1
|
马 振, 刘 福, 赵 雪, 张 晓. [High expression of DTX2 promotes proliferation, invasion and epithelial-mesenchymal transition of oxaliplatin-resistant colorectal cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:829-836. [PMID: 40294933 PMCID: PMC12037280 DOI: 10.12122/j.issn.1673-4254.2025.04.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Indexed: 04/30/2025]
Abstract
OBJECTIVES To investigate the role of DTX2 in regulating biological behaviors of oxaliplatin-resistant colorectal cancer cells (CRC/OXA cells). METHODS CCK8 assay was used to determine the inhibition rate of oxaliplatin-treated CRC cells. A CRC/OXA cell line was constructed, in which DTX2 expression level was detected. The cells were transfected with a DTX2-shRNA plasmid or co-transfected with DTX2-shRNA and pcDNA-Notch2, and the changes in cell proliferation, migration and invasion ability were evaluated using plate cloning assay, scratch assay and Transwell invasion assay. The expression levels of Notch2, NICD and epithelial-mesenchymal transition (EMT) proteins of the transfected cells were detected with Western blotting. In a nude mouse model bearing SW620/OXA cell xenografts, the effects of DTX2 knockdown and Notch2 overexpression in the implanted cells on tumor growth and protein expressions were tested. RESULTS The IC50 of oxaliplatin was 6.00 μmol/L in SW620 cells and 8.00 μmol/L in LoVo cells. CRC/OXA cells showed a significantly increased expression of DTX2. DTX2 knockdown in CRC/OXA cells significantly inhibited cell proliferation, migration and invasion, and these effects were reversed by co-transfection of the cells with pcDNA-Notch2. DTX2 knockdown significantly reduced the expression levels of Notch2, NICD and vimentin proteins and increased E-cadherin expression in CRC/OXA cells, and co-transfection with pcDNA-Notch2 potently attenuated the changes in these proteins. In the tumor-bearing mice, DTX2 overexpression obviously promoted the growth of SW620/OXA cell xenograft, enhanced the protein expressions of Notch2, NICD and vimentin, and lowered the expression of E-cadherin. CONCLUSIONS High expression of DTX2 promotes proliferation, migration, invasion and EMT of CRC/OXA cells through the Notch2 signaling pathway, suggesting the potential of DTX2 as a target to improve the efficacy of oxaliplatin.
Collapse
|
2
|
Onishi S, Yamasaki F, Amatya VJ, Yonezawa U, Taguchi A, Ozono I, Khairunnisa NI, Go Y, Takeshima Y, Horie N. Prognostic value of immunohistochemical staining for H3K27me3 and EZH2 in astrocytoma, IDH-mutant. J Neurooncol 2025; 172:185-194. [PMID: 39636550 PMCID: PMC11832638 DOI: 10.1007/s11060-024-04897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND H3 histone 27 lysine (H3K27) trimethylation (H3K27me3), which is catalyzed by enhancer of zeste homolog 2 (EZH2), regulates gene expression through epigenetic mechanisms. H3K27me3 is used as a diagnostic marker for diffuse midline glioma and as a surrogate marker to distinguish posterior fossa ependymoma A and B. However, the clinical significance of the EZH2-H3K27me3 axis in astrocytoma, IDH-mutant has not been reported, prompting this investigation. METHODS Thirty-three patients with astrocytoma, IDH-mutant treated at our institute were included in this study. Immunohistochemistry (IHC) targeting H3K27me3, H3K27M, EZH2, EZH inhibitory protein, IDH1-R132H, p53, ATRX, Ki-67, and MTAP was performed. Kaplan-Meier analysis and Cox regression analysis were performed to analyze the correlations of overall survival (OS) and progression-free survival (PFS) with various factors, including age, World Health Organization (WHO) grade, the extent of resection, and immunohistochemical results. RESULTS The mean patient age was 40.6 ± 11.0 years. IHC for H3K27me3 was positive in 19 patients and negative in 14 patients. The WHO grade and Ki-67 index were significantly higher in the H3K27me3-positive group (p = 0.004 and p = 0.024, respectively). OS and PFS were significantly shorter in the H3K27me3-positive group (p = 0.002 and p = 0.026, respectively). Furthermore, the H3K27me3 and EZH2 double-positive group was associated with a higher WHO grade and higher Ki-67 index (p = 0.001 and p = 0.024, respectively). In the analysis of patients with WHO grade 2/3, double positivity for H3K27me3 and EZH2 was linked to significantly shorter OS and PFS (p = 0.0053 and p = 0.0048, respectively). CONCLUSION Positivity for H3K27me3, especially double positivity for H3K27me3 and EZH2, could be a poor prognostic factor for astrocytoma, IDH-mutant. These results suggest the utility of H3K27me3 and EZH2 as candidate markers for estimating the malignancy of astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Novita Ikbar Khairunnisa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Yukari Go
- Medical Division Technical Center, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| |
Collapse
|
3
|
Yu K, Meng G, He H, Li W, Wang L, Li Y, Wang X, Huang Y, He J, Zhao M, Xie T, Zhen Z, Li D. Does H3K27me3 expression play a role in patients with Blastic plasmacytoid dendritic cell neoplasm? A clinicopathologic analysis of 14 patients. Ann Diagn Pathol 2025; 74:152413. [PMID: 39608294 DOI: 10.1016/j.anndiagpath.2024.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive lymphohematopoietic malignancy associated with poor prognosis. We aimed to improve the understanding of BPDCN, explore its prognostic significance, and identify potential therapeutic targets. Data from 14 BPDCN patients were retrospectively collected and analyzed, focusing on their clinicopathological characteristics, diagnostic features, immunophenotype, treatment regimens, and prognostic factors. Additionally, immunohistochemistry was used to detect the expression of multiple oncogenes in BPDCN. The cohort comprised 14 patients (10 males, 4 females) with a median age of 63.5 years at the time of diagnosis. Of these specimens, H3K27me3, ASXL1, BAP1, RAC1, TCF4 and AURKA were highly expressed in BPDCN, with expression rates of 71.4 % (10/14), 92.9 % (13/14), 85.7 % (12/14), 100 % (13/13), 12/14 (85.7 %) and 46.2 % (6/13), respectively. The survival of patients in this cohort ranged from 1 to 84 months, with a median overall survival (OS) of 18.5 months. The survival rates for 1, 2, 3, 4 and 5 years were 71.43 %, 53.57 %, 44.64 %, 44.64 %, and 44.64 %, respectively. In the overall BPDCN cohort, patients with positive expression of H3K27me3 exhibited significantly better overall survival compared to those with negative expression H3K27me3 (P = 0.0056). Our analysis showed that the absence of H3K27me3 expression may indicate a poor prognosis in patients with BPDCN, and H3K27me3 may be a potential prognostic indicator for BPDCN.
Collapse
Affiliation(s)
- Kuai Yu
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong He
- Department of Internal Medicine, the First Branch, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixin Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanxin Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Clinical Molecular Medical Detection Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhao
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xie
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Zeng Zhen
- Laboratory of Neuropsycholinguistics, Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Lazaro‐Navarro J, Alcon C, Dorel M, Alasfar L, Bastian L, Baldus C, Astrahantseff K, Yaspo M, Montero J, Eckert C. Inhibiting H3K27 Demethylases Downregulates CREB-CREBBP, Overcoming Resistance in Relapsed Acute Lymphoblastic Leukemia. Cancer Med 2025; 14:1-7. [PMID: 39791538 PMCID: PMC11719120 DOI: 10.1002/cam4.70596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND CREB binding protein (CREBBP) is a key epigenetic regulator, altered in a fifth of relapsed cases of acute lymphoblastic leukemia (ALL). Selectively targeting epigenetic signaling may be an effective novel therapeutic approach to overcome drug resistance. Anti-tumor effects have previously been demonstrated for GSK-J4, a selective H3K27 histone demethylase inhibitor, in several animal models of cancers. METHODS To characterize the effect of GSK-J4, drug response profiling, CRISPR-Dropout Screening, BH3 profiling and immunoblotting were carried out in ALL cell lines or patient derived samples. RESULTS Here we provide evidence that GSK-J4 downregulates cyclic AMP-responsive element-binding protein (CREB) and CREBBP in B-cell precursor-ALL cell lines and patient samples. High CREBBP expression in BCP-ALL cell lines correlated with high GSK-J4 sensitivity and low dexamethasone sensitivity. GSK-J4 treatment also induced Bcl-2 and Bcl-XL dependency and apoptosis. CONCLUSIONS This study proposes H3K27 demethylase inhibition as a potential treatment strategy for patients with treatment-resistant ALL, using CREBBP as a biomarker for drug response and combining GSK-J4 with venetoclax and navitoclax as synergistic partners.
Collapse
Affiliation(s)
- Juan Lazaro‐Navarro
- Department of Pediatric Oncology/HematologyCharité‐Universitätsmedizin BerlinBerlinGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Clara Alcon
- Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
| | - Mathurin Dorel
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Lina Alasfar
- Department of Pediatric Oncology/HematologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Lorenz Bastian
- Medical Department II, Hematology/OncologyUniversity Medical Center Schleswig‐HolsteinCampus KielGermany
| | - Claudia Baldus
- Medical Department II, Hematology/OncologyUniversity Medical Center Schleswig‐HolsteinCampus KielGermany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology/HematologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | | | - Joan Montero
- Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - Cornelia Eckert
- Department of Pediatric Oncology/HematologyCharité‐Universitätsmedizin BerlinBerlinGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
5
|
Luo S, Yue M, Wang D, Lu Y, Wu Q, Jiang J. Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer. Drug Resist Updat 2024; 77:101152. [PMID: 39369466 DOI: 10.1016/j.drup.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.
Collapse
Affiliation(s)
- Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ming Yue
- Department of Pharmacy, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Dequan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
6
|
Shokry D, Khan MW, Powell C, Johnson S, Rennels BC, Boyd RI, Sun Z, Fazal Z, Freemantle SJ, Parker MH, Vieson MD, Samuelson JP, Spinella MJ, Singh R. Refractory testicular germ cell tumors are highly sensitive to the targeting of polycomb pathway demethylases KDM6A and KDM6B. Cell Commun Signal 2024; 22:528. [PMID: 39482699 PMCID: PMC11529429 DOI: 10.1186/s12964-024-01912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024] Open
Abstract
Testicular germ cell tumors (TGCTs) can be treated with cisplatin-based therapy. However, a clinically significant number of cisplatin-resistant patients die from progressive disease as no effective alternatives exist. Curative cisplatin therapy results in acute and life-long toxicities in the young TGCT patient population providing a rationale to decrease cisplatin exposure. In contrast to genetic alterations, recent evidence suggests that epigenetics is a major driving factor for TGCT formation, progression, and response to chemotherapy. Hence, targeting epigenetic pathways with "epidrugs" is one potential relatively unexplored strategy to advance TGCT treatment beyond cisplatin. In this report, we demonstrate for the first time that targeting polycomb demethylases KDM6A and KDM6B with epidrug GSK-J4 can treat both cisplatin-sensitive and -resistant TGCTs. While GSK-J4 had minimal effects alone on TGCT tumor growth in vivo, it dramatically sensitized cisplatin-sensitive and -resistant TGCTs to cisplatin. We validated KDM6A/KDM6B as the target of GSK-J4 since KDM6A/KDM6B genetic depletion had a similar effect to GSK-J4 on cisplatin-mediated anti-tumor activity and transcriptome alterations. Pharmacologic and genetic targeting of KDM6A/KDM6B potentiated or primed the p53-dominant transcriptional response to cisplatin, with also evidence for basal activation of p53. Further, several chromatin modifier genes, including BRD4, lysine demethylases, chromodomain helicase DNA binding proteins, and lysine methyltransferases, were repressed with cisplatin only in KDM6A/KDM6B-targeted cells, implying that KDM6A/KDM6B inhibition sets the stage for extensive chromatin remodeling of TGCT cells upon cisplatin treatment. Our findings demonstrate that targeting polycomb demethylases is a new potent pharmacologic strategy for treating cisplatin resistant TGCTs that warrants clinical development.
Collapse
Affiliation(s)
- Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Department of Anatomy and Embryology, Alexandria University, Alexandria, Egypt
| | - Mehwish W Khan
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Christine Powell
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Samantha Johnson
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Brayden C Rennels
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Zhengyang Sun
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Maryanna H Parker
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Miranda D Vieson
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jonathan P Samuelson
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
| |
Collapse
|
7
|
Zhu X, He L, Zheng Z, Wang Y, Yang J, Zhang B, Wang C, Li Z. The potential of EZH2 expression to facilitate treatment choice in stage II colorectal adenocarcinoma. Histol Histopathol 2024; 39:1371-1379. [PMID: 38567631 DOI: 10.14670/hh-18-732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND The current selection criteria of patients with stage II colorectal carcinoma (CRC) suitable for adjuvant therapy are not satisfactory. Enhancer of zeste homolog 2 (EZH2) has been demonstrated to be over-expressed in CRC. However, data regarding the role of EZH2 in CRC survival remains controversial, and little is known about it in stage II CRC. Thus, we conducted this study to investigate the clinical significance of EZH2 expression in stage II CRC. METHODS Cases with stage II CRC resected between 2015 and 2018 were retrospectively reviewed. EZH2 expression was analyzed by immunohistochemistry using tissue microarrays. The relationship between EZH2 expression and clinicopathological variables was analyzed. Survival curves were estimated by the Kaplan-Meier approach. RESULTS We found high EZH2 expression in 134 of 221 analyzable stage II tumors (60.63%). No significant associations were observed between EZH2 expression and common clinicopathological factors. Survival analyses showed that cases receiving surgery alone had inferior overall survival (OS) than those receiving surgery and chemotherapy (P=0.0075) in stage II CRC with high EZH2 expression, however, metastasis-free survival (MFS) was similar between these two subgroups. Treatment choice had no impact on the survival of stage II CRC with low EZH2 expression. CONCLUSION The OS of stage II CRC with high EZH2 expression improved more strikingly with surgery and adjuvant chemotherapy than with surgery alone, which suggests the potential of EZH2 expression as a biomarker to help identify a subgroup of early-stage CRC benefiting from surgery and adjuvant chemotherapy. More large-scale studies are warranted to corroborate this finding and to further evaluate the predictive nature of EZH2.
Collapse
Affiliation(s)
- Xiaoqun Zhu
- Department of Pathology, Wannan Medical College, Wuhu, PR China
| | - Lu He
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Zhong Zheng
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Ya Wang
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Biao Zhang
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Chaoshan Wang
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Zhiwen Li
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China.
| |
Collapse
|
8
|
Zhang X, Li L, Li Y, Dong C, Shi J, Guo X, Sui A. The role of trimethylation on histone H3 lysine 27 (H3K27me3) in temozolomide resistance of glioma. Brain Res 2024; 1846:149252. [PMID: 39326722 DOI: 10.1016/j.brainres.2024.149252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Temozolomide (TMZ) is the first-line chemotherapeutic agent for malignant glioma, but its resistance limited the benefits of the treated patients. In this study, the role and significance of trimethylation of histone H3 lysine 27 (H3K27me3) in TMZ resistance were investigated. Data from twenty advanced glioma patients were collected, and their pathological samples were analyzed for H3K27me3 levels. TMZ sensitivity was compared between glioma cells U87 and TMZ-resistant cells U87TR, with H3K27me3 levels determined in both cells. The effects of H3K27me3 demethylases inhibitor GSK-J4, combined with TMZ, were assessed on the proliferation and migration of U87TR cells. The results indicated that a high level of H3K27me3 predicts longer disease free survival (DFS) and overall survival (OS) in glioma patients receiving TMZ treatment. The H3K27me3 level was lower in U87TR cells compared to U87 cells. GSK-J4 increased the H3K27me3 level in U87TR cells and decreased their resistance to TMZ. In summary, this study identified a novel marker of TMZ resistance in glioma and provided a new strategy to address this challenge. These findings are significant for improving the clinical treatment of glioma in the future.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China; Graduate School, Hebei North University, Zhangjiakou 075132, Hebei, China
| | - Li Li
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China
| | - Yitong Li
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China
| | - Changzheng Dong
- Second Department of Neurosurgery, Hebei General Hospital, Shijiazhuang 050057, Hebei, China
| | - Jian Shi
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Xiaoqiang Guo
- Department of Sports Human Sciences, Hebei Sport University, Shijiazhuang 050041, Hebei, China.
| | - Aixia Sui
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China.
| |
Collapse
|
9
|
Li H, Wu P. Epigenetics in thyroid cancer: a bibliometric analysis. Endocr Connect 2024; 13:e240087. [PMID: 38949925 PMCID: PMC11378139 DOI: 10.1530/ec-24-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Background Epigenetics, which involves regulatory modifications that do not alter the DNA sequence itself, is crucial in the development and progression of thyroid cancer. This study aims to provide a comprehensive analysis of the epigenetic research landscape in thyroid cancer, highlighting current trends, major research areas, and potential future directions. Methods A bibliometric analysis was performed using data from the Web of Science Core Collection (WOSCC) up to 1 November 2023. Analytical tools such as VOSviewer, CiteSpace, and the R package 'bibliometrix' were employed for comprehensive data analysis and visualization. This process identified principal research themes, along with influential authors, institutions, and countries contributing to the field. Results The analysis reveals a marked increase in thyroid cancer epigenetics research over the past two decades. Emergent key themes include the exploration of molecular mechanisms and biomarkers, various subtypes of thyroid cancer, implications for therapeutic interventions, advancements in technologies and methodologies, and the scope of translational research. Research hotspots within these themes highlight intensive areas of study and the potential for significant breakthroughs. Conclusion This study presents an in-depth overview of the current state of epigenetics in thyroid cancer research. It underscores the potential of epigenetic strategies as viable therapeutic options and provides valuable insights for researchers and clinicians in advancing the understanding and treatment of this complex disease. Future research is vital to fully leverage the therapeutic possibilities offered by epigenetics in the management of thyroid cancer.
Collapse
Affiliation(s)
- Hui Li
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, P. R. China
| | - Peng Wu
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, P. R. China
| |
Collapse
|
10
|
Larue AEM, Atlasi Y. The epigenetic landscape in intestinal stem cells and its deregulation in colorectal cancer. Stem Cells 2024; 42:509-525. [PMID: 38597726 PMCID: PMC11177158 DOI: 10.1093/stmcls/sxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Epigenetic mechanisms play a pivotal role in controlling gene expression and cellular plasticity in both normal physiology and pathophysiological conditions. These mechanisms are particularly important in the regulation of stem cell self-renewal and differentiation, both in embryonic development and within adult tissues. A prime example of this finely tuned epigenetic control is observed in the gastrointestinal lining, where the small intestine undergoes renewal approximately every 3-5 days. How various epigenetic mechanisms modulate chromatin functions in intestinal stem cells (ISCs) is currently an active area of research. In this review, we discuss the main epigenetic mechanisms that control ISC differentiation under normal homeostasis. Furthermore, we explore the dysregulation of these mechanisms in the context of colorectal cancer (CRC) development. By outlining the main epigenetic mechanisms contributing to CRC, we highlight the recent therapeutics development and future directions for colorectal cancer research.
Collapse
Affiliation(s)
- Axelle E M Larue
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
11
|
Zhang D, Zhao X, Gao Y, Wang M, Xiao M, Zhu K, Niu W, Dai Y. Inactivation of KDM6A promotes the progression of colorectal cancer by enhancing the glycolysis. Eur J Med Res 2024; 29:310. [PMID: 38840262 PMCID: PMC11155098 DOI: 10.1186/s40001-024-01828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/04/2024] [Indexed: 06/07/2024] Open
Abstract
KDM6A (lysine demethylase 6A) has been reported to undergo inactivating mutations in colorectal cancer, but its function in the progression of colorectal cancer has not been evaluated using animal models of colorectal cancer. In this study, we found that knocking out KDM6A expression in mouse intestinal epithelium increased the length of villus and crypt, promoting the development of AOM (azoxymethane)/DSS (dextran sulfate sodium salt)-induced colorectal cancer. On the other hand, knocking down KDM6A expression promoted the growth of colorectal cancer cells. In molecular mechanism studies, we found that KDM6A interacts with HIF-1α; knocking down KDM6A promotes the binding of HIF-1α to the LDHA promoter, thereby promoting LDHA expression and lactate production, enhancing glycolysis. Knocking down LDHA reversed the malignant phenotype caused by KDM6A expression loss. In summary, this study using animal models revealed that KDM6A loss promotes the progression of colorectal cancer through reprogramming the metabolism of the colorectal cancer cells, suggesting that restoring the function of KDM6A is likely to be one of the strategies for colorectal cancer treatment.
Collapse
Affiliation(s)
- Dexiang Zhang
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, 966th, Middle Huaihai Road, Shanghai, 200031, China
| | - Xiaohong Zhao
- Women Health Care Department, Hainan Women and Children Medical Center, Haikou, 570312, Hainan, China
| | - Yu Gao
- Department of Medical Oncology, Cancer Hospital of Fudan University, Minhang, 106th, Ruili Rd., Shanghai, 200240, China
| | - Meixing Wang
- Department of Medical Oncology, Cancer Hospital of Fudan University, Minhang, 106th, Ruili Rd., Shanghai, 200240, China
| | - Mi Xiao
- Department of Medical Oncology, Cancer Hospital of Fudan University, Minhang, 106th, Ruili Rd., Shanghai, 200240, China
| | - Kaihua Zhu
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, 966th, Middle Huaihai Road, Shanghai, 200031, China.
| | - Wei Niu
- Department of Medical Oncology, Cancer Hospital of Fudan University, Minhang, 106th, Ruili Rd., Shanghai, 200240, China.
| | - Yuedi Dai
- Department of Medical Oncology, Cancer Hospital of Fudan University, Minhang, 106th, Ruili Rd., Shanghai, 200240, China.
| |
Collapse
|
12
|
Chen G, Zhang L, Wang R, Xie Z. Histone methylation in Epstein-Barr virus-associated diseases. Epigenomics 2024; 16:865-877. [PMID: 38869454 PMCID: PMC11370928 DOI: 10.1080/17501911.2024.2345040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
Epstein-Barr virus (EBV) infection is linked to various human diseases, including both noncancerous conditions like infectious mononucleosis and cancerous diseases such as lymphoma and nasopharyngeal carcinoma. After the initial infection, EBV establishes a lifelong presence and remains latent in specific cells. This latent infection causes changes in the epigenetic marks known as histone methylation. Many studies have examined the role of histone methylation in different EBV-associated diseases, and understanding how EBV affects histone methylation can help us identify potential targets for epigenetic therapies. This review focuses on the research progress made in understanding histone methylation in well-studied EBV-associated diseases, intending to provide insights into potential strategies based on histone methylation to combat EBV-related ailments.
Collapse
Affiliation(s)
- Guanglian Chen
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| |
Collapse
|
13
|
Li L, Song Q, Zhou J, Ji Q. Controllers of histone methylation-modifying enzymes in gastrointestinal cancers. Biomed Pharmacother 2024; 174:116488. [PMID: 38520871 DOI: 10.1016/j.biopha.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
Gastrointestinal (GI) cancers have been considered primarily genetic malignancies, caused by a series of progressive genetic alterations. Accumulating evidence shows that histone methylation, an epigenetic modification program, plays an essential role in the different pathological stages of GI cancer progression, such as precancerous lesions, tumorigenesis, and tumor metastasis. Histone methylation-modifying enzymes, including histone methyltransferases (HMTs) and demethylases (HDMs), are the main executor of post-transcriptional modification. The abnormal expression of histone methylation-modifying enzymes characterizes GI cancers with complex pathogenesis and progression. Interactions between upstream controllers and histone methylation-modifying enzymes have recently been revealed, and have provided numerous opportunities to elucidate the pathogenesis of GI cancers in depth and clearly. Here we focus on the association between histone methylation-modifying enzymes and their controllers, aiming to provide a new perspective on the molecular research and clinical management of GI cancers.
Collapse
Affiliation(s)
- Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215007, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
Chen D, Cai B, Zhu Y, Ma Y, Yu X, Xiong J, Shen J, Tie W, Zhang Y, Guo F. Targeting histone demethylases JMJD3 and UTX: selenium as a potential therapeutic agent for cervical cancer. Clin Epigenetics 2024; 16:51. [PMID: 38576048 PMCID: PMC10993516 DOI: 10.1186/s13148-024-01665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The intriguing connection between selenium and cancer resembles a captivating puzzle that keeps researchers engaged and curious. While selenium has shown promise in reducing cancer risks through supplementation, its interaction with epigenetics in cervical cancer remains a fascinating yet largely unexplored realm. Unraveling the intricacies of selenium's role and its interaction with epigenetic factors could unlock valuable insights in the battle against this complex disease. RESULT Selenium has shown remarkable inhibitory effects on cervical cancer cells in various ways. In in vitro studies, it effectively inhibits the proliferation, migration, and invasion of cervical cancer cells, while promoting apoptosis. Selenium also demonstrates significant inhibitory effects on human cervical cancer-derived organoids. Furthermore, in an in vivo study, the administration of selenium dioxide solution effectively suppresses the growth of cervical cancer tumors in mice. One of the mechanisms behind selenium's inhibitory effects is its ability to inhibit histone demethylases, specifically JMJD3 and UTX. This inhibition is observed both in vitro and in vivo. Notably, when JMJD3 and UTX are inhibited with GSK-J4, similar biological effects are observed in both in vitro and in vivo models, effectively inhibiting organoid models derived from cervical cancer patients. Inhibiting JMJD3 and UTX also induces G2/M phase arrest, promotes cellular apoptosis, and reverses epithelial-mesenchymal transition (EMT). ChIP-qPCR analysis confirms that JMJD3 and UTX inhibition increases the recruitment of a specific histone modification, H3K27me3, to the transcription start sites (TSS) of target genes in cervical cancer cells (HeLa and SiHa cells). Furthermore, the expressions of JMJD3 and UTX are found to be significantly higher in cervical cancer tissues compared to adjacent normal cervical tissues, suggesting their potential as therapeutic targets. CONCLUSIONS Our study highlights the significant inhibitory effects of selenium on the growth, migration, and invasion of cervical cancer cells, promoting apoptosis and displaying promising potential as a therapeutic agent. We identified the histone demethylases JMJD3 and UTX as specific targets of selenium, and their inhibition replicates the observed effects on cancer cell behavior. These findings suggest that JMJD3 and UTX could be valuable targets for selenium-based treatments of cervical cancer.
Collapse
Affiliation(s)
- Dezhi Chen
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Bo Cai
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, Jiangxi Province, China
| | - Yingying Zhu
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Yimin Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Xiaoting Yu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jieqi Xiong
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, Jiangxi Province, China
| | - Jiaying Shen
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Weiwei Tie
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Yisheng Zhang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China.
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
15
|
Kardian AS, Mack S. The Intersection of Epigenetic Alterations and Developmental State in Pediatric Ependymomas. Dev Neurosci 2024; 46:365-372. [PMID: 38527429 PMCID: PMC11614414 DOI: 10.1159/000537694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/03/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Ependymomas are the third most common brain cancer in children and have no targeted therapies. They are divided into at least 9 major subtypes based on molecular characteristics and major drivers and have few genetic mutations compared to the adult form of this disease, leading to investigation of other mechanisms. SUMMARY Epigenetic alterations such as transcriptional programs activated by oncofusion proteins and alterations in histone modifications play an important role in development of this disease. Evidence suggests these alterations interact with the developmental epigenetic programs in the cell of origin to initiate neoplastic transformation and later disease progression, perhaps by keeping a portion of tumor cells in a developmental, proliferative state. KEY MESSAGES To better understand this disease, research on its developmental origins and associated epigenetic states needs to be further pursued. This could lead to better treatments, which are currently lacking due to the difficult-to-drug nature of known drivers such as fusion proteins. Epigenetic and developmental states characteristic of these tumors may not just be potential therapeutic targets but used as a tool to find new avenues of treatment.
Collapse
Affiliation(s)
- Alisha Simone Kardian
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephen Mack
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
16
|
Hashemi M, Esbati N, Rashidi M, Gholami S, Raesi R, Bidoki SS, Goharrizi MASB, Motlagh YSM, Khorrami R, Tavakolpournegari A, Nabavi N, Zou R, Mohammadnahal L, Entezari M, Taheriazam A, Hushmandi K. Biological landscape and nanostructural view in development and reversal of oxaliplatin resistance in colorectal cancer. Transl Oncol 2024; 40:101846. [PMID: 38042134 PMCID: PMC10716031 DOI: 10.1016/j.tranon.2023.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
The treatment of cancer patients has been mainly followed using chemotherapy and it is a gold standard in improving prognosis and survival rate of patients. Oxaliplatin (OXA) is a third-platinum anti-cancer agent that reduces DNA synthesis in cancer cells to interfere with their growth and cell cycle progression. In spite of promising results of using OXA in cancer chemotherapy, the process of drug resistance has made some challenges. OXA is commonly applied in treatment of colorectal cancer (CRC) as a malignancy of gastrointestinal tract and when CRC cells increase their proliferation and metastasis, they can obtain resistance to OXA chemotherapy. A number of molecular factors such as CHK2, SIRT1, c-Myc, LATS2 and FOXC1 have been considered as regulators of OXA response in CRC cells. The non-coding RNAs are able to function as master regulator of other molecular pathways in modulating OXA resistance. There is a close association between molecular mechanisms such as apoptosis, autophagy, glycolysis and EMT with OXA resistance, so that apoptosis inhibition, pro-survival autophagy induction and stimulation of EMT and glycolysis can induce OXA resistance in CRC cells. A number of anti-tumor compounds including astragaloside IV, resveratrol and nobiletin are able to enhance OXA sensitivity in CRC cells. Nanoparticles for increasing potential of OXA in CRC suppression and reversing OXA resistance have been employed in cancer chemotherapy. These subjects are covered in this review article to shed light on molecular factors resulting in OXA resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Esbati
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Leila Mohammadnahal
- Department of Health Services Management, School of Health, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
17
|
Kozlov AA, Sokolova YO, Kovalenko AL, Bazhanova ED. Effect of Lysine Acridone Acetate on the Level of Apoptosis and Expression of Apoptosis-Associated Proteins during Antioncogenic Therapy in Colorectal Cancer in Mice. Bull Exp Biol Med 2023; 176:210-215. [PMID: 38194065 DOI: 10.1007/s10517-024-05997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 01/10/2024]
Abstract
We studied the mechanism of action of cytostatics with the addition of lysine acridone acetate to evaluate the possibility of its use for improving the effectiveness of antioncogenic therapy in colorectal cancer. In Nude mouse model, the level of apoptosis (TUNEL) and expression of proteins CD95, p53, Bcl-2, histone H3, and Ki-67 (immunohistochemistry) were assessed in primary tumor biopsy specimens. It has been shown that cytostatic treatment led to stimulation of p53-mediated apoptosis and suppression of proliferation (Ki-67 expression) of tumor cells, and apoptosis level was increased in groups receiving lysine acridone acetate. H3 expression in the experimental groups was changed.
Collapse
Affiliation(s)
- A A Kozlov
- S. N. Golikov Scientific and Clinical Center of Toxicology, Federal Medical-Biological Agency of Russia, St. Petersburg, Russia
| | - Yu O Sokolova
- S. N. Golikov Scientific and Clinical Center of Toxicology, Federal Medical-Biological Agency of Russia, St. Petersburg, Russia
| | - A L Kovalenko
- S. N. Golikov Scientific and Clinical Center of Toxicology, Federal Medical-Biological Agency of Russia, St. Petersburg, Russia
| | - E D Bazhanova
- S. N. Golikov Scientific and Clinical Center of Toxicology, Federal Medical-Biological Agency of Russia, St. Petersburg, Russia.
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
18
|
Brisset M, Mehlen P, Meurette O, Hollande F. Notch receptor/ligand diversity: contribution to colorectal cancer stem cell heterogeneity. Front Cell Dev Biol 2023; 11:1231416. [PMID: 37860822 PMCID: PMC10582728 DOI: 10.3389/fcell.2023.1231416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Cancer cell heterogeneity is a key contributor to therapeutic failure and post-treatment recurrence. Targeting cell subpopulations responsible for chemoresistance and recurrence seems to be an attractive approach to improve treatment outcome in cancer patients. However, this remains challenging due to the complexity and incomplete characterization of tumor cell subpopulations. The heterogeneity of cells exhibiting stemness-related features, such as self-renewal and chemoresistance, fuels this complexity. Notch signaling is a known regulator of cancer stem cell (CSC) features in colorectal cancer (CRC), though the effects of its heterogenous signaling on CRC cell stemness are only just emerging. In this review, we discuss how Notch ligand-receptor specificity contributes to regulating stemness, self-renewal, chemoresistance and cancer stem cells heterogeneity in CRC.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Patrick Mehlen
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Olivier Meurette
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Li CY, Liu YJ, Tao F, Chen RY, Shi JJ, Lu JF, Yang GJ, Chen J. Lysine-specific demethylase 7A (KDM7A): A potential target for disease therapy. Biochem Pharmacol 2023; 216:115799. [PMID: 37696455 DOI: 10.1016/j.bcp.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Histone demethylation is a kind of epigenetic modification mediated by a variety of enzymes and participates in regulating multiple physiological and pathological events. Lysine-specific demethylase 7A is a kind of α-ketoglutarate- and Fe(II)-dependent demethylase belonging to the PHF2/8 subfamily of the JmjC demethylases. KDM7A is mainly localized in the nucleus and contributes to transcriptional activation via removing mono- and di-methyl groups from the lysine residues 9 and 27 of Histone H3. Mounting studies support that KDM7A is not only necessary for normal embryonic, neural, and skeletal development, but also associated with cancer, inflammation, osteoporosis, and other diseases. Herein, the structure of KDM7A is described by comparing the similarities and differences of its amino acid sequences of KDM7A and other Histone demethylases; the functions of KDM7A in homeostasis and dyshomeostasis are summarized via documenting its content and related signaling; the currently known KDM7A-specific inhibitors and their structural relationship are listed based on their structure optimization and pharmacological activities; and the challenges and opportunities in exploring functions and developing targeted agents of KDM7A are also prospected via presenting encountered problems and potential solutions, which will provide an insight in functional exploration and drug discovery for KDM7A-related diseases.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
20
|
Moreta-Moraleda C, Queralt C, Vendrell-Ayats C, Forcales S, Martínez-Balibrea E. Chromatin factors: Ready to roll as biomarkers in metastatic colorectal cancer? Pharmacol Res 2023; 196:106924. [PMID: 37709185 DOI: 10.1016/j.phrs.2023.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the fourth leading cause of cancer-related fatalities in 2020. Survival rates for metastatic disease have slightly improved in recent decades, with clinical trials showing median overall survival of approximately 24-30 months. This progress can be attributed to the integration of chemotherapeutic treatments alongside targeted therapies and immunotherapy. Despite these modest improvements, the primary obstacle to successful treatment for advanced CRC lies in the development of chemoresistance, whether inherent or acquired, which remains the major cause of treatment failure. Epigenetics has emerged as a hallmark of cancer, contributing to master transcription regulation and genome stability maintenance. As a result, epigenetic factors are starting to appear as potential clinical biomarkers for diagnosis, prognosis, and prediction of treatment response in CRC.In recent years, numerous studies have investigated the influence of DNA methylation, histone modifications, and chromatin remodelers on responses to chemotherapeutic treatments. While there is accumulating evidence indicating their significant involvement in various types of cancers, the exact relationship between chromatin landscapes and treatment modulation in CRC remains elusive. This review aims to provide a comprehensive summary of the most pertinent and extensively researched epigenetic-associated mechanisms described between 2015 and 2022 and their potential usefulness as predictive biomarkers in the metastatic disease.
Collapse
Affiliation(s)
- Cristina Moreta-Moraleda
- Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain
| | - Cristina Queralt
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Carla Vendrell-Ayats
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Sonia Forcales
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain.
| | - Eva Martínez-Balibrea
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain.
| |
Collapse
|
21
|
Song YQ, Yang GJ, Ma DL, Wang W, Leung CH. The role and prospect of lysine-specific demethylases in cancer chemoresistance. Med Res Rev 2023; 43:1438-1469. [PMID: 37012609 DOI: 10.1002/med.21955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Histone methylation plays a key function in modulating gene expression, and preserving genome integrity and epigenetic inheritance. However, aberrations of histone methylation are commonly observed in human diseases, especially cancer. Lysine methylation mediated by histone methyltransferases can be reversed by lysine demethylases (KDMs), which remove methyl marks from histone lysine residues. Currently, drug resistance is a main impediment for cancer therapy. KDMs have been found to mediate drug tolerance of many cancers via altering the metabolic profile of cancer cells, upregulating the ratio of cancer stem cells and drug-tolerant genes, and promoting the epithelial-mesenchymal transition and metastatic ability. Moreover, different cancers show distinct oncogenic addictions for KDMs. The abnormal activation or overexpression of KDMs can alter gene expression signatures to enhance cell survival and drug resistance in cancer cells. In this review, we describe the structural features and functions of KDMs, the KDMs preferences of different cancers, and the mechanisms of drug resistance resulting from KDMs. We then survey KDM inhibitors that have been used for combating drug resistance in cancer, and discuss the opportunities and challenges of KDMs as therapeutic targets for cancer drug resistance.
Collapse
Affiliation(s)
- Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
22
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
23
|
Rodger EJ, Gimenez G, Ajithkumar P, Stockwell PA, Almomani S, Bowden SA, Leichter AL, Ahn A, Pattison S, McCall JL, Schmeier S, Frizelle FA, Eccles MR, Purcell RV, Chatterjee A. An epigenetic signature of advanced colorectal cancer metastasis. iScience 2023; 26:106986. [PMID: 37378317 PMCID: PMC10291510 DOI: 10.1016/j.isci.2023.106986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. The majority of CRC deaths are caused by tumor metastasis, even following treatment. There is strong evidence for epigenetic changes, such as DNA methylation, accompanying CRC metastasis and poorer patient survival. Earlier detection and a better understanding of molecular drivers for CRC metastasis are of critical clinical importance. Here, we identify a signature of advanced CRC metastasis by performing whole genome-scale DNA methylation and full transcriptome analyses of paired primary cancers and liver metastases from CRC patients. We observed striking methylation differences between primary and metastatic pairs. A subset of loci showed coordinated methylation-expression changes, suggesting these are potentially epigenetic drivers that control the expression of critical genes in the metastatic cascade. The identification of CRC epigenomic markers of metastasis has the potential to enable better outcome prediction and lead to the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Peter A. Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Suzan Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sarah A. Bowden
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna L. Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Antonio Ahn
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Frank A. Frizelle
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rachel V. Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Honorary Professor, School of Health Sciences and Technology, UPES University, India
| |
Collapse
|
24
|
la Torre A, Lo Vecchio F, Greco A. Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells 2023; 12:cells12081163. [PMID: 37190071 DOI: 10.3390/cells12081163] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Aging is an inevitable outcome of life, characterized by a progressive decline in tissue and organ function. At a molecular level, it is marked by the gradual alterations of biomolecules. Indeed, important changes are observed on the DNA, as well as at a protein level, that are influenced by both genetic and environmental parameters. These molecular changes directly contribute to the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, neurodegenerative disorders and others aging-related diseases. Additionally, they increase the risk of mortality. Therefore, deciphering the hallmarks of aging represents a possibility for identifying potential druggable targets to attenuate the aging process, and then the age-related comorbidities. Given the link between aging, genetic, and epigenetic alterations, and given the reversible nature of epigenetic mechanisms, the precisely understanding of these factors may provide a potential therapeutic approach for age-related decline and disease. In this review, we center on epigenetic regulatory mechanisms and their aging-associated changes, highlighting their inferences in age-associated diseases.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| |
Collapse
|
25
|
Chen LJ, Xu XY, Zhong XD, Liu YJ, Zhu MH, Tao F, Li CY, She QS, Yang GJ, Chen J. The role of lysine-specific demethylase 6A (KDM6A) in tumorigenesis and its therapeutic potentials in cancer therapy. Bioorg Chem 2023; 133:106409. [PMID: 36753963 DOI: 10.1016/j.bioorg.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qiu-Sheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467044, Henan, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
27
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
28
|
H3K27me3 Immunohistochemical Loss Predicts Lower Response to Neo-Adjuvant Chemo-Radiotherapy in Rectal Carcinoma. Biomedicines 2022; 10:biomedicines10082042. [PMID: 36009589 PMCID: PMC9405749 DOI: 10.3390/biomedicines10082042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
A watch-and-wait approach was suggested to avoid the possible complications related to surgery in patients with rectal carcinoma showing clinical complete response after neoadjuvant chemo-radiotherapy (CRT). Since clinical response may not correlate with pathological response, markers with higher accuracy are needed to identify patients who are likely responders and could be spared surgery. This study aims to assess whether H3K27me3 immunohistochemical expression in pre-treatment rectal carcinoma predicts response to neoadjuvant CRT or shows prognostic relevance. We assessed H3K27me3 immunostaining in 46 endoscopic biopsies of rectal carcinomas treated with neoadjuvant CRT and surgery. H3K27me3 immunostaining was lost in 20, retained in 19, and inconclusive (absent in neoplastic and non-neoplastic cells) in 7 cases. Retained H3K27me3 immuno-expression was significantly associated with ypTNM stage 0 (p = 0.0111) and high tumor regression, measured using either five-tiered (p = 0.0042) or two-tiered Dworak tumor regression grade (p = 0.0009). Poor differentiation, determined counting the number of poorly differentiated clusters (PDC grade) or tumor budding (TB) foci (TB grade), in the pre-treatment biopsy, was significantly associated with a shorter time to progression after surgery (p = 0.008; p = 0.0093). However, only PDC grade (p = 0.0023), together with radial margin involvement (p = 0.0001), retained prognostic significance in the multivariate analysis. The assessment of H3K27me3 immunostaining in pre-treatment endoscopic biopsy of rectal carcinoma could be useful to predict response to neo-adjuvant CRT and to identify patients who could safely undergo watch-and-wait approach. PDC and TB grade in the pre-treatment biopsy could provide additional prognostic information in patients with rectal carcinoma treated with neoadjuvant CRT and surgery.
Collapse
|
29
|
Abu-Hanna J, Patel JA, Anastasakis E, Cohen R, Clapp LH, Loizidou M, Eddama MMR. Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: a review of the literature. Clin Epigenetics 2022; 14:98. [PMID: 35915507 PMCID: PMC9344682 DOI: 10.1186/s13148-022-01305-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
Histone 3 lysine 27 (H3K27) demethylation constitutes an important epigenetic mechanism of gene activation. It is mediated by the Jumonji C domain-containing lysine demethylases KDM6A and KDM6B, both of which have been implicated in a wide myriad of diseases, including blood and solid tumours, autoimmune and inflammatory disorders, and infectious diseases. Here, we review and summarise the pre-clinical evidence, both in vitro and in vivo, in support of the therapeutic potential of inhibiting H3K27-targeting demethylases, with a focus on the small-molecule inhibitor GSK-J4. In malignancies, KDM6A/B inhibition possesses the ability to inhibit proliferation, induce apoptosis, promote differentiation, and heighten sensitivity to currently employed chemotherapeutics. KDM6A/B inhibition also comprises a potent anti-inflammatory approach in inflammatory and autoimmune disorders associated with inappropriately exuberant inflammatory and autoimmune responses, restoring immunological homeostasis to inflamed tissues. With respect to infectious diseases, KDM6A/B inhibition can suppress the growth of infectious pathogens and attenuate the immunopathology precipitated by these pathogens. The pre-clinical in vitro and in vivo data, summarised in this review, suggest that inhibiting H3K27 demethylases holds immense therapeutic potential in many diseases.
Collapse
Affiliation(s)
- Jeries Abu-Hanna
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK
| | - Jigisha A Patel
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK
| | | | - Richard Cohen
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK.,Department of Gastroenterology, University College London Hospital, London, UK
| | - Lucie H Clapp
- Institute of Cardiovascular Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK
| | - Mohammad M R Eddama
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK. .,Department of Gastroenterology, University College London Hospital, London, UK.
| |
Collapse
|
30
|
Zhang F, Luo H, Peng W, Wang L, Wang T, Xie Z, Zhang J, Dong W, Zheng X, Liu G, Zhu X, Kang Q, Tian X. Hypoxic condition induced H3K27me3 modification of the LncRNA Tmem235 promoter thus supporting apoptosis of BMSCs. Apoptosis 2022; 27:762-777. [PMID: 35779185 PMCID: PMC9482900 DOI: 10.1007/s10495-022-01747-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have strong regenerative potential and show good application prospects for treating clinical diseases. However, in the process of BMSC transplantation for treating ischemic and hypoxic diseases, BMSCs have high rates of apoptosis in the hypoxic microenvironment of transplantation, which significantly affects the transplantation efficacy. Our previous studies have confirmed the key role of long non-coding RNA Tmem235 (LncRNA Tmem235) in the process of hypoxia-induced BMSC apoptosis and its downstream regulatory mechanism, but the upstream mechanism by which hypoxia regulates LncRNA Tmem235 expression to induce BMSC apoptosis is still unclear. Under hypoxic conditions, we found that the level of LncRNA Tmem235 promoter histone H3 lysine 27 trimethylation modification (H3K27me3) was significantly increased by CHIP-qPCR. Moreover, H3K27me3 cooperated with LncRNA Tmem235 promoter DNA methylation to inhibit the expression of LncRNA Tmem235 and promote apoptosis of BMSCs. To study the mechanism of hypoxia-induced modification of LncRNA Tmem235 promoter H3K27me3 in the hypoxia model of BMSCs, we detected the expression of H3K27 methylase and histone demethylase and found that only histone methylase enhancer of zeste homolog 2 (EZH2) expression was significantly upregulated. Knockdown of EZH2 significantly decreased the level of H3K27me3 modification in the LncRNA Tmem235 promoter. The EZH2 promoter region contains a hypoxia-responsive element (HRE) that interacts with hypoxia-inducible factor-1alpha (HIF-1α), which is overexpressed under hypoxic conditions, thereby promoting its overexpression. In summary, hypoxia promotes the modification of the LncRNA Tmem235 promoter H3K27me3 through the HIF-1α/EZH2 signaling axis, inhibits the expression of LncRNA Tmem235, and leads to hypoxic apoptosis of BMSCs. Our findings improve the regulatory mechanism of LncRNA Tmem235 during hypoxic apoptosis of BMSCs and provide a more complete theoretical pathway for targeting LncRNA to inhibit hypoxic apoptosis of BMSCs.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Lei Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaohan Zheng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Gang Liu
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Qinglin Kang
- Department of Orthopedics, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Xiaobin Tian
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
31
|
Karimi Kelaye S, Najafi F, Kazemi B, Foruzandeh Z, Seif F, Solali S, Alivand MR. The contributing factors of resistance or sensitivity to epigenetic drugs in the treatment of AML. Clin Transl Oncol 2022; 24:1250-1261. [PMID: 35076883 DOI: 10.1007/s12094-022-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Drug resistance is the drug-effectiveness reduction in treatment and is a serious problem in oncology and infections. In oncology, drug resistance is a complicated process resulting from enhancing the function of a pump that transports drugs out of tumor cells, or acquiring mutations in drug target. Surprisingly, most drugs are very effective in the early stages, but the response to the drug wears off over time and resistance eventually develops. Drug resistance is caused by genetic and epigenetic changes that affect cancer cells and the tumor environment. The study of inherited changes in the phenotype without changes in the DNA sequence is called epigenetics. Because of reversible changes in epigenetics, they are an attractive target for therapy. Some of these epigenetic drugs are effective in treating cancers like acute myeloid leukemia (AML), which is characterized by the accumulation and proliferation of immature hematopoietic cells in the blood and bone marrow. In this article, we outlined the various contributing factors involved in resistance or sensitivity to epigenetic drugs in the treatment of AML.
Collapse
Affiliation(s)
- Shohre Karimi Kelaye
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Najafi
- Division of Hematology and Blood Banking, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Kazemi
- Division of Hematology and Blood Banking, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Foruzandeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad-Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Zhang N, Shang M, Li H, Wu L, Dong M, Huang B, Lu J, Zhang Y. Dual Inhibition of H3K9me2 and H3K27me3 Promotes Tumor Cell Senescence without Triggering the Secretion of SASP. Int J Mol Sci 2022; 23:ijms23073911. [PMID: 35409271 PMCID: PMC8999616 DOI: 10.3390/ijms23073911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
Chemotherapy remains the most common cancer treatment. Although chemotherapeutic drugs induce tumor cell senescence, they are often associated with post-therapy tumor recurrence by inducing the senescence-associated secretory phenotype (SASP). Therefore, it is important to identify effective strategies to induce tumor cell senescence without triggering SASP. In this study, we used the small molecule inhibitors, UNC0642 (G9a inhibitor) and UNC1999 (EZH2 inhibitor) alone or in combination, to inhibit H3K9 and H3K27 methylation in different cancer cells. Dual inhibition of H3K9me2 and H3K27me3 in highly metastatic tumor cells had a stronger pro-senescence effect than either inhibitor alone and did not trigger SASP in tumor cells. Dual inhibition of H3K9me2 and H3K27me3 suppressed the formation of cytosolic chromatin fragments, which inhibited the cGAS-STING-SASP pathway. Collectively, these data suggested that dual inhibition of H3K9 and H3K27 methylation induced senescence of highly metastatic tumor cells without triggering SASP by inhibiting the cGAS-STING-SASP pathway, providing a new mechanism for the epigenetics-based therapy targeting H3K9 and H3K27 methylation.
Collapse
Affiliation(s)
- Na Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (N.Z.); (H.L.); (M.D.); (B.H.)
| | - Mengjie Shang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (M.S.); (L.W.); (J.L.)
| | - Hongxin Li
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (N.Z.); (H.L.); (M.D.); (B.H.)
| | - Lan Wu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (M.S.); (L.W.); (J.L.)
| | - Meichen Dong
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (N.Z.); (H.L.); (M.D.); (B.H.)
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (N.Z.); (H.L.); (M.D.); (B.H.)
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (M.S.); (L.W.); (J.L.)
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (N.Z.); (H.L.); (M.D.); (B.H.)
- Correspondence: ; Tel.: +86-431-8509-9798
| |
Collapse
|
33
|
Ammendola S, Rizzo PC, Longhi M, Zivelonghi E, Pedron S, Pinna G, Sala F, Nicolato A, Scarpa A, Barresi V. The Immunohistochemical Loss of H3K27me3 in Intracranial Meningiomas Predicts Shorter Progression-Free Survival after Stereotactic Radiosurgery. Cancers (Basel) 2022; 14:cancers14071718. [PMID: 35406488 PMCID: PMC8997117 DOI: 10.3390/cancers14071718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In this study, we aimed to investigate whether the immunohistochemical expression of H3K27me3 in meningiomas might predict tumor progression after stereotactic radiosurgery (SRS) performed for residual or recurrent disease. In 39 intracranial meningiomas, H3K27me3 loss was significantly associated with tumor progression (p = 0.0143) and shorter PFS after SRS (p = 0.0036). These findings suggest that the loss of H3K27me3 in meningiomas may correlate to a weaker response to SRS. Abstract The immunohistochemical loss of histone H3 trimethylated in lysine 27 (H3K27me3) was recently shown to predict recurrence of meningiomas after surgery. However, its association with tumor progression after stereotactic radiosurgery (SRS) is unexplored. To investigate whether H3K27 methylation status may predict progression-free survival (PFS) after SRS, we assessed H3K27me3 immunoexpression in thirty-nine treatment naïve, intracranial, meningiomas, treated with surgery and subsequent SRS for residual (twenty-three cases) or recurrent (sixteen cases) disease. H3K27me3 immunostaining was lost in seven meningiomas, retained in twenty-seven and inconclusive in five. Six of the seven meningiomas (86%) with H3K27me3 loss had tumor progression after SRS, compared to nine of twenty-seven (33%) with H3K27me3 retention (p = 0.0143). In addition, patients harboring a meningioma with H3K27me3 loss had significantly shorter PFS after SRS (range: 10–81 months; median: 34 months), compared to patients featuring a meningioma with retained H3K27me3 (range: 9–143 months; median: 62 months) (p = 0.0036). Nonetheless, tumor sagittal location was the only significant prognostic variable at multivariate analysis for PFS after SRS (p = 0.0142). These findings suggest a previously unreported role of H3K27me3 as a predictor of meningioma progression after SRS for recurrent or residual disease. Modulation of H3K27 methylation status may represent a novel therapeutic strategy to induce radiosensitization of meningiomas.
Collapse
Affiliation(s)
- Serena Ammendola
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
| | - Paola Chiara Rizzo
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
| | - Michele Longhi
- Unit of Stereotactic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona, Italy; (M.L.); (E.Z.); (A.N.)
| | - Emanuele Zivelonghi
- Unit of Stereotactic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona, Italy; (M.L.); (E.Z.); (A.N.)
| | - Serena Pedron
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona, Italy;
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134 Verona, Italy;
| | - Antonio Nicolato
- Unit of Stereotactic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona, Italy; (M.L.); (E.Z.); (A.N.)
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
- ARC-NET Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
- Correspondence: ; Tel.: +39-0458124809
| |
Collapse
|
34
|
Ketkar M, Dutt S. Epigenetic Regulation Towards Acquired Drug Resistance in Cancer. Subcell Biochem 2022; 100:473-502. [PMID: 36301503 DOI: 10.1007/978-3-031-07634-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapy resistance remains the most challenging obstacle in cancer treatment. Substantial efforts and evidences have accumulated over decades suggesting not only genetic but non-genomic mechanisms underlying this adaptation of tumor cells. Alterations in epigenome can have a fundamental effect on cellular functions and response to stresses like anticancer therapy. This chapter discusses the principal mechanisms by which epigenetic modifications in the genome and transcriptome aid tumor cells toward acquisition of resistance to chemotherapy.
Collapse
Affiliation(s)
- Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
35
|
Mieczkowska IK, Pantelaiou-Prokaki G, Prokakis E, Schmidt GE, Müller-Kirschbaum LC, Werner M, Sen M, Velychko T, Jannasch K, Dullin C, Napp J, Pantel K, Wikman H, Wiese M, Kramm CM, Alves F, Wegwitz F. Decreased PRC2 activity supports the survival of basal-like breast cancer cells to cytotoxic treatments. Cell Death Dis 2021; 12:1118. [PMID: 34845197 PMCID: PMC8630036 DOI: 10.1038/s41419-021-04407-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is the most common cancer occurring in women but also rarely develops in men. Recent advances in early diagnosis and development of targeted therapies have greatly improved the survival rate of BC patients. However, the basal-like BC subtype (BLBC), largely overlapping with the triple-negative BC subtype (TNBC), lacks such drug targets and conventional cytotoxic chemotherapies often remain the only treatment option. Thus, the development of resistance to cytotoxic therapies has fatal consequences. To assess the involvement of epigenetic mechanisms and their therapeutic potential increasing cytotoxic drug efficiency, we combined high-throughput RNA- and ChIP-sequencing analyses in BLBC cells. Tumor cells surviving chemotherapy upregulated transcriptional programs of epithelial-to-mesenchymal transition (EMT) and stemness. To our surprise, the same cells showed a pronounced reduction of polycomb repressive complex 2 (PRC2) activity via downregulation of its subunits Ezh2, Suz12, Rbbp7 and Mtf2. Mechanistically, loss of PRC2 activity leads to the de-repression of a set of genes through an epigenetic switch from repressive H3K27me3 to activating H3K27ac mark at regulatory regions. We identified Nfatc1 as an upregulated gene upon loss of PRC2 activity and directly implicated in the transcriptional changes happening upon survival to chemotherapy. Blocking NFATc1 activation reduced epithelial-to-mesenchymal transition, aggressiveness, and therapy resistance of BLBC cells. Our data demonstrate a previously unknown function of PRC2 maintaining low Nfatc1 expression levels and thereby repressing aggressiveness and therapy resistance in BLBC.
Collapse
Affiliation(s)
- Iga K. Mieczkowska
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Garyfallia Pantelaiou-Prokaki
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany ,grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Evangelos Prokakis
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Geske E. Schmidt
- grid.411984.10000 0001 0482 5331Department of Gastroenterology, GI-Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas C. Müller-Kirschbaum
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marcel Werner
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Madhobi Sen
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Taras Velychko
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Jannasch
- grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Joanna Napp
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Klaus Pantel
- grid.13648.380000 0001 2180 3484Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- grid.13648.380000 0001 2180 3484Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Wiese
- grid.411984.10000 0001 0482 5331Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof M. Kramm
- grid.411984.10000 0001 0482 5331Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Alves
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany. .,Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
36
|
Yeoh Y, Low TY, Abu N, Lee PY. Regulation of signal transduction pathways in colorectal cancer: implications for therapeutic resistance. PeerJ 2021; 9:e12338. [PMID: 34733591 PMCID: PMC8544255 DOI: 10.7717/peerj.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer treatments is a critical and widespread health issue that has brought serious impacts on lives, the economy and public policies. Mounting research has suggested that a selected spectrum of patients with advanced colorectal cancer (CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner, rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple factors have been associated with drug resistance. The most well-established factors are the emergence of cancer stem cell-like properties and overexpression of ABC transporters that mediate drug efflux. Besides, there is emerging evidence that signalling pathways that modulate cell survival and drug metabolism play major roles in the maintenance of multidrug resistance in CRC. This article reviews drug resistance in CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch pathways.
Collapse
Affiliation(s)
- Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
38
|
Luo M, Yang X, Chen HN, Nice EC, Huang C. Drug resistance in colorectal cancer: An epigenetic overview. Biochim Biophys Acta Rev Cancer 2021; 1876:188623. [PMID: 34481016 DOI: 10.1016/j.bbcan.2021.188623] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Despite significant progress that has been made in therapies against CRC over the past decades, drug resistance is still a major limitation in CRC treatment. Numerous investigations have unequivocally shown that epigenetic regulation plays an important role in CRC drug resistance because of the high rate of epigenetic alterations in multiple genes during cancer development or drug treatment. Furthermore, the reversibility of epigenetic alterations provides novel therapeutic strategies to overcome drug resistance using small molecules, which can target non-coding RNAs or reverse histone modification and DNA methylation. In this review, we discuss epigenetic regulation in CRC drug resistance and the possible role of preventing or reversing CRC drug resistance using epigenetic therapy in CRC treatment.
Collapse
Affiliation(s)
- Maochao Luo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xingyue Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Canhua Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
39
|
Singh R, Fazal Z, Bikorimana E, Boyd RI, Yerby C, Tomlin M, Baldwin H, Shokry D, Corbet AK, Shahid K, Hattab A, Freemantle SJ, Spinella MJ. Reciprocal epigenetic remodeling controls testicular cancer hypersensitivity to hypomethylating agents and chemotherapy. Mol Oncol 2021; 16:683-698. [PMID: 34482638 PMCID: PMC8807365 DOI: 10.1002/1878-0261.13096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/25/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are aggressive but sensitive to cisplatin-based chemotherapy. Alternative therapies are needed for tumors refractory to cisplatin with hypomethylating agents providing one possibility. The mechanisms of cisplatin hypersensitivity and resistance in TGCTs remain poorly understood. Recently, it has been shown that TGCTs, even those resistant to cisplatin, are hypersensitive to very low doses of hypomethylating agents including 5-aza deoxy-cytosine (5-aza) and guadecitabine. We undertook a pharmacogenomic approach in order to better understand mechanisms of TGCT hypomethylating agent hypersensitivity by generating a panel of acquired 5-aza-resistant TGCT cells and contrasting these to previously generated acquired isogenic cisplatin-resistant cells from the same parent. Interestingly, there was a reciprocal relationship between cisplatin and 5-aza sensitivity, with cisplatin resistance associated with increased sensitivity to 5-aza and 5-aza resistance associated with increased sensitivity to cisplatin. Unbiased transcriptome analysis revealed 5-aza-resistant cells strongly downregulated polycomb target gene expression, the exact opposite of the finding for cisplatin-resistant cells, which upregulated polycomb target genes. This was associated with a dramatic increase in H3K27me3 and decrease in DNMT3B levels in 5-aza-resistant cells, the exact opposite changes seen in cisplatin-resistant cells. Evidence is presented that reciprocal regulation of polycomb and DNMT3B may be initiated by changes in DNMT3B levels as DNMT3B knockdown alone in parental cells resulted in increased expression of H3K27me3, EZH2, and BMI1, conferred 5-aza resistance and cisplatin sensitization, and mediated genome-wide repression of polycomb target gene expression. Finally, genome-wide analysis revealed that 5-aza-resistant, cisplatin-resistant, and DNMT3B-knockdown cells alter the expression of a common set of polycomb target genes. This study highlights that reciprocal epigenetic changes mediated by DNMT3B and polycomb may be a key driver of the unique cisplatin and 5-aza hypersensitivity of TGCTs and suggests that distinct epigenetic vulnerabilities may exist for pharmacological targeting of TGCTs.
Collapse
Affiliation(s)
- Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Cliff Yerby
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Megan Tomlin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Hannah Baldwin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Andrea K Corbet
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Khadeeja Shahid
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Aleyah Hattab
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA.,Carle Illinois College of Medicine and Cancer Center of Illinois, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
40
|
Deregulation of Transcriptional Enhancers in Cancer. Cancers (Basel) 2021; 13:cancers13143532. [PMID: 34298745 PMCID: PMC8303223 DOI: 10.3390/cancers13143532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary One of the major challenges in cancer treatments is the dynamic adaptation of tumor cells to cancer therapies. In this regard, tumor cells can modify their response to environmental cues without altering their DNA sequence. This cell plasticity enables cells to undergo morphological and functional changes, for example, during the process of tumour metastasis or when acquiring resistance to cancer therapies. Central to cell plasticity, are the dynamic changes in gene expression that are controlled by a set of molecular switches called enhancers. Enhancers are DNA elements that determine when, where and to what extent genes should be switched on and off. Thus, defects in enhancer function can disrupt the gene expression program and can lead to tumour formation. Here, we review how enhancers control the activity of cancer-associated genes and how defects in these regulatory elements contribute to cell plasticity in cancer. Understanding enhancer (de)regulation can provide new strategies for modulating cell plasticity in tumour cells and can open new research avenues for cancer therapy. Abstract Epigenetic regulations can shape a cell’s identity by reversible modifications of the chromatin that ultimately control gene expression in response to internal and external cues. In this review, we first discuss the concept of cell plasticity in cancer, a process that is directly controlled by epigenetic mechanisms, with a particular focus on transcriptional enhancers as the cornerstone of epigenetic regulation. In the second part, we discuss mechanisms of enhancer deregulation in adult stem cells and epithelial-to-mesenchymal transition (EMT), as two paradigms of cell plasticity that are dependent on epigenetic regulation and serve as major sources of tumour heterogeneity. Finally, we review how genetic variations at enhancers and their epigenetic modifiers contribute to tumourigenesis, and we highlight examples of cancer drugs that target epigenetic modifications at enhancers.
Collapse
|
41
|
Hong S, Li S, Bi M, Yu H, Yan Z, Liu T, Wang H. lncRNA ILF3-AS1 promotes proliferation and metastasis of colorectal cancer cells by recruiting histone methylase EZH2. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:1012-1023. [PMID: 34141456 PMCID: PMC8167202 DOI: 10.1016/j.omtn.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
The role of long non-coding RNA (lncRNA) has been displayed in colorectal cancer (CRC). Here, we aimed to discuss the role of lncRNA interleukin enhancer-binding factor 3-antisense RNA 1 (ILF3-AS1)/enhancer of zeste homolog 2 (EZH2)/cyclin-dependent kinase inhibitor 2 (CDKN2A)/histone 3 (H3) lysine 27 trimethylation (H3K27me3) in cell proliferation and metastasis of CRC. ILF3-AS1, EZH2, and CDKN2A levels in CRC tissues and cells were detected. The relationship between ILF3-AS1/EZH2 expression and the clinicopathological features of CRC was analyzed. High/low expression of ILF3-AS1/EZH2 plasmids were composed to explore the function of ILF3-AS1/EZH2 in invasion, migration, proliferation, colony formation, and apoptosis of CRC cells. The growth status of nude mice was observed to verify the in vitro results from in vivo experiment. ILF3-AS1 and EZH2 increased, whereas CDKN2A reduced in CRC tissues and cells. ILF3-AS1 and EZH2 expression was linked to Dukes stage, distant metastasis, vascular invasion, and lymph node metastasis of CRC patients. Depleted ILF3-AS1 or reduced EZH2 suppressed proliferation, migration, colony-formation, and invasion ability, as well as facilitated apoptosis of CRC cells and attenuated the tumor growth in CRC mice. ILF3-AS1 accelerates the proliferation and metastasis of CRC cells by recruiting histone methylase EZH2 to induce trimethylation of H3K27 and downregulate CDKN2A.
Collapse
Affiliation(s)
- Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Miaomiao Bi
- Department of Ophthalmology, The China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130022, Jilin, People’s Republic of China
| | - Haiyao Yu
- Chief Pharmacist, Changchun Food and Drug Inspection Center, Changchun, Jilin, People’s Republic of China
| | - Zhenkun Yan
- Endoscopy Center, The China-Japan Union Hospital of Jilin University, Changchun 130022, Jilin, People’s Republic of China
| | - Tao Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Helei Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| |
Collapse
|
42
|
Lorzadeh A, Romero-Wolf M, Goel A, Jadhav U. Epigenetic Regulation of Intestinal Stem Cells and Disease: A Balancing Act of DNA and Histone Methylation. Gastroenterology 2021; 160:2267-2282. [PMID: 33775639 PMCID: PMC8169626 DOI: 10.1053/j.gastro.2021.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Genetic mutations or regulatory failures underlie cellular malfunction in many diseases, including colorectal cancer and inflammatory bowel diseases. However, mutational defects alone fail to explain the complexity of such disorders. Epigenetic regulation-control of gene action through chemical and structural changes of chromatin-provides a platform to integrate multiple extracellular inputs and prepares the cellular genome for appropriate gene expression responses. Coregulation by polycomb repressive complex 2-mediated trimethylation of lysine 27 on histone 3 and DNA methylation has emerged as one of the most influential epigenetic controls in colorectal cancer and many other diseases, but molecular details remain inadequate. Here we review the molecular interplay of these epigenetic features in relation to gastrointestinal development, homeostasis, and disease biology. We discuss other epigenetic mechanisms pertinent to the balance of trimethylation of lysine 27 on histone 3 and DNA methylation and their actions in gastrointestinal cancers. We also review the current molecular understanding of chromatin control in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maile Romero-Wolf
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
43
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
44
|
MicroRNA-145-Mediated KDM6A Downregulation Enhances Neural Repair after Spinal Cord Injury via the NOTCH2/Abcb1a Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2580619. [PMID: 34122720 PMCID: PMC8169274 DOI: 10.1155/2021/2580619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/18/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023]
Abstract
Spinal cord injury (SCI) causes a significant physical, emotional, social, and economic burden to millions of people. MicroRNAs are known players in the regulatory circuitry of the neural repair in SCI. However, most microRNAs remain uncharacterized. Here, we demonstrate the neuroprotection of microRNA-145 (miR-145) after SCI in vivo and in vitro. In silico analysis predicted the target gene KDM6A of miR-145. The rat SCI model was developed by weight drop, and lipopolysaccharide- (LPS-) induced PC12 cell inflammatory injury model was also established. We manipulated the expression of miR-145 and/or KDM6A both in vivo and in vitro to explain their roles in rat neurological functional recovery as well as PC12 cell activities and inflammation. Furthermore, we delineated the mechanistic involvement of NOTCH2 and Abcb1a in the neuroprotection of miR-145. According to the results, miR-145 was poorly expressed and KDM6A was highly expressed in the spinal cord tissue of the SCI rat model and LPS-induced PC12 cells. Overexpression of miR-145 protects PC12 cells from LPS-induced cell damage and expedites neurological functional recovery of SCI in rats. miR-145 was validated to target and downregulate the demethylase KDM6A expression, thus abrogating the expression of Abcb1a by promoting the methylation of NOTCH2. Additionally, in vivo findings verified that miR-145 expedites neuroprotection after SCI by regulating the KDM6A/NOTCH2/Abcb1a axis. Taken together, miR-145 confers neuroprotective effects and enhances neural repair after SCI through the KDM6A-mediated NOTCH2/Abcb1a axis.
Collapse
|
45
|
Al-Ghabkari A, Narendran A. Targeting EZH2-mediated methylation of histone 3 inhibits proliferation of pediatric acute monocytic leukemia cells in vitro. Cancer Biol Ther 2021; 22:333-344. [PMID: 33978549 DOI: 10.1080/15384047.2021.1902913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and a catalytic subunit of the polycomb repressive complex 2 (PRC2) that catalyzes the mono-, di-, and tri-methylation of histone H3 at Lys 27 (H3K27me3) to facilitate chromatin-remodeling and gene-silencing functions. Previous reports showed a significant association of EZH2 aberrations in pediatric cancers, such as soft tissue sarcomas and glioblastoma. Recent reports in human subjects and animal models have also suggested a central role of EZH2 in the induction and progression of acute myeloid leukemia. In this study, we aimed to investigate the molecular status of EZH in cell lines derived from distinct pediatric leukemia to assess the efficacy of targeting EZH2 to suppress cancer cell survival and proliferation. Our results showed that EZH2 protein is overexpressed in the pediatric monocytic cell-line THP-1, but not in other leukemia-derived cell lines MV4;11 and SEM. Screening a panel of methyltransferase inhibitors revealed that three inhibitors; GSK126, UNC1999 and EPZ-5687 are the most potent inhibitors that suppressed EZH2 activity selectively on lysine 27 which resulted in increased apoptosis and inhibition of AKT and ERK protein phosphorylation in THP-1 cells. Our data demonstrated a significant increase in apoptosis in cells treated with drug combination (EZH2i and selinexor) compared to EZH2i inhibitors alone. Taken together, our data provide initial evidence that targeting EZH2 is a promising therapeutic strategy for the treatment of subtypes of pediatric AML. Also, combining EZH2 inhibitors with selinexor may increase the treatment efficacy in these patients.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Departments of Pediatrics, Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- Departments of Pediatrics, Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
46
|
A novel proteomics approach to epigenetic profiling of circulating nucleosomes. Sci Rep 2021; 11:7256. [PMID: 33790358 PMCID: PMC8012598 DOI: 10.1038/s41598-021-86630-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
Alteration of epigenetic modifications plays an important role in human cancer. Notably, the dysregulation of histone post-translational modifications (PTMs) has been associated with several cancers including colorectal cancer (CRC). However, the signature of histone PTMs on circulating nucleosomes is still not well described. We have developed a fast and robust enrichment method to isolate circulating nucleosomes from plasma for further downstream proteomic analysis. This method enabled us to quantify the global alterations of histone PTMs from 9 CRC patients and 9 healthy donors. Among 54 histone proteoforms identified and quantified in plasma samples, 13 histone PTMs were distinctive in CRC. Notably, methylation of histone H3K9 and H3K27, acetylation of histone H3 and citrullination of histone H2A1R3 were upregulated in plasma of CRC patients. A comparative analysis of paired samples identified 3 common histone PTMs in plasma and tumor tissue including the methylation and acetylation state of lysine 27 of histone H3. Moreover, we highlight for the first time that histone H2A1R3 citrulline is a modification upregulated in CRC patients. This new method presented herein allows the detection and quantification of histone variants and histone PTMs from circulating nucleosomes in plasma samples and could be used for biomarker discovery of cancer.
Collapse
|
47
|
Mehboob R, Kurdi M, Ahmad M, Gilani SA, Khalid S, Nasief H, Mirdad A, Malibary H, Hakamy S, Hassan A, Alaifan M, Bamaga A, Shahzad SA. Comprehensive Analysis of Genes Associated With Sudden Infant Death Syndrome. Front Pediatr 2021; 9:742225. [PMID: 34722422 PMCID: PMC8555024 DOI: 10.3389/fped.2021.742225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Sudden infant death syndrome (SIDS) is a tragic incident which remains a mystery even after post-mortem investigation and thorough researches. Methods: This comprehensive review is based on the genes reported in the molecular autopsy studies conducted on SIDS so far. A total of 20 original studies and 7 case reports were identified and included in this analysis. The genes identified in children or adults were not included. Most of the genes reported in these studies belonged to cardiac channel and cardiomyopathy. Cardiac channel genes in SIDS were scrutinized for further analysis. Results: After screening and removing the duplicates, 42 unique genes were extracted. When the location of these genes was assessed, it was observed that most of these belonged to Chromosomes 11, 1 and 3 in sequential manner. The pathway analysis shows that these genes are involved in the regulation of heart rate, action potential, cardiac muscle cell contraction and heart contraction. The protein-protein interaction network was also very big and highly interactive. SCN5A, CAV3, ALG10B, AKAP9 and many more were mainly found in these cases and were regulated by many transcription factors such as MYOG C2C1 and CBX3 HCT11. Micro RNA, "hsa-miR-133a-3p" was found to be prevalent in the targeted genes. Conclusions: Molecular and computational approaches are a step forward toward exploration of these sad demises. It is so far a new arena but seems promising to dig out the genetic cause of SIDS in the years to come.
Collapse
Affiliation(s)
- Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan.,Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mursleen Ahmad
- Department of Medicine, Sahiwal Medical College, Sahiwal, Pakistan
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Sidra Khalid
- Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Hisham Nasief
- Department of Obstetric and Gynecology, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Abeer Mirdad
- Pediatric Department, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Sahar Hakamy
- Center of Excellence in Genomic Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amber Hassan
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Meshari Alaifan
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bamaga
- Paediatric Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.,Neurology and Pediatric Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Adnan Shahzad
- Faculty of Medicine and University Hospital of Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Tricarico R, Nicolas E, Hall MJ, Golemis EA. X- and Y-Linked Chromatin-Modifying Genes as Regulators of Sex-Specific Cancer Incidence and Prognosis. Clin Cancer Res 2020; 26:5567-5578. [PMID: 32732223 DOI: 10.1158/1078-0432.ccr-20-1741] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Biological sex profoundly conditions organismal development and physiology, imposing wide-ranging effects on cell signaling, metabolism, and immune response. These effects arise from sex-specified differences in hormonal exposure, and from intrinsic genetic and epigenetic differences associated with the presence of an XX versus XY chromosomal complement. In addition, biological sex is now recognized to be a determinant of the incidence, presentation, and therapeutic response of multiple forms of cancer, including cancers not specifically associated with male or female anatomy. Although multiple factors contribute to sex-based differences in cancer, a growing body of research emphasizes a role for differential activity of X- and Y-linked tumor-suppressor genes in males and females. Among these, the X-linked KDM6A/UTX and KDM5C/JARID1C/SMCX, and their Y-linked paralogs UTY/KDM6C and KDM5D/JARID1D/SMCY encode lysine demethylases. These epigenetic modulators profoundly influence gene expression, based on enzymatic activity in demethylating H3K27me3 and H3K4me3, and nonenzymatic scaffolding roles for large complexes that open and close chromatin for transcription. In a growing number of cases, mutations affecting these proteins have been recognized to strongly influence cancer risk, prognosis, and response to specific therapies. However, sex-specific patterns of mutation, expression, and activity of these genes, coupled with tissue-specific requirement for their function as tumor suppressors, together exemplify the complex relationship between sex and cancer vulnerabilities. In this review, we summarize and discuss the current state of the literature on the roles of these proteins in contributing to sex bias in cancer, and the status of clinical agents relevant to their function.
Collapse
Affiliation(s)
- Rossella Tricarico
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J Hall
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
49
|
Abstract
Notch pathway signaling is implicated in several human cancers. Aberrant activation and mutations of Notch signaling components are linked to tumor initiation, maintenance, and resistance to cancer therapy. Several strategies, such as monoclonal antibodies against Notch ligands and receptors, as well as small-molecule γ-secretase inhibitors (GSIs), have been developed to interfere with Notch receptor activation at proximal points in the pathway. However, the use of drug-like small molecules to target the downstream mediators of Notch signaling, the Notch transcription activation complex, remains largely unexplored. Here, we report the discovery of an orally active small-molecule inhibitor (termed CB-103) of the Notch transcription activation complex. We show that CB-103 inhibits Notch signaling in primary human T cell acute lymphoblastic leukemia and other Notch-dependent human tumor cell lines, and concomitantly induces cell cycle arrest and apoptosis, thereby impairing proliferation, including in GSI-resistant human tumor cell lines with chromosomal translocations and rearrangements in Notch genes. CB-103 produces Notch loss-of-function phenotypes in flies and mice and inhibits the growth of human breast cancer and leukemia xenografts, notably without causing the dose-limiting intestinal toxicity associated with other Notch inhibitors. Thus, we describe a pharmacological strategy that interferes with Notch signaling by disrupting the Notch transcription complex and shows therapeutic potential for treating Notch-driven cancers.
Collapse
|
50
|
Significance of STAT3 in Immune Infiltration and Drug Response in Cancer. Biomolecules 2020; 10:biom10060834. [PMID: 32486001 PMCID: PMC7355836 DOI: 10.3390/biom10060834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor and regulates tumorigenesis. However, the functions of STAT3 in immune and drug response in cancer remain elusive. Hence, we aim to reveal the impact of STAT3 in immune infiltration and drug response comprehensively by bioinformatics analysis. The expression of STAT3 and its relationship with tumor stage were explored by Tumor Immune Estimation Resource (TIMER), Human Protein Altas (HPA), and UALCAN databases. The correlations between STAT3 and immune infiltration, gene markers of immune cells were analyzed by TIMER. Moreover, the association between STAT3 and drug response was evaluated by the Cancer Cell Line Encyclopedia (CCLE) and Cancer Therapeutics Response Portal (CTRP). The results suggested that the mRNA transcriptional level of STAT3 was lower in tumors than normal tissues and mostly unrelated to tumor stage. Besides, the protein expression of STAT3 decreased in colorectal and renal cancer compared with normal tissues. Importantly, STAT3 was correlated with immune infiltration and particularly regulated tumor-associated macrophage (TAM), M2 macrophage, T-helper 1 (Th1), follicular helper T (Treg), and exhausted T-cells. Remarkably, STAT3 was closely correlated with the response to specified inhibitors and natural compounds in cancer. Furthermore, the association between STAT3 and drug response was highly cell line type dependent. Significantly, the study provides thorough insight that STAT3 is associated with immunosuppression, as well as drug response in clinical treatment.
Collapse
|