1
|
Sim JM, Song HJ, Lee SH, Li XH, Zhan CL, Lu QY, Kim JD, Lee GH, Cui XS. HSP90 Is Required for Meiotic Resumption and Spindle Formation in Porcine Oocytes. Reprod Domest Anim 2025; 60:e70060. [PMID: 40186493 DOI: 10.1111/rda.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that is expressed in response to stress conditions. HSP90 has been found to be involved in the activation of proteins related to cell division and female reproduction. However, its specific role in porcine oocyte maturation, particularly in cytoskeletal formation, remains unclear. In this study, geldanamycin (GA) was used to inhibit HSP90 activity by binding to its adenosine triphosphate (ATP) binding site. Porcine oocytes surrounded by cumulus cells were cultured in TCM-199 medium for 44 h, with varying concentrations of GA (0.1, 0.5, 1 and 2 μM). It was observed that oocyte maturation significantly decreased when treated with a concentration of 0.5 μM or higher, leading to an increase in oocytes arrested at the germinal vesicle and metaphase I (MI) stage. The expression levels of Cyclin-dependent kinase 1, p-Aurora C (Thr198), p-AKT (Ser473) and p-PLK1 (Thr210) decreased during the MI stage, whereas Polo-like kinase 1 remained consistent with the control group. Additionally, abnormal spindle formation was increased, with abnormalities including aberrant poles, misaligned chromosomes and failure to reach the proximity of the cell membrane. Moreover, examination of mature oocytes at the metaphase II (MII) stage revealed that GA treatment induced a decrease in BCL-2 phosphorylation at the Ser70 site and an increase at the Thr56 site. This led to the release of Cytochrome c from the mitochondria and upregulation of Caspase 3 expression. In conclusion, HSP90 is essential for proper meiotic maturation in porcine oocytes by playing critical roles in meiotic resumption and spindle formation.
Collapse
Affiliation(s)
- Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyeon-Ji Song
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cheng-Lin Zhan
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Qin-Yue Lu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
2
|
Peng J, Liu H, Liu Y, Liu J, Zhao Q, Liu W, Niu H, Xue H, Sun J, Wu J. HDAC6 mediates tumorigenesis during mitosis and the development of targeted deactivating agents. Bioorg Chem 2024; 153:107818. [PMID: 39288633 DOI: 10.1016/j.bioorg.2024.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics, particularly deacetylation, plays a critical role in tumorigenesis as many carcinogens are under tight control by post-translational modification. HDAC6, an important and special histone deacetylase (HDAC) family member, has been indicated to increase carcinogenesis through various functions. Recent studies demonstrated the effects of HDAC6 inhibitors in mitotic arrest, however, detailed mechanisms still remain unknown. Herein, we review and summarize HDAC6-associated proteins that have been implicated in important roles in mitosis. We also discuss the development of medicinal agents targeting HDAC6.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan 265400, Shandong Province, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
3
|
Wei H, Zhang Y, Jia Y, Chen X, Niu T, Chatterjee A, He P, Hou G. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e470. [PMID: 38283176 PMCID: PMC10811298 DOI: 10.1002/mco2.470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a predominant member among Heat shock proteins (HSPs), playing a central role in cellular protection and maintenance by aiding in the folding, stabilization, and modification of diverse protein substrates. It collaborates with various co-chaperones to manage ATPase-driven conformational changes in its dimer during client protein processing. Hsp90 is critical in cellular function, supporting the proper operation of numerous proteins, many of which are linked to diseases such as cancer, Alzheimer's, neurodegenerative conditions, and infectious diseases. Recognizing the significance of these client proteins across diverse diseases, there is a growing interest in targeting Hsp90 and its co-chaperones for potential therapeutic strategies. This review described biological background of HSPs and the structural characteristics of HSP90. Additionally, it discusses the regulatory role of heat shock factor-1 (HSF-1) in modulating HSP90 and sheds light on the dynamic chaperone cycle of HSP90. Furthermore, the review discusses the specific contributions of HSP90 in various disease contexts, especially in cancer. It also summarizes HSP90 inhibitors for cancer treatment, offering a thoughtful analysis of their strengths and limitations. These advancements in research expand our understanding of HSP90 and open up new avenues for considering HSP90 as a promising target for therapeutic intervention in a range of diseases.
Collapse
Affiliation(s)
- Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yilin Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Xunan Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tengda Niu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Aniruddha Chatterjee
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Pengxing He
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
4
|
Chowdhury SR, Koley T, Singh M, Samath EA, Kaur P. Association of Hsp90 with p53 and Fizzy related homolog (Fzr) synchronizing Anaphase Promoting Complex (APC/C): An unexplored ally towards oncogenic pathway. Biochim Biophys Acta Rev Cancer 2023; 1878:188883. [PMID: 36972769 DOI: 10.1016/j.bbcan.2023.188883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.
Collapse
Affiliation(s)
- Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
5
|
Sørensen DM, Büll C, Madsen TD, Lira-Navarrete E, Clausen TM, Clark AE, Garretson AF, Karlsson R, Pijnenborg JFA, Yin X, Miller RL, Chanda SK, Boltje TJ, Schjoldager KT, Vakhrushev SY, Halim A, Esko JD, Carlin AF, Hurtado-Guerrero R, Weigert R, Clausen H, Narimatsu Y. Identification of global inhibitors of cellular glycosylation. Nat Commun 2023; 14:948. [PMID: 36804936 PMCID: PMC9941569 DOI: 10.1038/s41467-023-36598-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Madriz Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Thomas D Madsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- The Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Thomas Mandel Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alex E Clark
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aaron F Garretson
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Johan F A Pijnenborg
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aaron F Carlin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- The Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
6
|
Esfahanian N, Knoblich CD, Bowman GA, Rezvani K. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front Cell Dev Biol 2023; 11:1028519. [PMID: 36819105 PMCID: PMC9932541 DOI: 10.3389/fcell.2023.1028519] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Mortalin (GRP75, HSPA9A), a heat shock protein (HSP), regulates a wide range of cellular processes, including cell survival, growth, and metabolism. The regulatory functions of mortalin are mediated through a diverse set of protein partners associated with different cellular compartments, which allows mortalin to perform critical functions under physiological conditions, including mitochondrial protein quality control. However, alteration of mortalin's activities, its abnormal subcellular compartmentalization, and its protein partners turn mortalin into a disease-driving protein in different pathological conditions, including cancers. Here, mortalin's contributions to tumorigenic pathways are explained. Pathology information based on mortalin's RNA expression extracted from The Cancer Genome Atlas (TCGA) transcriptomic database indicates that mortalin has an independent prognostic value in common tumors, including lung, breast, and colorectal cancer (CRC). Subsequently, the binding partners of mortalin reported in different cellular models, from yeast to mammalian cells, and its regulation by post-translational modifications are discussed. Finally, we focus on colorectal cancer and discuss how mortalin and its tumorigenic downstream protein targets are regulated by a ubiquitin-like protein through the 26S proteasomal degradation machinery. A broader understanding of the function of mortalin and its positive and negative regulation in the formation and progression of human diseases, particularly cancer, is essential for developing new strategies to treat a diverse set of human diseases critically associated with dysregulated mortalin.
Collapse
|
7
|
Tan W, Zhang J, Liu L, Liang M, Li J, Deng Z, Zheng Z, Deng Y, Liu C, Li Y, Xie G, Zhang J, Zou F, Chen X. Hsp90 Inhibitor STA9090 induced VPS35 related extracellular vesicle release and metastasis in hepatocellular carcinoma. Transl Oncol 2022; 26:101502. [PMID: 36137350 PMCID: PMC9493061 DOI: 10.1016/j.tranon.2022.101502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Heat shock protein 90 (Hsp90) has been an important therapeutic target for cancer therapy for decades. Unexpectedly, the monotherapy of N-terminal Hsp90 inhibitor STA9090 related clinical trials halted in phase III, and metastases were reported in animal models with the treatment of N-terminal Hsp90 inhibitors. Vacuolar protein sorting-associated protein 35 (VPS35) plays a vital role in endosome-derived EV (extracellular vesicle) traffic in neurodegeneration diseases, but no vps35 related EV were reported in tumors till now. Since tumor derived EVs contributes to metastasis and VPS35 is recently found to be involved in the invasion and metastasis of hepatocellular carcinoma (HCC), whether N-terminal Hsp90 inhibitor STA9090 induced EVs generation and the role of VPS35 in it were explored in this study. We found that N-terminal Hsp90 inhibitor STA9090 upregulated Bclaf1 and VPS35 levels, increased the secretion of EVs, and STA9090-induced-EVs promoted the invasion of HepG2 cells. As the clinical data suggested that the increased Bclaf1 and VPS35 levels correlated with increased metastasis and poorer prognosis in HCC, we focused on the Bclaf1-VPS35-EVs axis to further explore the mechanism of VPS35-related metastasis. The results demonstrated that Bclaf1 facilitated the transcription of VPS35 via bZIP domain, and knockdown of Bclaf1 or VPS35 alleviated pro-metastatic capability of STA9090-induced-EVs. All the results revealed the role of Bclaf1-VPS35-EVs axis on metastasis of HCC, and VPS35 knockdown decreased Hsp90 Inhibitor STA9090 induced extracellular vesicle release and metastasis, which provided a new combination therapeutic strategy to inhibit the metastasis of HCC caused by N-terminal Hsp90 inhibitor induced extracellular vesicles.
Collapse
Affiliation(s)
- Wenchong Tan
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinxin Zhang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lixia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Manfeng Liang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyou Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihao Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenming Zheng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaotang Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chenyang Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guantai Xie
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Xuemei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Tran MT, Okusha Y, Htike K, Sogawa C, Eguchi T, Kadowaki T, Sakai E, Tsukuba T, Okamoto K. HSP90 drives the Rab11a-mediated vesicular transport of the cell surface receptors in osteoclasts. Cell Biochem Funct 2022; 40:838-855. [PMID: 36111708 DOI: 10.1002/cbf.3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Rab11a, which ubiquitously localizes to early and recycling endosomes, is required for regulating the vesicular transport of cellular cargos. Interestingly, our previous study revealed that Rab11a served as a negative regulator of osteoclastogenesis by facilitating the lysosomal proteolysis of (1) colony-stimulating factor-1 (c-fms) receptor and (2) receptor activator of nuclear factor-κB (RANK) receptor, thereby resulting in inhibition of osteoclast (OC) differentiation, maturation, and bone-resorbing activity. However, the molecular mechanisms of how Rab11a negatively affected osteoclastogenesis were largely unknown. Heat shock protein (HSP90), including two isoforms HSP90α and HSP90β, necessitates the stability, maturation, and activity of a broad range of its clients, and is essentially required for a vast array of signal transduction pathways in nonstressful conditions. Furthermore, cumulative evidence suggests that HSP90 is a vital element of the vesicular transport network. Indeed, our recent study revealed that HSP90, a novel effector protein of Rab11b, modulated Rab11b-mediated osteoclastogenesis. In this study, we also found that Rab11a interacted with both HSP90α and HSP90β in OCs. Upon blockade of HSP90 ATPase activity by a specific inhibitor(17-allylamino-demethoxygeldanamycin), we showed that (1) the ATPase domain of HSP90 was a prerequisite for the interaction between HSP90 and Rab11a, and (2) the interaction of HSP90 to Rab11a sufficiently maintained the inhibitory effects of Rab11a on osteoclastogenesis. Altogether, our findings undoubtedly indicate a novel role of HSP90 in regulating Rab11a-mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Radiation Oncology, Division of Molecular and Cellular Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaung Htike
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiharu Sogawa
- Department of Clinical Engineering, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Romano LEL, Aw WY, Hixson KM, Novoselova TV, Havener TM, Howell S, Taylor-Blake B, Hall CL, Xing L, Beri J, Nethisinghe S, Perna L, Hatimy A, Altadonna GC, Graves LM, Herring LE, Hickey AJ, Thalassinos K, Chapple JP, Wolter JM. Multi-omic profiling reveals the ataxia protein sacsin is required for integrin trafficking and synaptic organization. Cell Rep 2022; 41:111580. [PMID: 36323248 PMCID: PMC9647044 DOI: 10.1016/j.celrep.2022.111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/30/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia caused by mutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia. Here, we perform multi-omic profiling in sacsin knockout (KO) cells and identify alterations in microtubule dynamics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA structure, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cerebellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins is a causal molecular deficit in ARSACS.
Collapse
Affiliation(s)
- Lisa E L Romano
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wen Yih Aw
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn M Hixson
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tatiana V Novoselova
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK; Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK
| | - Tammy M Havener
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stefanie Howell
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charlotte L Hall
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Josh Beri
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suran Nethisinghe
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Laura Perna
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ginevra Chioccioli Altadonna
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lee M Graves
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anthony J Hickey
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - J Paul Chapple
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Justin M Wolter
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Mankovich AG, Freeman BC. Regulation of Protein Transport Pathways by the Cytosolic Hsp90s. Biomolecules 2022; 12:biom12081077. [PMID: 36008972 PMCID: PMC9406046 DOI: 10.3390/biom12081077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The highly conserved molecular chaperone heat shock protein 90 (Hsp90) is well-known for maintaining metastable proteins and mediating various aspects of intracellular protein dynamics. Intriguingly, high-throughput interactome studies suggest that Hsp90 is associated with a variety of other pathways. Here, we will highlight the potential impact of Hsp90 in protein transport. Currently, a limited number of studies have defined a few mechanistic contributions of Hsp90 to protein transport, yet the relevance of hundreds of additional connections between Hsp90 and factors known to aide this process remains unresolved. These interactors broadly support transport pathways including endocytic and exocytic vesicular transport, the transfer of polypeptides across membranes, or unconventional protein secretion. In resolving how Hsp90 contributes to the protein transport process, new therapeutic targets will likely be obtained for the treatment of numerous human health issues, including bacterial infection, cancer metastasis, and neurodegeneration.
Collapse
|
11
|
Tran MT, Okusha Y, Feng Y, Sogawa C, Eguchi T, Kadowaki T, Sakai E, Tsukuba T, Okamoto K. A novel role of HSP90 in regulating osteoclastogenesis by abrogating Rab11b-driven transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119096. [PMID: 34242681 DOI: 10.1016/j.bbamcr.2021.119096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays a pivotal role in folding, activating and assembling a variety of client proteins. In addition, HSP90 has recently emerged as a crucial regulator of vesicular transport of cellular proteins. In our previous study, we revealed Rab11b negatively regulated osteoclastogenesis by promoting the lysosomal proteolysis of c-fms and RANK surface receptors via the axis of early endosome-late endosome-lysosomes. In this study, using an in vitro model of osteoclasts differentiated from murine macrophage-like RAW-D cells, we revealed that Rab11b interacted with both HSP90 isoforms, HSP90 alpha (HSP90α) and HSP90 beta (HSP90β), suggesting that Rab11b is an HSP90 client. Using at specific blocker for HSP90 ATPase activity, 17-allylamino-demethoxygeldanamycin (17-AAG), we found that the HSP90 ATPase domain is indispensable for maintaining the interaction between HSP90 and Rab11b in osteoclasts. Nonetheless, its ATPase activity is not required for regulating the turnover of endogenous Rab11b. Interestingly, blocking the interaction between HSP90 and Rab11b by either HSP90-targeting small interfering RNA (siHSP90) or 17-AAG abrogated the inhibitory effects of Rab11b on osteoclastogenesis by suppressing the Rab11b-mediated transport of c-fms and RANK surface receptors to lysosomes via the axis of early endosome-late endosome-lysosomes, alleviating the Rab11b-mediated proteolysis of these surface receptors in osteoclasts. Based on our observations, we propose a HSP90/Rab11b-mediated regulatory mechanism for osteoclastogenesis by directly modulating the c-fms and RANK surface receptors in osteoclasts, thereby contributing to the maintenance of bone homeostasis.
Collapse
Affiliation(s)
- Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yunxia Feng
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; College of Basic Medicine, China Medical University, Shenyang 1110112, China
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| |
Collapse
|
12
|
Zhao X, Lorent K, Escobar-Zarate D, Rajagopalan R, Loomes KM, Gillespie K, Mesaros C, Estrada MA, Blair I, Winkler JD, Spinner NB, Devoto M, Pack M. Impaired Redox and Protein Homeostasis as Risk Factors and Therapeutic Targets in Toxin-Induced Biliary Atresia. Gastroenterology 2020; 159:1068-1084.e2. [PMID: 32505743 PMCID: PMC7856536 DOI: 10.1053/j.gastro.2020.05.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Extrahepatic biliary atresia (BA) is a pediatric liver disease with no approved medical therapy. Recent studies using human samples and experimental modeling suggest that glutathione redox metabolism and heterogeneity play a role in disease pathogenesis. We sought to dissect the mechanistic basis of liver redox variation and explore how other stress responses affect cholangiocyte injury in BA. METHODS We performed quantitative in situ hepatic glutathione redox mapping in zebrafish larvae carrying targeted mutations in glutathione metabolism genes and correlated these findings with sensitivity to the plant-derived BA-linked toxin biliatresone. We also determined whether genetic disruption of HSP90 protein quality control pathway genes implicated in human BA altered biliatresone toxicity in zebrafish and human cholangiocytes. An in vivo screening of a known drug library was performed to identify novel modifiers of cholangiocyte injury in the zebrafish experimental BA model, with subsequent validation. RESULTS Glutathione metabolism gene mutations caused regionally distinct changes in the redox potential of cholangiocytes that differentially sensitized them to biliatresone. Disruption of human BA-implicated HSP90 pathway genes sensitized zebrafish and human cholangiocytes to biliatresone-induced injury independent of glutathione. Phosphodiesterase-5 inhibitors and other cyclic guanosine monophosphate signaling activators worked synergistically with the glutathione precursor N-acetylcysteine in preventing biliatresone-induced injury in zebrafish and human cholangiocytes. Phosphodiesterase-5 inhibitors enhanced proteasomal degradation and required intact HSP90 chaperone. CONCLUSION Regional variation in glutathione metabolism underlies sensitivity to the biliary toxin biliatresone and may account for the reported association between BA transplant-free survival and glutathione metabolism gene expression. Human BA can be causatively linked to genetic modulation of protein quality control. Combined treatment with N-acetylcysteine and cyclic guanosine monophosphate signaling enhancers warrants further investigation as therapy for BA.
Collapse
Affiliation(s)
- Xiao Zhao
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Lorent
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Diana Escobar-Zarate
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kathleen M. Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin Gillespie
- Department of System Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Department of System Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian Blair
- Department of System Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey D. Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy B. Spinner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marcella Devoto
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.,Departments of Pediatrics and of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Translational and Precision Medicine, University La Sapienza, Rome, Italy
| | - Michael Pack
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|