1
|
Schield DR, Carter JK, Scordato ESC, Levin II, Wilkins MR, Mueller SA, Gompert Z, Nosil P, Wolf JBW, Safran RJ. Sexual selection promotes reproductive isolation in barn swallows. Science 2024; 386:eadj8766. [PMID: 39666856 DOI: 10.1126/science.adj8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 12/14/2024]
Abstract
Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome. Sexual trait loci exhibit signatures of divergent selection in geographic isolation and barriers to gene flow in secondary contact. Linkage disequilibrium between these genes has been maintained by selection in hybrid zones beyond what would be expected under admixture alone. Our findings reveal that selection on coupled sexual trait loci promotes reproductive isolation, providing key empirical evidence for the role of sexual selection in speciation.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Javan K Carter
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Elizabeth S C Scordato
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Iris I Levin
- Department of Biology, Kenyon College, Gambier, OH, USA
| | - Matthew R Wilkins
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Galactic Polymath Education Studio, Minneapolis, MN, USA
| | - Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Patrik Nosil
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
2
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024; 34:4968-4982.e7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
Affiliation(s)
- Ryan Greenway
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rishi De-Kayne
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anthony P Brown
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Henry Camarillo
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Cassandra Delich
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Kerry L McGowan
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Joel Nelson
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Lenin Arias-Rodriguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico
| | - Joanna L Kelley
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Michael Tobler
- University of Missouri, St. Louis, Department of Biology, 1 University Boulevard, St. Louis, MO 63121, USA; University of Missouri, St. Louis, Whitney R. Harris World Ecology Center, 1 University Boulevard, St. Louis, MO 63121, USA; Saint Louis Zoo, WildCare Institute, 1 Government Drive, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Tukhbatullin A, Ermakov O, Kapustina S, Starikov V, Tambovtseva V, Titov S, Brandler O. Surrounded by Kindred: Spermophilus major Hybridization with Other Spermophilus Species in Space and Time. BIOLOGY 2023; 12:880. [PMID: 37372163 DOI: 10.3390/biology12060880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Among the numerous described cases of hybridization in mammals, the most intriguing are (a) cases of introgressive hybridization deeply affecting the evolutionary history of species, and (b) models involving not a pair of species but a multi-species complex. Therefore, the hybridization history of the russet ground squirrel Spermophilus major, whose range has repeatedly changed due to climatic fluctuations and now borders the ranges of four related species, is of great interest. The main aims of this study were to determine the direction and intensity of gene introgression, the spatial depth of the infiltration of extraneous genes into the S. major range, and to refine the hypothesis of the hybridogenic replacement of mitochondrial genomes in the studied group. Using phylogenetic analysis of the variability of mitochondrial (CR, cytb) and nuclear (SmcY, BGN, PRKCI, c-myc, i6p53) markers, we determined the contribution of neighboring species to the S. major genome. We showed that 36% of S. major individuals had extraneous alleles. All peripheral species that were in contact with S. major contributed towards its genetic variability. We also proposed a hypothesis for the sequence and localization of serial hybridization events. Our assessment of the S. major genome implications of introgression highlights the importance of implementing conservation measures to protect this species.
Collapse
Affiliation(s)
- Andrey Tukhbatullin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Oleg Ermakov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Svetlana Kapustina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Vladimir Starikov
- Department of Biology and Biotechnology, Institute of Natural and Technical Sciences, Surgut State University, Lenin Avenue 1, Surgut 628412, Russia
| | - Valentina Tambovtseva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Sergey Titov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Oleg Brandler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| |
Collapse
|
4
|
Yainna S, Tay WT, Durand K, Fiteni E, Hilliou F, Legeai F, Clamens AL, Gimenez S, Asokan R, Kalleshwaraswamy CM, Deshmukh SS, Meagher RL, Blanco CA, Silvie P, Brévault T, Dassou A, Kergoat GJ, Walsh T, Gordon K, Nègre N, d’Alençon E, Nam K. The evolutionary process of invasion in the fall armyworm (Spodoptera frugiperda). Sci Rep 2022; 12:21063. [PMID: 36473923 PMCID: PMC9727104 DOI: 10.1038/s41598-022-25529-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The fall armyworm (FAW; Spodoptera frugiperda) is one of the major agricultural pest insects. FAW is native to the Americas, and its invasion was first reported in West Africa in 2016. Then it quickly spread through Africa, Asia, and Oceania, becoming one of the main threats to corn production. We analyzed whole genome sequences of 177 FAW individuals from 12 locations on four continents to infer evolutionary processes of invasion. Principal component analysis from the TPI gene and whole genome sequences shows that invasive FAW populations originated from the corn strain. Ancestry coefficient and phylogenetic analyses from the nuclear genome indicate that invasive populations are derived from a single ancestry, distinct from native populations, while the mitochondrial phylogenetic tree supports the hypothesis of multiple introductions. Adaptive evolution specific to invasive populations was observed in detoxification, chemosensory, and digestion genes. We concluded that extant invasive FAW populations originated from the corn strain with potential contributions of adaptive evolution.
Collapse
Affiliation(s)
- Sudeeptha Yainna
- grid.503158.aDGIMI, Univ Montpellier, INRAE, Montpellier, France ,grid.8183.20000 0001 2153 9871CIRAD, UPR AIDA, Montpellier, France
| | - Wee Tek Tay
- grid.1016.60000 0001 2173 2719Black Mountain Laboratories, CSIRO, Canberra, Australia
| | - Karine Durand
- grid.503158.aDGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Estelle Fiteni
- grid.503158.aDGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Frédérique Hilliou
- grid.435437.20000 0004 0385 8766INRAE, Institut Sophia Agrobiotech, Université Côte D’Azur, CNRS, Sophia Antipolis, France
| | - Fabrice Legeai
- INRAE, UMR-IGEPP, BioInformatics Platform for Agroecosystems Arthropods, Campus Beaulieu, 35042 Rennes, France ,grid.420225.30000 0001 2298 7270INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | - Anne-Laure Clamens
- grid.121334.60000 0001 2097 0141CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Sylvie Gimenez
- grid.503158.aDGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - R. Asokan
- grid.418222.f0000 0000 8663 7600Division of Biotechnology, ICAR - Indian Institute of Horticultural Research, Bengaluru, India
| | - C. M. Kalleshwaraswamy
- grid.509224.8Department of Entomology, College of Agriculture, University of Agricultural and Horticultural Sciences, Shivamogga, India
| | - Sharanabasappa S. Deshmukh
- grid.509224.8Department of Entomology, College of Agriculture, University of Agricultural and Horticultural Sciences, Shivamogga, India
| | - Robert L. Meagher
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture, Agricultural Research Service, Gainesville, FL USA
| | - Carlos A. Blanco
- grid.413759.d0000 0001 0725 8379United States Department of Agriculture, Animal and Plant Health Inspection Service, Maryland, USA
| | - Pierre Silvie
- grid.8183.20000 0001 2153 9871CIRAD, UPR AIDA, Montpellier, France ,grid.121334.60000 0001 2097 0141AIDA, Univ Montpellier, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Thierry Brévault
- grid.8183.20000 0001 2153 9871CIRAD, UPR AIDA, Montpellier, France ,grid.121334.60000 0001 2097 0141AIDA, Univ Montpellier, CIRAD, Montpellier, France
| | - Anicet Dassou
- grid.510426.40000 0004 7470 473XENSBBA, UNSTIM, Dassa, Benin
| | - Gael J. Kergoat
- grid.420225.30000 0001 2298 7270INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | - Thomas Walsh
- grid.1016.60000 0001 2173 2719Black Mountain Laboratories, CSIRO, Canberra, Australia
| | - Karl Gordon
- grid.1016.60000 0001 2173 2719Black Mountain Laboratories, CSIRO, Canberra, Australia
| | - Nicolas Nègre
- grid.503158.aDGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | - Kiwoong Nam
- grid.503158.aDGIMI, Univ Montpellier, INRAE, Montpellier, France
| |
Collapse
|
5
|
Nikolakis ZL, Schield DR, Westfall AK, Perry BW, Ivey KN, Orton RW, Hales NR, Adams RH, Meik JM, Parker JM, Smith CF, Gompert Z, Mackessy SP, Castoe TA. Evidence that genomic incompatibilities and other multilocus processes impact hybrid fitness in a rattlesnake hybrid zone. Evolution 2022; 76:2513-2530. [PMID: 36111705 DOI: 10.1111/evo.14612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 01/22/2023]
Abstract
Hybrid zones provide valuable opportunities to understand the genomic mechanisms that promote speciation by providing insight into factors involved in intermediate stages of speciation. Here, we investigate introgression in a hybrid zone between two rattlesnake species (Crotalus viridis and Crotalus oreganus concolor) that have undergone historical allopatric divergence and recent range expansion and secondary contact. We use Bayesian genomic cline models to characterize genomic patterns of introgression between these lineages and identify loci potentially subject to selection in hybrids. We find evidence for a large number of genomic regions with biased ancestry that deviate from the genomic background in hybrids (i.e., excess ancestry loci), which tend to be associated with genomic regions with higher recombination rates. We also identify suites of excess ancestry loci that show highly correlated allele frequencies (including conspecific and heterospecific combinations) across physically unlinked genomic regions in hybrids. Our findings provide evidence for multiple multilocus evolutionary processes impacting hybrid fitness in this system.
Collapse
Affiliation(s)
- Zachary L Nikolakis
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Kathleen N Ivey
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Richard W Orton
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Richard H Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, 31061
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, Texas, 76402
| | - Joshua M Parker
- Department of Life Sciences, Fresno City College, Fresno, California, 93741
| | - Cara F Smith
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | | | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
6
|
Thomas-Bulle C, Bertrand D, Nagarajan N, Copley RR, Corre E, Hourdez S, Bonnivard É, Claridge-Chang A, Jollivet D. Genomic patterns of divergence in the early and late steps of speciation of the deep-sea vent thermophilic worms of the genus Alvinella. BMC Ecol Evol 2022; 22:106. [PMID: 36057769 PMCID: PMC9441076 DOI: 10.1186/s12862-022-02057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The transient and fragmented nature of the deep-sea hydrothermal environment made of ridge subduction, plate collision and the emergence of new rifts is currently acting to separate of vent populations, promoting local adaptation and contributing to bursts of speciation and species specialization. The tube-dwelling worms Alvinella pompejana called the Pompeii worm and its sister species A. caudata live syntopically on the hottest part of deep-sea hydrothermal chimneys along the East Pacific Rise. They are exposed to extreme thermal and chemical gradients, which vary greatly in space and time, and thus represent ideal candidates for understanding the evolutionary mechanisms at play in the vent fauna evolution. Results We explored genomic patterns of divergence in the early and late stages of speciation of these emblematic worms using transcriptome assemblies and the first draft genome to better understand the relative role of geographic isolation and habitat preference in their genome evolution. Analyses were conducted on allopatric populations of Alvinella pompejana (early stage of separation) and between A. pompejana and its syntopic species Alvinella caudata (late stage of speciation). We first identified divergent genomic regions and targets of selection as well as their position in the genome over collections of orthologous genes and, then, described the speciation dynamics by documenting the annotation of the most divergent and/or positively selected genes involved in the isolation process. Gene mapping clearly indicated that divergent genes associated with the early stage of speciation, although accounting for nearly 30% of genes, are highly scattered in the genome without any island of divergence and not involved in gamete recognition or mito-nuclear incompatibilities. By contrast, genomes of A. pompejana and A. caudata are clearly separated with nearly all genes (96%) exhibiting high divergence. This congealing effect however seems to be linked to habitat specialization and still allows positive selection on genes involved in gamete recognition, as a possible long-duration process of species reinforcement.
Conclusion Our analyses highlight the non-negligible role of natural selection on both the early and late stages of speciation in the iconic thermophilic worms living on the walls of deep-sea hydrothermal chimneys. They shed light on the evolution of gene divergence during the process of speciation and species specialization over a very long period of time. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02057-y.
Collapse
|
7
|
Reproductive isolation via polygenic local adaptation in sub-divided populations: Effect of linkage disequilibria and drift. PLoS Genet 2022; 18:e1010297. [PMID: 36048903 PMCID: PMC9473638 DOI: 10.1371/journal.pgen.1010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/14/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
This paper considers how polygenic local adaptation and reproductive isolation between hybridizing populations is influenced by linkage disequilibria (LD) between loci, in scenarios where both gene flow and genetic drift counteract selection. It shows that the combined effects of multi-locus LD and genetic drift on allele frequencies at selected loci and on heterozygosity at neutral loci are predicted accurately by incorporating (deterministic) effective migration rates into the diffusion approximation (for selected loci) and into the structured coalescent (for neutral loci). Theoretical approximations are tested against individual-based simulations and used to investigate conditions for the maintenance of local adaptation on an island subject to one-way migration from a differently adapted mainland, and in an infinite-island population with two habitats under divergent selection. The analysis clarifies the conditions under which LD between sets of locally deleterious alleles allows these to be collectively eliminated despite drift, causing sharper and (under certain conditions) shifted migration thresholds for loss of adaptation. Local adaptation also has counter-intuitive effects on neutral (relative) divergence: FST is highest for a pair of subpopulations belonging to the same (rare) habitat, despite the lack of reproductive isolation between them. Environmental adaptation often involves spatially heterogeneous selection at many genetic loci. Thus, the evolutionary consequences of hybridisation between populations adapted to different environments depend on the coupled dynamics of multiple loci under selection, migration and genetic drift, making them challenging to predict. Here, I introduce theoretical approximations that accurately capture the effect of such coupling on allele frequencies at individual loci, while also accounting for the stochastic effects of genetic drift. I then use these approximations to study hybridisation in a metapopulation consisting of many interconnected subpopulations, where each subpopulation belongs to one of two habitats under divergent selection. The analysis clarifies how subpopulations belonging to a rare habitat can maintain local adaptation despite high levels of migration if net selection against multi-locus genotypes is stronger than a threshold which depends on the relative abundances of the two habitats. Further, local adaptation in a metapopulation can significantly elevate FST between subpopulations belonging to the same habitat, even though these are not reproductively isolated. These findings highlight the importance of carefully considering the genetic architecture and spatial context of divergence when interpreting patterns of genomic differentiation between speciating populations.
Collapse
|
8
|
Roberts EK, Tardif S, Wright EA, Platt RN, Bradley RD, Hardy DM. Rapid divergence of a gamete recognition gene promoted macroevolution of Eutheria. Genome Biol 2022; 23:155. [PMID: 35821049 PMCID: PMC9275260 DOI: 10.1186/s13059-022-02721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speciation genes contribute disproportionately to species divergence, but few examples exist, especially in vertebrates. Here we test whether Zan, which encodes the sperm acrosomal protein zonadhesin that mediates species-specific adhesion to the egg's zona pellucida, is a speciation gene in placental mammals. RESULTS Genomic ontogeny reveals that Zan arose by repurposing of a stem vertebrate gene that was lost in multiple lineages but retained in Eutheria on acquiring a function in egg recognition. A 112-species Zan sequence phylogeny, representing 17 of 19 placental Orders, resolves all species into monophyletic groups corresponding to recognized Orders and Suborders, with <5% unsupported nodes. Three other rapidly evolving germ cell genes (Adam2, Zp2, and Prm1), a paralogous somatic cell gene (TectA), and a mitochondrial gene commonly used for phylogenetic analyses (Cytb) all yield trees with poorer resolution than the Zan tree and inferior topologies relative to a widely accepted mammalian supertree. Zan divergence by intense positive selection produces dramatic species differences in the protein's properties, with ordinal divergence rates generally reflecting species richness of placental Orders consistent with expectations for a speciation gene that acts across a wide range of taxa. Furthermore, Zan's combined phylogenetic utility and divergence exceeds those of all other genes known to have evolved in Eutheria by positive selection, including the only other mammalian speciation gene, Prdm9. CONCLUSIONS Species-specific egg recognition conferred by Zan's functional divergence served as a mode of prezygotic reproductive isolation that promoted the extraordinary adaptive radiation and success of Eutheria.
Collapse
Affiliation(s)
- Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Steve Tardif
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Reproductive Biology Division, JangoBio, Fitchburg, WI USA
| | - Emily A. Wright
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
| | - Roy N. Platt
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX USA
| | - Daniel M. Hardy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|
9
|
Kunerth HD, Bogdanowicz SM, Searle JB, Harrison RG, Coates BS, Kozak GM, Dopman EB. Consequences of coupled barriers to gene flow for the build-up of genomic differentiation. Evolution 2022; 76:985-1002. [PMID: 35304922 DOI: 10.1111/evo.14466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023]
Abstract
Theory predicts that when different barriers to gene flow become coincident, their joint effects enhance reproductive isolation and genomic divergence beyond their individual effects, but empirical tests of this "coupling" hypothesis are rare. Here, we analyze patterns of gene exchange among populations of European corn borer moths that vary in the number of acting barriers, allowing for comparisons of genomic variation when barrier traits or loci are in coincident or independent states. We find that divergence is mainly restricted to barrier loci when populations differ by a single barrier, whereas the coincidence of temporal and behavioral barriers is associated with divergence of two chromosomes harboring barrier loci. Furthermore, differentiation at temporal barrier loci increases in the presence of behavioral divergence and differentiation at behavioral barrier loci increases in the presence of temporal divergence. Our results demonstrate how the joint action of coincident barrier effects leads to levels of genomic differentiation that far exceed those of single barriers acting alone, consistent with theory arguing that coupling allows indirect selection to combine with direct selection and thereby lead to a stronger overall barrier to gene flow. Thus, the state of barriers-independent or coupled-strongly influences the accumulation of genomic differentiation.
Collapse
Affiliation(s)
- Henry D Kunerth
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Steven M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Brad S Coates
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, Iowa, 50011
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, 02747, USA.,Department of Biology, Tufts University, Medford, Massachusetts, 02155
| | - Erik B Dopman
- Department of Biology, Tufts University, Medford, Massachusetts, 02155
| |
Collapse
|
10
|
Durand K, Yainna S, Nam K. Incipient speciation between host-plant strains in the fall armyworm. BMC Ecol Evol 2022; 22:52. [PMID: 35477347 PMCID: PMC9047287 DOI: 10.1186/s12862-022-02008-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Recent advancement in speciation biology proposes that genetic differentiation across the whole genome (genomic differentiation, GD) may occur at the beginning of a speciation process and that GD itself may accelerate the rate of speciation. The fall armyworm (FAW, Spodoptera frugiperda) has been used as a model species to study the process of speciation between diverging host-plant strains. We showed in a previous study that GD between the host-plant strains occurred at the beginning of a speciation process based on a population genomics analysis from a population in Mississippi (USA), providing empirical support for the theoretical prediction. In a recent paper, however, panmixia was reported in FAW based on the genomic analysis of 55 individuals collected from Argentina, Brazil, Kenya, Puerto Rico, and the mainland USA. If panmixia is true, the observed differentiation in Mississippi could be at most a phenomenon specific to a geographic population, rather than a status during a speciation process. In this report, we reanalyzed the resequencing data to test the existence of population structure according to host plants using different bioinformatics pipelines. Results Principal component analysis, FST statistics, and ancestry coefficient analysis supported genetic differentiation between strains regardless of the used bioinformatics pipelines. The strain-specific selective sweep was observed from the Z chromosome, implying the presence of strain-specific divergence selection. Z chromosome has a particularly high level of genetic differentiation between strains, while autosomes have low but significant genetic differentiation. Intriguingly, the re-sequencing dataset demonstrates the spread of Bacillus thuringiensis resistance mutations from Puerto Rico to the US mainland. Conclusions These results show that a pair of host-plant strains in FAW experience genomic differentiation at the beginning of a speciation process, including Z chromosome divergent selection and possibly hitchhiking effect on autosomal sequences. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02008-7.
Collapse
Affiliation(s)
- Karine Durand
- DGIMI, Univ. Montpellier, INRAE, Montpellier, France
| | - Sudeeptha Yainna
- DGIMI, Univ. Montpellier, INRAE, Montpellier, France.,CIRAD, UPR AIDA, Montpellier, France
| | - Kiwoong Nam
- DGIMI, Univ. Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
11
|
The Build-Up of Population Genetic Divergence along the Speciation Continuum during a Recent Adaptive Radiation of Rhagoletis Flies. Genes (Basel) 2022; 13:genes13020275. [PMID: 35205320 PMCID: PMC8872456 DOI: 10.3390/genes13020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
New species form through the evolution of genetic barriers to gene flow between previously interbreeding populations. The understanding of how speciation proceeds is hampered by our inability to follow cases of incipient speciation through time. Comparative approaches examining different diverging taxa may offer limited inferences, unless they fulfill criteria that make the comparisons relevant. Here, we test for those criteria in a recent adaptive radiation of the Rhagoletis pomonella species group (RPSG) hypothesized to have diverged in sympatry via adaptation to different host fruits. We use a large-scale population genetic survey of 1568 flies across 33 populations to: (1) detect on-going hybridization, (2) determine whether the RPSG is derived from the same proximate ancestor, and (3) examine patterns of clustering and differentiation among sympatric populations. We find that divergence of each in-group RPSG taxon is occurring under current gene flow, that the derived members are nested within the large pool of genetic variation present in hawthorn-infesting populations of R. pomonella, and that sympatric population pairs differ markedly in their degree of genotypic clustering and differentiation across loci. We conclude that the RPSG provides a particularly robust opportunity to make direct comparisons to test hypotheses about how ecological speciation proceeds despite on-going gene flow.
Collapse
|
12
|
Metzler D, Knief U, Peñalba JV, Wolf JBW. Assortative mating and epistatic mating-trait architecture induce complex movement of the crow hybrid zone. Evolution 2021; 75:3154-3174. [PMID: 34694633 DOI: 10.1111/evo.14386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Hybrid zones provide a window into the evolutionary processes governing species divergence. Yet, the contribution of mate choice to the temporal and spatial stability of hybrid zones remains poorly explored. Here, we investigate the effects of assortative mating on hybrid-zone dynamics by means of a mathematical model parameterized with phenotype and genotype data from the hybrid zone between all-black carrion and gray-coated hooded crows. In the best-fit model, narrow clines of the two mating-trait loci were maintained by a moderate degree of assortative mating inducing pre- and postzygotic isolation via positive frequency-dependent selection. Epistasis between the two loci induced hybrid-zone movement in favor of alleles conveying dark plumage followed by a shift in the opposite direction favoring gray-coated phenotypes ∼ 1 200 generations after secondary contact. Unlinked neutral loci diffused near-unimpeded across the zone. These results were generally robust to the choice of matching rule (self-referencing or parental imprinting) and effects of genetic drift. Overall, this study illustrates under which conditions assortative mating can maintain steep clines in mating-trait loci without generalizing to genome-wide reproductive isolation. It further emphasizes the importance of the genetic mating-trait architecture for spatio-temporal hybrid-zone dynamics.
Collapse
Affiliation(s)
- Dirk Metzler
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| | - Ulrich Knief
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| | - Joshua V Peñalba
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| | - Jochen B W Wolf
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| |
Collapse
|
13
|
Bakovic V, Martin Cerezo ML, Höglund A, Fogelholm J, Henriksen R, Hargeby A, Wright D. The genomics of phenotypically differentiated Asellus aquaticus cave, surface stream and lake ecotypes. Mol Ecol 2021; 30:3530-3547. [PMID: 34002902 DOI: 10.1111/mec.15987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
Organisms well suited for the study of ecotype formation have wide distribution ranges, where they adapt to multiple drastically different habitats repeatedly over space and time. Here we study such ecotypes in a Crustacean model, Asellus aquaticus, a commonly occurring isopod found in freshwater habitats as diverse as streams, caves and lakes. Previous studies focusing on cave vs. surface ecotypes have attributed depigmentation, eye loss and prolonged antennae to several south European cave systems. Likewise, surveys across multiple Swedish lakes have identified the presence of dark-pigmented "reed" and light-pigmented "stonewort" ecotypes, which can be found within the same lake. In this study, we sequenced the first draft genome of A. aquaticus, and subsequently use this to map reads and call variants in surface stream, cave and two lake ecotypes. In addition, the draft genome was combined with a RADseq approach to perform a quantitative trait locus (QTL) mapping study using a laboratory bred F2 and F4 cave × surface intercross. We identified genomic regions associated with body pigmentation, antennae length and body size. Furthermore, we compared genome-wide differentiation between natural populations and found several genes potentially associated with these habitats. The assessment of the cave QTL regions in the light-dark comparison of lake populations suggests that the regions associated with cave adaptation are also involved with genomic differentiation in the lake ecotypes. These demonstrate how troglomorphic adaptations can be used as a model for related ecotype formation.
Collapse
Affiliation(s)
- Vid Bakovic
- IFM Biology, University of Linköping, Linköping, Sweden
| | | | | | | | - Rie Henriksen
- IFM Biology, University of Linköping, Linköping, Sweden
| | | | | |
Collapse
|
14
|
Härer A, Bolnick DI, Rennison DJ. The genomic signature of ecological divergence along the benthic-limnetic axis in allopatric and sympatric threespine stickleback. Mol Ecol 2020; 30:451-463. [PMID: 33222348 DOI: 10.1111/mec.15746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
The repeated occurrence of similar phenotypes in independent lineages (i.e., parallel evolution) in response to similar ecological conditions can provide compelling insights into the process of adaptive evolution. An intriguing question is to what extent repeated phenotypic changes are underlain by repeated changes at the genomic level and whether patterns of genomic divergence differ with the geographic context in which populations evolve. Here, we combined genomic, morphological and ecological data sets to investigate the genomic signatures of divergence across populations of threespine stickleback (Gasterosteus aculeatus) that adapted to contrasting ecological niches (benthic or limnetic) in either sympatry or allopatry. We found that genome-wide differentiation (FST ) was an order of magnitude higher and substantially more repeatable for sympatric benthic and limnetic specialists compared to allopatric populations with similar levels of ecological divergence. We identified genomic regions consistently differentiated between sympatric ecotypes that were also differentiated between or associated with benthic vs. limnetic niche in allopatric populations. These candidate regions were enriched on three chromosomes known to be involved in the benthic-limnetic divergence of threespine stickleback. Some candidate regions overlapped with QTL for body shape and trophic traits such as gill raker number, traits that strongly differ between benthic and limnetic ecotypes. In summary, our study shows that magnitude and repeatability of genomic signatures of ecological divergence in threespine stickleback highly depend on the geographic context. The identified candidate regions provide starting points to identify functionally important genes for the adaptation to benthic and limnetic niches.
Collapse
Affiliation(s)
- Andreas Härer
- Division of Biological Sciences, Section of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, CA, USA
| | - Daniel I Bolnick
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Diana J Rennison
- Division of Biological Sciences, Section of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
de Medeiros BAS, Farrell BD. Evaluating insect-host interactions as a driver of species divergence in palm flower weevils. Commun Biol 2020; 3:749. [PMID: 33299067 PMCID: PMC7726107 DOI: 10.1038/s42003-020-01482-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
Plants and their specialized flower visitors provide valuable insights into the evolutionary consequences of species interactions. In particular, antagonistic interactions between insects and plants have often been invoked as a major driver of diversification. Here we use a tropical community of palms and their specialized insect flower visitors to test whether antagonisms lead to higher population divergence. Interactions between palms and the insects visiting their flowers range from brood pollination to florivory and commensalism, with the latter being species that feed on decaying-and presumably undefended-plant tissues. We test the role of insect-host interactions in the early stages of diversification of nine species of beetles sharing host plants and geographical ranges by first delimiting cryptic species and then using models of genetic isolation by environment. The degree to which insect populations are structured by the genetic divergence of plant populations varies. A hierarchical model reveals that this variation is largely uncorrelated with the kind of interaction, showing that antagonistic interactions are not associated with higher genetic differentiation. Other aspects of host use that affect plant-associated insects regardless of the outcomes of their interactions, such as sensory biases, are likely more general drivers of insect population divergence.
Collapse
Affiliation(s)
- Bruno A S de Medeiros
- Smithsonian Tropical Research Institute, Panama City, Panama.
- Museum of Comparative Zoology, Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Brian D Farrell
- Museum of Comparative Zoology, Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
16
|
Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A. Contrasting signatures of genomic divergence during sympatric speciation. Nature 2020; 588:106-111. [PMID: 33116308 PMCID: PMC7759464 DOI: 10.1038/s41586-020-2845-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
Abstract
The transition from 'well-marked varieties' of a single species into 'well-defined species'-especially in the absence of geographic barriers to gene flow (sympatric speciation)-has puzzled evolutionary biologists ever since Darwin1,2. Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process3. Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs4, but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories5. Here, within a young species complex of neotropical cichlid fishes (Amphilophus spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.
Collapse
Affiliation(s)
- Andreas F Kautt
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Alexander Nater
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gonzalo Machado-Schiaffino
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Functional Biology, Area of Genetics, University of Oviedo, Oviedo, Spain
| | - Melisa Olave
- Department of Biology, University of Konstanz, Konstanz, Germany
- Argentine Dryland Research Institute of the National Council for Scientific Research (IADIZA-CONICET), Mendoza, Argentina
| | - Frederico Henning
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Andreas Härer
- Department of Biology, University of Konstanz, Konstanz, Germany
- Division of Biological Sciences, Section of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
17
|
Nam K, Nhim S, Robin S, Bretaudeau A, Nègre N, d'Alençon E. Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. BMC Evol Biol 2020; 20:152. [PMID: 33187468 PMCID: PMC7663868 DOI: 10.1186/s12862-020-01715-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The process of speciation involves differentiation of whole genome sequences between a pair of diverging taxa. In the absence of a geographic barrier and in the presence of gene flow, genomic differentiation may occur when the homogenizing effect of recombination is overcome across the whole genome. The fall armyworm is observed as two sympatric strains with different host-plant preferences across the entire habitat. These two strains exhibit a very low level of genetic differentiation across the whole genome, suggesting that genomic differentiation occurred at an early stage of speciation. In this study, we aim at identifying critical evolutionary forces responsible for genomic differentiation in the fall armyworm. RESULTS These two strains exhibit a low level of genomic differentiation (FST = 0.0174), while 99.2% of 200 kb windows have genetically differentiated sequences (FST > 0). We found that the combined effect of mild positive selection and genetic linkage to selectively targeted loci are responsible for the genomic differentiation. However, a single event of very strong positive selection appears not to be responsible for genomic differentiation. The contribution of chromosomal inversions or tight genetic linkage among positively selected loci causing reproductive barriers is not supported by our data. Phylogenetic analysis shows that the genomic differentiation occurred by sub-setting of genetic variants in one strain from the other. CONCLUSIONS From these results, we concluded that genomic differentiation may occur at the early stage of a speciation process in the fall armyworm and that mild positive selection targeting many loci alone is sufficient evolutionary force for generating the pattern of genomic differentiation. This genomic differentiation may provide a condition for accelerated genomic differentiation by synergistic effects among linkage disequilibrium generated by following events of positive selection. Our study highlights genomic differentiation as a key evolutionary factor connecting positive selection to divergent selection.
Collapse
Affiliation(s)
- Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Sandra Nhim
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Stéphanie Robin
- INRAE, UMR-IGEPP, BioInformatics Platform for Agroecosystems Arthropods, Campus Beaulieu, Rennes, France
- INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | - Anthony Bretaudeau
- INRAE, UMR-IGEPP, BioInformatics Platform for Agroecosystems Arthropods, Campus Beaulieu, Rennes, France
- INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
18
|
Kulmuni J, Butlin RK, Lucek K, Savolainen V, Westram AM. Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190528. [PMID: 32654637 PMCID: PMC7423269 DOI: 10.1098/rstb.2019.0528] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Speciation, that is, the evolution of reproductive barriers eventually leading to complete isolation, is a crucial process generating biodiversity. Recent work has contributed much to our understanding of how reproductive barriers begin to evolve, and how they are maintained in the face of gene flow. However, little is known about the transition from partial to strong reproductive isolation (RI) and the completion of speciation. We argue that the evolution of strong RI is likely to involve different processes, or new interactions among processes, compared with the evolution of the first reproductive barriers. Transition to strong RI may be brought about by changing external conditions, for example, following secondary contact. However, the increasing levels of RI themselves create opportunities for new barriers to evolve and, and interaction or coupling among barriers. These changing processes may depend on genomic architecture and leave detectable signals in the genome. We outline outstanding questions and suggest more theoretical and empirical work, considering both patterns and processes associated with strong RI, is needed to understand how speciation is completed. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jonna Kulmuni
- Organismal and Evolutionary Biology, University of Helsinki, Finland
| | - Roger K. Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | | |
Collapse
|
19
|
Rometsch SJ, Torres-Dowdall J, Meyer A. Evolutionary dynamics of pre- and postzygotic reproductive isolation in cichlid fishes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190535. [PMID: 32654645 DOI: 10.1098/rstb.2019.0535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cichlid fishes are exceptionally species-rich, speciated at explosive rates and, hence, are a model system in speciation research. Yet, their reproductive isolating barriers have, so far, not been comprehensively studied. Here, we review current knowledge on pre- and postzygotic mechanisms in cichlids. While premating isolation is the norm in cichlids, its strength varies across lineages and with the geographical setting. Moreover, manipulations of ambient conditions tended to reduce assortative mating among closely related species, suggesting that premating isolation in cichlids is often fragile and context dependent. The observed lack of complete reproductive isolation is supported by past and present hybridization events that have contributed to diversity by creating novel allelic combinations. On the other hand, our meta-analysis highlights that intrinsic postzygotic isolation might accumulate faster than assumed. Mild forms of genetic incompatibilities, such as sex ratio distortion, can already be observed among closely related species. Therefore, cessation of gene flow by strong reproductive isolation in cichlids requires a combination of premating prezygotic isolation supplemented with intrinsic and extrinsic postzygotic barriers. Further, we suggest crucial next steps to improve our knowledge about reproductive barriers in cichlids to understand the evolutionary dynamics of pre- and postzygotic isolation mechanisms during adaptive radiations. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Sina J Rometsch
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Julián Torres-Dowdall
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
20
|
Blanckaert A, Bank C, Hermisson J. The limits to parapatric speciation 3: evolution of strong reproductive isolation in presence of gene flow despite limited ecological differentiation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190532. [PMID: 32654650 PMCID: PMC7423268 DOI: 10.1098/rstb.2019.0532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gene flow tends to impede the accumulation of genetic divergence. Here, we determine the limits for the evolution of postzygotic reproductive isolation in a model of two populations that are connected by gene flow. We consider two selective mechanisms for the creation and maintenance of a genetic barrier: local adaptation leads to divergence among incipient species due to selection against migrants, and Dobzhansky–Muller incompatibilities (DMIs) reinforce the genetic barrier through selection against hybrids. In particular, we are interested in the maximum strength of the barrier under a limited amount of local adaptation, a challenge that many incipient species may initially face. We first confirm that with classical two-locus DMIs, the maximum amount of local adaptation is indeed a limit to the strength of a genetic barrier. However, with three or more loci and cryptic epistasis, this limit holds no longer. In particular, we identify a minimal configuration of three epistatically interacting mutations that is sufficient to confer strong reproductive isolation. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers’.
Collapse
Affiliation(s)
- Alexandre Blanckaert
- Department of Mathematics, University of Vienna, 1090 Vienna, Austria.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Joachim Hermisson
- Department of Mathematics, University of Vienna, 1090 Vienna, Austria.,Mathematics and Biosciences Group, Max Perutz Lab, 1030 Vienna, Austria
| |
Collapse
|
21
|
Hood GR, Powell THQ, Doellman MM, Sim SB, Glover M, Yee WL, Goughnour RB, Mattsson M, Schwarz D, Feder JL. Rapid and repeatable host plant shifts drive reproductive isolation following a recent human-mediated introduction of the apple maggot fly, Rhagoletis pomonella. Evolution 2019; 74:156-168. [PMID: 31729753 DOI: 10.1111/evo.13882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 01/26/2023]
Abstract
Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this "natural experiment" to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises.
Collapse
Affiliation(s)
- Glen R Hood
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University, Binghamton, New York, 13902
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Sheina B Sim
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii, 96720
| | - Mary Glover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Wee L Yee
- USDA-ARS Yakima Agricultural Research Laboratory, Wapato, Washington, 98951
| | | | - Monte Mattsson
- Environmental Services, City of Portland, Portland, Oregon, 97204
| | - Dietmar Schwarz
- Department of Biology, Western Washington University, Bellingham, Washington, 98225
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556.,Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana, 46556.,Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, 46556
| |
Collapse
|
22
|
White NJ, Snook RR, Eyres I. The Past and Future of Experimental Speciation. Trends Ecol Evol 2019; 35:10-21. [PMID: 31522756 DOI: 10.1016/j.tree.2019.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
Speciation is the result of evolutionary processes that generate barriers to gene flow between populations, facilitating reproductive isolation. Speciation is typically studied via theoretical models and snapshot tests in natural populations. Experimental speciation enables real-time direct tests of speciation theory and has been long touted as a critical complement to other approaches. We argue that, despite its promise to elucidate the evolution of reproductive isolation, experimental speciation has been underutilised and lags behind other contributions to speciation research. We review recent experiments and outline a framework for how experimental speciation can be implemented to address current outstanding questions that are otherwise challenging to answer. Greater uptake of this approach is necessary to rapidly advance understanding of speciation.
Collapse
Affiliation(s)
- Nathan J White
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 106-91, Sweden
| | - Isobel Eyres
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
23
|
Aguirre-Liguori JA, Gaut BS, Jaramillo-Correa JP, Tenaillon MI, Montes-Hernández S, García-Oliva F, Hearne SJ, Eguiarte LE. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). Mol Ecol 2019; 28:2814-2830. [PMID: 30980686 DOI: 10.1111/mec.15098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 01/03/2023]
Abstract
Patterns of genomic divergence between hybridizing taxa can be heterogeneous along the genome. Both differential introgression and local adaptation may contribute to this pattern. Here, we analysed two teosinte subspecies, Zea mays ssp. parviglumis and ssp. mexicana, to test whether their divergence has occurred in the face of gene flow and to infer which environmental variables have been important drivers of their ecological differentiation. We generated 9,780 DArTseqTM SNPs for 47 populations, and used an additional data set containing 33,454 MaizeSNP50 SNPs for 49 populations. With these data, we inferred features of demographic history and performed genome wide scans to determine the number of outlier SNPs associated with climate and soil variables. The two data sets indicate that divergence has occurred or been maintained despite continuous gene flow and/or secondary contact. Most of the significant SNP associations were to temperature and to phosphorus concentration in the soil. A large proportion of these candidate SNPs were located in regions of high differentiation that had been identified previously as putative inversions. We therefore propose that genomic differentiation in teosintes has occurred by a process of adaptive divergence, with putative inversions contributing to reduced gene flow between locally adapted populations.
Collapse
Affiliation(s)
- Jonás A Aguirre-Liguori
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California
| | - Juan Pablo Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maud I Tenaillon
- Génétique Quantitative et Evolution- Le Moulon, INRA, Gif-sur-Yvette, France
| | - Salvador Montes-Hernández
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, México
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, México
| | - Sarah J Hearne
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
24
|
Barth JMI, Villegas-Ríos D, Freitas C, Moland E, Star B, André C, Knutsen H, Bradbury I, Dierking J, Petereit C, Righton D, Metcalfe J, Jakobsen KS, Olsen EM, Jentoft S. Disentangling structural genomic and behavioural barriers in a sea of connectivity. Mol Ecol 2019; 28:1394-1411. [PMID: 30633410 PMCID: PMC6518941 DOI: 10.1111/mec.15010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022]
Abstract
Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question of whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod (Gadus morhua), by exploring a unique data set combining whole‐genome sequencing data and behavioural data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population and a local fjord‐type cod. Continuous behavioural tracking over 4 year revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicating an adaptive barrier to gene flow. In addition, behavioural data indicated that North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. However, North Sea and fjord‐type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioural barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioural isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.
Collapse
Affiliation(s)
- Julia M I Barth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Zoological Institute, University of Basel, Basel, Switzerland
| | - David Villegas-Ríos
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies, IMEDEA CSIC-UIB, Esporles, Spain.,Department of Ecology and Marine Resources, Institute of Marine Research, (IIM CSIC), Vigo, Spain
| | - Carla Freitas
- Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway.,Oceanic Observatory of Madeira, Funchal, Portugal
| | - Even Moland
- Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl André
- Department of Marine Sciences - Tjärnö, University of Gothenburg, Gothenburg, Sweden
| | - Halvor Knutsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway
| | - Ian Bradbury
- Science Branch, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - David Righton
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK
| | - Julian Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Esben M Olsen
- Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Peñalba JV, Joseph L, Moritz C. Current geography masks dynamic history of gene flow during speciation in northern Australian birds. Mol Ecol 2019; 28:630-643. [PMID: 30561150 DOI: 10.1111/mec.14978] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022]
Abstract
Genome divergence is greatly influenced by gene flow during early stages of speciation. As populations differentiate, geographic barriers can constrain gene flow and so affect the dynamics of divergence and speciation. Current geography, specifically disjunction and continuity of ranges, is often used to predict the historical gene flow during the divergence process. We test this prediction in eight meliphagoid bird species complexes codistributed in four regions. These regions are separated by known biogeographical barriers across northern Australia and Papua New Guinea. We find that bird populations currently separated by terrestrial habitat barriers within Australia and marine barriers between Australia and Papua New Guinea have a range of divergence levels and probability of gene flow not associated with current range connectivity. Instead, geographic distance and historical range connectivity better predict divergence and probability of gene flow. In this dynamic environmental context, we also find support for a nonlinear decrease of the probability of gene flow during the divergence process. The probability of gene flow initially decreases gradually after a certain level of divergence is reached. Its decrease then accelerates until the probability is close to zero. This implies that although geographic connectivity may have more of an effect early in speciation, other factors associated with higher divergence may play a more important role in influencing gene flow midway through and later in speciation. Current geographic connectivity may then mislead inferences regarding potential for gene flow during speciation under a complex and dynamic history of geographic and reproductive isolation.
Collapse
Affiliation(s)
- Joshua V Peñalba
- Ecology and Evolution, Australian National University, Acton, ACT, Australia.,Centre for Biodiversity Analysis, Acton, ACT, Australia.,Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Canberra, ACT, Australia.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| | - Leo Joseph
- Centre for Biodiversity Analysis, Acton, ACT, Australia.,Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Canberra, ACT, Australia
| | - Craig Moritz
- Ecology and Evolution, Australian National University, Acton, ACT, Australia.,Centre for Biodiversity Analysis, Acton, ACT, Australia
| |
Collapse
|
26
|
Doellman MM, Feder JL. Genomic transitions during host race and species formation. CURRENT OPINION IN INSECT SCIENCE 2019; 31:84-92. [PMID: 31109679 DOI: 10.1016/j.cois.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Darwin recognized species as discontinuous, yet considered them to be formed by an incremental process of natural selection. Recent theoretical work on 'genome-wide congealing' is bridging this gap between the gradualism of divergent selection and rapid genome-wide divergence, particularly during ecological speciation-with-gene-flow. Host races and species of phytophagous insects, displaying a spectrum of divergence and gene flow among member taxa, provide model systems for testing predicted non-linear transitions from 'genic' divergence at a few uncoupled loci to 'genomic' divergence with genome-wide coupling of selected loci and strong reproductive isolation. Integrating across natural history, genomics, and evolutionary theory, emerging research suggests a tipping point from 'genic' to 'genomic' divergence between host races and species, during both sympatric speciation and secondary contact.
Collapse
Affiliation(s)
- Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
27
|
Feder JL, Nosil P, Gompert Z, Flaxman SM, Schilling MP. Barnacles, barrier loci and the systematic building of species. J Evol Biol 2018; 30:1494-1497. [PMID: 28786183 DOI: 10.1111/jeb.13105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022]
Affiliation(s)
- J L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - P Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Z Gompert
- Department of Biology, Utah State University, Logan, UT, USA
| | - S M Flaxman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - M P Schilling
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
28
|
Sciuchetti L, Dufresnes C, Cavoto E, Brelsford A, Perrin N. Dobzhansky-Muller incompatibilities, dominance drive, and sex-chromosome introgression at secondary contact zones: A simulation study. Evolution 2018; 72:1350-1361. [PMID: 29806172 DOI: 10.1111/evo.13510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 05/08/2018] [Indexed: 11/28/2022]
Abstract
Dobzhansky-Muller (DM) incompatibilities involving sex chromosomes have been proposed to account for Haldane's rule (lowered fitness among hybrid offspring of the heterogametic sex) as well as Darwin's corollary (asymmetric fitness costs with respect to the direction of the cross). We performed simulation studies of a hybrid zone to investigate the effects of different types of DM incompatibilities on cline widths and positions of sex-linked markers. From our simulations, X-Y incompatibilities generate steep clines for both X-linked and Y-linked markers; random effects may produce strong noise in cline center positions when migration is high relative to fitness costs, but X- and Y-centers always coincide strictly. X-autosome and Y-autosome incompatibilities also generate steep clines, but systematic shifts in cline centers occur when migration is high relative to selection, as a result of a dominance drive linked to Darwin's corollary. Interestingly, sex-linked genes always show farther introgression than the associated autosomal genes. We discuss ways of disentangling the potentially confounding effects of sex biases in migration, we compare our results to those of a few documented contact zones, and we stress the need to study independent replicates of the same contact zone.
Collapse
Affiliation(s)
- Luca Sciuchetti
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
| | - Christophe Dufresnes
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
- Department of Animal & Plant Sciences, University of Sheffield, Alfred Denny building, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Elisa Cavoto
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
| | - Alan Brelsford
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
- Biology Department, University of California, Riverside, CA, 92521
| | - Nicolas Perrin
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
| |
Collapse
|
29
|
Schilling MP, Mullen SP, Kronforst M, Safran RJ, Nosil P, Feder JL, Gompert Z, Flaxman SM. Transitions from Single- to Multi-Locus Processes during Speciation with Gene Flow. Genes (Basel) 2018; 9:E274. [PMID: 29795050 PMCID: PMC6027428 DOI: 10.3390/genes9060274] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
During speciation-with-gene-flow, a transition from single-locus to multi-locus processes can occur, as strong coupling of multiple loci creates a barrier to gene flow. Testing predictions about such transitions with empirical data requires building upon past theoretical work and the continued development of quantitative approaches. We simulated genomes under several evolutionary scenarios of gene flow and divergent selection, extending previous work with the additions of neutral sites and coupling statistics. We used these simulations to investigate, in a preliminary way, if and how selected and neutral sites differ in the conditions they require for transitions during speciation. For the parameter combinations we explored, as the per-locus strength of selection grew and/or migration decreased, it became easier for selected sites to show divergence-and thus to rise in linkage disequilibrium (LD) with each other as a statistical consequence-farther in advance of the conditions under which neutral sites could diverge. Indeed, even very low rates of effective gene flow were sufficient to prevent differentiation at neutral sites. However, once strong enough, coupling among selected sites eventually reduced gene flow at neutral sites as well. To explore whether similar transitions might be detectable in empirical data, we used published genome resequencing data from three taxa of Heliconius butterflies. We found that fixation index ( F S T ) outliers and allele-frequency outliers exhibited stronger patterns of within-deme LD than the genomic background, as expected. The statistical characteristics of within-deme LD-likely indicative of the strength of coupling of barrier loci-varied between chromosomes and taxonomic comparisons. Qualitatively, the patterns we observed in the empirical data and in our simulations suggest that selection drives rapid genome-wide transitions to multi-locus coupling, illustrating how divergence and gene flow interact along the speciation continuum.
Collapse
Affiliation(s)
- Martin P Schilling
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Sean P Mullen
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Marcus Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA.
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Patrik Nosil
- Department of Biology & Ecology Center, Utah State University, Logan, UT 84322, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA.
| | - Zachariah Gompert
- Department of Biology & Ecology Center, Utah State University, Logan, UT 84322, USA.
| | - Samuel M Flaxman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
30
|
Genomic Differentiation during Speciation-with-Gene-Flow: Comparing Geographic and Host-Related Variation in Divergent Life History Adaptation in Rhagoletis pomonella. Genes (Basel) 2018; 9:genes9050262. [PMID: 29783692 PMCID: PMC5977202 DOI: 10.3390/genes9050262] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella. Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity.
Collapse
|
31
|
Ravinet M, Yoshida K, Shigenobu S, Toyoda A, Fujiyama A, Kitano J. The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression. PLoS Genet 2018; 14:e1007358. [PMID: 29791436 PMCID: PMC5988309 DOI: 10.1371/journal.pgen.1007358] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/05/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Speciation is a continuous process and analysis of species pairs at different stages of divergence provides insight into how it unfolds. Previous genomic studies on young species pairs have revealed peaks of divergence and heterogeneous genomic differentiation. Yet less known is how localised peaks of differentiation progress to genome-wide divergence during the later stages of speciation in the presence of persistent gene flow. Spanning the speciation continuum, stickleback species pairs are ideal for investigating how genomic divergence builds up during speciation. However, attention has largely focused on young postglacial species pairs, with little knowledge of the genomic signatures of divergence and introgression in older stickleback systems. The Japanese stickleback species pair, composed of the Pacific Ocean three-spined stickleback (Gasterosteus aculeatus) and the Japan Sea stickleback (G. nipponicus), which co-occur in the Japanese islands, is at a late stage of speciation. Divergence likely started well before the end of the last glacial period and crosses between Japan Sea females and Pacific Ocean males result in hybrid male sterility. Here we use coalescent analyses and Approximate Bayesian Computation to show that the two species split approximately 0.68-1 million years ago but that they have continued to exchange genes at a low rate throughout divergence. Population genomic data revealed that, despite gene flow, a high level of genomic differentiation is maintained across the majority of the genome. However, we identified multiple, small regions of introgression, occurring mainly in areas of low recombination rate. Our results demonstrate that a high level of genome-wide divergence can establish in the face of persistent introgression and that gene flow can be localized to small genomic regions at the later stages of speciation with gene flow.
Collapse
Affiliation(s)
- Mark Ravinet
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Kohta Yoshida
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Jun Kitano
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
32
|
Meier JI, Marques DA, Wagner CE, Excoffier L, Seehausen O. Genomics of Parallel Ecological Speciation in Lake Victoria Cichlids. Mol Biol Evol 2018; 35:1489-1506. [DOI: 10.1093/molbev/msy051] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Joana Isabel Meier
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Computational and Molecular Population Genetics (CMPG), Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - David Alexander Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Computational and Molecular Population Genetics (CMPG), Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Catherine Elise Wagner
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Laurent Excoffier
- Computational and Molecular Population Genetics (CMPG), Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
33
|
|
34
|
Southcott L, Kronforst MR. A neutral view of the evolving genomic architecture of speciation. Ecol Evol 2017; 7:6358-6366. [PMID: 28861239 PMCID: PMC5574762 DOI: 10.1002/ece3.3190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 11/18/2022] Open
Abstract
Analyses of genomewide polymorphism data have begun to shed light on speciation and adaptation. Genome scans to identify regions of the genome that are unusually different between populations or species, possibly due to divergent natural or sexual selection, are widespread in speciation genomics. Theoretical and empirical work suggests that such outlier regions may grow faster than linearly during speciation with gene flow due to a rapid transition between low and high reproductive isolation. We investigate whether this pattern could be attributed to neutral processes by simulating genomes under neutral evolution with varying amounts and timing of gene flow. Under both neutral evolution and divergent selection, simulations with little or no gene flow, or with a long allopatric period after its cessation, resulted in faster than linear growth of the proportion of the genome lying in outlier regions. Without selection, higher recent gene flow erased differentiation; with divergent selection, these same scenarios produced nonlinear growth to a plateau. Our results suggest that, given a history of gene flow, the growth of the divergent genome is informative about selection during divergence, but that in many scenarios, this pattern does not easily distinguish neutral and non-neutral processes during speciation with gene flow.
Collapse
Affiliation(s)
- Laura Southcott
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
| | - Marcus R. Kronforst
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
- Department of Ecology and EvolutionUniversity of ChicagoChicagoILUSA
| |
Collapse
|
35
|
Ragland GJ, Doellman MM, Meyers PJ, Hood GR, Egan SP, Powell THQ, Hahn DA, Nosil P, Feder JL. A test of genomic modularity among life-history adaptations promoting speciation with gene flow. Mol Ecol 2017; 26:3926-3942. [DOI: 10.1111/mec.14178] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Gregory J. Ragland
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Environmental Change Initiative; University of Notre Dame; Notre Dame IN USA
- Department of Integrative Biology; University of Colorado - Denver; Denver CO USA
| | | | - Peter J. Meyers
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
| | - Glen R. Hood
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Department of Biosciences; Rice University; Houston TX USA
| | - Scott P. Egan
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Department of Biosciences; Rice University; Houston TX USA
- Advanced Diagnostics and Therapeutics Initiative; University of Notre Dame; Notre Dame IN USA
| | - Thomas H. Q. Powell
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Department of Entomology and Nematology; University of Florida; Gainesville FL USA
- Department of Biological Sciences; State University of New York - Binghamton; Binghamton NY USA
| | - Daniel A. Hahn
- Department of Entomology and Nematology; University of Florida; Gainesville FL USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - Jeffrey L. Feder
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Environmental Change Initiative; University of Notre Dame; Notre Dame IN USA
- Advanced Diagnostics and Therapeutics Initiative; University of Notre Dame; Notre Dame IN USA
| |
Collapse
|
36
|
Singhal S, Bi K. History cleans up messes: The impact of time in driving divergence and introgression in a tropical suture zone. Evolution 2017; 71:1888-1899. [DOI: 10.1111/evo.13278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/04/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Sonal Singhal
- Department of Ecology and Evolutionary Biology University of Michigan, 830 North University Ann Arbor Michigan 48109
- Museum of Zoology University of Michigan, 1109 Geddes Avenue Ann Arbor Michigan 48109
| | - Ke Bi
- Museum of Vertebrate Zoology University of California, Berkeley, 3101 Valley Life Sciences Building Berkeley California 94720
- Computational Genomics Resource Laboratory, California Institute for Quantitative Biosciences University of California Berkeley California 94720
| |
Collapse
|
37
|
A Test for Gene Flow among Sympatric and Allopatric Hawaiian Picture-Winged Drosophila. J Mol Evol 2017; 84:259-266. [PMID: 28492967 DOI: 10.1007/s00239-017-9795-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022]
Abstract
The Hawaiian Drosophila are one of the most species-rich endemic groups in Hawaii and a spectacular example of adaptive radiation. Drosophila silvestris and D. heteroneura are two closely related picture-winged Drosophila species that occur sympatrically on Hawaii Island and are known to hybridize in nature, yet exhibit highly divergent behavioral and morphological traits driven largely through sexual selection. Their closest-related allopatric species, D. planitibia from Maui, exhibits hybrid male sterility and reduced behavioral reproductive isolation when crossed experimentally with D. silvestris or D. heteroneura. A modified four-taxon test for gene flow was applied to recently obtained genomes of the three Hawaiian Drosophila species. The analysis indicates recent gene flow in sympatry, but also, although less extensive, between allopatric species. This study underscores the prevalence of gene flow, even in taxonomic groups considered classic examples of allopatric speciation on islands. The potential confounding effects of gene flow in phylogenetic and population genetics inference are discussed, as well as the implications for conservation.
Collapse
|
38
|
Taylor RS, Friesen VL. The role of allochrony in speciation. Mol Ecol 2017; 26:3330-3342. [DOI: 10.1111/mec.14126] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022]
|
39
|
Henning F, Machado-Schiaffino G, Baumgarten L, Meyer A. Genetic dissection of adaptive form and function in rapidly speciating cichlid fishes. Evolution 2017; 71:1297-1312. [PMID: 28211577 DOI: 10.1111/evo.13206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/04/2017] [Indexed: 12/14/2022]
Abstract
Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick-lipped) and Pundamilia nyererei (thin-lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small-to-moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive-effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick-lipped ecomorph is the result of selection on numerous loci distributed throughout the genome.
Collapse
Affiliation(s)
- Frederico Henning
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.,Department of Genetics, CCS, Federal University of Rio de Janeiro, Ilha do Fundão, 21941-599, Rio de Janeiro, Brazil
| | | | - Lukas Baumgarten
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
40
|
Vertacnik KL, Linnen CR. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics. Ann N Y Acad Sci 2017; 1389:186-212. [DOI: 10.1111/nyas.13311] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
|
41
|
Bagley RK, Sousa VC, Niemiller ML, Linnen CR. History, geography and host use shape genomewide patterns of genetic variation in the redheaded pine sawfly (
Neodiprion lecontei
). Mol Ecol 2017; 26:1022-1044. [DOI: 10.1111/mec.13972] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/10/2016] [Accepted: 12/01/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Robin K. Bagley
- Department of Biology University of Kentucky Lexington KY 40506 USA
| | - Vitor C. Sousa
- cE3c ‐ Centre for Ecology, Evolution and Environmental Changes Faculdade de Ciências Universidade de Lisboa 1749‐016 Lisboa Portugal
| | - Matthew L. Niemiller
- Illinois Natural History Survey Prairie Research Institute University of Illinois Urbana‐Champaign Champaign IL 61820 USA
| | | |
Collapse
|
42
|
Dennenmoser S, Vamosi SM, Nolte AW, Rogers SM. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq. Mol Ecol 2016; 26:25-42. [DOI: 10.1111/mec.13805] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan Dennenmoser
- Max-Planck Institute for Evolutionary Biology; August Thienemann Strasse 2 24306 Plön Germany
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Steven M. Vamosi
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Arne W. Nolte
- Max-Planck Institute for Evolutionary Biology; August Thienemann Strasse 2 24306 Plön Germany
- Institute for Biology; Carl von Ossietzky University Oldenburg; Carl von Ossietzky Str. 9-11 26111 Oldenburg Germany
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| |
Collapse
|
43
|
Gloss AD, Groen SC, Whiteman NK. A genomic perspective on the generation and maintenance of genetic diversity in herbivorous insects. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016; 47:165-187. [PMID: 28736510 DOI: 10.1146/annurev-ecolsys-121415-032220] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the processes that generate and maintain genetic variation within populations is a central goal in evolutionary biology. Theory predicts that some of this variation is maintained as a consequence of adapting to variable habitats. Studies in herbivorous insects have played a key role in confirming this prediction. Here, we highlight theoretical and conceptual models for the maintenance of genetic diversity in herbivorous insects, empirical genomic studies testing these models, and pressing questions within the realm of evolutionary and functional genomic studies. To address key gaps, we propose an integrative approach combining population genomic scans for adaptation, genome-wide characterization of targets of selection through experimental manipulations, mapping the genetic architecture of traits influencing fitness, and functional studies. We also stress the importance of studying the maintenance of genetic variation across biological scales-from variation within populations to divergence among populations-to form a comprehensive view of adaptation in herbivorous insects.
Collapse
Affiliation(s)
- Andrew D Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Simon C Groen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, California
| |
Collapse
|
44
|
Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol 2016; 25:2337-60. [PMID: 26836441 PMCID: PMC4915564 DOI: 10.1111/mec.13557] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
Hybridization among diverging lineages is common in nature. Genomic data provide a special opportunity to characterize the history of hybridization and the genetic basis of speciation. We review existing methods and empirical studies to identify recent advances in the genomics of hybridization, as well as issues that need to be addressed. Notable progress has been made in the development of methods for detecting hybridization and inferring individual ancestries. However, few approaches reconstruct the magnitude and timing of gene flow, estimate the fitness of hybrids or incorporate knowledge of recombination rate. Empirical studies indicate that the genomic consequences of hybridization are complex, including a highly heterogeneous landscape of differentiation. Inferred characteristics of hybridization differ substantially among species groups. Loci showing unusual patterns - which may contribute to reproductive barriers - are usually scattered throughout the genome, with potential enrichment in sex chromosomes and regions of reduced recombination. We caution against the growing trend of interpreting genomic variation in summary statistics across genomes as evidence of differential gene flow. We argue that converting genomic patterns into useful inferences about hybridization will ultimately require models and methods that directly incorporate key ingredients of speciation, including the dynamic nature of gene flow, selection acting in hybrid populations and recombination rate variation.
Collapse
Affiliation(s)
- Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Loren H. Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
45
|
Arias CF, Van Belleghem S, McMillan WO. Genomics at the evolving species boundary. CURRENT OPINION IN INSECT SCIENCE 2016; 13:7-15. [PMID: 27436548 DOI: 10.1016/j.cois.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/07/2015] [Indexed: 06/06/2023]
Abstract
Molecular studies on hybridization date back to Dobzhansky who compared chromosomal banding patterns to determine if interspecific gene flow occurred in nature [1]. Now, the advent of high-throughput sequencing provides increasingly fine insights into genomic differentiation between incipient taxa that are changing our view of adaptation and speciation and the links between the two. Empirical data from hybridizing taxa demonstrate highly heterogeneous patterns of genomic differentiation. Although underlining reasons for this heterogeneity are complex, studies of hybridizing taxa offers some of the best insights into the regions of the genome under divergent selection and the role these regions play in species boundaries. The challenge moving forward is to develop a better theoretical framework that fully leverages these powerful natural experiments.
Collapse
Affiliation(s)
- Carlos F Arias
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Panama; Biology Program, Faculty of Natural Science and Mathematics, Universidad del Rosario, Carrera 24 # 63c-69, Bogotá 111221, Colombia
| | - Steven Van Belleghem
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Panama; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; Department of Biology, Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Panama.
| |
Collapse
|
46
|
Burri R, Nater A, Kawakami T, Mugal CF, Olason PI, Smeds L, Suh A, Dutoit L, Bureš S, Garamszegi LZ, Hogner S, Moreno J, Qvarnström A, Ružić M, Sæther SA, Sætre GP, Török J, Ellegren H. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res 2015; 25:1656-65. [PMID: 26355005 PMCID: PMC4617962 DOI: 10.1101/gr.196485.115] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/30/2015] [Indexed: 12/19/2022]
Abstract
Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation (“differentiation islands”) widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation. Here, we addressed these questions based on population genetic analyses of 200 resequenced genomes from 10 populations of four Ficedula flycatcher sister species. We show that a heterogeneous differentiation landscape starts emerging among populations within species, and differentiation islands evolve recurrently in the very same genomic regions among independent lineages. Contrary to expectations from models that interpret differentiation islands as genomic regions involved in reproductive isolation that are shielded from gene flow, patterns of sequence divergence (dxy and relative node depth) do not support a major role of gene flow in the evolution of the differentiation landscape in these species. Instead, as predicted by models of linked selection, genome-wide variation in diversity and differentiation can be explained by variation in recombination rate and the density of targets for selection. We thus conclude that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination. Our results emphasize the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation.
Collapse
Affiliation(s)
- Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Alexander Nater
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Pall I Olason
- Wallenberg Advanced Bioinformatics Infrastructure (WABI), Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| | - Linnea Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Ludovic Dutoit
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Stanislav Bureš
- Laboratory of Ornithology, Department of Zoology, Palacky University, 77146 Olomouc, Czech Republic
| | - Laszlo Z Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, 41092 Seville, Spain
| | - Silje Hogner
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway; Natural History Museum, University of Oslo, 0318 Oslo, Norway
| | - Juan Moreno
- Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Milan Ružić
- Bird Protection and Study Society of Serbia, Radnička 20a, 21000 Novi Sad, Serbia
| | - Stein-Are Sæther
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway; Norwegian Institute for Nature Research (NINA), 7034 Trondheim, Norway
| | - Glenn-Peter Sætre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway
| | - Janos Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| |
Collapse
|
47
|
Mosaic genetic differentiation along environmental and geographic gradients indicate divergent selection in a white pine species complex. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9785-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Egan SP, Ragland GJ, Assour L, Powell THQ, Hood GR, Emrich S, Nosil P, Feder JL. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecol Lett 2015; 18:817-825. [PMID: 26077935 PMCID: PMC4744793 DOI: 10.1111/ele.12460] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022]
Abstract
Theory predicts that speciation‐with‐gene‐flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome‐wide impacts of host‐associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation‐with‐gene‐flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co‐occurring apple and hawthorn flies in nature. This striking genome‐wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco‐evolutionary dynamics and genome divergence.
Collapse
Affiliation(s)
- Scott P Egan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Gregory J Ragland
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Entomology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Lauren Assour
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32611, USA
| | - Glen R Hood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Scott Emrich
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Patrik Nosil
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|