1
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|
2
|
Miyazaki T, Ueda H, Ikegami T, Honda A. Upregulation of Taurine Biosynthesis and Bile Acid Conjugation with Taurine through FXR in a Mouse Model with Human-like Bile Acid Composition. Metabolites 2023; 13:824. [PMID: 37512531 PMCID: PMC10385265 DOI: 10.3390/metabo13070824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Taurine, the end product in the sulfur-containing amino acid pathway, is conjugated with bile acids (BAs) in the liver. The rate-limiting enzymes in both taurine synthesis and BA conjugation may be regulated by a nucleus receptor, FXR, that promotes BA homeostasis. However, it is controversial because BAs act as natural FXR agonists or antagonists in humans and mice, respectively, due to the species differences in BA synthesis. The present study evaluated the influences of different BA compositions on both pathways in the liver by comparing Cyp2a12-/-/Cyp2c70-/- mice with a human-like BA composition (DKO) and wild-type (WT) mice. The DKO liver contains abundant natural FXR agonistic BAs, and the taurine-conjugated BA proportion and the taurine concentration were significantly increased, while the total BA concentration was significantly decreased compared to those in the WT liver with natural FXR antagonistic BAs. The mRNA expression levels of the enzymes Bacs and Baat in BA aminations and Cdo and Fmo1 in the taurine synthesis, as well as Fxr and its target gene, Shp, were significantly higher in the DKO liver than in the WT liver. The present study, using a model with a human-like BA composition in the liver, confirmed, for the first time in mice, that both the taurine synthesis and BA amidation pathways are upregulated by FXR activation.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Ibaraki, Japan
| | - Hajime Ueda
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Ibaraki, Japan
| | - Tadashi Ikegami
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Ibaraki, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Ibaraki, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Ibaraki, Japan
| |
Collapse
|
3
|
Tagawa R, Kobayashi M, Sakurai M, Yoshida M, Kaneko H, Mizunoe Y, Nozaki Y, Okita N, Sudo Y, Higami Y. Long-Term Dietary Taurine Lowers Plasma Levels of Cholesterol and Bile Acids. Int J Mol Sci 2022; 23:ijms23031793. [PMID: 35163722 PMCID: PMC8836270 DOI: 10.3390/ijms23031793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cholesterol is an essential lipid in vertebrates, but excess blood cholesterol promotes atherosclerosis. In the liver, cholesterol is metabolized to bile acids by cytochrome P450, family 7, subfamily a, polypeptide 1 (CYP7A1), the transcription of which is negatively regulated by the ERK pathway. Fibroblast growth factor 21 (FGF21), a hepatokine, induces ERK phosphorylation and suppresses Cyp7a1 transcription. Taurine, a sulfur-containing amino acid, reportedly promotes cholesterol metabolism and lowers blood and hepatic cholesterol levels. However, the influence of long-term feeding of taurine on cholesterol levels and metabolism remains unclear. Here, to evaluate the more chronic effects of taurine on cholesterol levels, we analyzed mice fed a taurine-rich diet for 14-16 weeks. Long-term feeding of taurine lowered plasma cholesterol and bile acids without significantly changing other metabolic parameters, but hardly affected these levels in the liver. Moreover, taurine upregulated Cyp7a1 levels, while downregulated phosphorylated ERK and Fgf21 levels in the liver. Likewise, taurine-treated Hepa1-6 cells, a mouse hepatocyte line, exhibited downregulated Fgf21 levels and upregulated promoter activity of Cyp7a1. These results indicate that taurine promotes cholesterol metabolism by suppressing the FGF21/ERK pathway followed by upregulating Cyp7a1 expression. Collectively, this study shows that long-term feeding of taurine lowers both plasma cholesterol and bile acids, reinforcing that taurine effectively prevents hypercholesterolemia.
Collapse
Affiliation(s)
- Ryoma Tagawa
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Masaki Kobayashi
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K.); +81-4-7121-3675 (Y.H.)
| | - Misako Sakurai
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Maho Yoshida
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Hiroki Kaneko
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Yuhei Mizunoe
- Department of Internal Medicine Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Yuka Nozaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Naoyuki Okita
- Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi 756-0884, Japan;
| | - Yuka Sudo
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Yoshikazu Higami
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K.); +81-4-7121-3675 (Y.H.)
| |
Collapse
|
4
|
Roşca AE, Vlădăreanu AM, Mirica R, Anghel-Timaru CM, Mititelu A, Popescu BO, Căruntu C, Voiculescu SE, Gologan Ş, Onisâi M, Iordan I, Zăgrean L. Taurine and Its Derivatives: Analysis of the Inhibitory Effect on Platelet Function and Their Antithrombotic Potential. J Clin Med 2022; 11:jcm11030666. [PMID: 35160118 PMCID: PMC8837186 DOI: 10.3390/jcm11030666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Taurine is a semi-essential, the most abundant free amino acid in the human body, with a six times higher concentration in platelets than any other amino acid. It is highly beneficial for the organism, has many therapeutic actions, and is currently approved for heart failure treatment in Japan. Taurine has been repeatedly reported to elicit an inhibitory action on platelet activation and aggregation, sustained by in vivo, ex vivo, and in vitro animal and human studies. Taurine showed effectiveness in several pathologies involving thrombotic diathesis, such as diabetes, traumatic brain injury, acute ischemic stroke, and others. As human prospective studies on thrombosis outcome are very difficult to carry out, there is an obvious need to validate existing findings, and bring new compelling data about the mechanisms underlying taurine and derivatives antiplatelet action and their antithrombotic potential. Chloramine derivatives of taurine proved a higher stability and pronounced selectivity for platelet receptors, raising the assumption that they could represent future potential antithrombotic agents. Considering that taurine and its analogues display permissible side effects, along with the need of finding new, alternative antithrombotic drugs with minimal side effects and long-term action, the potential clinical relevance of this fascinating nutrient and its derivatives requires further consideration.
Collapse
Affiliation(s)
- Adrian Eugen Roşca
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Ana-Maria Vlădăreanu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Radu Mirica
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, “Sf. Ioan” Clinical Hospital, 042122 Bucharest, Romania;
| | - Cristina-Mihaela Anghel-Timaru
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Alina Mititelu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Bogdan Ovidiu Popescu
- Department of Neurology, “Carol Davila” University of Medicine and Pharmacy, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Constantin Căruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Şerban Gologan
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, Elias Clinical Hospital, 011461 Bucharest, Romania;
| | - Minodora Onisâi
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Iuliana Iordan
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Department of Medical Semiology and Nephrology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Leon Zăgrean
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| |
Collapse
|
5
|
Rais N, Parveen K, Ahmad R, Siddiqui WA, Nadeem A, Ved A. S-allyl Cysteine and Taurine revert peripheral metabolic and lipid profile in non-insulin-dependent diabetes mellitus animals: Combination vs Monotherapy. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
| | | | | | | | | | - Akash Ved
- Goel Institute of Pharmaceutical Sciences, India
| |
Collapse
|
6
|
Lee A, Mason ML, Lin T, Kumar SB, Kowdley D, Leung JH, Muhanna D, Sun Y, Ortega-Anaya J, Yu L, Fitzgerald J, DeVries AC, Nelson RJ, Weil ZM, Jiménez-Flores R, Parquette JR, Ziouzenkova O. Amino Acid Nanofibers Improve Glycemia and Confer Cognitive Therapeutic Efficacy to Bound Insulin. Pharmaceutics 2021; 14:pharmaceutics14010081. [PMID: 35056977 PMCID: PMC8778970 DOI: 10.3390/pharmaceutics14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/04/2022] Open
Abstract
Diabetes poses a high risk for debilitating complications in neural tissues, regulating glucose uptake through insulin-dependent and predominantly insulin-independent pathways. Supramolecular nanostructures provide a flexible strategy for combinatorial regulation of glycemia. Here, we compare the effects of free insulin to insulin bound to positively charged nanofibers comprised of self-assembling amino acid compounds (AACs) with an antioxidant-modified side chain moiety (AAC2) in both in vitro and in vivo models of type 1 diabetes. Free AAC2, free human insulin (hINS) and AAC2-bound-human insulin (AAC2-hINS) were tested in streptozotocin (STZ)-induced mouse model of type 1 diabetes. AAC2-hINS acted as a complex and exhibited different properties compared to free AAC2 or hINS. Mice treated with the AAC2-hINS complex were devoid of hypoglycemic episodes, had improved levels of insulin in circulation and in the brain, and increased expression of neurotransmitter taurine transporter, Slc6a6. Consequently, treatment with AAC2-hINS markedly advanced both physical and cognitive performance in mice with STZ-induced and genetic type 1 diabetes compared to treatments with free AAC2 or hINS. This study demonstrates that the flexible nanofiber AAC2 can serve as a therapeutic platform for the combinatorial treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - McKensie L. Mason
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Tao Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Shashi Bhushan Kumar
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Danah Muhanna
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Yuan Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - A. Courtney DeVries
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Randy J. Nelson
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | - Zachary M. Weil
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
- Correspondence: ; Tel.: +1-614-292-5034
| |
Collapse
|
7
|
Miyata M, Tanaka T, Takahashi K, Funaki A, Sugiura Y. Cholesterol-lowering effects of taurine through the reduction of ileal FXR signaling due to the alteration of ileal bile acid composition. Amino Acids 2021; 53:1523-1532. [PMID: 34596761 DOI: 10.1007/s00726-021-03068-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/14/2021] [Indexed: 01/05/2023]
Abstract
Studies using animal models of hypercholesterolemia have established that taurine reduces cholesterol levels; however, the precise mechanism underlying this cholesterol-lowering effect is unclear. This study addressed this issue by investigating whether bile acid/farnesoid X receptor (FXR) signaling is involved in taurine-mediated cholesterol-lowering effect. Fxr-null and wild-type mice were administered 2% (w/v) taurine in their drinking water and fed a control diet or control diet supplemented with 1% (w/w) cholesterol (cholesterol diet) for 10 days. Taurine intake did not significantly alter hepatic and serum total cholesterol (TC) levels and bile acid compositions of the liver and intestinal lumen in Fxr-null and wild-type mice fed the control diet. By changing to a cholesterol diet, taurine intake significantly decreased hepatic and serum cholesterol levels in wild-type mice. In contrast, it significantly decreased hepatic, not serum, cholesterol levels in Fxr-null mice. Taurine intake significantly altered the bile acid composition of the intestinal lumen in wild-type mice fed a cholesterol diet, but not in Fxr-null mice. An increase in FXR antagonistic bile acids was detected in the intestinal lumen of taurine-treated wild-type mice fed a cholesterol diet. Taurine intake reduced the ileal expression of FXR target genes fibroblast growth factor 15 (Fgf15) and small heterodimer partner (Shp). In contrast, it enhanced the hepatic expression of cholesterol 7α-hydroxylase (Cyp7a1) in wild-type mice fed a cholesterol diet, but not in Fxr-null mice. These results suggest that taurine is partially involved in cholesterol lowering by reducing the ileal FXR signaling due to the alteration of ileal bile acid composition.
Collapse
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, 2-7-1, Nagata-honmachi, Shimonoseki, 759-6595, Japan.
| | - Tomoyuki Tanaka
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, 2-7-1, Nagata-honmachi, Shimonoseki, 759-6595, Japan
| | - Kazuho Takahashi
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, 2-7-1, Nagata-honmachi, Shimonoseki, 759-6595, Japan
| | - Akihiro Funaki
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, 2-7-1, Nagata-honmachi, Shimonoseki, 759-6595, Japan
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, 2-7-1, Nagata-honmachi, Shimonoseki, 759-6595, Japan
| |
Collapse
|
8
|
Tang L, Li L, Bu L, Guo S, He Y, Liu L, Xing Y, Lou F, Zhang F, Wang S, Lv J, Guo N, Tong J, Xu L, Tang S, Zhu C, Wang Z. Bigu-Style Fasting Affects Metabolic Health by Modulating Taurine, Glucose, and Cholesterol Homeostasis in Healthy Young Adults. J Nutr 2021; 151:2175-2187. [PMID: 33979839 DOI: 10.1093/jn/nxab123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dynamic orchestration of metabolic pathways during continuous fasting remains unclear. OBJECTIVE We investigated the physiological effects of Bigu-style fasting and underlying metabolic reprogramming in healthy adults. METHODS We conducted a 5-d Bigu trial in 43 healthy subjects [age 23.2 ± 2.4 y; BMI (in kg/m2) 22.52 ± 1.79]. Physiological indicators and body composition were monitored daily during fasting day 1 (F1D) to F5D and after 10-d refeeding postfasting (R10D) and R30D. Blood samples were collected in the morning. Risk factors associated with inflammation, aging, cardiovascular diseases, malnutrition, and organ dysfunction were evaluated by biochemical measurements. Untargeted plasma metabolomics and gut microbial profiling were performed using plasma and fecal samples. Data were analyzed by repeated measures ANOVA with Greenhouse-Geisser correction. Correlation analyses for metabolite modules and taurine were analyzed by Spearman's rank and Pearson tests, respectively. RESULTS Heart rate was accelerated throughout the fasting period. Risk factors associated with inflammation and cardiovascular diseases were significantly lowered during or after Bigu (P < 0.05). Body composition measurement detected an overconsumption of fat starting from F3D till 1 mo after refeeding. Metabolomics unveiled a coupling between gluconeogenesis and cholesterol biosynthesis beyond F3D. Plasma taurine significantly increased at F3D by 31%-46% followed by a reduction to basal level at F5D (P < 0.001), a pattern inversely correlated with changes in glucose and de novo synthesized cholesterol (r = -0.407 and -0.296, respectively; P < 0.001). Gut microbial profiling showed an enrichment of taurine-utilizing bacteria at F5D, which was completely recovered at R10D. CONCLUSIONS Our data demonstrate that 5-d Bigu is potentially beneficial to health in young adults. A starvation threshold of 3-d fasting is necessary for maintaining glucose and cholesterol homeostasis via a taurine-microbiota regulatory loop. Our findings provide novel insights into the physiological and metabolic responses of the human body to continuous Bigu-style fasting. This trial was registered at http://www.chictr.org.cn as ChiCTR1900022917.
Collapse
Affiliation(s)
- Lixu Tang
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihong Bu
- PET-CT/MRI Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoying Guo
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Liu
- Department of Physical Education, Hubei University of Education, Wuhan, China
| | - Yangqi Xing
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Fangxiao Lou
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Fengcheng Zhang
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lijuan Xu
- Physical Examination Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiqi Tang
- Physical Examination Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| |
Collapse
|
9
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep 2021; 24:605. [PMID: 34184084 PMCID: PMC8240184 DOI: 10.3892/mmr.2021.12242] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Taurine is a fundamental mediator of homeostasis that exerts multiple roles to confer protection against oxidant stress. The development of hypertension, muscle/neuro‑associated disorders, hepatic cirrhosis, cardiac dysfunction and ischemia/reperfusion are examples of some injuries that are linked with oxidative stress. The present review gives a comprehensive description of all the underlying mechanisms of taurine, with the aim to explain its anti‑oxidant actions. Taurine is regarded as a cytoprotective molecule due to its ability to sustain normal electron transport chain, maintain glutathione stores, upregulate anti‑oxidant responses, increase membrane stability, eliminate inflammation and prevent calcium accumulation. In parallel, the synergistic effect of taurine with other potential therapeutic modalities in multiple disorders are highlighted. Apart from the results derived from research findings, the current review bridges the gap between bench and bedside, providing mechanistic insights into the biological activity of taurine that supports its potential therapeutic efficacy in clinic. In the future, further clinical studies are required to support the ameliorative effect of taurine against oxidative stress.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Demetrios A. Spandidos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | | | |
Collapse
|
10
|
Dong Y, Li X, Liu Y, Gao J, Tao J. The molecular targets of taurine confer anti-hyperlipidemic effects. Life Sci 2021; 278:119579. [PMID: 33961852 DOI: 10.1016/j.lfs.2021.119579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Hyperlipidemia, an independent risk factor for atherosclerosis, is regarded as a lipid metabolism disorder associated with elevated plasma triglyceride and/or cholesterol. Genetic factors and unhealthy lifestyles, such as excess caloric intake and physical inactivity, can result in hyperlipidemia. Taurine, a sulfur-containing non-essential amino acid, is abundant in marine foods and has been associated with wide-ranging beneficial physiological effects, with special reference to regulating aberrant lipid metabolism. Its anti-hyperlipidemic mechanism is complex, which is related to many enzymes in the process of fat anabolism and catabolism (e.g., HMGCR, CYP7A1, LDLR, FXR, FAS and ACC). Anti-inflammatory and antioxidant molecular targets, lipid autophagy, metabolic reprogramming and gut microbiota will also be reviewed.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Xiaoling Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Yaling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China.
| |
Collapse
|
11
|
1H NMR metabolomic and transcriptomic analyses reveal urinary metabolites as biomarker candidates in response to protein undernutrition in adult rats. Br J Nutr 2021; 125:633-643. [PMID: 32814607 DOI: 10.1017/s0007114520003281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein undernutrition contributes to the development of various diseases in broad generations. Urinary metabolites may serve as non-invasive biomarkers of protein undernutrition; however, this requires further investigation. We aimed to identify novel urinary metabolites as biomarker candidates responsive to protein undernutrition. Adult rats were fed control (CT; 14 % casein) or isoenergetic low-protein (LP; 5 % casein) diets for 4 weeks. 1H NMR metabolomics was applied to urine, plasma and liver samples to identify metabolites responsive to protein undernutrition. Liver samples were subjected to mRNA microarray and quantitative PCR analyses to elucidate the mechanisms causing fluctuations in identified metabolites. Urinary taurine levels were significantly lower in the LP group than in the CT group at week 1 and remained constant until week 4. Hepatic taurine level and gene expression level of cysteine dioxygenase type 1 were also significantly lower in the LP group than in the CT group. Urinary trimethylamine N-oxide (TMAO) levels were significantly higher in the LP group than in the CT group at week 2 and remained constant until week 4. Hepatic TMAO level and gene expression levels of flavin-containing mono-oxygenase 1 and 5 were also significantly higher in the LP group than in the CT group. In conclusion, urinary taurine and TMAO levels substantially responded to protein undernutrition. Furthermore, changes in hepatic levels of these metabolites and gene expressions associated with their metabolic pathways were also reflected in their fluctuating urinary levels. Thus, taurine and TMAO could act as non-invasive urinary biomarker candidates to detect protein undernutrition.
Collapse
|
12
|
Sun S, He D, Luo C, Lin X, Wu J, Yin X, Jia C, Pan Q, Dong X, Zheng F, Li H, Zhou J. Metabolic Syndrome and Its Components Are Associated With Altered Amino Acid Profile in Chinese Han Population. Front Endocrinol (Lausanne) 2021; 12:795044. [PMID: 35058883 PMCID: PMC8765338 DOI: 10.3389/fendo.2021.795044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/08/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Recent studies have found that the levels of plasma amino acids, such as branched-chain amino acids and aromatic amino acids, were associated with visceral obesity, insulin resistance, future development of diabetes and cardiovascular diseases. However, few studies have involved a Chinese Han population. This study aimed to examine the association between amino acid profile and metabolic syndrome (MetS) and its components in the Chinese Han population. METHODS This is a cross-sectional study, which enrolled a cohort of 473 participants from a community. We employed the isotope internal standard method to determine the plasma concentrations of 28 amino acids using high-performance liquid chromatography-tandem mass spectrometry (LC/MS). Participants were divided into MetS (n = 72) and non-MetS groups (n = 401) to analyze the association between amino acids and MetS and its components. RESULTS The prevalence of MetS was 15.2% according to the criteria. Plasma concentrations of isoleucine (Ile), leucine (Leu), valine (Val), tyrosine (Tyr), tryptophan (Trp), phenylalanine (Phe), glutamic acid (Glu), aspartic acid (Asp), alanine (Ala), histidine (His), methionine (Met), asparagine (Asn), and proline (Pro) were significantly higher in the MetS group than those in the non-MetS group (P < 0.05), but taurine (Tau) was significantly lower (P < 0.05). When MetS components were increased, the concentrations of these 13 amino acids significantly increased (P < 0.05), but Tau concentration was significantly decreased (P < 0.05). We extracted the amino acid profile by principal component analysis (PCA), PC1 and PC2, which extracted from the 14 amino acids, were significantly associated with MetS (odds ratio, 95% confidence interval: 1.723, 1.325-2.085 and 1.325, 1.043-1.684, respectively). A total of 260 non-MetS participants were followed up effectively, and 42 participants developed new-onset MetS within 5 years. We found that the amino acid profile of PC1 was linked to the occurrence of future MetS. Decreased Tau was correlated with the future development of MetS. CONCLUSION Participants with MetS exhibit an abnormal amino acid profile, and its components gradually increase when these amino acids are altered. Amino acid PCA profile can be employed for assessing and monitoring MetS risk. Finally, decreased Tau may be linked to the future development of MetS.
Collapse
Affiliation(s)
- Shuiya Sun
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongjuan He
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Endocrinology, People’s Hospital of Quzhou, Quzhou, China
| | - Cheng Luo
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Endocrinology, People’s Hospital of Quzhou, Quzhou, China
| | - Xihua Lin
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahua Wu
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueyao Yin
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfang Jia
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Pan
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuehong Dong
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenping Zheng
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jiaqiang Zhou, ; Hong Li,
| | - Jiaqiang Zhou
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jiaqiang Zhou, ; Hong Li,
| |
Collapse
|
13
|
Morsy MD, Aboonq MS, ALsleem MA, Abusham AA. Taurine prevents high-fat diet-induced-hepatic steatosis in rats by direct inhibition of hepatic sterol regulatory element-binding proteins and activation of AMPK. Clin Exp Pharmacol Physiol 2021; 48:72-85. [PMID: 32691860 DOI: 10.1111/1440-1681.13387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
This study investigated if the protective effect of taurine against high fat diet-induced hepatic steatosis involves modulating the hepatic activity of 5' AMP-activated protein kinase (AMPK) and levels/activity of the sterol regulatory element-binding proteins-1/2 (SREBP1/2). Rats were divided into four groups (n = 12/group) as (a) STD, fed standard diet (3.85 kcal/g); (b) STD + taurine (500 mg/kg); (c) HFD, fed HFD (4.73 kcal/g); and (d) HFD + taurine. All treatments were conducted for 12 weeks. Independent of food intake or modulating glucose or insulin levels, taurine administration to STD and HFD-fed rats significantly lowered weekly weight gain and the accumulation of the retroperitoneal, visceral and subcutaneous fats. In both groups, taurine also reduced serum and hepatic levels of triglycerides and cholesterol and reduced hepatic mRNA and protein levels of fatty acid synthase (FAS), acetyl CoA carboxylase-1 (ACC-1), HMG-CoA-reductase and HMG-CoA synthetase. In control rats only, taurine reduced hepatic levels of mature forms of sterol regulatory element-binding proteins (SREBP)-1/2. In HFD-fed rats, taurine reduced SREBP-1/2 precursor and mature forms in the livers of HFD-fed rats. Besides, taurine significantly increased levels of glutathione (GSH), the activity of superoxide dismutase (SOD), and the activity of AMPK and its downstream β-oxidation genes including peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase (CPT-1) in the livers of both the control and HFD-fed rats. In conclusion, taurine protects against HFD-induced hepatic steatosis stimulating antioxidant levels, and concomitant stimulating hepatic β-oxidation and suppressing lipid synthesis, mediated by activation of AMPK and suppression of SREBP-1.
Collapse
Affiliation(s)
- Mohamed Darwesh Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, College of Medicine, Menoufia University, Shebeen Alkoom, Egypt
| | - Moutasem Salih Aboonq
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mohammed Abadi ALsleem
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdalla Abdelrahim Abusham
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
The effects of taurine supplementation on obesity, blood pressure and lipid profile: A meta-analysis of randomized controlled trials. Eur J Pharmacol 2020; 885:173533. [DOI: 10.1016/j.ejphar.2020.173533] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
|
15
|
Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T, Isenovic ER. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol 2020; 11:551758. [PMID: 33117340 PMCID: PMC7549398 DOI: 10.3389/fimmu.2020.551758] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the leading global health concern and responsible for more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic inflammatory disease in the arterial wall, which underpins several types of cardiovascular disease. It has emerged that a strong relationship exists between alterations in amino acid (AA) metabolism and the development of atherosclerosis. Recent studies have reported positive correlations between levels of branched-chain amino acids (BCAAs) such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk. Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic strategy for specific individuals at risk of coronary events. The metabolism of AAs, such as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can improve atherosclerosis by endothelium remodeling. Available data also suggest that the regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and 2 are mediated through various immunological signals and that immunosuppressive AA metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further clinical studies and basic studies that make use of animal models are required. Here we review recent data examining links between AA metabolism and the development of atherosclerosis.
Collapse
Affiliation(s)
- Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena N. Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Faculty of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Belgrade, Serbia
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olaa Motwalli
- College of Computing and Informatics, Saudi Electronic University (SEU), Medina, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Maleki V, Mahdavi R, Hajizadeh-Sharafabad F, Alizadeh M. A Comprehensive Insight into Potential Roles of Taurine on Metabolic Variables in Type 2 Diabetes: A Systematic Review. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hajizadeh-Sharafabad
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Dietary taurine stimulates the hepatic biosynthesis of both bile acids and cholesterol in the marine teleost, tiger puffer ( Takifugu rubripes). Br J Nutr 2020; 123:1345-1356. [PMID: 31959268 DOI: 10.1017/s0007114520000161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Taurine (TAU) plays important roles in the metabolism of bile acids, cholesterol and lipids. However, little relevant information has been available in fish where TAU has been identified as a conditionally essential nutrient. The present study aimed to investigate the effects of dietary TAU on the metabolism of bile acids, cholesterol and lipids in tiger puffer, which is both an important aquaculture species and a good research model, having a unique lipid storage pattern. An 8-week feeding trial was conducted in a flow-through seawater system. Three experimental diets differed only in TAU level, that is, 1·7, 8·2 and 14·0 mg/kg. TAU supplementation increased the total bile acid content in liver but decreased the content in serum. TAU supplementation also increased the contents of total cholesterol and HDL-cholesterol in both liver and serum. The hepatic bile acid profile mainly includes taurocholic acid (94·48 %), taurochenodeoxycholic acid (4·17 %) and taurodeoxycholic acid (1·35 %), and the contents of all these conjugated bile acids were increased by dietary TAU. The hepatic lipidomics analysis showed that TAU tended to decrease the abundance of individual phospholipids and increase those of some individual TAG and ceramides. The hepatic mRNA expression study showed that TAU stimulated the biosynthesis of both bile acids and cholesterol, possibly via regulation of farnesoid X receptor and HDL metabolism. TAU also stimulated the hepatic expression of lipogenic genes. In conclusion, dietary TAU stimulated the hepatic biosynthesis of both bile acids and cholesterol and tended to regulate lipid metabolism in multiple ways.
Collapse
|
18
|
Cho KS, Neog MK, Kim JY, Yang HI, Kim KS. Effects of Chronic Intake of a Low Concentration of Taurine on Physical Strength and Body Composition in Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:25-34. [PMID: 31468383 DOI: 10.1007/978-981-13-8023-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Most studies of taurine on athletic performance have been conducted at acute and high doses in rodents. These doses and duration of administration are not reasonable for normal human life. Thus, it is not valid to extrapolate these animal results to people. Dose and duration that mimic human use of taurine in normal life can help to clarify the taurine effect in humans. This study investigated whether long-term, low-dose taurine (2% taurine drinking water for 25 weeks), similar to normal taurine intake in humans, can affect endurance exercise and body composition. Twenty ICR mice were divided into two groups. The control group received normal drinking water, and the taurine treated group received 2% taurine drinking water for 25 weeks. The mice were evaluated for body composition by mass and for physical strength by treadmill exhaustion and suspension tests. The supply of chronic 2% taurine drinking water has a slight effect on weight gain. In body composition analysis, a slight increase in body weight was due to an increase in muscle mass, not an increase in body fat. However, taurine ingestion did not increase endurance exercise. In conclusion, these results indirectly suggest that acute, high-dose taurine treatment is better than long-term, low-dose treatment to increase athletic performance.
Collapse
Affiliation(s)
- Kyung Suk Cho
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Manoj Kumar Neog
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Joo Young Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyung-In Yang
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Gangdong-gu, Seoul, South Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, South Korea.
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gangdong-gu, Seoul, South Korea.
| |
Collapse
|
19
|
Pandya K, Lau-Cam CA. Taurine Improves the Actions of Metformin and Lovastatin on Plasma Markers of Carbohydrate and Lipid Dysfunction of Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:87-99. [DOI: 10.1007/978-981-13-8023-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Lv Q, Sun L, Cui Y, Yang J, Yang Q, Yu X, Liu M, Ning Z, Hu J. Effects of Replacement of Methionine in Diets with Taurine on Growth Performance and Blood Index in Broilers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:989-1000. [PMID: 28849516 DOI: 10.1007/978-94-024-1079-2_78] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We studied effects of replacement of methionine with taurine on growth performance and blood index of AA+ broilers. Six hundred 1 day broilers were divided into 5 groups, with 3 replicates of 40 broilers in each. The experiment lasted for 42 days.The control group were fed on formulated diets containing 2% methionine; the other groups were offered feed with equal nitrogen and calories to the control group, but contained 25, 50, 75 and 100% taurine in place of methionine.Compared with the control group, no significant differences were observed in growth performance of 1-21 days broilers, or the serum LDL-C, TC, IgG and SOD of the experimental groups (P> 0.05). ADG and F/G from days 1-42, ADG, ADFI and F/G from days 22-42 were significantly different between the experimental groups and the control group (P < 0.05). ADFI and Mortality in 50, 75 and 100% taurine groups were significantly different compared with the control group (P < 0.05). IgM and GSH-PX of 50 and 75% taurine groups were significantly different compared with the control group (P < 0.05). Serum HDL-C, T-AOC levels in 50, 75 and 100% taurine groups were significantly different compared with the control group (P < 0.05). Based on the quadratic regression analysis, the best replacement ratios were 58%, 61% and 61% on days 1-21, 22-42, and 1-42, respectively. In conclusion, appropriate levels of taurine supplement can improve growth performance, immune system, T-AOC, and lipid metabolism.
Collapse
Affiliation(s)
- Qiufeng Lv
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 100866, China
| | - Ling Sun
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 100866, China
| | - Yiqing Cui
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 100866, China
| | - Jiancheng Yang
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 100866, China
| | - Qunhui Yang
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 100866, China
| | - Xiangyu Yu
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 100866, China
| | - Mei Liu
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 100866, China
| | - Zhili Ning
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 100866, China
| | - Jianmin Hu
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 100866, China.
| |
Collapse
|
21
|
Choi MJ. Taurine May Modulate Bone in Cholesterol Fed Estrogen Deficiency-Induced Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:1093-1102. [PMID: 28849525 DOI: 10.1007/978-94-024-1079-2_87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Taurine is thought to affect bone in rats favorably. However, studies on the actions of this estrogen deficiency and high cholesterol diet factors on the bone metabolism are limited. In this study, the protective effect of taurine on bone was determined. Thirty-two 42 days old female SD rats were placed in individual stainless cages. Given to rats was fed to chow (Samyang Corporation, South Korea) and deionized water for a 4 days adaptation period. After the period of adaptation, Half of the rats were induced estrogen deficiency model by ovariectomy (OVX), and the left rats with sham-operated were used control (SHAM). For six weeks, the OVX and SHAM rats had separately a 2% taurine supplemented diet with ad libitum in both the water and the food. DEXA for small animals (PIXImus, GE Lunar co, Wisconsin) was used to determine spinal and femoral bone. The concentrations of serum calcium and phosphorus were also measured. The monitoring of bone formation was done by determining the serum ALP and osteocalcin. Urinary DPD the values were determined as index of bone resorption. Statistical measure was done with SAS (version 9.3). A lower overall intake of the daily food was observed in non-ovariectomized rats than in the OVX rats. At sacrifice, a much greater body weight was observed in ovariectomized group compare to non-operated group. That difference was absent in both fed taurine SHAM and OVX rats. Serum calcium and phosphorus were not statistically different by taurine supplementation. Urinary excretion of calcium was not effected by taurine supplementation. Serum ALP and was significantly decreased by taurine in OVX rats (p < 0.05). For the spine BMD and BMC, there was no difference among SHAM and OVX rats by taurine. Spine BMC per body weight of taurine groups were higher than control groups (p < 0.1). No significant difference was observed after taurine supplementation in femur BMD and BMC. The analysis of the results suggest that taurine supplementation modulates the bone mineral contents in postmenopausal model rats fed with high cholesterol diet.
Collapse
Affiliation(s)
- Mi-Ja Choi
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea.
| |
Collapse
|
22
|
Kang YJ, Choi MJ. Liver Antioxidant Enzyme Activities Increase After Taurine in Ovariectomized Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:1071-1080. [PMID: 28849523 DOI: 10.1007/978-94-024-1079-2_85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The present study was performed to know the effects of taurine on the lipid level of plasma and liver, lipid peroxidation and antioxidative enzyme activities of liver tissue in ovariectomized (OVX) rats fed cholesterol. Twenty-four female SD rats (200 ± 5 g) were grouped; sham and ovariectomy groups, which were each randomly subgrouped; fed control and control supplemented with taurine (20 g/kg diet). The serum total cholesterol, TG (triglyceride), LDL-cholesterol, athrogenic index, and HDL-cholesterol of taurine diet group were not statistically different. Also the levels of liver total cholesterol, triglyceride were not considerably different in different diets. The lipid peroxidation of malondialdehyde concentration was considerably lower in taurine-feeding group than control-feeding group in ovariectomy group. The superoxide dismutase activity in liver tissue was significantly higher in rats fed taurine than in rats fed control diet in OVX rats. GSH-Px (glutathione peroxidase) activity was statistically greater at the rats fed taurine diets compared to rats fed control diet in ovariectomy group. Activity of catalase was higher in taurine group than in control group in ovariectomy group, but it was not significantly different. In conclusion, taurine supplementation was beneficial on antioxidative enzyme activities of liver tissue in ovariectomized rats fed cholesterol.
Collapse
Affiliation(s)
- Young-Ju Kang
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Mi-Ja Choi
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea.
| |
Collapse
|
23
|
Shin KO, Yoon JA, Choi KS. The Effect on Blood Biochemical Factors of a ICR-Mice in a High-Fat Diet with Taurine 20. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:975-987. [PMID: 28849515 DOI: 10.1007/978-94-024-1079-2_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to examine the effects of taurine on lipid levels and liver function and the actions of insulin and leptin by biochemically analyzing the blood of albino mice fed a diet containing 20% taurine. The group fed a high-fat diet (HF) containing 20% taurine (HF + taurine 20%) showed higher blood HDL cholesterol levels as well as significantly lower total cholesterol and triglyceride levels (p < 0.05) than the group fed HF. No significant difference was observed among indicators of liver function, such as alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase activities. However, the HF + taurine 20% group showed significantly lower insulin and leptin levels than the HF group (p < 0.05). These findings show that 20% taurine had a significant effect on blood lipid levels and blood sugar maintenance in mice fed an HF.
Collapse
Affiliation(s)
- Kyung-Ok Shin
- Department of Food and Nutrition, Sahmyook University, Seoul, 01795, South Korea
| | - Jin A Yoon
- Department of Food Science, KC University, Seoul, 07661, South Korea
| | - Kyung-Soon Choi
- Department of Food and Nutrition, Sahmyook University, Seoul, 01795, South Korea.
| |
Collapse
|
24
|
Choi MJ, Jung YJ. Effects of Taurine and Vitamin D on Antioxidant Enzyme Activity and Lipids Profiles in Rats Fed Diet Deficient Calcium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:1081-1092. [PMID: 28849524 DOI: 10.1007/978-94-024-1079-2_86] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Calcium deficiency is a worldwide problem affecting both developed and developing countries. The deficiency in calcium leads to a marked decrease of superoxide dismutase. It is known that vitamin D protects cells against oxidative damages while taurine plays an anti-inflammatory and antioxidant role. In this study, we examined whether vitamin D and taurine supplementation had a protective effect on oxidative stress in rats fed calcium deficient diet. Female SD rats (mean weight 60 ∼ 70 g) were divided into four groups; control, taurine, vitamin D, taurine + vitamin D for 6 weeks (taurine: 2 g/100 g diet, vitamin D: 0.5 mg/100 g diet). We then analyzed the level of triglyceride (TG), total cholesterol (TC), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C) in serum and level of TC, TG in liver. We investigated antioxidative enzyme activities such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). We observed that weight gain was not significantly different in the experimental groups. Food efficiency ratio (FER) was significantly higher in the normal control group than the taurine and vitamin D groups (p < 0.05). The level of liver TC was significantly lower in taurine, vitamin D, taurine + vitamin D groups than control group (p < 0.05). The concentration of malondialdehyde (MDA) was significantly lower in the taurine group than the control group. The activity of SOD was higher in taurine group than other experimental groups (p < 0.05), but GSH-Px and CAT were not significantly different. In conclusion, taurine has a positive effect on SOD activity but not on vitamin D. Also taurine and vitamin D have a protective effect as observed in liver TC in rats fed with a diet which lacks calcium.
Collapse
Affiliation(s)
- Mi-Ja Choi
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea.
| | - Yun-Jung Jung
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| |
Collapse
|
25
|
Murakami S, Ono A, Kawasaki A, Takenaga T, Ito T. Taurine attenuates the development of hepatic steatosis through the inhibition of oxidative stress in a model of nonalcoholic fatty liver disease in vivo and in vitro. Amino Acids 2018; 50:1279-1288. [PMID: 29946793 DOI: 10.1007/s00726-018-2605-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/27/2018] [Indexed: 01/01/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. It is characterized by the accumulation of triglyceride within hepatocytes. Taurine is a sulfur-containing-β-amino acid that is widely distributed in mammalian tissues. The objective of this study was to examine the effects of taurine on the development of hepatic steatosis in a model of NAFLD in vivo and in vitro. Male C57BL/6J mice were fed a high-fat diet (HFD) supplemented with 2% (w/v) or 5% (w/v) taurine for 12 weeks. An in vitro study was performed in HepG2 cells loaded with fatty acids. Twelve weeks of supplementation with an HFD increased the hepatic lipid levels and oxidative stress as well as the body weight and liver weight. Taurine significantly suppressed these changes, which was accompanied by a decrease in the hepatic level of thiobarbituric acid-reactive substances (TBARS). In addition, taurine treatment suppressed the HFD-induced reduction of the enzyme activity of hepatic superoxide dismutase and catalase and the reduction of the hepatic level of reduced glutathione and ATP. In HepG2 cells, taurine suppressed the fatty acid-induced lipid accumulation, production of reactive oxygen species and TBARS level, and amelioration of the fatty acid-induced disruption of the mitochondrial membrane potential. These results showed that taurine was effective in alleviating hepatic steatosis by reducing oxidative stress. Taurine may, therefore, be of therapeutic value in reducing the risks associated with NAFLD.
Collapse
Affiliation(s)
- Shigeru Murakami
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.
| | - Ayuko Ono
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan
| | - Azusa Kawasaki
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan
| | - Takaaki Takenaga
- Clinical Trial Coordinating Center, Kitasato University, Minato-ku, Tokyo, 108-8643, Japan
| | - Takashi Ito
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan
| |
Collapse
|
26
|
Schaffer S, Kim HW. Effects and Mechanisms of Taurine as a Therapeutic Agent. Biomol Ther (Seoul) 2018; 26:225-241. [PMID: 29631391 PMCID: PMC5933890 DOI: 10.4062/biomolther.2017.251] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/16/2023] Open
Abstract
Taurine is an abundant, β-amino acid with diverse cytoprotective activity. In some species, taurine is an essential nutrient but in man it is considered a semi-essential nutrient, although cells lacking taurine show major pathology. These findings have spurred interest in the potential use of taurine as a therapeutic agent. The discovery that taurine is an effective therapy against congestive heart failure led to the study of taurine as a therapeutic agent against other disease conditions. Today, taurine has been approved for the treatment of congestive heart failure in Japan and shows promise in the treatment of several other diseases. The present review summarizes studies supporting a role of taurine in the treatment of diseases of muscle, the central nervous system, and the cardiovascular system. In addition, taurine is extremely effective in the treatment of the mitochondrial disease, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and offers a new approach for the treatment of metabolic diseases, such as diabetes, and inflammatory diseases, such as arthritis. The review also addresses the functions of taurine (regulation of antioxidation, energy metabolism, gene expression, ER stress, neuromodulation, quality control and calcium homeostasis) underlying these therapeutic actions.
Collapse
Affiliation(s)
- Stephen Schaffer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688,
USA
| | - Ha Won Kim
- Department of Life Science, University of Seoul, Seoul 02504,
Republic of Korea
| |
Collapse
|
27
|
Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36:1657-1698. [PMID: 29548878 DOI: 10.1016/j.biotechadv.2018.03.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023]
Abstract
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets. This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.
Collapse
Affiliation(s)
- Verena Hiebl
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| | - Simone Latkolik
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
28
|
Awwad HM, Geisel J, Obeid R. Determination of trimethylamine, trimethylamine N-oxide, and taurine in human plasma and urine by UHPLC–MS/MS technique. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1038:12-18. [DOI: 10.1016/j.jchromb.2016.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/08/2016] [Accepted: 10/14/2016] [Indexed: 01/25/2023]
|
29
|
Zheng Y, Ceglarek U, Huang T, Wang T, Heianza Y, Ma W, Bray GA, Thiery J, Sacks FM, Qi L. Plasma Taurine, Diabetes Genetic Predisposition, and Changes of Insulin Sensitivity in Response to Weight-Loss Diets. J Clin Endocrinol Metab 2016; 101:3820-3826. [PMID: 27466884 PMCID: PMC5052340 DOI: 10.1210/jc.2016-1760] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Taurine metabolism disturbance is closely linked to obesity, insulin resistance, and diabetes. Previous evidence suggested that the preventative effects of taurine on diabetes might be through regulating the expression levels of diabetes-related genes. OBJECTIVE We estimated whether blood taurine levels modified the overall genetic susceptibility to diabetes on improvement of insulin sensitivity in a randomized dietary trial. DESIGN AND SETTING We genotyped 31 diabetes-associated variants to calculate a genetic risk score (GRS) and measured plasma taurine levels and glycemic traits among participants from the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial. PARTICIPANTS Seven-hundred eleven overweight or obese participants (age 30-70 y; 60% females) had genetic variants genotyped and blood taurine levels measured. INTERVENTION Participants went on 2-year weight-loss diets, which were different in macronutrient composition. MAIN OUTCOME MEASURE Improvements in glycemic traits were measured. RESULTS We found that baseline taurine levels significantly modified the effects of diabetes GRS on changes in fasting glucose, insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) during the 2-year diet intervention (P-interaction = .04, .01, .002, respectively), regardless of weight loss. High baseline taurine levels were associated with a less reduction in both glucose and HOMA-IR among the participants with the lowest tertile of diabetes GRS (both P = .02), and with a greater reduction in both insulin and HOMA-IR among those with the highest tertile of diabetes GRS (both P = .04). CONCLUSIONS Our data suggest that blood taurine levels might differentially modulate the effects of diabetes-related genes on improvement of insulin sensitivity among overweight/obese patients on weight-loss diets.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Uta Ceglarek
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Tao Huang
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Tiange Wang
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Yoriko Heianza
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Wenjie Ma
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - George A Bray
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Joachim Thiery
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Frank M Sacks
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Lu Qi
- Department of Nutrition (Y.Z., F.M.S., L.Q.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (U.C., J. T.), University Hospital-Leipzig, 04103 Leipzig, Germany; Department of Epidemiology, School of Public Health and Tropical Medicine (T.H., T.W., Y.H., L.Q.), Tulane University, New Orleans, Louisiana 70118; Department of Epidemiology, Saw Swee Hock School of Public Health (T.H.), National University of Singapore, Singapore 119077; Department of Epidemiology (W.M.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; Pennington Biomedical Research Center (G.A.B.), Louisiana State University, Baton Rouge, Louisiana 70808; and Channing Division of Network Medicine, Department of Medicine (L.Q.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
30
|
Cofrades S, Benedí J, Garcimartin A, Sánchez-Muniz FJ, Jimenez-Colmenero F. A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Res Int 2016; 99:1084-1094. [PMID: 28865619 DOI: 10.1016/j.foodres.2016.06.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022]
Abstract
Meat consumption is influenced by various kinds of factors, among them health implications. Different strategies can be effective in developing meat-based functional foods. These basically entail reducing the presence of compounds with negative health implications and enhancing the presence of beneficial compounds. This article reviews a comprehensive model for the development of meat-based functional foods based on a presentation of the research achieved in terms of the design and development of qualitatively and quantitatively modified meat products (frankfurters, patties and restructured steaks). These were reformulated to incorporate nutrients associated with three different seaweeds (wakame-Undaria pinnatifida; nori-Porphyra umbilicalis; and sea spaghetti-Himanthalia elongata) as sources of bioactive substances, while simultaneously reducing sodium and fat and improving fatty acid profiles. Those seaweeds were chosen, because in terms of composition and health implications, abundance on Spanish coasts, relatively widespread consumption, and suitability in terms of flavour and colour they are better suited than others for use as ingredients in new products. It also discusses the consequences of the use of this type of meat-based functional foods (combination of pork meat and 5% of each seaweed with or without hypercholesterolaemic agent included in the diets) on growing animals (Wistar male rats), and their effects on different aspects of lipoprotein metabolism, oxidative stress and liver structure. This article, then, reports a comprehensive approach to the production of seaweed-enriched meat products, considering aspects of technological development aimed at achieving the functional effect.
Collapse
Affiliation(s)
- S Cofrades
- Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain
| | - J Benedí
- Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - A Garcimartin
- Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - F J Sánchez-Muniz
- Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - F Jimenez-Colmenero
- Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain.
| |
Collapse
|
31
|
Murakami S, Fujita M, Nakamura M, Sakono M, Nishizono S, Sato M, Imaizumi K, Mori M, Fukuda N. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats. Clin Exp Pharmacol Physiol 2016; 43:372-8. [DOI: 10.1111/1440-1681.12534] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
| | - Michiko Fujita
- Department of Biochemistry and Applied Biosciences; University of Miyazaki; Miyazaki
| | - Masakazu Nakamura
- Department of Biochemistry and Applied Biosciences; University of Miyazaki; Miyazaki
| | - Masanobu Sakono
- Department of Biochemistry and Applied Biosciences; University of Miyazaki; Miyazaki
| | - Shoko Nishizono
- Department of Biochemistry and Applied Biosciences; University of Miyazaki; Miyazaki
| | - Masao Sato
- Laboratory of Nutrition Chemistry; Kyushu University; Fukuoka
| | | | - Mari Mori
- Institute for World Health Development; Mukogawa Women's University; Nishinomiya Japan
| | - Nobuhiro Fukuda
- Department of Biochemistry and Applied Biosciences; University of Miyazaki; Miyazaki
| |
Collapse
|
32
|
Tahavorgar A, Vafa M, Shidfar F, Gohari M, Heydari I. Beneficial effects of whey protein preloads on some cardiovascular diseases risk factors of overweight and obese men are stronger than soy protein preloads – A randomized clinical trial. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2015. [DOI: 10.1016/j.jnim.2015.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
33
|
Wang X, He G, Mai K, Xu W, Zhou H. Ontogenetic taurine biosynthesis ability in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2015; 185:10-5. [DOI: 10.1016/j.cbpb.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/05/2015] [Accepted: 03/08/2015] [Indexed: 11/30/2022]
|
34
|
Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and Atherosclerosis. Arch Med Res 2015; 46:408-26. [DOI: 10.1016/j.arcmed.2015.05.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022]
|
35
|
Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity and improves plasma lipid profile in male C57BL/6J mice. Amino Acids 2015; 46:1659-71. [PMID: 24658997 PMCID: PMC4055845 DOI: 10.1007/s00726-014-1715-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 01/13/2023]
Abstract
High-protein diets induce alterations in metabolism that may prevent diet-induced obesity. However, little is known as to whether different protein sources consumed at normal levels may affect diet-induced obesity and associated co-morbidities. We fed obesity-prone male C57BL/6J mice high-fat, high-sucrose diets with protein sources of increasing endogenous taurine content, i.e., chicken, cod, crab and scallop, for 6 weeks. The energy intake was lower in crab and scallop-fed mice than in chicken and cod-fed mice, but only scallop-fed mice gained less body and fat mass. Liver mass was reduced in scallop-fed mice, but otherwise no changes in lean body mass were observed between the groups. Feed efficiency and apparent nitrogen digestibility were reduced in scallop-fed mice suggesting alterations in energy utilization and metabolism. Overnight fasted plasma triacylglyceride, non-esterified fatty acids, glycerol and hydroxy-butyrate levels were significantly reduced, indicating reduced lipid mobilization in scallop-fed mice. The plasma HDL-to-total-cholesterol ratio was higher, suggesting increased reverse cholesterol transport or cholesterol clearance in scallop-fed mice in both fasted and non-fasted states. Dietary intake of taurine and glycine correlated negatively with body mass gain and total fat mass, while intake of all other amino acids correlated positively. Furthermore taurine and glycine intake correlated positively with improved plasma lipid profile, i.e., lower levels of plasma lipids and higher HDL-to-total-cholesterol ratio. In conclusion, dietary scallop protein completely prevents high-fat, high-sucrose-induced obesity whilst maintaining lean body mass and improving the plasma lipid profile in male C57BL/6J mice.
Collapse
|
36
|
Murakami S. Role of taurine in the pathogenesis of obesity. Mol Nutr Food Res 2015; 59:1353-63. [PMID: 25787113 DOI: 10.1002/mnfr.201500067] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 12/18/2022]
Abstract
Taurine is a sulfur-containing amino acid that is present in mammalian tissues in millimolar concentrations. Taurine is involved in a diverse array of biological and physiological functions, including bile salt conjugation, osmoregulation, membrane stabilization, calcium modulation, anti-oxidation, and immunomodulation. The prevalence of obesity and being overweight continues to rise worldwide at an alarming rate. Obesity is associated with a higher risk of metabolic and cardiovascular diseases, cancer, and other clinical conditions. Ingestion of taurine has been shown to alleviate metabolic diseases such as hyperlipidemia, diabetes, hypertension, and obesity in animal models. A global epidemiological survey showed that 24-h urinary taurine excretion, as a marker of dietary taurine intake, was inversely associated with BMI, blood pressure, and plasma cholesterol in humans. In addition, taurine chloramine, an endogenous product derived from activated neutrophils, has been reported to suppress obesity-induced oxidative stress and inflammation in adipocytes. Synthetic activity and concentration of taurine in adipose tissues and plasma have been shown to decrease in humans and animals during the development of obesity, suggesting a relationship between taurine deficiency and obesity. In this review, I summarize the effects of taurine on the progression of obesity in animal models and humans. Furthermore, I discuss possible mechanisms underlying the antiobesity effects of taurine.
Collapse
Affiliation(s)
- Shigeru Murakami
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
37
|
|
38
|
Sagara M, Murakami S, Mizushima S, Liu L, Mori M, Ikeda K, Nara Y, Yamori Y. Taurine in 24-h Urine Samples Is Inversely Related to Cardiovascular Risks of Middle Aged Subjects in 50 Populations of the World. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:623-36. [DOI: 10.1007/978-3-319-15126-7_50] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
39
|
Na SB, Ha CR, Kim SH, You JS, Kim SY, Chang KJ. Needs Assessment for Development of Health Functional Taurine-Containing Food for Korean College Students. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:785-91. [DOI: 10.1007/978-3-319-15126-7_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Wu G, Tang R, Yang J, Tao Y, Liu Z, Feng Y, Lin S, Yang Q, Lv Q, Hu J. Taurine Accelerates Alcohol and Fat Metabolism of Rats with Alcoholic Fatty Liver Disease. TAURINE 9 2015; 803:793-805. [DOI: 10.1007/978-3-319-15126-7_64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
41
|
Pandya KG, Budhram R, Clark GJ, Lau-Cam CA. Taurine can enhance the protective actions of metformin against diabetes-induced alterations adversely affecting renal function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:227-50. [PMID: 25833502 DOI: 10.1007/978-3-319-15126-7_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kashyap G Pandya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | | | | | | |
Collapse
|
42
|
Cao PJ, Jin YJ, Li ME, Zhou R, Yang MZ. PGC-1α may associated with the anti-obesity effect of taurine on rats induced by arcuate nucleus lesion. Nutr Neurosci 2014; 19:86-93. [DOI: 10.1179/1476830514y.0000000153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Cho HJ, You JS, Chang KJ, Kim KS, Kim SH. Anti-adipogenic Effect of Taurine-Carbohydrate Derivatives. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.6.1863] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Effect of taurine and potential interactions with caffeine on cardiovascular function. Amino Acids 2014; 46:1147-57. [PMID: 24615238 DOI: 10.1007/s00726-014-1708-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/20/2014] [Indexed: 02/07/2023]
Abstract
The major impetus behind the rise in energy drink popularity among adults is their ability to heighten mental alertness, improve physical performance and supply energy. However, accompanying the exponential growth in energy drink usage have been recent case reports and analyses from the National Poison Data System, raising questions regarding the safety of energy drinks. Most of the safety concerns have centered on the effect of energy drinks on cardiovascular and central nervous system function. Although the effects of caffeine excess have been widely studied, little information is available on potential interactions between the other active ingredients of energy drinks and caffeine. One of the active ingredients often mentioned as a candidate for interactions with caffeine is the beta-amino acid, taurine. Although taurine is considered a conditionally essential nutrient for humans and is thought to play a key role in several human diseases, clinical studies evaluating the effects of taurine are limited. However, based on this review regarding possible interactions between caffeine and taurine, we conclude that taurine should neutralize several untoward effects of caffeine excess. In agreement with this conclusion, the European Union's Scientific Committee on Food published a report in March 2003 summarizing its investigation into potential interactions of the ingredients in energy drinks. At the cardiovascular level, they concluded that "if there are any interactions between caffeine and taurine, taurine might reduce the cardiovascular effects of caffeine." Although these interactions remain to be further examined in humans, the physiological functions of taurine appear to be inconsistent with the adverse cardiovascular symptoms associated with excessive consumption of caffeine-taurine containing beverages.
Collapse
|
45
|
Gunathilake K, Wang Y, Rupasinghe HV. Hypocholesterolemic and hypotensive effects of a fruit-based functional beverage in spontaneously hypertensive rats fed with cholesterol-rich diet. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
46
|
High levels of dietary phytosterols affect lipid metabolism and increase liver and plasma TAG in Atlantic salmon (Salmo salarL.). Br J Nutr 2013; 110:1958-67. [DOI: 10.1017/s0007114513001347] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Replacing dietary fishmeal (FM) and fish oil (FO) with plant ingredients in Atlantic salmon (Salmo salarL.) diets decreases dietary cholesterol and introduces phytosterols. The aim of the present study was to assess the effect of dietary sterol composition on cholesterol metabolism in Atlantic salmon. For this purpose, two dietary trials were performed, in which Atlantic salmon were fed either 100 % FM and FO (FM-FO) diet or one of the three diets with either high (80 %) or medium (40 %) plant protein (PP) and a high (70 %) or medium (35 %) vegetable oil (VO) blend (trial 1); or 70 % PP with either 100 % FO or 80 % of the FO replaced with olive, rapeseed or soyabean oil (trial 2). Replacing ≥ 70 % of FM with PP and ≥ 70 % of FO with either a VO blend or rapeseed oil increased plasma and liver TAG concentrations. These diets contained high levels of phytosterols and low levels of cholesterol. Fish fed low-cholesterol diets, but with less phytosterols, exhibited an increased expression of genes encoding proteins involved in cholesterol uptake and synthesis. The expression of these genes was, however, partially inhibited in rapeseed oil-fed fish possibly due to the high dietary and tissue phytosterol:cholesterol ratio. Atlantic salmon tissue and plasma cholesterol concentrations were maintained stable independent of the dietary sterol content.
Collapse
|
47
|
You JS, Zhao X, Kim SH, Chang KJ. Positive Correlation Between Serum Taurine and Adiponectin Levels in High-Fat Diet-Induced Obesity Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:105-11. [DOI: 10.1007/978-1-4614-6093-0_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Taurine and Its Neuroprotective Role. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:19-27. [DOI: 10.1007/978-1-4614-6130-2_2] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Mathew E, Barletta MA, Lau-Cam CA. The Effects of Taurine and Thiotaurine on Oxidative Stress in the Aorta and Heart of Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:345-69. [DOI: 10.1007/978-1-4614-6130-2_28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Abstract
Taurine is abundantly present in most mammalian tissues and plays a role in many important physiological functions. Atherosclerosis is the underlying mechanism of cardiovascular disease including myocardial infarctions, strokes and peripheral artery disease and remains a major cause of morbidity and mortality worldwide. Studies conducted in laboratory animal models using both genetic and dietary models of hyperlipidemia have demonstrated that taurine supplementation retards the initiation and progression of atherosclerosis. Epidemiological studies have also suggested that taurine exerts preventive effects on cardiovascular diseases. The present review focuses on the effects of taurine on the pathogenesis of atherosclerosis. In addition, the potential mechanisms by which taurine suppress the development of atherosclerosis will be discussed.
Collapse
Affiliation(s)
- Shigeru Murakami
- R&D Headquarters, Self Medication Business, Taisho Pharmaceutical Co Ltd, 24-1 Takada 3-chome, Toshima-ku, Tokyo, 170-8633, Japan,
| |
Collapse
|