.05.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Barrett DM, Beaulieu JC, Shewfelt R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Crit Rev Food Sci Nutr 2010; 50:369-89. [PMID: 20373184 DOI: 10.1080/10408391003626322] [Citation(s) in RCA: 332] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The color, flavor, texture, and the nutritional value of fresh-cut fruit and vegetable products are factors critical to consumer acceptance and the success of these products. In this chapter, desirable and undesirable quality attributes of fresh-cut fruit and vegetable products are reviewed. Both instrumental and sensory measurements for determining these critical quality attributes are discussed. The advantages and disadvantages of sensory and instrumental quality measurements are described. A review of typical unit operations involved in the production of fresh-cut products is presented. The effects of fresh-cut processing techniques and treatments on sensory quality, including the appearance, texture, flavor (taste and aroma) of vegetables, and fruits are detailed.
Collapse
Affiliation(s)
- Diane M Barrett
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
35
|
Gounaris Y. Biotechnology for the production of essential oils, flavours and volatile isolates. A review. FLAVOUR FRAG J 2010. [DOI: 10.1002/ffj.1996] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Alsmeirat N, El Assi N. Changes in Esters, Alcohols and Acetaldehyde in Two Cultivars of Charentais Melon as Influenced by Harvest Date and Storage. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijb.2010.81.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Lozano M, Vidal-Aragón MC, Hernández MT, Ayuso MC, Bernalte MJ, García J, Velardo B. Physicochemical and nutritional properties and volatile constituents of six Japanese plum (Prunus salicina Lindl.) cultivars. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0946-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Gao H, Zhu H, Shao Y, Chen A, Lu C, Zhu B, Luo Y. Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:991-996. [PMID: 18713349 DOI: 10.1111/j.1744-7909.2008.00685.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For elucidating the regulatory mechanism of ethylene on carotenoid-related volatiles (open chain) compounds and the relationship between lycopene and carotenoid-related volatiles, transgenic tomato fruits in which ACC synthase was suppressed were used. The transgenic tomato fruit showed a significant reduction of lycopene and aroma volatiles with low ethylene production. 6-Methyl-5-hepten-2-one, 6-methyl-5-hepten-2-ol and geranylacetone, which were suspected to be lycopene degradation products, were lower than those in wild type tomato fruits. In order to identify whether lycopene accumulation effects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato or not, the capability of both wild type and transgenic tomato fruits discs to convert lycopene into carotenoid-related volatiles was evaluated. The data showed that external lycopene could convert into 6-methyl-5-hepten-2-one and 6-methyl-5-hepten-2-ol in vivo, indicating that the strong inhibition of ethylene production had no effect on enzymes in the biosynthesis pathway of some carotenoid-related volatiles. Therefore, in ACS-suppression transgenic tomato fruits, the low levels of 6-methyl-5-hepten-2-one, 6-methyl-5-hepten-2-ol was due to decreased lycopene accumulation, not ethylene production. Ethylene only affected the accumulation of lycopene, and then indirectly influenced the level of lycopene-related volatiles.
Collapse
Affiliation(s)
- Hongyan Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Nuñez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe DJ. Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 2008; 28:13-55. [PMID: 18322855 DOI: 10.1080/07388550801891111] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Among Cucurbitaceae, Cucumis melo is one of the most important cultivated cucurbits. They are grown primarily for their fruit, which generally have a sweet aromatic flavor, with great diversity and size (50 g to 15 kg), flesh color (orange, green, white, and pink), rind color (green, yellow, white, orange, red, and gray), form (round, flat, and elongated), and dimension (4 to 200 cm). C. melo can be broken down into seven distinct types based on the previously discussed variations in the species. The melon fruits can be either climacteric or nonclimacteric, and as such, fruit can adhere to the stem or have an abscission layer where they will fall from the plant naturally at maturity. Traditional plant breeding of melons has been done for 100 years wherein plants were primarily developed as open-pollinated cultivars. More recently, in the past 30 years, melon improvement has been done by more traditional hybridization techniques. An improvement in germplasm is relatively slow and is limited by a restricted gene pool. Strong sexual incompatibility at the interspecific and intergeneric levels has restricted rapid development of new cultivars with high levels of disease resistance, insect resistance, flavor, and sweetness. In order to increase the rate and diversity of new traits in melon it would be advantageous to introduce new genes needed to enhance both melon productivity and melon fruit quality. This requires plant tissue and plant transformation techniques to introduce new or foreign genes into C. melo germplasm. In order to achieve a successful commercial application from biotechnology, a competent plant regeneration system of in vitro cultures for melon is required. More than 40 in vitro melon regeneration programs have been reported; however, regeneration of the various melon types has been highly variable and in some cases impossible. The reasons for this are still unknown, but this plays a heavy negative role on trying to use plant transformation technology to improve melon germplasm. In vitro manipulation of melon is difficult; genotypic responses to the culture method (i.e., organogenesis, somatic embryogenesis, etc.) as well as conditions for environmental and hormonal requirements for plant growth and regeneration continue to be poorly understood for developing simple in vitro procedures to culture and transform all C. melo genotypes. In many cases, this has to be done on an individual line basis. The present paper describes the various research findings related to successful approaches to plant regeneration and transgenic transformation of C. melo. It also describes potential improvement of melon to improve fruit quality characteristics and postharvest handling. Despite more than 140 transgenic melon field trials in the United States in 1996, there are still no commercial transgenic melon cultivars on the market. This may be a combination of technical or performance factors, intellectual property rights concerns, and, most likely, a lack of public acceptance. Regardless, the future for improvement of melon germplasm is bright when considering the knowledge base for both techniques and gene pools potentially useable for melon improvement.
Collapse
Affiliation(s)
- Hector G Nuñez-Palenius
- Plant Genetic Engineering Department, Guanajuato Campus. Center of Research and Advanced Studies (Cinvestav-IPN), National Polytechnic Institute, Irapuato, Guanajuato, Mexico.
| | | | | | | | | | | |
Collapse
|
40
|
Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, Schaffer AA, Burger J, Tadmor Y, Lewinsohn E, Katzir N. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. PLANT MOLECULAR BIOLOGY 2008; 66:647-61. [PMID: 18264780 DOI: 10.1007/s11103-008-9296-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 01/14/2008] [Indexed: 05/06/2023]
Abstract
A combined chemical, biochemical and molecular study was conducted to understand the differential accumulation of volatile sesquiterpenes in melon fruits. Sesquiterpenes were present mainly in the rinds of climacteric varieties, and a great diversity in their composition was found among varieties. Sesquiterpenes were generally absent in non-climacteric varieties. Two climacteric melon varieties, the green-fleshed 'Noy Yizre'el', and the orange-fleshed 'Dulce' were further examined. In 'Noy Yizre'el' the main sesquiterpenes accumulated are delta-cadinene, gamma-cadinene and alpha-copaene, while alpha-farnesene is the main sesquiterpene in 'Dulce'. Sesquiterpene synthase activities, mainly restricted to rinds of mature fruits, were shown to generate different sesquiterpenes in each variety according to the compositions found in rinds. EST melon database mining yielded two novel cDNAs coding for members of the Tps gene family termed CmTpsNY and CmTpsDul respectively, that are 43.2% similar. Heterologous expression in E. coli of CmTpsNY produced mainly delta-copaene, alpha-copaene, beta-caryophyllene, germacrene D, alpha-muurolene, gamma-cadinene, delta-cadinene, and alpha-cadinene, while CmTpsDul produced alpha-farnesene only. CmTpsNY was mostly expressed in 'Noy Yizre'el' rind while CmTpsDul expression was specific to 'Dulce' rind. None of these genes was expressed in rinds of the non-climacteric 'Tam Dew' cultivar. Our results indicate that different sesquiterpene synthases encoded by different members of the Tps gene family are active in melon varieties and this specificity modulates the accumulation of sesquiterpenes. The genes are differentially transcriptionally regulated during fruit development and according to variety and are likely to be associated with chemical differences responsible for the unique aromas of melon varieties.
Collapse
Affiliation(s)
- Vitaly Portnoy
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yu X, Wang X, Zhang W, Qian T, Tang G, Guo Y, Zheng C. Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2969-77. [PMID: 18641398 DOI: 10.1093/jxb/ern158] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To unravel the roles of soluble acid invertase in muskmelon (Cucumis melo L.), its activity in transgenic muskmelon plants was reduced by an antisense approach. For this purpose, a 1038 bp cDNA fragment of muskmelon soluble acid invertase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the stems were obviously thinner. Transmission electron microscopy revealed that degradation of the chloroplast membrane occurred in transgenic leaves and the number of grana in the chloroplast was significantly reduced, suggesting that the slow growth and weaker phenotype of the transgenic plants may be due to damage to the chloroplast ultrastructure, which in turn resulted in a decrease in net photosynthetic rate. The sucrose concentration increased and levels of acid invertase decreased in transgenic fruit, and the fruit size was 60% smaller than that of the control. In addition, transgenic fruit reached full-slip at 25 d after pollination (DAP), approximately 5 d before the control fruit (full-slip at 30 DAP), and this accelerated maturity correlated with a dramatic elevation of ethylene production at the later stages of fruit development. Together, these results suggest that soluble acid invertase not only plays an important role during muskmelon plant and fruit development but also controls the sucrose content in muskmelon fruit.
Collapse
Affiliation(s)
- Xiyan Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Beaulieu JC, Lancaster VA. Correlating volatile compounds, sensory attributes, and quality parameters in stored fresh-cut cantaloupe. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9503-9513. [PMID: 17944532 DOI: 10.1021/jf070282n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Changes in post-cutting volatiles, quality, and sensory attributes during fresh-cut storage (4 degrees C) of cantaloupe (Cucumis melo L. var. Reticulatus, Naudin, cv. 'Sol Real') harvested at four distinct maturities (1/4-, 1/2-, 3/4-, and full-slip) were investigated after 0, 2, 5, 7, 9, 12, and 14 days in a 2-year study. Increased fruity and sweet taste attributes were negatively correlated with percent acetates, aromatic acetates, and total aromatic compounds, and positively correlated with percentage non-acetate esters. Ethyl hexanoate was strongly positively correlated with fruity and sweet taste. Cucurbit, water-like, hardness, cohesiveness, and denseness were positively correlated with percentage acetates, aromatic acetates, and total aromatic compounds, and negatively correlated with percentage non-acetate esters. Several non-acetate esters such as ethyl 2-methyl propanoate, ethyl butanoate, ethyl 2-methyl butanoate, and ethyl hexanoate were negatively (often strongly) correlated with cucurbit. Hardness was positively and strongly correlated with aromatic acetates and all aromatic (benzyl) compounds. In summary, firmer and denser cubes contained more acetates and fewer non-acetate esters. The apparently negative or undesirable attributes cucurbit and water-like were associated with higher acetates and aromatic compounds. Overall, relatively strong (year x maturity x day) correlations among numerous physiological, volatile, and sensory measures were found in this study. Highly significant (stronger) correlations were found in a year x day analysis used to pair maturity means; however, year and interaction effects require prudence when interpreting that data. Nonetheless, both analyses delivered almost identical trends, and strong correlations occurred even though samples were randomized from numerous fruits, per maturity, per juice catcher container, over 2 years. Further interpretation and biochemical explanation are needed to rationalize why mainly only non-acetate esters were highly correlated with desirable sensory and quality parameters.
Collapse
Affiliation(s)
- John C Beaulieu
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Food Processing and Sensory Quality Unit, New Orleans, Louisiana 70124, USA.
| | | |
Collapse
|
43
|
Gonzalez-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P, Nuez F, Garcia-Mas J, Puigdomènech P, Aranda MA. MELOGEN: an EST database for melon functional genomics. BMC Genomics 2007; 8:306. [PMID: 17767721 PMCID: PMC2034596 DOI: 10.1186/1471-2164-8-306] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 09/03/2007] [Indexed: 11/22/2022] Open
Abstract
Background Melon (Cucumis melo L.) is one of the most important fleshy fruits for fresh consumption. Despite this, few genomic resources exist for this species. To facilitate the discovery of genes involved in essential traits, such as fruit development, fruit maturation and disease resistance, and to speed up the process of breeding new and better adapted melon varieties, we have produced a large collection of expressed sequence tags (ESTs) from eight normalized cDNA libraries from different tissues in different physiological conditions. Results We determined over 30,000 ESTs that were clustered into 16,637 non-redundant sequences or unigenes, comprising 6,023 tentative consensus sequences (contigs) and 10,614 unclustered sequences (singletons). Many potential molecular markers were identified in the melon dataset: 1,052 potential simple sequence repeats (SSRs) and 356 single nucleotide polymorphisms (SNPs) were found. Sixty-nine percent of the melon unigenes showed a significant similarity with proteins in databases. Functional classification of the unigenes was carried out following the Gene Ontology scheme. In total, 9,402 unigenes were mapped to one or more ontology. Remarkably, the distributions of melon and Arabidopsis unigenes followed similar tendencies, suggesting that the melon dataset is representative of the whole melon transcriptome. Bioinformatic analyses primarily focused on potential precursors of melon micro RNAs (miRNAs) in the melon dataset, but many other genes potentially controlling disease resistance and fruit quality traits were also identified. Patterns of transcript accumulation were characterised by Real-Time-qPCR for 20 of these genes. Conclusion The collection of ESTs characterised here represents a substantial increase on the genetic information available for melon. A database (MELOGEN) which contains all EST sequences, contig images and several tools for analysis and data mining has been created. This set of sequences constitutes also the basis for an oligo-based microarray for melon that is being used in experiments to further analyse the melon transcriptome.
Collapse
Affiliation(s)
- Daniel Gonzalez-Ibeas
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| | - José Blanca
- Departamento de Biotecnología, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Cristina Roig
- Departamento de Biotecnología, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Mireia González-To
- Departament de Genètica Vegetal, Centre de Recerca en Agrigenòmica CSIC-IRTA, Carretera de Cabrils Km2, 08348 Cabrils (Barcelona), Spain
| | - Belén Picó
- Departamento de Biotecnología, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Verónica Truniger
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| | - Wim Deleu
- Departament de Genètica Vegetal, Centre de Recerca en Agrigenòmica CSIC-IRTA, Carretera de Cabrils Km2, 08348 Cabrils (Barcelona), Spain
| | - Ana Caño-Delgado
- Departament de Genètica Molecular, Centre de Recerca en Agrigenòmica CSIC-IRTA, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Arús
- Departament de Genètica Vegetal, Centre de Recerca en Agrigenòmica CSIC-IRTA, Carretera de Cabrils Km2, 08348 Cabrils (Barcelona), Spain
| | - Fernando Nuez
- Departamento de Biotecnología, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Jordi Garcia-Mas
- Departament de Genètica Vegetal, Centre de Recerca en Agrigenòmica CSIC-IRTA, Carretera de Cabrils Km2, 08348 Cabrils (Barcelona), Spain
| | - Pere Puigdomènech
- Departament de Genètica Molecular, Centre de Recerca en Agrigenòmica CSIC-IRTA, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| |
Collapse
|
44
|
Barry CS, Giovannoni JJ. Ethylene and Fruit Ripening. JOURNAL OF PLANT GROWTH REGULATION 2007; 26:143. [PMID: 0 DOI: 10.1007/s00344-007-9002-y] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/18/2007] [Indexed: 05/19/2023]
|
45
|
Beaulieu JC, Lea JM. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:7789-93. [PMID: 17002453 DOI: 10.1021/jf060663l] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Seedless triploid watermelons have increased in popularity since the early 1990s, and the demand for seedless fruit is on the rise. Sweetness and sugars are crucial breeding focuses for fruit quality. Volatiles also play an important role; yet, we found no literature for seedless varieties and no reports using solid-phase microextraction (SPME) in watermelon. The objective of this experiment was to identify volatile and semivolatile compounds in five seedless watermelon varieties using carboxen divinylbenzene polydimethylsiloxane solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS). Fully ripe watermelon was squeezed through miracloth to produce rapid juice extracts for immediate headspace SPME GC-MS. Aldehydes, alcohols, ketones, and one furan (2-pentyl furan, a lipid oxidation product) were recovered. On the basis of total ion count peak area, the most abundant compounds in five varieties were 3-nonen-1-ol/(E,Z)-2,6-nonadienal (16.5-28.2%), (E)-2-nonenal (10.6-22.5%), and (Z)-6-nonenal (2.0-11.3%). Hexanal was most abundant (37.7%) in one variety (Petite Perfection) [corrected] The most abundant ketone was 6-methyl-5-hepten-2-one (2.7-7.7%). Some sensory attributes reported for these compounds are melon, citrus, cucumber, orange, rose, floral, guava, violet, vegetable, green, grassy, herbaceous, pungent, fatty, sweet, and waxy. Identifying and relating these compounds to sensory attributes will allow for future monitoring of the critical flavor compounds in seedless watermelon after processing and throughout fresh-cut storage.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Unit, Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Robert E. Lee Boulevard, PO Box 19687, New Orleans, Louisiana 70179, USA.
| | | |
Collapse
|
46
|
Manríquez D, El-Sharkawy I, Flores FB, El-Yahyaoui F, Regad F, Bouzayen M, Latché A, Pech JC. Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics. PLANT MOLECULAR BIOLOGY 2006; 61:675-85. [PMID: 16897483 DOI: 10.1007/s11103-006-0040-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 03/08/2006] [Indexed: 05/11/2023]
Abstract
Alcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated. Cm-ADH1 belongs to the medium-chain zinc-binding type of ADHs and is highly similar to all ADH genes expressed in fruit isolated so far. Cm-ADH2 belongs to the short-chain type of ADHs. The two encoded proteins are enzymatically active upon expression in yeast. Cm-ADH1 has strong preference for NAPDH as a co-factor, whereas Cm-ADH2 preferentially uses NADH. Both Cm-ADH proteins are much more active as reductases with K (m)s 10-20 times lower for the conversion of aldehydes to alcohols than for the dehydrogenation of alcohols to aldehydes. They both show strong preference for aliphatic aldehydes but Cm-ADH1 is capable of reducing branched aldehydes such as 3-methylbutyraldehyde, whereas Cm-ADH2 cannot. Both Cm-ADH genes are expressed specifically in fruit and up-regulated during ripening. Gene expression as well as total ADH activity are strongly inhibited in antisense ACC oxidase melons and in melon fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. These data suggest that each of the Cm-ADH protein plays a specific role in the regulation of aroma biosynthesis in melon fruit.
Collapse
Affiliation(s)
- Daniel Manríquez
- UMR 990 INRA/INPT-ENSAT "Génomique et Biotechnologie des Fruits", Av. de l'Agrobiopole, BP 32607, F-31326, Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
With the isolation and characterization of the key enzymes and proteins, and the corresponding genes, involved in ethylene biosynthesis and sensing it has become possible to manipulate plant ethylene levels and thereby alter a wide range of physiological processes. The phytohormone ethylene is an essential signaling molecule that affects a large number of physiological processes; plants deprived of ethylene do not grow and develop normally. In a search for flexible on-off ethylene control, scientists have used inducible organ- and tissue-specific promoters to drive expression of different transgenes. Here, the various strategies that have been used to genetically engineer plants with decreased ethylene biosynthesis and sensitivity are reviewed and discussed.
Collapse
Affiliation(s)
- Jennifer C Czarny
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
48
|
Chaves ALS, Mello-Farias PCD. Ethylene and fruit ripening: from illumination gas to the control of gene expression, more than a century of discoveries. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000300020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Aubert C, Baumann S, Arguel H. Optimization of the analysis of flavor volatile compounds by liquid-liquid microextraction (LLME). Application to the aroma analysis of melons, peaches, grapes, strawberries, and tomatoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8881-95. [PMID: 16277379 DOI: 10.1021/jf0510541] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A fast method based on liquid-liquid microextraction (LLME) has been developed for the analysis of volatile compounds in fruit and vegetable juices. The method was tested in an aqueous solution containing 49 common flavor compounds typically found in fruit aroma. Influence on extraction yield of the salts used, their levels, and the time of extraction was investigated. The efficiency of n-propyl gallate to inhibit the formation of secondary compounds from lipids during the crushing of fruit tissues was also tested. The proposed method was then applied to several authentic samples such as melons, peaches, grapes, strawberries, and tomatoes. The advantages and limitations of LLME are discussed.
Collapse
Affiliation(s)
- Christophe Aubert
- Centre Technique Interprofessionnel des Fruits et Légumes, route de Mollégès, 13210 Saint-Rémy-de-Provence, France.
| | | | | |
Collapse
|
50
|
Beaulieu JC. Within-season volatile and quality differences in stored fresh-cut cantaloupe cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8679-87. [PMID: 16248571 DOI: 10.1021/jf050241w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cantaloupe cultivar variability from various U.S. regions and growing seasons within a given year was evaluated. As expected, there was often considerable quality and volatile variation among cultivars. Eight of 11 cultivars met the standard U.S. No. 1 requirement for degrees Brix (> or =9), and in most cultivars, degrees Brix declined during fresh-cut storage at 4 degrees C. Hunter L (loss of lightness color value) and a (decline of typical orange hue) colors also generally declined during storage in most cultivars. Volatile ester compounds generally decreased during fresh-cut storage or exhibited a transient increase before declining after 5-7 days of storage. The relative percentage of acetate esters declined during storage in all cultivars, and declines were accompanied by simultaneous non-acetate ester increases. Slight imbalances in compound concentrations may alter the overall perception of desirable, typical "cantaloupe" aroma/flavor during fresh-cut storage. Upsetting the unique aroma balance through storage may negatively affect flavor and the consumer's perception of desirable attributes, even though total volatile levels might not decrease substantially until after 5-7 days in storage. Subtle volatile and quality decreases are likely to be exacerbated with immature-harvested cantaloupe and are likely in out-of-season exports that have likewise been harvested at less mature stages. Altogether, this study indicates the difficulty in procuring cantaloupes of consistent quality from local producers, in a given year, for domestically grown fruit.
Collapse
Affiliation(s)
- John C Beaulieu
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| |
Collapse
|