1
|
Martin AC, Chaponda M, Muleba M, Lupiya J, Gebhardt ME, Berube S, Shields T, Wesolowski A, Kobayashi T, Norris DE, Impoinvil DE, Chirwa B, Zulu R, Psychas P, Ippolito M, Moss WJ. Impact of Late-Rainy Season Indoor Residual Spraying on Holoendemic Malaria Transmission: A Cohort Study in Northern Zambia. J Infect Dis 2025; 231:1020-1030. [PMID: 39699125 PMCID: PMC11998564 DOI: 10.1093/infdis/jiae609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a malaria control strategy implemented before the rainy season. Nchelenge District, Zambia, is a holoendemic setting where IRS has been conducted since 2008 with little impact on malaria incidence or parasite prevalence. Pre-rainy season IRS may not reduce the post-rainy season peak abundance of the major vector Anopheles funestus. METHODS A controlled, pretest-posttest, prospective cohort study assessed the impact of late-rainy season IRS on malaria prevalence, incidence, hazard, and vector abundance. A total of 382 individuals were enrolled across 4 household clusters, of which 2 were sprayed in April 2022 toward the end of the rainy season. Monthly household and individual surveys and indoor overnight vector collections were conducted through August 2022. Multivariate regression and time-to-event analyses estimated the impact of IRS on outcomes measured by rapid diagnostic tests, microscopy, and quantitative polymerase chain reaction. RESULTS Among participants, 72% tested positive by rapid diagnostic test at least once, and incidence by microscopy was 3.4 infections per person-year. Residing in a household in a sprayed area was associated with a 52% reduction in infection hazard (hazards ratio, 0.48; 95% CI, .29-.78) but not with changes in incidence, prevalence, or vector abundance. The study-wide entomologic inoculation rate was 34 infectious bites per person per year. CONCLUSIONS Monthly tracking of incidence and prevalence did not demonstrate meaningful changes in holoendemic transmission intensity. However, hazard of infection, which provides greater power for detecting changes in transmission, demonstrated that late-rainy season IRS reduced malaria risk.
Collapse
Affiliation(s)
- Anne C Martin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | - James Lupiya
- Tropical Diseases Research Centre, Ndola, Zambia
| | - Mary E Gebhardt
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sophie Berube
- Department of Biostatistics, University of Florida, Gainesville
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Douglas E Norris
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Daniel E Impoinvil
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Paul Psychas
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Lusaka, Zambia
| | - Matthew Ippolito
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
2
|
Usmani S, Gebhardt ME, Simubali L, Saili K, Hamwata W, Chilusu H, Muleba M, McMeniman CJ, Martin AC, Moss WJ, Norris DE, Ali RLMN. Phylogenetic taxonomy of the Zambian Anopheles coustani group using a mitogenomics approach. RESEARCH SQUARE 2025:rs.3.rs-5976492. [PMID: 40297676 PMCID: PMC12036473 DOI: 10.21203/rs.3.rs-5976492/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background Mosquito species belonging to the Anopheles coustani group have been implicated in driving residual malaria transmission in sub-Saharan Africa and are regarded as an established primary vector in Madagascar. The morphological identification of mosquitoes in this group is challenging due to cryptic features and their molecular confirmation is difficult due to a paucity of reference sequence data representing all members of the group. Conventional molecular barcoding with the cytochrome oxidase I (COI) gene and the internal transcribed spacer 2 (ITS2) region targets is limited in their discrimination and conclusive identification of members of species complexes. In contrast, complete mitochondrial genomes (mitogenomes) have demonstrated much improved power over barcodes to be useful in rectifying taxonomic discrepancies in Culicidae. Methods We utilized a genome skimming approach via shallow shotgun sequencing on individual mosquito specimens to generate sequence reads for mitogenome assembly. Bayesian inferred phylogenies and molecular dating estimations were perfomed on the concatenated protein coding genes using the Bayesian Evolutionary Analysis by Sampling Trees 2 (BEAST 2) platform. Divergence estimates were calibrated on published calucations for Anopheles-Aedes. Results This study generated 17 new complete mitogenomes which were comprable to reference An. coustani mitogenomes in the GenBank repository by having 13 protein coding, 22 transfer RNA and 2 ribosomal RNA genes, with an average length of 15,400 bp and AT content of 78.3%. Bayesian inference using the concatenated protein coding genes from the generated and publicly available mitogenomes yielded six clades: one for each of the four taxa targeted in this study, the GenBank references, and a currently unknown species. Divergence times estimated that the An. coustani group separated from the An. gambiae complex approximately 110 million years ago (MYA), and members within the complex diverged at times points ranging from~34 MYA to as recent as ~7 MYA. Conclusions These findings demonstrate the value of mitochondrial genomes in differentiating cryptic taxa and help to confirm morphological identities of An. coustani s.s., An. paludis, An. zeimanni and An. tenebrosus. Divergence estimates with the An. coustani group are similar to those for well-studied anopheline vector groups. These analyses also highlight the likely prescence of other cryptic An. coustani group members circulating in Zambia.
Collapse
Affiliation(s)
- Soha Usmani
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| | - Mary E Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| | | | | | | | | | | | - Conor J McMeniman
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| | - Anne C Martin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| | - Reneé L M N Ali
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| |
Collapse
|
3
|
Martin AC, Kamilar V, Simubali L, Mudenda T, Hamapumbu H, Schue JL, Gebhardt ME, Ali RLMN, Stevenson JC, Shields T, Desjardins MR, Curriero FC, Moss WJ, Norris DE. Understudied anophelines may sustain residual transmission during the dry season in a pre-elimination setting in southern Zambia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25324992. [PMID: 40236408 PMCID: PMC11998804 DOI: 10.1101/2025.03.31.25324992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Malaria control is a public health priority but common control methods like indoor residual spraying and the use of bednets do not target outdoor-biting vectors. In settings with seasonal residual malaria transmission, we lack critical knowledge regarding anopheline species composition and their role in transmission. This study aimed to determine relative seasonal vector species abundance and associated household level factors in a low transmission setting in Choma District, Zambia. Indoor and outdoor adult vector collections were embedded in a community-based longitudinal cohort study in 60 households that were visited monthly for 2 years between 2018 and 2020. Surveys conducted at the time of trap placement collected information on animal ownership, housing structure, and the receipt of malaria interventions. Anopheline species identities were molecularly confirmed by polymerase chain reaction, and enzyme-linked immunosorbent assay was used to detect the circumsporozoite protein of Plasmodium falciparum. Generalized linear mixed effects negative binomial regression with zero-inflation models were used to describe the relationship between risk factors and the outcome of monthly anopheline counts at each household, stratified by season. The study collected 1,532 female anophelines, 76% of which were caught outdoors. The relative abundance differed by season: in the dry season, 90% of female anophelines were caught outdoors. Anopheles arabiensis was overall the most common vector, but made up only 28% of outdoor collections; the remainder were understudied anophelines including An. coustani, An. leesoni, An. rufipes, and An. squamosus. The only Plasmodium falciparum-infected mosquito was an An. squamosus that was caught outdoors. Owning more goats was associated with a 3.5 (IRR 4.47, 95% confidence interval [CI]: 2.00, 10.01) and 7.7 (IRR 8.73, 95% CI: 4.40, 17.32) times increase in indoor and outdoor anopheline collections in the dry season and a 1.2 (IRR 2.18, 95% CI: 1.12, 4.23) times higher risk of outdoor anophelines in the rainy season. Improved housing structure was associated with fewer indoor anophelines in the rainy season, but not during dry season or outdoor anopheline abundance any time of year. Vector control in this low transmission setting, therefore, needs to target anopheline mosquitoes year-round, must be expanded to target traditionally zoophillic mosquitoes, and leverage known risk factors when selecting methods of control.
Collapse
Affiliation(s)
- Anne C Martin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
- The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Victoria Kamilar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
| | | | | | | | - Jessica L Schue
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
| | - Mary E Gebhardt
- The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
| | - Reneé L M N Ali
- The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
| | - Jennifer C Stevenson
- The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Macha Research Trust, Choma District, Zambia
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
- Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael R Desjardins
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
- Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Frank C Curriero
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
- Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
- The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
| | - Douglas E Norris
- The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore USA
| |
Collapse
|
4
|
Bouafou LBA, Ayala D, Makanga BK, Rahola N, Johnson HF, Heaton H, Wagah MG, Collins JC, Krasheninnikova K, Pelan SE, Pointon DLB, Sims Y, Torrance JW, Tracey A, Uliano-Silva M, Wood JM, von Wyschetzki K, Scientific Operations: DNA Pipelines collective, McCarthy SA, Neafsey DE, Makunin A, Lawniczak MKN. Chromosomal reference genome sequences for the malaria mosquito, Anopheles coustani, Laveran, 1900. Wellcome Open Res 2024; 9:551. [PMID: 39429628 PMCID: PMC11490835 DOI: 10.12688/wellcomeopenres.22983.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 10/22/2024] Open
Abstract
We present genome assembly from individual female An. coustani (African malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae) from Lopé, Gabon. The genome sequence is 270 megabases in span. Most of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled for both species. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.
Collapse
Affiliation(s)
- Lemonde B. A. Bouafou
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- ESV, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Boris K. Makanga
- Département de Biologie et Écologie Animale, Institut de Recherche en Écologie Tropicale, Libreville, Gabon
| | - Nil Rahola
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- ESV, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | | | - Martin G. Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | | | | - Sarah E. Pelan
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | | | | | | - Scientific Operations: DNA Pipelines collective
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- ESV, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Département de Biologie et Écologie Animale, Institut de Recherche en Écologie Tropicale, Libreville, Gabon
- Scientific Operations, Wellcome Sanger Institute, Hinxton, England, UK
- CSSE, Auburn University, Auburn, Alabama, USA
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
- Department of Genetics, University of Cambridge, Cambridge, England, UK
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
| | - Shane A. McCarthy
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| | - Daniel E. Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
| | - Alex Makunin
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | |
Collapse
|
5
|
Jones CM, Ciubotariu II, Gebhardt ME, Lupiya JS, Mbewe D, Muleba M, Stevenson JC, Norris DE. Evaluation of Anopheline Diversity and Abundance across Outdoor Collection Schemes Utilizing CDC Light Traps in Nchelenge District, Zambia. INSECTS 2024; 15:656. [PMID: 39336624 PMCID: PMC11431859 DOI: 10.3390/insects15090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024]
Abstract
In the global fight against malaria, standard vector control methods such as indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are intended to protect inside residential structures and sleeping spaces. However, these methods can still leave individuals vulnerable to residual transmission from vectors that they may be exposed to outdoors. Nchelenge District in northern Zambia experiences persistently high malaria transmission even with ITNs and IRS in place. However, very few studies have examined outdoor vector activity. To assess the diversity and abundance of outdoor foraging female anopheline mosquitoes, CDC light traps were used as proxy measures for mosquito host-seeking, set in three outdoor trapping schemes randomly assigned on different nights: (1) locations where people congregate at night outside of the house within the peri-domestic space, (2) animal pens or shelters, and (3) high-human-traffic areas, such as paths to latrines, where traps were baited with BG-Lure®. A total of 1087 total female anophelines were collected over a total of 74 trap nights. Anopheles funestus s.s. comprised the majority of the collection (86%), with An. gambiae s.s. (2%) and a highly diverse sampling of other anophelines (12%) making up the remainder. Plasmodium falciparum parasites were only detected in An. funestus (1%). No significant difference in species diversity or female anopheline abundance was detected between trapping schemes. Outdoor foraging anopheline mosquitoes, including a number of infectious An. funestus, may partially explain the difficulty of controlling malaria transmission in Nchelenge District, where vector control is only targeted indoors. BG-Lure® shows some promise as an alternative to human-baited landing catch collections in this resource-poor setting.
Collapse
Affiliation(s)
- Christine M. Jones
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA; (C.M.J.); (I.I.C.); (M.E.G.)
| | - Ilinca I. Ciubotariu
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA; (C.M.J.); (I.I.C.); (M.E.G.)
| | - Mary E. Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA; (C.M.J.); (I.I.C.); (M.E.G.)
| | - James Sichivula Lupiya
- Tropical Diseases Research Centre, Ndola P.O. Box 71769, Zambia; (J.S.L.); (D.M.); (M.M.)
| | - David Mbewe
- Tropical Diseases Research Centre, Ndola P.O. Box 71769, Zambia; (J.S.L.); (D.M.); (M.M.)
| | - Mbanga Muleba
- Tropical Diseases Research Centre, Ndola P.O. Box 71769, Zambia; (J.S.L.); (D.M.); (M.M.)
| | - Jennifer C. Stevenson
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland;
- Ifakara Health Institute, Bagomoyo P.O. Box 74, Tanzania
| | - Douglas E. Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA; (C.M.J.); (I.I.C.); (M.E.G.)
| |
Collapse
|
6
|
Andrianinarivomanana TM, Randrianaivo FT, Andriamiarimanana MR, Razafimamonjy MR, Velonirina HJ, Puchot N, Girod R, Bourgouin C. Colonization of Anopheles coustani, a neglected malaria vector in Madagascar. Parasite 2024; 31:31. [PMID: 38896103 PMCID: PMC11186460 DOI: 10.1051/parasite/2024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Anopheles coustani has long been recognized as a secondary malaria vector in Africa. It has recently been involved in the transmission of both Plasmodium falciparum and P. vivax in Madagascar. As most secondary malaria vectors, An. coustani mainly bites outdoors, which renders the control of this mosquito species difficult using classical malaria control measures, such as the use of bed nets or indoor residual spraying of insecticides. For a better understanding of the biology and vector competence of a vector species, it is useful to rear the species in the laboratory. The absence of a colony hinders the assessment of the bionomics of a species and the development of adapted control strategies. Here, we report the first successful establishment of an An. coustani colony from mosquitoes collected in Madagascar. We used a forced copulation procedure as this mosquito species will not mate in cages. We describe our mosquito colonization procedure with detailed biological features concerning larval to adult development and survival, recorded over the first six critical generations. The procedure should be easily applicable to An. coustani from different African countries, facilitating local investigation of An. coustani vector competence and insecticide resistance using the colony as a reference.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Puchot
- Institut Pasteur, Université de Paris Cité, Biology of Host-Parasite Interactions Paris France
| | - Romain Girod
- Institut Pasteur de Madagascar, Medical Entomology Unit Antananarivo Madagascar
| | - Catherine Bourgouin
- Institut Pasteur, Université de Paris Cité, Biology of Host-Parasite Interactions Paris France
| |
Collapse
|
7
|
Alves G, Troco AD, Seixas G, Pabst R, Francisco A, Pedro C, Garcia L, Martins JF, Lopes S. Molecular and entomological surveillance of malaria vectors in urban and rural communities of Benguela Province, Angola. Parasit Vectors 2024; 17:112. [PMID: 38448968 PMCID: PMC10918887 DOI: 10.1186/s13071-024-06214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Malaria is a major public health problem in Angola, with Anopheles gambiae sensu lato (s.l.) and An. funestus s.l. being the primary vectors. This study aimed to clarify the information gaps concerning local Anopheles mosquito populations. Our objectives were to assess their abundance, geographical dispersion, and blood-feeding patterns. We also investigated their insecticide resistance. Molecular methods were used to identify sibling species, determine the origin of blood meals, measure Plasmodium falciparum infection rates, and detect the presence of knockdown resistance (kdr) mutations. METHODS Adult mosquitoes were collected indoors using CDC light traps from nine randomly selected households at two sentinel sites with distinct ecological characteristics. The samples were collected from 1 February to 30 June 2022. Anopheles mosquitoes were morphologically identified and subjected to molecular identification. Unfed Anopheles females were tested for the presence of P. falciparum DNA in head and thorax, and engorged females were screened for the source of the blood meals. Additionally, members of An. gambiae complex were genotyped for the presence of the L1014F and L1014S kdr mutations. RESULTS In total, 2226 adult mosquitoes were collected, including 733 Anopheles females. Molecular identification revealed the presence of Anopheles coluzzii, An. gambiae senso stricto (s.s.), An. arabiensis, and An. funestus s.s. Notably, there was the first record of An. coluzzii/An. gambiae s.s. hybrid and An. vaneedeni in Benguela Province. Plasmodium falciparum infection rates for An. coluzzii at the urban sentinel site and An. funestus s.s. at the rural site were 23.1% and 5.7%, respectively. The L1014F kdr mutation was discovered in both resistant and susceptible An. coluzzii mosquitoes, while the L1014S mutation was detected in An. gambiae s.s. for the first time in Benguela Province. No kdr mutations were found in An. arabiensis. CONCLUSIONS This study provides valuable insights into the molecular characteristics of malaria vectors from the province of Benguela, emphasising the need for continuous surveillance of local Anopheles populations regarding the establishment of both kdr mutations for tailoring vector control interventions.
Collapse
Affiliation(s)
- Gonçalo Alves
- The Mentor Initiative, Burns House, Harlands Road, Haywards Heath, RH16 1PG, UK.
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Lisbon, Portugal.
| | - Arlete Dina Troco
- The Mentor Initiative, Burns House, Harlands Road, Haywards Heath, RH16 1PG, UK
| | - Gonçalo Seixas
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Rebecca Pabst
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | | | - Cani Pedro
- National Malaria Control Programme, Ministry of Health, Luanda, Angola
| | - Luzala Garcia
- National Malaria Control Programme, Ministry of Health, Luanda, Angola
| | | | - Sergio Lopes
- The Mentor Initiative, Burns House, Harlands Road, Haywards Heath, RH16 1PG, UK
| |
Collapse
|
8
|
Acford-Palmer H, Campos M, Bandibabone J, N'Do S, Bantuzeko C, Zawadi B, Walker T, Phelan JE, Messenger LA, Clark TG, Campino S. Detection of insecticide resistance markers in Anopheles funestus from the Democratic Republic of the Congo using a targeted amplicon sequencing panel. Sci Rep 2023; 13:17363. [PMID: 37833354 PMCID: PMC10575962 DOI: 10.1038/s41598-023-44457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
Vector control strategies have been successful in reducing the number of malaria cases and deaths globally, but the spread of insecticide resistance represents a significant threat to disease control. Insecticide resistance has been reported across Anopheles (An.) vector populations, including species within the An. funestus group. These mosquitoes are responsible for intense malaria transmission across sub-Saharan Africa, including in the Democratic Republic of the Congo (DRC), a country contributing > 12% of global malaria infections and mortality events. To support the continuous efficacy of vector control strategies, it is essential to monitor insecticide resistance using molecular surveillance tools. In this study, we developed an amplicon sequencing ("Amp-seq") approach targeting An. funestus, and using multiplex PCR, dual index barcoding, and next-generation sequencing for high throughput and low-cost applications. Using our Amp-seq approach, we screened 80 An. funestus field isolates from the DRC across a panel of nine genes with mutations linked to insecticide resistance (ace-1, CYP6P4, CYP6P9a, GSTe2, vgsc, and rdl) and mosquito speciation (cox-1, mtND5, and ITS2). Amongst the 18 non-synonymous mutations detected, was N485I, in the ace-1 gene associated with carbamate resistance. Overall, our panel represents an extendable and much-needed method for the molecular surveillance of insecticide resistance in An. funestus populations.
Collapse
Affiliation(s)
- Holly Acford-Palmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Monica Campos
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Janvier Bandibabone
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Sévérin N'Do
- Médecins Sans Frontières (MSF) OCBA, Barcelona, Spain
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Chimanuka Bantuzeko
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
- Université Officielle de Bukavu (UOB), Bukavu, Democratic Republic of the Congo
| | - Bertin Zawadi
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Thomas Walker
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Jody E Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Louisa A Messenger
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, USA
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
9
|
Saili K, de Jager C, Sangoro OP, Nkya TE, Masaninga F, Mwenya M, Sinyolo A, Hamainza B, Chanda E, Fillinger U, Mutero CM. Anopheles rufipes implicated in malaria transmission both indoors and outdoors alongside Anopheles funestus and Anopheles arabiensis in rural south-east Zambia. Malar J 2023; 22:95. [PMID: 36927373 PMCID: PMC10018844 DOI: 10.1186/s12936-023-04489-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The primary malaria vector-control interventions, indoor residual spraying and long-lasting insecticidal nets, are effective against indoor biting and resting mosquito species. Consequently, outdoor biting and resting malaria vectors might elude the primary interventions and sustain malaria transmission. Varied vector biting and resting behaviour calls for robust entomological surveillance. This study investigated the bionomics of malaria vectors in rural south-east Zambia, focusing on species composition, their resting and host-seeking behaviour and sporozoite infection rates. METHODS The study was conducted in Nyimba District, Zambia. Randomly selected households served as sentinel houses for monthly collection of mosquitoes indoors using CDC-light traps (CDC-LTs) and pyrethrum spray catches (PSC), and outdoors using only CDC-LTs for 12 months. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were further identified using molecular techniques. Plasmodium falciparum sporozoite infection was determined using sandwich enzyme-linked immunosorbent assays. RESULTS From 304 indoor and 257 outdoor light trap-nights and 420 resting collection, 1409 female Anopheles species mosquitoes were collected and identified morphologically; An. funestus (n = 613; 43.5%), An. gambiae sensu lato (s.l.)(n = 293; 20.8%), Anopheles pretoriensis (n = 282; 20.0%), Anopheles maculipalpis (n = 130; 9.2%), Anopheles rufipes (n = 55; 3.9%), Anopheles coustani s.l. (n = 33; 2.3%), and Anopheles squamosus (n = 3, 0.2%). Anopheles funestus sensu stricto (s.s.) (n = 144; 91.1%) and Anopheles arabiensis (n = 77; 77.0%) were the dominant species within the An. funestus group and An. gambiae complex, respectively. Overall, outdoor CDC-LTs captured more Anopheles mosquitoes (mean = 2.25, 95% CI 1.22-3,28) than indoor CDC-LTs (mean = 2.13, 95% CI 1.54-2.73). Fewer resting mosquitoes were collected with PSC (mean = 0.44, 95% CI 0.24-0.63). Sporozoite infectivity rates for An. funestus, An. arabiensis and An. rufipes were 2.5%, 0.57% and 9.1%, respectively. Indoor entomological inoculation rates (EIRs) for An. funestus s.s, An. arabiensis and An. rufipes were estimated at 4.44, 1.15 and 1.20 infectious bites/person/year respectively. Outdoor EIRs for An. funestus s.s. and An. rufipes at 7.19 and 4.31 infectious bites/person/year, respectively. CONCLUSION The findings of this study suggest that An. rufipes may play an important role in malaria transmission alongside An. funestus s.s. and An. arabiensis in the study location.
Collapse
Affiliation(s)
- Kochelani Saili
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya. .,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
| | - Christiaan de Jager
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Onyango P Sangoro
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Theresia E Nkya
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, Tanzania
| | | | | | - Andy Sinyolo
- National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Emmanuel Chanda
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Campos M, Patel N, Marshall C, Gripkey H, Ditter RE, Crepeau MW, Toilibou A, Amina Y, Cornel AJ, Lee Y, Lanzaro GC. Population Genetics of Anopheles pretoriensis in Grande Comore Island. INSECTS 2022; 14:14. [PMID: 36661943 PMCID: PMC9866569 DOI: 10.3390/insects14010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Anopheles pretoriensis is widely distributed across Africa, including on oceanic islands such as Grande Comore in the Comoros. This species is known to be mostly zoophylic and therefore considered to have low impact on the transmission of human malaria. However, A. pretoriensis has been found infected with Plasmodium, suggesting that it may be epidemiologically important. In the present study, we sequenced and assembled the complete mitogenome of A. pretoriensis and inferred its phylogenetic relationship among other species in the subgenus Cellia. We also investigated the genetic structure of A. pretoriensis populations on Grande Comore Island, and between this island population and sites in continental Africa, using partial sequence of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Seven haplotypes were found on the island, one of which was ubiquitous. There was no clear divergence between island haplotypes and those found on the continent. The present work contributes knowledge on this understudied, yet abundant, Anopheles species.
Collapse
Affiliation(s)
- Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Nikita Patel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Carly Marshall
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Hans Gripkey
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Robert E. Ditter
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Marc W. Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | | | | | - Anthony J. Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
- Mosquito Control Research Laboratory, Kearney Research and Extension Center, Department of Entomology and Nematology, University of California, Parlier, CA 93648, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, 200 9th St SE, Vero Beach, FL 32962, USA
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Tsegaye A, Demissew A, Hawaria D, Getachew H, Habtamu K, Asale A, Yan G, Yewhalaw D. Susceptibility of primary, secondary and suspected vectors to Plasmodium vivax and Plasmodium falciparum infection in Ethiopia. Parasit Vectors 2022; 15:384. [PMID: 36271436 PMCID: PMC9587640 DOI: 10.1186/s13071-022-05467-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/22/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Insecticide-based vector control interventions in combination with case management with artemisinin-based combination therapy has reduced malaria incidence and prevalence worldwide. Current control methods focus on the primary malaria vectors, Anopheles gambiae sensu lato (s.l.) and the An. funestus group; however, the impact of secondary and suspected vectors has been either sidelined or received limited attention. Defining the susceptibility of secondary, suspected vector species to different parasites in time and space is essential for efficient malaria control and elimination programs. The aim of this study was to assess the susceptibility of An. gambiae s.l., An. coustani complex and An. pharoensis to Plasmodium vivax and P. falciparum infection in Ethiopia. METHODS Larvae of Anopheles spp. were collected from different aquatic habitats and reared to adults under laboratory conditions, with the temperature and humidity maintained at 27 ± 1 °C and 75 ± 5%, respectively. Adult female mosquitoes were identified to species as An. gambiae s.l., An. coustani complex and An. pharoensis. Females of these three Anopheles spp. were allowed to feed in parallel feeding assays on infected blood containing the same gametocytes isolated from P. falciparum and P. vivax gametocyte-positive patients by indirect membrane feeding assays. All blood-fed mosquitoes were held under laboratory conditions. After 7 days, all surviving mosquitoes were dissected to detect mid-gut oocyst and enumerated under a microscope. RESULTS Of 5915 female Anopheles mosquitoes exposed to gametocyte-infected blood, 2106 (35.6%)s fed successfully in the 32 independent infection experiments. There was a significant variation in feeding rates among An. gambiae s.l., An. pharoensis and An. coustani complex (G-test = 48.43, P = 3.049e-11). All three exposed mosquito species were receptive to P. vivax and P. falciparum infection development. The percentage of infected mosquitoes following feeding on an infected blood meal was significantly different among species (G-test = 6.49, P = 0.03886). The median infection intensity (II) for An. coustani complex, An. gambiae s.l. and An. pharoensis was 1.16, 2.00 and 1.25, respectively. Although the proportion of infected mosquitoes significantly differed in terms of II, infection rate (IR) and mean oocyst density among the species, mean oocyst density and IR were highly correlated with gametocyte density in all tests (P < 0.001). CONCLUSION Primary, secondary and suspected vectors were experimentally susceptible to both P. vivax and P. falciparum infection. An effective malaria elimination program might include surveillance and control tools which target secondary and suspected vectors that might play an outdoor transmission role, possibly resulting in reduced focal malaria transmission. Comparison of the three species' mean infection rates with standard deviation.
Collapse
Affiliation(s)
- Arega Tsegaye
- Department of Biology, College of Natural Science, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Dawit Hawaria
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- School of Public Health, Hawassa University, Hawassa, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Hallelujah Getachew
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, Arbaminch College of Health Sciences, Arbaminch, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Kassahun Habtamu
- Department of Medical Laboratory Sciences, Menelik II College of Medicine and Health Science, Kotebe University of Education, Addis Ababa, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abebe Asale
- International Centre of Insect Physiology and Ecology (ICEPE), LRI Campus, Gurd Shola, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| |
Collapse
|
12
|
Ippolito MM, Gebhardt ME, Ferriss E, Schue JL, Kobayashi T, Chaponda M, Kabuya JB, Muleba M, Mburu M, Matoba J, Musonda M, Katowa B, Lubinda M, Hamapumbu H, Simubali L, Mudenda T, Wesolowski A, Shields TM, Hackman A, Shiff C, Coetzee M, Koekemoer LL, Munyati S, Gwanzura L, Mutambu S, Stevenson JC, Thuma PE, Norris DE, Bailey JA, Juliano JJ, Chongwe G, Mulenga M, Simulundu E, Mharakurwa S, Agre PC, Moss WJ. Scientific Findings of the Southern and Central Africa International Center of Excellence for Malaria Research: Ten Years of Malaria Control Impact Assessments in Hypo-, Meso-, and Holoendemic Transmission Zones in Zambia and Zimbabwe. Am J Trop Med Hyg 2022; 107:55-67. [PMID: 36228903 PMCID: PMC9662223 DOI: 10.4269/ajtmh.21-1287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/08/2022] [Indexed: 11/07/2022] Open
Abstract
For a decade, the Southern and Central Africa International Center of Excellence for Malaria Research has operated with local partners across study sites in Zambia and Zimbabwe that range from hypo- to holoendemic and vary ecologically and entomologically. The burden of malaria and the impact of control measures were assessed in longitudinal cohorts, cross-sectional surveys, passive and reactive case detection, and other observational designs that incorporated multidisciplinary scientific approaches: classical epidemiology, geospatial science, serosurveillance, parasite and mosquito genetics, and vector bionomics. Findings to date have helped elaborate the patterns and possible causes of sustained low-to-moderate transmission in southern Zambia and eastern Zimbabwe and recalcitrant high transmission and fatality in northern Zambia. Cryptic and novel mosquito vectors, asymptomatic parasite reservoirs in older children, residual parasitemia and gametocytemia after treatment, indoor residual spraying timed dyssynchronously to vector abundance, and stockouts of essential malaria commodities, all in the context of intractable rural poverty, appear to explain the persistent malaria burden despite current interventions. Ongoing studies of high-resolution transmission chains, parasite population structures, long-term malaria periodicity, and molecular entomology are further helping to lay new avenues for malaria control in southern and central Africa and similar settings.
Collapse
Affiliation(s)
- Matthew M. Ippolito
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mary E. Gebhardt
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ellen Ferriss
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jessica L. Schue
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Tamaki Kobayashi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | - Amy Wesolowski
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Andre Hackman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Clive Shiff
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Maureen Coetzee
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Shungu Munyati
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Lovemore Gwanzura
- Biomedical Research and Training Institute, Harare, Zimbabwe
- University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | | | - Jennifer C. Stevenson
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Macha Research Trust, Choma, Zambia
| | | | - Douglas E. Norris
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Jonathan J. Juliano
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - Modest Mulenga
- Directorate of Research and Postgraduate Studies, Lusaka Apex Medical University, Lusaka, Zambia
| | | | - Sungano Mharakurwa
- Biomedical Research and Training Institute, Harare, Zimbabwe
- Africa University, Mutare, Zimbabwe
| | - Peter C. Agre
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - William J. Moss
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
13
|
Nkya TE, Fillinger U, Sangoro OP, Marubu R, Chanda E, Mutero CM. Six decades of malaria vector control in southern Africa: a review of the entomological evidence-base. Malar J 2022; 21:279. [PMID: 36184603 PMCID: PMC9526912 DOI: 10.1186/s12936-022-04292-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Countries in the southern Africa region have set targets for malaria elimination between 2020 and 2030. Malaria vector control is among the key strategies being implemented to achieve this goal. This paper critically reviews published entomological research over the past six decades in three frontline malaria elimination countries namely, Botswana Eswatini and Namibia, and three second-line malaria elimination countries including Mozambique, Zambia, and Zimbabwe. The objective of the review is to assess the current knowledge and highlight gaps that need further research attention to strengthen evidence-based decision-making toward malaria elimination. METHODS Publications were searched on the PubMed engine using search terms: "(malaria vector control OR vector control OR malaria vector*) AND (Botswana OR Swaziland OR Eswatini OR Zambia OR Zimbabwe OR Mozambique)". Opinions, perspectives, reports, commentaries, retrospective analysis on secondary data protocols, policy briefs, and reviews were excluded. RESULTS The search resulted in 718 publications with 145 eligible and included in this review for the six countries generated over six decades. The majority (139) were from three countries, namely Zambia (59) and Mozambique (48), and Zimbabwe (32) whilst scientific publications were relatively scanty from front-line malaria elimination countries, such as Namibia (2), Botswana (10) and Eswatini (4). Most of the research reported in the publications focused on vector bionomics generated mostly from Mozambique and Zambia, while information on insecticide resistance was mostly available from Mozambique. Extreme gaps were identified in reporting the impact of vector control interventions, both on vectors and disease outcomes. The literature is particularly scanty on important issues such as change of vector ecology over time and space, intervention costs, and uptake of control interventions as well as insecticide resistance. CONCLUSIONS The review reveals a dearth of information about malaria vectors and their control, most noticeable among the frontline elimination countries: Namibia, Eswatini and Botswana. It is of paramount importance that malaria vector research capacity and routine entomological monitoring and evaluation are strengthened to enhance decision-making, considering changing vector bionomics and insecticide resistance, among other determinants of malaria vector control.
Collapse
Affiliation(s)
- Theresia Estomih Nkya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Rose Marubu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Emmanuel Chanda
- World Health Organization-Regional Office for Africa, Brazzaville, Republic of Congo
| | - Clifford Maina Mutero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Gebhardt ME, Krizek RS, Coetzee M, Koekemoer LL, Dahan-Moss Y, Mbewe D, Lupiya JS, Muleba M, Stevenson JC, Moss WJ, Norris DE. Expanded geographic distribution and host preference of Anopheles gibbinsi (Anopheles species 6) in northern Zambia. Malar J 2022; 21:211. [PMID: 35780113 PMCID: PMC9250713 DOI: 10.1186/s12936-022-04231-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nchelenge District in northern Zambia suffers from holoendemic malaria transmission despite a decade of yearly indoor residual spraying (IRS) and insecticide-treated net (ITN) distributions. One hypothesis for this lack of impact is that some vectors in the area may forage in the early evening or outdoors. Anopheles gibbinsi specimens were identified in early evening mosquito collections performed in this study area, and further insight was gleaned into this taxon, including characterizing its genetic identity, feeding preferences, and potential role as a malaria vector. METHODS Mosquitoes were collected in July and August 2019 by CDC light traps in Nchelenge District in indoor sitting rooms, outdoor gathering spaces, and animal pens from 16:00-22:00. Host detection by PCR, COI and ITS2 PCR, and circumsporozoite (CSP) ELISA were performed on all samples morphologically identified as An. gibbinsi, and a subset of specimens were selected for COI and ITS2 sequencing. To determine risk factors for increased abundance of An. gibbinsi, a negative binomial generalized linear mixed-effects model was performed with household-level variables of interest. RESULTS Comparison of COI and ITS2 An. gibbinsi reference sequences to the NCBI database revealed > 99% identity to "Anopheles sp. 6" from Kenya. More than 97% of specimens were morphologically and molecularly consistent with An. gibbinsi. Specimens were primarily collected in animal pen traps (59.2%), followed by traps outdoors near where humans gather (24.3%), and traps set indoors (16.5%). Host DNA detection revealed a high propensity for goats, but 5% of specimens with detected host DNA had fed on humans. No specimens were positive for Plasmodium falciparum sporozoites. Animal pens and inland households > 3 km from Lake Mweru were both associated with increased An. gibbinsi abundance. CONCLUSIONS This is the first report of An. gibbinsi in Nchelenge District, Zambia. This study provided a species identity for unknown "An. sp. 6" in the NCBI database, which has been implicated in malaria transmission in Kenya. Composite data suggest that this species is largely zoophilic and exophilic, but comes into contact with humans and the malaria parasites they carry. This species should continue to be monitored in Zambia and neighbouring countries as a potential malaria vector.
Collapse
Affiliation(s)
- Mary E Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Rachel S Krizek
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maureen Coetzee
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, and the Centre for Emerging Zoonotic & Parasitic Diseases, Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, and the Centre for Emerging Zoonotic & Parasitic Diseases, Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, and the Centre for Emerging Zoonotic & Parasitic Diseases, Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - David Mbewe
- Tropical Diseases Research Centre, Ndola, Zambia
| | | | | | - Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Macha Research Trust, Choma, Zambia
| | - William J Moss
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
15
|
Cross DE, Healey AJE, McKeown NJ, Thomas CJ, Macarie NA, Siaziyu V, Singini D, Liywalii F, Sakala J, Silumesii A, Shaw PW. Temporally consistent predominance and distribution of secondary malaria vectors in the Anopheles community of the upper Zambezi floodplain. Sci Rep 2022; 12:240. [PMID: 34997149 PMCID: PMC8742069 DOI: 10.1038/s41598-021-04314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Regional optimisation of malaria vector control approaches requires detailed understanding both of the species composition of Anopheles mosquito communities, and how they vary over spatial and temporal scales. Knowledge of vector community dynamics is particularly important in settings where ecohydrological conditions fluctuate seasonally and inter-annually, such as the Barotse floodplain of the upper Zambezi river. DNA barcoding of anopheline larvae sampled in the 2019 wet season revealed the predominance of secondary vector species, with An. coustani comprising > 80% of sampled larvae and distributed ubiquitously across all ecological zones. Extensive larval sampling, plus a smaller survey of adult mosquitoes, identified geographic clusters of primary vectors, but represented only 2% of anopheline larvae. Comparisons with larval surveys in 2017/2018 and a contemporaneous independent 5-year dataset from adult trapping corroborated this paucity of primary vectors across years, and the consistent numerical dominance of An. coustani and other secondary vectors in both dry and wet seasons, despite substantial inter-annual variation in hydrological conditions. This marked temporal consistency of spatial distribution and anopheline community composition presents an opportunity to target predominant secondary vectors outdoors. Larval source management should be considered, alongside prevalent indoor-based approaches, amongst a diversification of vector control approaches to more effectively combat residual malaria transmission.
Collapse
Affiliation(s)
- Dónall Eoin Cross
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Amy J E Healey
- Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Christopher James Thomas
- Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Nicolae Adrian Macarie
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Vincent Siaziyu
- Limulunga District Health Office, P.O. Box 910022, Mongu, Zambia
| | - Douglas Singini
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Francis Liywalii
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | - Jacob Sakala
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | | | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| |
Collapse
|
16
|
Jones CM, Ciubotariu II, Muleba M, Lupiya J, Mbewe D, Simubali L, Mudenda T, Gebhardt ME, Carpi G, Malcolm AN, Kosinski KJ, Romero-Weaver AL, Stevenson JC, Lee Y, Norris DE, Southern Central Africa International Centers of Excellence for Malaria Research. Multiple Novel Clades of Anopheline Mosquitoes Caught Outdoors in Northern Zambia. FRONTIERS IN TROPICAL DISEASES 2021; 2. [PMID: 35983564 PMCID: PMC9384971 DOI: 10.3389/fitd.2021.780664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Residual vector populations that do not come in contact with the most frequently utilized indoor-directed interventions present major challenges to global malaria eradication. Many of these residual populations are mosquito species about which little is known. As part of a study to assess the threat of outdoor exposure to malaria mosquitoes within the Southern and Central Africa International Centers of Excellence for Malaria Research, foraging female anophelines were collected outside households in Nchelenge District, northern Zambia. These anophelines proved to be more diverse than had previously been reported in the area. In order to further characterize the anopheline species, sequencing and phylogenetic approaches were utilized. Anopheline mosquitoes were collected from outdoor light traps, morphologically identified, and sent to Johns Hopkins Bloomberg School of Public Health for sequencing. Sanger sequencing from 115 field-derived samples yielded mitochondrial COI sequences, which were aligned with a homologous 488 bp gene segment from known anophelines (n = 140) retrieved from NCBI. Nuclear ITS2 sequences (n = 57) for at least one individual from each unique COI clade were generated and compared against NCBI’s nucleotide BLAST database to provide additional evidence for taxonomical identity and structure. Molecular and morphological data were combined for assignment of species or higher taxonomy. Twelve phylogenetic groups were characterized from the COI and ITS2 sequence data, including the primary vector species Anopheles funestus s.s. and An. gambiae s.s. An unexpectedly large proportion of the field collections were identified as An. coustani and An. sp. 6. Six phylogenetic groups remain unidentified to species-level. Outdoor collections of anopheline mosquitoes in areas frequented by people in Nchelenge, northern Zambia, proved to be extremely diverse. Morphological misidentification and underrepresentation of some anopheline species in sequence databases confound efforts to confirm identity of potential malaria vector species. The large number of unidentified anophelines could compromise the malaria vector surveillance and malaria control efforts not only in northern Zambia but other places where surveillance and control are focused on indoor-foraging and resting anophelines. Therefore, it is critical to continue development of methodologies that allow better identification of these populations and revisiting and cleaning current genomic databases.
Collapse
Affiliation(s)
- Christine M. Jones
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ilinca I. Ciubotariu
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | | | - James Lupiya
- Tropical Diseases Research Centre, Ndola, Zambia
| | - David Mbewe
- Tropical Diseases Research Centre, Ndola, Zambia
| | | | | | - Mary E. Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Giovanna Carpi
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Ashley N. Malcolm
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Kyle J. Kosinski
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Ana L. Romero-Weaver
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Jennifer C. Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
- Correspondence: Yoosook Lee, ; Douglas E. Norris,
| | | | | |
Collapse
|
17
|
Hoffman JE, Ciubotariu II, Simubali L, Mudenda T, Moss WJ, Carpi G, Norris DE, Stevenson JC, on behalf of Southern and Central Africa International Centers of Excellence for Malaria Research. Phylogenetic Complexity of Morphologically Identified Anopheles squamosus in Southern Zambia. INSECTS 2021; 12:146. [PMID: 33567609 PMCID: PMC7915044 DOI: 10.3390/insects12020146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Despite dramatic reductions in malaria cases in the catchment area of Macha Hospital, Choma District, Southern Province in Zambia, prevalence has remained near 1-2% by RDT for the past several years. To investigate residual malaria transmission in the area, this study focuses on the relative abundance, foraging behavior, and phylogenetic relationships of Anopheles squamosus specimens. In 2011, higher than expected rates of anthropophily were observed among "zoophilic" An. squamosus, a species that had sporadically been found to contain Plasmodium falciparum sporozoites. The importance of An. squamosus in the region was reaffirmed in 2016 when P. falciparum sporozoites were detected in numerous An. squamosus specimens. This study analyzed Centers for Disease Control (CDC) light trap collections of adult mosquitoes from two collection schemes: one performed as part of a reactive-test-and-treat program and the second performed along a geographical transect. Morphological identification, molecular verification of anopheline species, and blood meal source were determined on individual samples. Data from these collections supported earlier studies demonstrating An. squamosus to be primarily exophagic and zoophilic, allowing them to evade current control measures. The phylogenetic relationships generated from the specimens in this study illustrate the existence of well supported clade structure among An. squamosus specimens, which further emphasizes the importance of molecular identification of vectors. The primarily exophagic behavior of An. squamosus in these collections also highlights that indoor vector control strategies will not be sufficient for elimination of malaria in southern Zambia.
Collapse
Affiliation(s)
- Jordan E. Hoffman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Ilinca I. Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (I.I.C.); (G.C.)
| | | | - Twig Mudenda
- Macha Research Trust, Choma, Zambia; (L.S.); (T.M.); (J.C.S.)
| | - William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (I.I.C.); (G.C.)
| | - Douglas E. Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jennifer C. Stevenson
- Macha Research Trust, Choma, Zambia; (L.S.); (T.M.); (J.C.S.)
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
18
|
Cross DE, Thomas C, McKeown N, Siaziyu V, Healey A, Willis T, Singini D, Liywalii F, Silumesii A, Sakala J, Smith M, Macklin M, Hardy AJ, Shaw PW. Geographically extensive larval surveys reveal an unexpected scarcity of primary vector mosquitoes in a region of persistent malaria transmission in western Zambia. Parasit Vectors 2021; 14:91. [PMID: 33522944 PMCID: PMC7849156 DOI: 10.1186/s13071-020-04540-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background The Barotse floodplains of the upper Zambezi River and its tributaries are a highly dynamic environment, with seasonal flooding and transhumance presenting a shifting mosaic of potential larval habitat and human and livestock blood meals for malaria vector mosquitoes. However, limited entomological surveillance has been undertaken to characterize the vector community in these floodplains and their environs. Such information is necessary as, despite substantial deployment of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) against Anopheles vectors, malaria transmission persists across Barotseland in Zambia’s Western Province. Methods Geographically extensive larval surveys were undertaken in two health districts along 102 km of transects, at fine spatial resolution, during a dry season and following the peak of the successive wet season. Larvae were sampled within typical Anopheles flight range of human settlements and identified through genetic sequencing of cytochrome c oxidase I and internal transcribed spacer two regions of mitochondrial and nuclear DNA. This facilitated detailed comparison of taxon-specific abundance patterns between ecological zones differentiated by hydrological controls. Results An unexpected paucity of primary vectors was revealed, with An. gambiae s.l. and An. funestus representing < 2% of 995 sequenced anophelines. Potential secondary vectors predominated in the vector community, primarily An. coustani group species and An. squamosus. While the distribution of An. gambiae s.l. in the study area was highly clustered, secondary vector species were ubiquitous across the landscape in both dry and wet seasons, with some taxon-specific relationships between abundance and ecological zones by season. Conclusions The diversity of candidate vector species and their high relative abundance observed across diverse hydro-ecosystems indicate a highly adaptable transmission system, resilient to environmental variation and, potentially, interventions that target only part of the vector community. Larval survey results imply that residual transmission of malaria in Barotseland is being mediated predominantly by secondary vector species, whose known tendencies for crepuscular and outdoor biting renders them largely insensitive to prevalent vector control methods.![]()
Collapse
Affiliation(s)
- Dónall Eoin Cross
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Chris Thomas
- Lincoln Centre for Water and Planetary Health, School of Geography, College of Science, Think Tank, University of Lincoln, Ruston Way, Lincoln, LN6 7DW, UK.
| | - Niall McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Vincent Siaziyu
- Limulunga District Health Office, P.O. Box 910022, Mongu, Zambia
| | - Amy Healey
- Lincoln Centre for Water and Planetary Health, School of Geography, College of Science, Think Tank, University of Lincoln, Ruston Way, Lincoln, LN6 7DW, UK
| | - Tom Willis
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Douglas Singini
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia.,School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Francis Liywalii
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | | | - Jacob Sakala
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | - Mark Smith
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Macklin
- Lincoln Centre for Water and Planetary Health, School of Geography, College of Science, Think Tank, University of Lincoln, Ruston Way, Lincoln, LN6 7DW, UK
| | - Andy J Hardy
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK.,Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| |
Collapse
|