1
|
Wang Z, Xu W, Liu D, Li X, Liu S, Wu X, Wang H. Impact of Food Physical Properties on Oral Drug Absorption: A Comprehensive Review. Drug Des Devel Ther 2025; 19:267-280. [PMID: 39834644 PMCID: PMC11745047 DOI: 10.2147/dddt.s497515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
Food-Drug Interaction (FDI) refers to the phenomenon where food affects the pharmacokinetic or pharmacodynamic characteristics of a drug, significantly altering the drug's absorption rate or absorption extent. These Interactions are considered as a primary determinant in influencing the bioavailability of orally administered drugs within the gastrointestinal tract. The impact of food on drug absorption is complex and multifaceted, potentially involving alterations in gastrointestinal physiology, increases in splanchnic blood flow rates, and shifts in the gut microbiota's composition. Up to now, extensive research has focused on the interactions between food composition (such as proteins, fats, and vitamins) and drug absorption. In contrast, the impact of food physical properties (such as viscosity, volume, and pH) has received less attention in drug development. This article reviewed the impact of food properties on oral drug absorption based on a comprehensive literature search, focusing on the influence of food volume and food viscosity. From the perspective of pharmacokinetics, we examined interaction trends between food properties and drugs across different classification based on the Biopharmaceutics Classification System (BCS). In addition, we introduced the practical application of physiologically based pharmacokinetic (PBPK) modeling in predicting oral drug absorption under the influence of food Properties.
Collapse
Affiliation(s)
- Ziyang Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wen Xu
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Dan Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Xiuqi Li
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shupeng Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaofei Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Skřivan M, Englmaierová M, Marounek M, Taubner T, Lanzoni D, Bejčková K, Giromini C, Baldi A. Dietary supplementation with xylanase suppresses the antinutritional effect of nonstarch polysaccharides of flaxseed and increases bone strength in broiler chickens. PLoS One 2024; 19:e0312950. [PMID: 39485815 PMCID: PMC11530019 DOI: 10.1371/journal.pone.0312950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
The aim of this study was to determine the effects of xylanase and flaxseed the performance of chickens, digesta viscosity, nutrient retention, fatty acid profile in muscle, tibia strength and interrelations of these factors in broiler chickens fed a wheat-based diet. Seven hundred and twenty one-day-old Ross 308 cockerels were assigned to four treatments according to the contents of flaxseed (0 and 80 g/kg) and xylanase (0 and 0.1 g/kg) in the diet. Xylanase significantly decreased the intake of feed (p < 0.001), decreased feed conversion (p < 0.001), and reduced mortality (p = 0.050). In addition, xylanase significantly increased the retention of all nutrients (p = 0.010 -<0.001) except crude fibre, the fat content in breast meat (p = 0.029) and liver (p = 0.019) and the concentration of polyunsaturated fatty acids (PUFAs) in meat (p = 0.002). Flaxseed supplementation did not influence performance but decreased the retention of dry matter (p = 0.016), crude protein (p = 0.012), organic matter (p = 0.016) and nitrogen-free extract (p = 0.008). Xylanase in combination with flaxseed increased the content of n-3 fatty acids in the breast meat (p = 0.006). The lowest n-6/n-3 ratio (p = 0.001) was detected in the flaxseed and flaxseed combined with xylanase groups. Significant interaction effects of flaxseed and xylanase on tibia strength (p = 0.030) and tibia ash content (p = 0.009) were detected. The administration of xylanase or flaxseed alone increased tibia strength. Compared with the control diet, the addition of flaxseed to the diet increased the digesta viscosity (p = 0.043) in the ileum, whereas the addition of xylanase decreased the level of this indicator. It can be concluded that xylanase is an enzyme suitable for increasing nutrient availability, and in the case of its addition to a flaxseed diet, it can reduce the antinutritional effect of flaxseed by reducing the viscosity of the digesta and increasing the content of health-promoting n-3 PUFAs.
Collapse
Affiliation(s)
- Miloš Skřivan
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Uhrineves, Prague, Czech Republic
| | - Michaela Englmaierová
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Uhrineves, Prague, Czech Republic
| | - Milan Marounek
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Uhrineves, Prague, Czech Republic
| | - Tomáš Taubner
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Uhrineves, Prague, Czech Republic
| | - Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Klára Bejčková
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Uhrineves, Prague, Czech Republic
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
- Coordinating Research Centres, Innovation for Well-Being and Environment, University of Milan, Milan, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Meldrum OW, Yakubov GE. Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. Crit Rev Food Sci Nutr 2024:1-29. [PMID: 39141568 DOI: 10.1080/10408398.2024.2390556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dietary fiber-rich foods have been associated with numerous health benefits, including a reduced risk of cardiovascular and metabolic diseases. Harnessing the potential to deliver positive health outcomes rests on our understanding of the underlying mechanisms that drive these associations. This review addresses data and concepts concerning plant-based food functionality by dissecting the cascade of physical and chemical digestive processes and interactions that underpin these physiological benefits. Functional transformations of dietary fiber along the gastrointestinal tract from the stages of oral processing and gastric emptying to intestinal digestion and colonic fermentation influence its capacity to modulate digestion, transit, and commensal microbiome. This analysis highlights the significance, limitations, and challenges in decoding the complex web of interactions to establish a coherent framework connecting specific fiber components' molecular and macroscale interactions across multiple length scales within the gastrointestinal tract. One critical area that requires closer examination is the interaction between fiber, mucus barrier, and the commensal microbiome when considering food structure design and personalized nutritional strategies for beneficial physiologic effects. Understanding the response of specific fibers, particularly concerning an individual's physiology, will offer the opportunity to exploit these functional characteristics to elicit specific, symptom-targeting effects or use fiber types as adjunctive therapies.
Collapse
Affiliation(s)
- Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Pasqualoni I, Tolve R, Simonato B, Bianchi F. The Impact of Selected Ingredients on the Predicted Glycemic Index and Technological Properties of Bread. Foods 2024; 13:2488. [PMID: 39200414 PMCID: PMC11353318 DOI: 10.3390/foods13162488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Bread, a staple food consumed worldwide, plays a pivotal role in nutrition. Nevertheless, it is to be underlined that white bread is classified as a high glycemic index food, and its frequent consumption can lead to rapid increases in blood glucose, potentially causing metabolic stress and contributing to insulin resistance and type 2 diabetes. So, there is a growing interest in bread formulations with ingredients that can lower its GI. With this view, bread was formulated, substituting wheat with chickpea flour, red chicory powder, and three distinct types of resistant starch. The results showed the different resistant starches' impacts on the glycemic index reduction. Specifically, chemically modified tapioca RS IV produced a bread formulation with a low predicted glycemic index (pGI < 55). Retrograded starch from tapioca (RS III) allows the bread to reach a pGI value of 55, the upper value for classifying a food as low pGI. The retrograded starch from corn (RS III) allows a decrease in the bread's glycemic index, but the product is still classified as 'high pGI' (>70). Moreover, the addition of by-products rich in polyphenols contributes to a lowering of the pGI. Concerning the technological parameters, the outcome revealed an increase in the moisture content across all the newly formulated samples compared to the control. At the same time, the volume and specific volume showed a decrease. The newly formulated samples exhibited a higher baking loss, particularly when incorporating resistant starch, which increased the hardness and chewiness with decreased cohesiveness. In conclusion, incorporating chickpea flour, red chicory powder, and tapioca-resistant starch (RS III and IV) offers a promising strategy for producing high-fiber bread with a low glycemic index, catering to health-conscious consumers.
Collapse
Affiliation(s)
| | | | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (I.P.); (R.T.); (F.B.)
| | | |
Collapse
|
5
|
Lavoisier A, Jamme T, Rousseau F, Morzel M. Impact of saliva incorporation on the rheological properties of in vitro gastric contents formulated from sour cream. J Texture Stud 2024; 55:e12851. [PMID: 38952153 DOI: 10.1111/jtxs.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Rheological properties of gastric contents depend on the food ingested, and on the volume and composition of secretions from the host, which may vary. This study investigates the impact of saliva regular incorporation in the stomach after a meal on the rheological properties of gastric contents, considering two levels of salivary flow (low = 0.5 and high = 1.5 mL/min). In vitro chymes were obtained by mixing sour cream, simulated gastric fluid, two different volumes of oral fluid (at-rest human saliva, SSF for Simulated Salivary Fluid or water) and adjusting pH at 3. Chymes samples were characterized at 37°C for their particle size and rheological properties. Overall, particle size distribution was not different between samples: incorporating a larger volume of saliva resulted in more heterogeneity, but the surface area moment D[3,2] and volume moment D[4,3] did not differ significantly with the oral fluid type. Shear viscosity of chyme samples was higher when saliva was incorporated, in comparison with water or SSF. In addition, as shown from data extracted atγ ̇ $$ \dot{\gamma} $$ = 20 s-1 the higher the fluid volume the lower the shear viscosity, which is attributed to a dilution effect. However, this dilution effect was attenuated in the case of saliva, most likely due to its composition in organic compounds (e.g., mucins) contributing to the rheological properties of this biological fluid. In these in vitro conditions, both saliva and the salivation rate had a significant but slight impact on the rheological properties of gastric contents (of the order of 1-5 mPa s atγ ̇ $$ \dot{\gamma} $$ = 20 s-1).
Collapse
Affiliation(s)
| | - Tino Jamme
- INRAE, Institut Agro, STLO, Rennes, France
| | | | | |
Collapse
|
6
|
Basuray N, Deehan EC, Vieira FT, Avedzi HM, Duke RL, Colín-Ramírez E, Tun HM, Zhang Z, Wine E, Madsen KL, Field CJ, Haqq AM. Dichotomous effect of dietary fiber in pediatrics: a narrative review of the health benefits and tolerance of fiber. Eur J Clin Nutr 2024; 78:557-568. [PMID: 38480843 DOI: 10.1038/s41430-024-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Dietary fibers are associated with favorable gastrointestinal, immune, and metabolic health outcomes when consumed at sufficient levels. Despite the well-described benefits of dietary fibers, children and adolescents continue to fall short of daily recommended levels. This gap in fiber intake (i.e., "fiber gap") might increase the risk of developing early-onset pediatric obesity and obesity-related comorbidities such as type 2 diabetes mellitus into adulthood. The structure-dependent physicochemical properties of dietary fiber are diverse. Differences in solubility, viscosity, water-holding capacity, binding capability, bulking effect, and fermentability influence the physiological effects of dietary fibers that aid in regulating appetite, glycemic and lipidemic responses, and inflammation. Of growing interest is the fermentation of fibers by the gut microbiota, which yields both beneficial and less favorable end-products such as short-chain fatty acids (e.g., acetate, propionate, and butyrate) that impart metabolic and immunomodulatory properties, and gases (e.g., hydrogen, carbon dioxide, and methane) that cause gastrointestinal symptoms, respectively. This narrative review summarizes (1) the implications of fibers on the gut microbiota and the pathophysiology of pediatric obesity, (2) some factors that potentially contribute to the fiber gap with an emphasis on undesirable gastrointestinal symptoms, (3) some methods to alleviate fiber-induced symptoms, and (4) the therapeutic potential of whole foods and commonly marketed fiber supplements for improved health in pediatric obesity.
Collapse
Affiliation(s)
- Nandini Basuray
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Flávio T Vieira
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hayford M Avedzi
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Reena L Duke
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Hein M Tun
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Eytan Wine
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Andrea M Haqq
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Kim HY, Moon JO, Kim SW. Development and application of a multi-step porcine in vitro system to evaluate feedstuffs and feed additives for their efficacy in nutrient digestion, digesta characteristics, and intestinal immune responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:265-282. [PMID: 38800740 PMCID: PMC11127235 DOI: 10.1016/j.aninu.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
In vitro model provides alternatives to the use of live animals in research. In pig nutrition, there has been a tremendous increase in in vivo research over the decades. Proper utilization of in vitro models could provide a screening tool to reduce the needs of in vivo studies, research duration, cost, and the use of animals and feeds. This study aimed to develop a multi-step porcine in vitro system to simulate nutrient digestion and intestinal epithelial immune responses affected by feedstuffs and feed additives. Seven feedstuffs (corn, corn distillers dried grains with solubles [corn DDGS], barley, wheat, soybean meal, soy protein concentrates, and Corynebacterium glutamicum cell mass [CGCM]), feed enzymes (xylanase and phytase), and supplemental amino acids (arginine, methionine, and tryptophan), were used in this in vitro evaluation for their efficacy on digestibility, digesta characteristics, and intestinal health compared with the results from previously published in vivo studies. All in vitro evaluations were triplicated. Data were analyzed using Mixed procedure of SAS9.4. Evaluations included (1) nutrient digestibility of feedstuffs, (2) the effects of feed enzymes, xylanase and phytase, on digestibility of feedstuffs and specific substrates, and (3) the effects of amino acids, arginine, tryptophan, and methionine, on anti-inflammatory, anti-oxidative, and anti-heat stress statuses showing their effects (P < 0.05) on the measured items. Differences in dry matter and crude protein digestibility among the feedstuffs as well as effects of xylanase and phytase were detected (P < 0.05), including xylo-oligosaccharide profiles and phosphorus release from phytate. Supplementation of arginine, tryptophan, and methionine modulated (P < 0.05) cellular inflammatory and oxidative stress responses. The use of this in vitro model allowed the use of 3 experimental replications providing sufficient statistical power at P < 0.05. This indicates in vitro models can have increased precision and consistency compared with in vivo animal studies.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Jun-Ok Moon
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Xu Y, Leong ZN, Zhang W, Jin X, Kong JW, Chan GCT, Kim JE. Impact of Brewers' Spent Grain-Containing Biscuit on Postprandial Glycaemic Response in Individuals with Metabolic Syndrome: A Crossover Randomised Controlled Trial. Nutrients 2024; 16:909. [PMID: 38542820 PMCID: PMC10975460 DOI: 10.3390/nu16060909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 01/04/2025] Open
Abstract
Brewers' spent grain (BSG) is a fibre and protein-rich by-product of beer-brewing. Fermenting BSG with Rhizopus oligosporus can further increase its content of soluble fibre, protein and certain antioxidants. Since nutrients rich in BSG can improve postprandial glycaemic response, this study assessed the postprandial glucose response (PPGR) and postprandial insulin response (PPIR) controlling effect of consuming 30% wheat flour substituted biscuits with autoclaved BSG (ABSG) or fermented BSG (FBSG) in individuals with metabolic syndrome (MetS). The effect on postprandial lipid panel, breath hydrogen (H2) and methane (CH4) concentration and subjective appetite response was also examined. Fifteen subjects with MetS participated in this crossover randomised controlled trial, and blood was collected at 9 time-points for 4 h after consumption of control biscuits (Control), ABSG and FBSG. A significant interaction effect was observed (Pinteraction = 0.013) for the glucose time-points concentration. At 180 min, the glucose concentration was lowered after the consumption of ABSG (p = 0.010) and FBSG (p = 0.012) compared to the Control. Moreover, the FBSG resulted in a significantly lower glucose incremental area under curve (iAUC) compared to the Control (p = 0.028). Insulin level was also lowered at 180 min after the ABSG (p = 0.010) and FBSG (p = 0.051) consumption compared to the Control. However, no difference was noted for postprandial lipid panel, breath H2 and CH4 concentration and subjective appetite response. In conclusion, the consumption of BSG-incorporated biscuits can attenuate PPGR, and fermented BSG incorporation conferred a further PPGR controlling benefit.
Collapse
Affiliation(s)
- Yujing Xu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore; (Y.X.); (Z.N.L.); (W.Z.); (X.J.); (J.W.K.)
| | - Zi Ning Leong
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore; (Y.X.); (Z.N.L.); (W.Z.); (X.J.); (J.W.K.)
| | - Weijia Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore; (Y.X.); (Z.N.L.); (W.Z.); (X.J.); (J.W.K.)
| | - Xinrui Jin
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore; (Y.X.); (Z.N.L.); (W.Z.); (X.J.); (J.W.K.)
| | - Jia Wen Kong
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore; (Y.X.); (Z.N.L.); (W.Z.); (X.J.); (J.W.K.)
| | - Gregory Chung Tsing Chan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore;
| | - Jung Eun Kim
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore; (Y.X.); (Z.N.L.); (W.Z.); (X.J.); (J.W.K.)
| |
Collapse
|
9
|
El-Nashar HAS, Taleb M, El-Shazly M, Zhao C, Farag MA. Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phytother Res 2024; 38:662-693. [PMID: 37966040 DOI: 10.1002/ptr.8067] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Diabetes mellitus is a globally metabolic endocrine syndrome marked by a deficiency of insulin secretion (type-1 DM) or glucose intolerance arising from insulin response impairment (type-2 DM) leading to abnormal glucose metabolism. With an increasing interest in natural dietary components for diabetes management, the identification of novel agents witnessed major discoveries. Plant-derived mucilage, pectin, and inulin are important non-starch polysaccharides that exhibit effective antidiabetic properties often termed soluble dietary fiber (SDF). SDF affects sugar metabolism through multiple mechanisms affecting glucose absorption and diffusion, modulation of carbohydrate metabolizing enzymes (α-amylase and α-glucosidase), ameliorating β-pancreatic cell dysfunction, and improving insulin release or sensitivity. Certain SDFs inhibit dipeptidyl peptidase-4 and influence the expression levels of genes related to glucose metabolism. This review is designed to discuss holistically and critically the antidiabetic effects of major SDF and their underlying mechanisms of action. This review should aid drug discovery approaches in developing novel natural antidiabetic drugs from SDF.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Taleb
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University-Gaza, Gaza, Palestine
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Sung M, Yoon Y, Lee J. The Immunomodulatory Effect of β-Glucan Depends on the Composition of the Gut Microbiota. Foods 2023; 12:3148. [PMID: 37685079 PMCID: PMC10487241 DOI: 10.3390/foods12173148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to elucidate the relationship between the immunomodulatory effects of β-glucan and the composition of gut microbiota in mice. The mice were fed a diet containing β-glucan for 3 weeks, and feces, blood, and tissues were then collected to analyze the immunomodulatory effect and gut microbiota composition. Based on the results of the analysis of the expression level of immune-associated proteins, the high immunomodulatory effect group (HIE) and low immunomodulatory effect group (LIE) were categorized. Before the β-glucan diet, the proportions of the phylum Bacteroidota, family Muribaculaceae, and family Lactobacillaceae were significantly higher in HIE than in LIE. Furthermore, the genus Akkermansia was absent before the β-glucan diet and increased after β-glucan diet. These microbes had the ability to metabolize β-glucan or were beneficial to health. In conclusion, our findings demonstrate that variation in the composition of gut microbiota among individuals can result in varying expressions of β-glucan functionality. This outcome supports the notion that β-glucan may be metabolized through diverse pathways by gut microbes originally possessed by mice, subsequently producing various metabolites, such as short-chain fatty acids. Alternatively, the viscosity of the intestinal mucosa could be enhanced by β-glucan, potentially promoting the growth of certain bacteria (e.g., the genus Akkermansia). This study provides insights into the intricate interplay between β-glucan, gut microbiota, and immunomodulation.
Collapse
Affiliation(s)
- Miseon Sung
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (M.S.); (Y.Y.)
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (M.S.); (Y.Y.)
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Jeeyeon Lee
- Department of Food & Nutrition, Dong-eui University, Busan 47340, Republic of Korea
| |
Collapse
|
11
|
Liu F, Zhang S, Chen K, Zhang Y. Fabrication, in-vitro digestion and pH-responsive release behavior of soy protein isolate glycation conjugates-based hydrogels. Food Res Int 2023; 169:112884. [PMID: 37254332 DOI: 10.1016/j.foodres.2023.112884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Hydrogel made by glycated soy protein isolate (SPI) conjugates is a promising gastrointestinal targeted delivery system for bioactives. In this study, SPI conjugates were prepared with dextran molecules at various molecular weights by Maillard reaction -based heating, and then used to fabricate hydrogel aided by transglutaminase. The modification on the structure, interfacial and rheological properties of SPI by dextran was studied. The physicochemical properties, digestion behavior and curcumin-encapsulation capacity of resultant SPI-dextran hydrogels were comprehensively studied. As compared to SPI and SPI-glucose conjugates-based hydrogels, SPI-dextran hydrogels showed lower mechanical properties but more homogeneous gel network. Dextran with higher molecular weight showed lower grafting degree on SPI, but was more effective on improving the thermos-set gel performance, and resistance to in vitro gastrointestinal digestion. The contribution of glycinin and β-conglycinin, two major individual proteins of SPI, in the dextran conjugates formation were predicated by molecular docking for the first time. The impact of molecular weight of dextran on glycated SPI hydrogel-based delivery systems was comprehensively investigated, which is promising for development of functional food applications.
Collapse
Affiliation(s)
- Feng Liu
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Suyun Zhang
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kexian Chen
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yue Zhang
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
12
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. Strategies for modulating the lipid digestion of emulsions in the gastrointestinal tract. Crit Rev Food Sci Nutr 2023; 64:9740-9755. [PMID: 37267158 DOI: 10.1080/10408398.2023.2215873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structural changes in emulsion products can be used to control the bioavailability of fatty acids and lipophilic compounds. After ingestion, lipid droplets undergo breakdown and structural changes as they pass through the gastrointestinal tract. The oil-water interface plays a critical role in modulating the digestive behavior of lipid droplets because changes in the interfacial layer control the adsorption of lipase and bile salts and determine the overall rate and extent of lipid digestion. Therefore, lipid digestibility can be tuned by selecting the appropriate types and levels of stabilizers. The stabilizer can change the lipase accessibility and exposure of lipid substrates, resulting in variable digestion rates. However, emulsified lipids are not only added to food matrixes but are also co-ingested from other dietary components. Therefore, overall consumption behaviors can affect the digestion rate and digestibility of emulsified lipids. Although designing an emulsion structure is challenging, controlling lipid digestion can improve the health benefits of products. Therefore, a thorough understanding of the process of emulsified lipid digestion is required to develop food products that enable specific physiological responses. The targeted or delayed release of lipophilic molecules and fatty acids through emulsion systems has significant applications in healthcare and pharmaceuticals.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
13
|
Chumroenvidhayakul S, Thilavech T, Abeywardena M, Adisakwattana S. Dragon Fruit Peel Waste ( Hylocereus undatus) as a Potential Ingredient for Reducing Lipid Peroxidation, Dietary Advanced Glycation End Products, and Starch Digestibility in Cookies. Antioxidants (Basel) 2023; 12:antiox12051002. [PMID: 37237868 DOI: 10.3390/antiox12051002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive consumption of cookies has been linked to harmful health outcomes owing to the presence of refined carbohydrates and heat-induced toxicants including end products of lipid peroxidation and dietary advanced glycation end products (dAGEs). To address this issue, this study explores the addition of dragon fruit peel powder (DFP), which is rich in phytochemicals and dietary fibers, to cookies as a potential solution to mitigate their adverse effects. The results indicate that adding DFP at 1%, 2%, and 5% w/w of raw cookie dough significantly improves the total phenolic and betacyanin contents and antioxidant activity, as evidenced by increased ferric-reducing antioxidant power. DFP incorporation also led to reductions in malondialdehyde and dAGEs (p < 0.05). Furthermore, the starch digestibility, hydrolysis index, and predicted glycemic index were all reduced in the presence of DFP, with the latter estimate being due to the higher content of undigested starch. Incorporating DFP in cookies resulted in significant changes in their physical properties, including texture and color. However, sensory evaluation indicates that the overall acceptability of the cookies was not negatively impacted by the addition of up to 2% DFP, suggesting that it is a viable option for enhancing the nutritional value of cookies without compromising their palatability. These findings suggest that DFP is a sustainable and healthier ingredient that can improve the antioxidant capacity of cookies while also mitigating the harmful effects of heat-induced toxins.
Collapse
Affiliation(s)
- Siriwan Chumroenvidhayakul
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Wang Z, Wang W, Xu S, Ding J, Zeng X, Liu H, Wang F. Diets enriched with finely ground wheat bran alter digesta passage rate and composition of the gut microbiome in sows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 12:32-41. [PMID: 36381066 PMCID: PMC9641164 DOI: 10.1016/j.aninu.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
We investigated the effects of finely ground wheat bran on the nutrient digestibility, digesta passage rate, and gut microbiota structure in sows. A 3 × 3 Latin square design with 3 test periods and 3 experimental diets was used. Six non-pregnant sows (parity: 5 to 7) were randomly assigned to 3 experimental diets with 2 replicates per treatment in each period. Each period lasted 19 d (12 d for adaptation and 7 d for experiment). The experimental diets included (a) a basal corn and soybean meal diet (CON), (b) a basal diet with 20% coarse wheat bran (CWB; particle size: 605 μm), and (c) a basal diet with 20% fine wheat bran (FWB; particle size: 438 μm). The results demonstrated that the apparent total tract digestibility of neutral detergent fiber, acid detergent fiber and energy were reduced (P < 0.05) in the FWB and CWB groups compared with those in the CON group. Viscosity of digesta increased (P < 0.001) in FWB-fed sows. The passage rate of digesta from the mouth to the ileum decreased (P < 0.001) in FWB-fed sows. Peptide YY (PYY) concentration increased (P = 0.01) in FWB-fed sows after 30 min of feeding. In the FWB group, the relative abundance of Lactobacillaceae at the family level increased (P < 0.05) in the ileal digesta. At the class level, the relative abundance of Clostridia in feces decreased (P < 0.05) in FWB-fed sows. FWB enhanced the concentration of butyrate in feces compared with CON and CWB (P = 0.04). These results suggest that dietary supplementation with finely ground wheat bran reduces the passage rate of digesta, increases the abundance of beneficial microorganisms, and elevates the concentration of short-chain fatty acids and PYY in sows. These findings indicate that the addition of finely-ground wheat bran to the diets of sows is more effective than using coarse wheat bran for improving their satiety and intestinal microbial composition.
Collapse
Affiliation(s)
- Zijie Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Wenhui Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Song Xu
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Jian Ding
- National Animal Husbandry Service, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100000, China
| | - Xiangfang Zeng
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Hu Liu
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Cui W, Luo K, Xiao Q, Sun Z, Wang Y, Cui C, Chen F, Xu B, Shen W, Wan F, Cheng A. Effect of mulberry leaf or mulberry leaf extract on glycemic traits: a systematic review and meta-analysis. Food Funct 2023; 14:1277-1289. [PMID: 36644880 DOI: 10.1039/d2fo02645g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mulberry leaf (ML) and mulberry leaf extract (MLE) have numerous biological properties, such as regulating sugar and lipid metabolism, reducing blood glucose, and increasing insulin secretion. The aim of this study was to perform a systematic review and meta-analysis of randomized clinical trials to examine the effect of ML/MLE supplementation on glycemic traits in adults, including fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), and fasting plasma insulin (FPI). Twelve clinical trials (615 participants) fulfilled the eligibility criteria for the present meta-analysis, which included sensitivity analysis and GRADE (grading of recommendations assessment, development, and evaluation) certainty. Based on the heterogeneity between included studies, a random effects model was applied in the meta-analysis, and the results are expressed as WMD (weighted mean differences) with 95% CI (confidence intervals). Meta-analysis showed that ML/MLE supplementation resulted in a significant reduction in FBG by -0.47 mmol L-1, HbA1c by -2.92 mmol mol-1, and FPI by -0.58 μIU mL-1. In addition, subgroup analysis indicated that long-term supplementation of ML/MLE (≥8 weeks) was more effective for regulation of the glycemic traits in the non-healthy and baseline FPG >6.1 mmol L-1 subgroups. Glycemic regulation by ML/MLE may be attributed to the phytochemicals they contain, which are mainly 1-deoxynojirimycin, flavonoids, phenolics, and polysaccharides.
Collapse
Affiliation(s)
- Wenyu Cui
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| | - Kaiyun Luo
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| | - Qian Xiao
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhaoyue Sun
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| | - Yunfu Wang
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| | - Caifang Cui
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| | - Fuchun Chen
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| | - Ben Xu
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Anwei Cheng
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
16
|
Bernardes EN, Flôres SH, Thys RCS. Are Psyllium Fiber and Flaxseed Flour An Exciting Combination of Ingredients in the Development of Gluten-free Vegan Bread? JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2060160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Esther Nogueira Bernardes
- Institute of Food Science and Technology, Federal University of Rio Grande Do Sul (Icta-ufrgs). Av. Bento Goncalves, Porto Alegre, Brazil
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology, Federal University of Rio Grande Do Sul (Icta-ufrgs). Av. Bento Goncalves, Porto Alegre, Brazil
| | - Roberta Cruz Silveira Thys
- Institute of Food Science and Technology, Federal University of Rio Grande Do Sul (Icta-ufrgs). Av. Bento Goncalves, Porto Alegre, Brazil
| |
Collapse
|
17
|
Djekkoun N, Depeint F, Guibourdenche M, El Khayat El Sabbouri H, Corona A, Rhazi L, Gay-Queheillard J, Rouabah L, Hamdad F, Bach V, Benkhalifa M, Khorsi-Cauet H. Chronic Perigestational Exposure to Chlorpyrifos Induces Perturbations in Gut Bacteria and Glucose and Lipid Markers in Female Rats and Their Offspring. TOXICS 2022; 10:toxics10030138. [PMID: 35324763 PMCID: PMC8949051 DOI: 10.3390/toxics10030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
An increasing burden of evidence is pointing toward pesticides as risk factors for chronic disorders such as obesity and type 2 diabetes, leading to metabolic syndrome. Our objective was to assess the impact of chlorpyrifos (CPF) on metabolic and bacteriologic markers. Female rats were exposed before and during gestation and during lactation to CPF (1 mg/kg/day). Outcomes such as weight, glucose and lipid profiles, as well as disturbances in selected gut bacterial levels, were measured in both the dams (at the end of the lactation period) and in their female offspring at early adulthood (60 days of age). The results show that the weight of CPF dams were lower compared to the other groups, accompanied by an imbalance in blood glucose and lipid markers, and selected gut bacteria. Intra-uterine growth retardation, as well as metabolic disturbances and perturbation of selected gut bacteria, were also observed in their offspring, indicating both a direct effect on the dams and an indirect effect of CPF on the female offspring. Co-treatment with inulin (a prebiotic) prevented some of the outcomes of the pesticide. Further investigations could help better understand if those perturbations mimic or potentiate nutritional risk factors for metabolic syndrome through high fat diet.
Collapse
Affiliation(s)
- Narimane Djekkoun
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Flore Depeint
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Marion Guibourdenche
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Hiba El Khayat El Sabbouri
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Aurélie Corona
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Larbi Rhazi
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Jerome Gay-Queheillard
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Leila Rouabah
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Farida Hamdad
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Véronique Bach
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Moncef Benkhalifa
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Hafida Khorsi-Cauet
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Correspondence: ; Tel.: +33-322-827-896
| |
Collapse
|
18
|
Hung YT, Zhu J, Shurson GC, Urriola PE, Saqui-Salces M. Decreased nutrient digestibility due to viscosity is independent of the amount of dietary fibre fed to growing pigs. Br J Nutr 2022; 127:177-187. [PMID: 33706826 PMCID: PMC8756099 DOI: 10.1017/s0007114521000866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
Fibre content and its effect on chyme viscosity are associated with changes in the digestive system of humans and pigs. It is unclear if fibre content and viscosity affect digestive function independently or interactively. We evaluated apparent ileal digestibility (AID) of nutrients and intestinal function in thirty-six ileal-cannulated barrows fed for 29 d either maize-soyabean meal (MSBM) or high-fibre MSBM + 30 % distillers dried grains with solubles (MSBM + DDGS) modified to three levels of viscosity by adding 5 % non-viscous cellulose (CEL), 6·5 % medium-viscous carboxymethylcellulose (MCMC) or 6·5 % high-viscous CMC (HCMC). Digesta were collected on days 27 and 28 and intestinal samples on day 29. Feeding CMC, regardless of fibre content, increased viscosity of whole digesta (P = 0·003) and digesta supernatant (P < 0·0001) compared with CEL. Feeding MSBM + DDGS or CMC decreased AID of DM (P = 0·003; P < 0·0001) and crude protein (P = 0·02; P < 0·0001) compared with MSBM or CEL. Feeding CMC regardless of fibre content increased jejunal crypt depth (P = 0·02) and ileal goblet cell area (P = 0·004) compared with CEL. Adding DDGS or CMC did not affect villus height and gene expression of jejunal monosaccharide and amino acid transporters. Feeding HCMC, regardless of fibre content, elevated amylase activity by 46 and 50 % in jejunal (P = 0·03) and ileal digesta (P = 0·01) compared with CEL. In summary, diets with increased viscosity decreased nutrient digestibility and induced intestinal changes that were independent of the amount of fibre fed.
Collapse
Affiliation(s)
- Yuan-Tai Hung
- Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN55108, USA
| | - Jinlong Zhu
- Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN55108, USA
| | - Gerald C. Shurson
- Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN55108, USA
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN55108, USA
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN55108, USA
| | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN55108, USA
| |
Collapse
|
19
|
Nutritional, Textural, and Sensory Quality of Aloe Vera Leaf Gel Powder Fortified Plain Cake. J 2021. [DOI: 10.3390/j4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aloe Vera leaves have great potential as an economic supplement with an adequate nutritional profile. The current study aimed to fortify plain (loaf) cakes with Aloe Vera leaf gel (AVG) powder. AVG was freeze-dried to produce Aloe Vera powder (ALP), and four plain (loaf) cakes were prepared with different proportions of ALP (0, 4, 6, and 8%). ALP contained significantly (p < 0.05) more protein (22.23 vs. 12.24), ash (19.83 vs. 0.64), and iron (175 vs. 3.05) than refined wheat flour (RWF). Along with total polyphenols and total flavonoids, ALP demonstrated good antioxidant activity. ALP-cakes and RWF-cakes were also evaluated for their nutritional and functional properties. The addition of 6 and 8% ALP to the formulation increased total polyphenols, total flavonoids, and antioxidant activity in plain (loaf) cakes. Hardness and chewiness increased in ALP-cakes but decreased in RWF-cakes, while cohesiveness and springiness decreased in ALP-cakes. In conclusion, the best formulation was a 4% ALP incorporated cake, and ALP can be supplemented in plain cakes at a rate of up to 8% to improve nutrient value. This is the first study to evaluate the quality characteristics of fortified plain (loaf) cakes using ALP.
Collapse
|
20
|
Polysaccharide Structures and Their Hypocholesterolemic Potential. Molecules 2021; 26:molecules26154559. [PMID: 34361718 PMCID: PMC8348680 DOI: 10.3390/molecules26154559] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Several classes of polysaccharides have been described to have hypocholesterolemic potential, namely cholesterol bioaccessibility and bioavailability. This review will highlight the main mechanisms by which polysaccharides are known to affect cholesterol homeostasis at the intestine, namely the effect (i) of polysaccharide viscosity and its influence on cholesterol bioaccessibility; (ii) on bile salt sequestration and its dependence on the structural diversity of polysaccharides; (iii) of bio-transformations of polysaccharides and bile salts by the gut microbiota. Different quantitative structure–hypocholesterolemic activity relationships have been explored depending on the mechanism involved, and these were based on polysaccharide physicochemical properties, such as sugar composition and ramification degree, linkage type, size/molecular weight, and charge. The information gathered will support the rationalization of polysaccharides’ effect on cholesterol homeostasis and highlight predictive rules towards the development of customized hypocholesterolemic functional food.
Collapse
|
21
|
The rheological characteristics of soy protein isolate-glucose conjugate gel during simulated gastrointestinal digestion. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
MELATI J, LUCCHETTA L, PRADO NVD, OLIVEIRA DFD, TONIAL IB. Physical and sensory characteristics of salty cereal bar with different binding agents. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.07820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Huang M, Zhao X, Mao Y, Chen L, Yang H. Metabolite release and rheological properties of sponge cake after in vitro digestion and the influence of a flour replacer rich in dietary fibre. Food Res Int 2021; 144:110355. [PMID: 34053548 DOI: 10.1016/j.foodres.2021.110355] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
The present study aimed to better understand the metabolite release and rheological characteristics of sponge cake after in vitro digestion and the effect of Eucheuma as a fibre-rich flour replacer. Overall, 22 compounds including amino acids, saccharides, fatty acids, and other metabolites were identified based on nuclear magnetic resonance spectra. Principal component analysis and orthogonal projection to latent structures-discriminant analysis showed that Eucheuma reduced the release of amino acids and fatty acids. The released glucose from the EP20 sample (20% replacement of flour with Eucheuma) decreased by 35.4% in intestinal phases compared with the control cake. Eucheuma's in vitro effects on sponge cake digestion mainly reflected altered flow behaviour index. All samples showed solid-like behaviour and a decrease in viscoelastic moduli after digestion. This study forms the basis for future optimisation of food properties to control their digestive characteristics.
Collapse
Affiliation(s)
- Min Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Xue Zhao
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Yihan Mao
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Lin Chen
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
24
|
Effect of Physicochemical Properties of Carboxymethyl Cellulose on Diffusion of Glucose. Nutrients 2021; 13:nu13051398. [PMID: 33919341 PMCID: PMC8143308 DOI: 10.3390/nu13051398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Soluble dietary fibers (SDF) are known to reduce the post-prandial plasma glucose levels. However, the detailed mechanisms of this reduced glucose release in the human gut still remain unclear. The aim of our study was to systematically investigate the effect of different types of SDF on glucose release in an in vitro model as a prerequisite for the selection of fibers suitable for application in humans. Three types of carboxymethyl cellulose (CMC) were used to investigate the correlations between fiber concentration, molecular weight (MW), and viscosity on diffusion of glucose using a side-by-side system. CMC solutions below the coil overlap (c*) influenced the glucose diffusivity only marginally, whereas at concentrations above c* the diffusion of glucose was significantly decreased. Solutions of lower MW exhibited a lower viscosity with lower glucose diffusion compared to solutions with higher MW CMC, attributed to the higher density of the solutions. All CMC solutions showed a systematic positive deviation from Stokes-Einstein behavior indicating a greater rise in viscosity than reduction in diffusion. Therefore, our results pave the way for a new approach for assessing glucose diffusion in solutions comprising dietary fibers and may contribute to further elucidating the mechanisms of post-prandial plasma glucose level reduction.
Collapse
|
25
|
Nie Y, Luo F. Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5542342. [PMID: 33897940 PMCID: PMC8052145 DOI: 10.1155/2021/5542342] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Dietary fiber has a long history in the intervention study of hyperlipidemia. In this review, current understandings of structures, sources, and natures of various kinds of dietary fibers (DFs) were analyzed first. Available evidences for the use of different varieties of DFs in the lipid-lowering action both in vitro and in vivo were subsequently classified, including both soluble ones, such as glucans, pectins, and gums, and insoluble ones, including arabinooxylans and chitosans, in order to draw a primary conclusion of their dose and molecular weight relationship with lipid-lowering effect. Their potential mechanisms, especially the related molecular mechanism of protective action in the treatment and prevention of hyperlipidemia, were summarized at last. Five major mechanisms are believed to be responsible for the antihyperlipidemic benefits of DFs, including low levels of energy, bulking effect, viscosity, binding capacity, and fermentation thus ameliorating the symptoms of hyperlipidemia. From the molecular level, DFs could possibly affect the activities of HMG-CoA reductase, LDL receptors, CYP7A1, and MAPK signaling pathway as well as other lipid metabolism-related target genes. In summary, dietary fibers could be used as alternative supplements to exert certain lipid-lowering effects on humans. However, more clinical evidence is needed to strengthen this proposal and its fully underlying mechanism still requires more investigation.
Collapse
Affiliation(s)
- Ying Nie
- School of Food Technology and Biological Science, Hanshan Normal University, Chaozhou 521041, China
- Laboratory of Molecular Nutrition, College of Food science and Engineering, National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Laboratory of Molecular Nutrition, College of Food science and Engineering, National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
26
|
Karunaratne ND, Classen HL, Ames NP, Bedford MR, Newkirk RW. Effects of hulless barley and exogenous beta-glucanase levels on ileal digesta soluble beta-glucan molecular weight, digestive tract characteristics, and performance of broiler chickens. Poult Sci 2021; 100:100967. [PMID: 33652524 PMCID: PMC7936222 DOI: 10.1016/j.psj.2020.12.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023] Open
Abstract
The reduced use of antibiotics in poultry feed has led to the investigation of alternatives to antibiotics, and one such substitution is fermentable carbohydrates. Exogenous β-glucanase (BGase) is commonly used in poultry fed barley-based diets to reduce digesta viscosity. The effects of hulless barley (HB) and BGase levels on ileal digesta soluble β-glucan molecular weight, digestive tract characteristics, and performance of broiler chickens were determined. A total of 360 day-old broilers were housed in battery cages (4 birds per cage) and fed graded levels of high β-glucan HB (CDC Fibar; 0, 30, and 60% replacing wheat) and BGase (Econase GT 200 P; 0, 0.01, and 0.1%) in a 3 × 3 factorial arrangement. Beta-glucan peak molecular weight in the ileal digesta was lower with 30 and 60 than 0% HB, whereas the peak decreased with increasing BGase. The weight average molecular weight was lower at 0.1 than 0% BGase in wheat diets, whereas in HB diets, it was lower at 0.01 and 0.1 than 0% BGase. The maximum molecular weight was lower with 0.01 and 0.1 than 0% BGase regardless of the HB level. The maximum molecular weight was lower with HB than wheat at 0 or 0.01% BGase. Overall, empty weights and lengths of digestive tract sections increased with increasing HB, but there was no BGase effect. Hulless barley decreased the duodenum and jejunum contents, whereas increasing the gizzard (diets with BGase), ileum, and colon contents. The jejunum and small intestine contents decreased with increasing BGase. Ileal and colon pH increased with increasing HB, but there was no BGase effect. Treatment effects were minor on short-chain fatty acids levels and performance. In conclusion, exogenous BGase depolymerized the ileal digesta soluble β-glucan in broiler chickens in a dose-dependent manner. Overall, feed efficiency was impaired by increasing HB levels. However, HB and BGase did not affect carbohydrate fermentation in the ileum and ceca, although BGase decreased ileal viscosity and improved feed efficiency at the 0.1% dietary level.
Collapse
Affiliation(s)
- Namalika D Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Henry L Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Nancy P Ames
- Agriculture and Agri-Food Canada, Winnipeg, R3T 2E1 Manitoba, Canada
| | | | - Rex W Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada.
| |
Collapse
|
27
|
Role of pectin in the current trends towards low-glycaemic food consumption. Food Res Int 2021; 140:109851. [DOI: 10.1016/j.foodres.2020.109851] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
|
28
|
Effects of extrusion processing on the physiochemical and functional properties of lupin kernel fibre. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Dev K, Begum J, Biswas A, Kannoujia J, Mir NA, Sonowal J, Kant R, Narender T. Dietary Lactobacillus acidophilus and Mannan-Oligosaccharides Alter the Lipid Metabolism and Health Indices in Broiler Chickens. Probiotics Antimicrob Proteins 2020; 13:633-646. [PMID: 33165834 DOI: 10.1007/s12602-020-09717-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
The effects of dietary Lactobacillus acidophilus (LBA) and mannan-oligosaccharide (MOS) supplementation on lipid metabolism and consequent lipid profile and health indices in broiler chicken were investigated in this study. Supplementation of 0.2% MOS along with either 106 or 107 LBA/g feed in broiler chicken downregulated hepatic expression of genes involved in lipogenesis, and upregulated expression of lipolytic genes. It caused decline of lipogenesis and increase of lipid oxidation which resulted in lower carcass fat content. None of the genes studied influenced fatty acid profile of chicken meat except the expression of stearoyl CoA (Δ9) desaturase-1 (SCD-1) whose upregulation increased monounsaturated fatty acid (MUFA) content at the cost of saturated fatty acid (SFA) content. The lipid metabolism indices of chicken meat such as ∆9 desaturase index (DI) increased in birds supplemented with 0.2% MOS along with either 106 or 107 CFU LBA/g feed, whereas no effect was observed on ∆5 + ∆6 DI. The supplementation of 0.2% MOS along with either 106 or 107 CFU LBA/g feed in birds improved the health indices of chicken meat due to upregulation of SCD-1 expression. The supplementation of 0.2% MOS along with either 106 or 107 CFU LBA/g feed in broiler chicken produced hypocholesterolemic and hypolipidemic effects with improved serum cardio-protective indices.
Collapse
Affiliation(s)
- Kapil Dev
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, 243122, India.,Sam Higginbottom University of Agriculture, Technology And Sciences, Allahabad, 211007, India
| | - Jubeda Begum
- Govind Ballabh Pant University of Agriculture & Technology, College of Veterinary & Animal Sciences, Pantnagar, 263145, India
| | - Avishek Biswas
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, 243122, India.
| | - Jyoti Kannoujia
- CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Nasir Akbar Mir
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, 243122, India
| | - Joyshikh Sonowal
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Rajiv Kant
- Sam Higginbottom University of Agriculture, Technology And Sciences, Allahabad, 211007, India
| | - T Narender
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| |
Collapse
|
30
|
Chen H, Zhang S, Kim SW. Effects of supplemental xylanase on health of the small intestine in nursery pigs fed diets with corn distillers' dried grains with solubles. J Anim Sci 2020; 98:5851498. [PMID: 32497179 DOI: 10.1093/jas/skaa185] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023] Open
Abstract
Forty pigs [10.7 ± 1.2 kg initial body weight (BW) at 6 wk of age] were used in a 21-d study to evaluate the effects of supplemental xylanase (Hostazym X 100, Huvepharma, Inc., Peachtree City, GA) in nursery diets on digesta viscosity, nutrient digestibility, health of the small intestine, and growth performance when supplemented with corn distillers' dried grains with solubles (DDGS). Pigs were individually housed and randomly allotted to four treatments in a 2 × 2 factorial arrangement (n = 20/factor, 0% or 30% DDGS and 0 or 1,500 endo-pentosanase unit/kg xylanase as two factors) based on sex and initial BW. Feed intake and BW were recorded weekly. On day 15 of the study, TiO2 in diets (0.3%) was used as an indigestible marker to calculate apparent ileal digestibility (AID). Plasma samples were collected on day 19 to measure tumor necrosis factor-alpha (TNF-α), malondialdehyde, and peptide YY. On day 21, all pigs were euthanized to collect tissues from duodenum, jejunum, and colon to measure morphology, TNF-α, and malondialdehyde concentrations. Distal jejunal digesta were collected to measure viscosity. Ileum digesta were collected to measure AID of nutrients. During the entire period, supplemental xylanase increased (P < 0.05) average daily gain (ADG; 616 to 660 g/d) of nursery pigs, whereas DDGS (0 or 30%) did not affect ADG. On week 3, average daily feed intake (ADFI) was increased (P < 0.05) when fed DDGS (1,141 to 1,267 g/d) and there was an interaction (P < 0.05) between two factors indicating that supplemental xylanase decreased ADFI when DDGS was used in a diet. Use of DDGS increased (P < 0.05) viscosity [1.86 to 2.38 centipoise (cP)], whereas supplemental xylanase reduced (P < 0.05) viscosity (2.27 to 1.96 cP) of jejunal digesta. The AID of dry matter (DM) and gross energy (GE) were improved (P < 0.05) by supplemental xylanase. Plasma TNF-α was decreased (P < 0.05, 108.5 to 69.9 pg/mL) by supplemental xylanase. Use of DDGS reduced (P < 0.05) villus height:crypt depth ratio (1.46 to 1.27), whereas supplemental xylanase increased (P < 0.05) the crypt depth (360 to 404 µm) in duodenum. In conclusion, feeding a diet with 30% DDGS to nursery pigs for 3 wk had no negative effect on growth performance, whereas reduced AID of DM and GE, increased TNF-α level in colon tissue, and reduced the ratio of villus height to crypt depth. Dietary supplementation of xylanase reduced digesta viscosity improving AID of nutrients, reduced inflammatory response, and altered intestinal morphology, collectively improving ADG of nursery pigs regardless of the use of DDGS in a diet.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Shihai Zhang
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
31
|
Effect of the Intake of a Snack Containing Dietary Fiber on Postprandial Glucose Levels. Foods 2020; 9:foods9101500. [PMID: 33092177 PMCID: PMC7589548 DOI: 10.3390/foods9101500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
To examine the effects of the intake of a snack containing dietary fiber under free-living conditions on postprandial glucose levels in older adults, nine healthy older adults aged 76.9 ± 1.6 years (mean ± standard error) completed two crossover trials: 1) regular snack (BISCUIT) intake and 2) intake of snacks with a high dietary fiber content (DF-BISCUIT). In both trials, each participant consumed either BISCUIT or DF-BISCUIT between lunch and dinner time for 1 week. During the intervention, the blood glucose levels of all the subjects were observed using a continuous glucose monitoring system. Lower 24 h blood glucose levels were yielded in the DF-BISCUIT than the BISCUIT trials. Moreover, compared to the BISCUIT trials, the blood glucose levels after dinner and areas under the curve (AUCs) were significantly decreased in the DF-BISCUIT treatments. The blood glucose levels and AUCs after the intake of the next day’s breakfast were suppressed in the DF-BISCUIT treatments compared to those in the BISCUIT trials. Our data indicate that the intake of snacks with a high dietary fiber content under free-living conditions is an effective way to restrain postprandial glucose levels and that the effect lasts until breakfast the next day.
Collapse
|
32
|
Fuglsang-Nielsen R, Rakvaag E, Langdahl B, Knudsen KEB, Hartmann B, Holst JJ, Hermansen K, Gregersen S. Effects of whey protein and dietary fiber intake on insulin sensitivity, body composition, energy expenditure, blood pressure, and appetite in subjects with abdominal obesity. Eur J Clin Nutr 2020; 75:611-619. [PMID: 32948867 DOI: 10.1038/s41430-020-00759-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recently, we demonstrated that whey protein (WP) combined with low dietary fiber improved lipemia, a risk factor for cardiovascular disease in subjects with abdominal obesity. In the present study, we investigated the effects of intake of WP and dietary fiber from enzyme-treated wheat bran on other metabolic parameters of the metabolic syndrome. METHODS The study was a 12-week, double-blind, randomized, controlled, parallel intervention study. We randomized 73 subjects with abdominal obesity to 1 of 4 iso-energetic dietary interventions: 60 g per day of either WP hydrolysate or maltodextrin (MD) combined with high-fiber (HiFi; 30 g dietary fiber/day) or low-fiber (LoFi; 10 g dietary fiber/day) cereal products. We assessed changes in insulin sensitivity, gut hormones (GLP-1, GLP-2, GIP, and peptide YY), body composition, 24-h BP, resting energy expenditure and respiratory exchange ratio (RER), and appetite. RESULTS Sixty-five subjects completed the trial. Subjective hunger ratings were lower after 12 weeks of WP compared with MD, independent of fiber content (P = 0.02). We found no effects on ratings of satiety, fullness or prospective food consumption for either of the interventions. Intake of WP combined with LoFi increased the postprandial peptide YY response. There were no effects of WP or fiber on insulin sensitivity, body composition, energy expenditure, incretins, or 24-h BP. CONCLUSIONS WP consumption for 12 weeks reduced subjective ratings of hunger in subjects with abdominal obesity. Neither WP nor dietary fiber from wheat bran affected insulin sensitivity, 24-h BP, gut hormone responses, body composition, or energy expenditure compared with MD and low dietary fiber.
Collapse
Affiliation(s)
- Rasmus Fuglsang-Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark. .,Department of Internal Medicine, Regional Hospital Horsens, Horsens, Denmark. .,Steno Diabetes Center Aarhus, Aarhus, Denmark.
| | - Elin Rakvaag
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Clinical Pharmacology, Novo Nordisk A/S, Søborg, Denmark
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus, Denmark
| |
Collapse
|
33
|
Dev K, Akbar Mir N, Biswas A, Kannoujia J, Begum J, Kant R. Dietary Mannan-oligosaccharides potentiate the beneficial effects of Bifidobacterium bifidum in broiler chicken. Lett Appl Microbiol 2020; 71:520-530. [PMID: 32720364 DOI: 10.1111/lam.13360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
This study investigated the effects of dietary Bifidobacterium bifidum (BFD) and mannan-oligosaccharide (MOS), as a synbiotic, on the production performance, gut microbiology, serum biochemistry, antioxidant profile and health indices of broiler chicken. Six dietary treatments were T1 (negative control), T2 (positive control-20 mg antibiotic BMD kg-1 diet; BMD: bacitracin methylene disalicylate), T3 (0·1% MOS + 106 CFU BFD per g feed), T4 (0·1% MOS + 107 CFU BFD per g feed), T5 (0·2% MOS + 106 CFU BFD per g feed) and T6 (0·2% MOS + 107 CFU BFD per g feed). Significantly (P < 0·01) better growth performance and efficiency was observed in birds supplemented with 0·2% MOS along with 106 CFU BFD per g of feed compared to BMD and control birds. Supplementation with 0·2% MOS along with either 106 or 107 CFU BFD per g feed reduced (P < 0·01) the gut coliform, Escherichia coli, total plate count, and Clostridium perfringens count and increased the Lactobacillus and Bifidobacterium count. Significantly (P < 0·01) higher serum and liver antioxidant enzyme pool, serum HDL cholesterol and lower serum glucose, triglyceride, total cholesterol, cardiac risk ratio, atherogenic coefficient and atherogenic index of plasma were observed in birds supplemented with 0·2% MOS along with 106 CFU BFD per g of feed compared to control or BMD supplemented birds. Better production performance, gut microbial composition, serum biochemistry, antioxidant profile and health indices were depicted by broiler chicken supplemented with 0·2% MOS and 106 CFU BFD per g of feed.
Collapse
Affiliation(s)
- Kapil Dev
- ICAR-Central Avian Research Institute, Bareilly, India.,Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India
| | | | | | - Jyoti Kannoujia
- CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Jubeda Begum
- College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, India
| | - Rajiv Kant
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India
| |
Collapse
|
34
|
Jayani T, Sanjeev B, Marimuthu S, Uthandi S. Bacterial Cellulose Nano Fiber (BCNF) as carrier support for the immobilization of probiotic, Lactobacillus acidophilus 016. Carbohydr Polym 2020; 250:116965. [PMID: 33049863 DOI: 10.1016/j.carbpol.2020.116965] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/22/2023]
Abstract
The present study was conducted to develop bacterial cellulose nanofibers (BCNF) and to evaluate its ability as a carrier material for the incorporation of the probiotic bacteria Lactobacillus acidophilus 016. Bacterial cellulose (5%) dissolved in trifluoroacetic acid (TFA) solution was amended with an equal volume of polyvinyl alcohol (PVA) solution to produce nanofibers via electrospinning. Fourier-transform infrared spectra of BCNF confirmed the absence of TFA used in the dissolution process. Mechanical properties, including tensile strength, surface area, pore-volume, and pore diameter, and thermal analysis of BCNF revealed that the nanofibers could be incorporated in food for the delivery of probiotics. L. acidophilus 016 was successfully immobilized onto the BCNF through the adsorption-incubation technique. SEM micrograph revealed that the immobilized bacteria sustained without any damage during the storage for up to 24 days. Further, the viability studies confirmed the survival of 71% population during the storage at 35 °C. These observations recommended the possibility of BCNF based probiotics for various commercial applications.
Collapse
Affiliation(s)
- T Jayani
- Biocatalysts Laboratoty, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - B Sanjeev
- Biocatalysts Laboratoty, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - S Marimuthu
- Department of Nanoscience and Technology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratoty, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
35
|
Suresh H, Ho V, Zhou J. Rheological Characteristics of Soluble Fibres during Chemically Simulated Digestion and their Suitability for Gastroparesis Patients. Nutrients 2020; 12:E2479. [PMID: 32824535 PMCID: PMC7468937 DOI: 10.3390/nu12082479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary fibres are an integral part of a balanced diet. Consumption of a high-fibre diet confers many physiological and metabolic benefits. However, fibre is generally avoided by individuals with gastrointestinal motility disorders like gastroparesis due to increased likelihood of exacerbated symptoms. Low-viscosity soluble fibres have been identified as a possible source of fibre tolerable for these individuals. The aim of this study is to determine the rheological properties of 10 common commercially available soluble fibres in chemically simulated digestive conditions and evaluate their suitability for individuals with mild to moderate gastroparesis, a gastric motility disorder. Rheological testing under neutral condition (distilled water pH 7) and chemically simulated gastric digestion were evaluated to determine the yield point and relative viscosity of each fibre. Our results reveal two rheological categories of soluble fibres; pseudoplastic and dilatant. Simulated digestion was shown to significantly alter the yield-points of psyllium husk, iota-carrageenan, beta-glucan, apple-fibre pectin, and inulin. Gum Arabic and partially hydrolysed guar gum showed the lowest viscosities and were not affected under simulated digestion, characteristics that make them potential candidate fibres for patients with gastroparesis. Altogether, our results demonstrate that digestion can have a significant impact on fibre viscosity and should be taken into consideration when evaluating the suitability of fibres for patients with gastric motility disorders.
Collapse
Affiliation(s)
- Harsha Suresh
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia; (H.S.); (V.H.)
- Gastrointestinal Motility Disorders Unit, Western Sydney University, Campbelltown NSW 2560, Australia
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia; (H.S.); (V.H.)
- Gastrointestinal Motility Disorders Unit, Western Sydney University, Campbelltown NSW 2560, Australia
- University Medical Clinic of Camden & Campbelltown (UMCCC), Campbelltown NSW 2560, Australia
| | - Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia; (H.S.); (V.H.)
- Gastrointestinal Motility Disorders Unit, Western Sydney University, Campbelltown NSW 2560, Australia
| |
Collapse
|
36
|
Bertsch A, Roy D, LaPointe G. Fermentation of Wheat Bran and Whey Permeate by Mono-Cultures of Lacticaseibacillus rhamnosus Strains and Co-culture With Yeast Enhances Bioactive Properties. Front Bioeng Biotechnol 2020; 8:956. [PMID: 32850769 PMCID: PMC7427622 DOI: 10.3389/fbioe.2020.00956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this work was to obtain a bioingredient (BI) with bioactive properties through the solid fermentation of a wheat bran-whey permeate (WB/WP) mixture with three strains of Lacticaseibacillus rhamnosus (R0011, ATCC 9595, and RW-9595M) in mono or co-culture with Saccharomyces cerevisiae. The choice of these strains was based on their capacity to produce the same exopolysaccharide (EPS), but at different yields. The solid fermentation of WB/WP revealed a similar growth pattern, sugar utilization and metabolite production between strains and types of culture. Lactic acid, soluble protein, free amino acid and phenolic compound content in BI were compared to NFWB. Water soluble polysaccharides (including EPS) were significantly increased in co-culture for (44%) ATCC 9595, (40%) R0011 and (27%) RW-9595M. The amount of bound Total Phenolic Content (TPC) as well as the antioxidant activity in BI were higher after fermentation. The free phenolic acid content was higher after fermentation with ATCC 9595 (53-59%), RW-9595M (45-46%), and R0011 (29-39%) compared to non-fermented NFWB. Fermentation by these strains increased the amounts of free caffeic acid and 4-hydroxybenzoic acid in both types of culture. The bound phenolic acid content was enhanced in co-culture for the BI obtained from the highest EPS producer strain RW-9595M which was 30% higher than NFWB. After in vitro digestion, bioaccessibility of free total phenolic acids was improved by more than 40% in BI compared to NFWB. The co-culture increased recovery of TPC (%) and antioxidant activity compared to monoculture for the strains in digested product. In contrast, the recovery of bound total phenolic acids in co-culture was 33 and 38% lower when compared to monoculture for R0011 and RW-9595M. Our findings provide new insights into the impact of LAB/yeast co-culture on the bioactive properties of fermented wheat bran.
Collapse
Affiliation(s)
- Annalisse Bertsch
- Department of Food Science, Laval University, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, Canada
| | - Denis Roy
- Department of Food Science, Laval University, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, Canada
| | - Gisèle LaPointe
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
Dietary pectin at 0.2% in milk replacer did not inhibit growth, feed intake, or nutrient digestibility in a 3-week neonatal pig study. Regul Toxicol Pharmacol 2020; 114:104669. [DOI: 10.1016/j.yrtph.2020.104669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 01/30/2023]
|
38
|
Tongbram T, Bora J, Senthil A, Kumar S. Formulation, development and evaluation of high fibre-high protein chapati (Indian flat bread) from composite flour using common industrial by-products. Journal of Food Science and Technology 2020; 57:2739-2749. [PMID: 32549624 DOI: 10.1007/s13197-020-04310-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/08/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
Triple ground whole-wheat flour with 18.45% damaged starch was partially substituted by double sifted full-fat stabilised rice bran (SRB) and undamaged-stabilised-debitterised-wheat germ (USDWG) flour to produce high TDF (total dietary fibre), high protein flour for chapati. Five formulations, F1-5 with up to 15% SRB and 20% USDWG incorporations on weight basis were used for baking chapatis. The most sensorially and functionally acceptable formulation (F4), had 10% SRB and 15% USDWG, showed significant (P < 0.05) improvement in desired parameters viz. TDF increased 16.83 ± 0.06% to 18.59 ± 0.03%, crude protein from 14.43 ± 0.06 to 19.52 ± 0.10% and in vitro starch digestibility decreased 8.30 ± 0.10% to 7.55 ± 0.01% when compared to control chapati. Texture profiling and sensory analysis indicated F4 formulation had overall acceptable qualities than chapati made from control, commercial and target flours. Water was completely replaced by liquid whey during chapati making, which showed promising results; Formulation F5 (15% SRB and 20% USDWG) scored 20.2% TDF and 22.7% protein. The above findings are useful for developing TDF and protein dense, low GI functional food, utilizing common industrial by-products at 20% lesser cost.
Collapse
Affiliation(s)
| | - Jinku Bora
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Amudha Senthil
- Department of Traditional Food and Sensory Science, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Sourav Kumar
- Department of Flour Milling, Baking and Confectionery Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
39
|
Kuwahara M, Kim HK, Ozaki M, Nanba T, Chijiki H, Fukazawa M, Okubo J, Mineshita Y, Takahashi M, Shibata S. Consumption of Biscuits with a Beverage of Mulberry or Barley Leaves in the Afternoon Prevents Dinner-Induced High, but Not Low, Increases in Blood Glucose among Young Adults. Nutrients 2020; 12:nu12061580. [PMID: 32481557 PMCID: PMC7352831 DOI: 10.3390/nu12061580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 01/09/2023] Open
Abstract
We examined the impact of consuming biscuits with a beverage of powdered mulberry or barley leaves in the afternoon on postprandial glucose levels at dinnertime among young adults. A total of 18 young adults participated in a partially double-blinded, randomized crossover trial over 2 weeks, consuming either: (1) no biscuits; (2) a biscuit; (3) a biscuit with a beverage of powdered mulberry leaves; or (4) a biscuit with a beverage of powdered barley leaves, as an afternoon snack followed by a standardized test dinner. Glucose levels were recorded after each meal. Results showed intake of biscuits with a beverage of mulberry and barley leaves significantly reduced postprandial rises in glucose after their immediate consumption and dinner, though there was no direct relationship between the glucose levels at the two meals. Compared to those with low glucose levels, participants with high glucose levels at dinner showed a stronger second meal effect, that was attributed to the mulberry or barley leaves, and were also more likely to have lean body weights and prefer evenings. Our findings indicate that eating snacks alongside mulberry or barley leaves is an effective way to suppress postprandial glucose levels in young adults with high glucose levels who prefer evenings.
Collapse
Affiliation(s)
- Mai Kuwahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (M.K.); (H.-K.K.); (Y.M.)
| | - Hyeon-Ki Kim
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (M.K.); (H.-K.K.); (Y.M.)
| | - Mamiho Ozaki
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho Shinjuku, Tokyo 162-8480, Japan; (M.O.); (T.N.); (H.C.); (M.F.); (J.O.)
| | - Takuya Nanba
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho Shinjuku, Tokyo 162-8480, Japan; (M.O.); (T.N.); (H.C.); (M.F.); (J.O.)
| | - Hanako Chijiki
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho Shinjuku, Tokyo 162-8480, Japan; (M.O.); (T.N.); (H.C.); (M.F.); (J.O.)
| | - Mayuko Fukazawa
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho Shinjuku, Tokyo 162-8480, Japan; (M.O.); (T.N.); (H.C.); (M.F.); (J.O.)
| | - Jin Okubo
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho Shinjuku, Tokyo 162-8480, Japan; (M.O.); (T.N.); (H.C.); (M.F.); (J.O.)
| | - Yui Mineshita
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (M.K.); (H.-K.K.); (Y.M.)
| | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8550, Japan;
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (M.K.); (H.-K.K.); (Y.M.)
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho Shinjuku, Tokyo 162-8480, Japan; (M.O.); (T.N.); (H.C.); (M.F.); (J.O.)
- Correspondence: ; Tel.: +81-353-697-318
| |
Collapse
|
40
|
Dev K, Mir NA, Biswas A, Kannoujia J, Begum J, Kant R, Mandal A. Dietary synbiotic supplementation improves the growth performance, body antioxidant pool, serum biochemistry, meat quality, and lipid oxidative stability in broiler chickens. ACTA ACUST UNITED AC 2020; 6:325-332. [PMID: 33005766 PMCID: PMC7503080 DOI: 10.1016/j.aninu.2020.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/07/2019] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
The present study investigated the effects of Lactobacillus acidophilus (LBA) and mannan-oligosaccharides (MOS) supplementation on the production performance, serum biochemistry, antioxidant profile, health indices, meat quality, and lipid oxidative stability of broiler chicken. A total of 252 commercial broiler chickens at 1 d old of uniform body weight were randomly allocated to 6 maize-soybean-based dietary treatments: T1 (control diet), T2 ( antibiotic bacitracin methylene di-salicylate [BMD] at 20 mg/kg diet), T3 (MOS at 0.1% + LBA at 106 CFU/g feed), T4 (MOS at 0.1% + LBA at 107 CFU/g feed), T5 (MOS at 0.2% + LBA at 106 CFU/g feed), and T6 (MOS at 0.2% + LBA at 107 CFU/g feed). Each treatment was assigned to 6 replicates of 7 birds. The samples for meat quality and serum biochemistry analysis were taken from 12 birds per treatment (2 birds/replicate). The results revealed better (P < 0.01) growth performance and production efficiency of birds fed either T5 or T6 diet compared to control or BMD supplemented diet and BMD-supplemented birds superseded the control birds. Higher (P < 0.01) serum and liver antioxidant enzyme activities, meat antioxidant capacity (2, 2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid [ABTS] and 1, 1-diphenyl-2-picrylhydrazyl [DPPH] assays], serum total protein, high-density lipoproteins (HDL) cholesterol (P < 0.05), and globulin levels (P < 0.01) were observed in birds fed either T5 or T6 diet compared to control or BMD supplemented birds, whereas, lower lipid oxidation (P < 0.01), cardiac risk ratio, atherogenic coefficient, atherogenic index of plasma, serum glucose, triglyceride, total cholesterol levels (P < 0.01), and serum albumin-to-globulin ratio (P < 0.05) were observed in the chickens. The pH of meat from birds fed T4, T5 or T6 diet was lower (P < 0.01) compared to control and other treatments. The extract release volume (ERV), water holding capacity (WHC), and protein content of meat were higher (P < 0.05) in birds fed either T5 or T6 diet compared to control or BMD supplemented birds. Thus, it was concluded that the supplementation of 0.2% MOS along with LBA at 106 CFU/g is optimum for better growth performance, serum biochemistry, antioxidant profile, health indices, meat quality, and lipid oxidative stability of broiler chickens.
Collapse
Affiliation(s)
- Kapil Dev
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly 243122, India.,Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India
| | - Nasir Akbar Mir
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly 243122, India
| | - Avishek Biswas
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly 243122, India
| | - Jyoti Kannoujia
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Jubeda Begum
- G.B. Pant University of Agriculture & Technology, College of Veterinary & Animal Sciences, Pantnagar 263145, India
| | - Rajiv Kant
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India
| | - Asitbaran Mandal
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly 243122, India
| |
Collapse
|
41
|
Wang X, Leng X, Zhang G. The loosening effect of tea polyphenol on the structure of octenyl succinic anhydride modified waxy maize starch. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Tamargo A, Cueva C, Alvarez MD, Herranz B, Moreno-Arribas MV, Laguna L. Physical effects of dietary fibre on simulated luminal flow, studied by in vitro dynamic gastrointestinal digestion and fermentation. Food Funct 2019; 10:3452-3465. [PMID: 31139792 DOI: 10.1039/c9fo00485h] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During the transit through the gastrointestinal tract, fibre undergoes physical changes not usually included in in vitro digestion studies even though they influence nutrient diffusion and might play a role in gut microbiota growth. The aim of this study was to evaluate how physical fibre properties influence the physical properties of gastrointestinal fluids using a gastrointestinal model (stomach, small intestine, ascending colon, transverse colon, and descending colon) (simgi®). Analysis by rheological and particle size characterisation, microbiota composition and short-chain fatty acid (SCFA) determination allows the achievement of this goal. First, the water-holding capacity (WHC), microstructure, and viscosity of eight different fibres plus agar were tested. Based on the results, potato fibre, hydroxypropyl methylcellulose (HPMC), psyllium fibres, and agar (as a control) were selected for addition to a medium growth (GNMF) that was used to feed the stomach/small intestine and colon compartments in the simgi®. During gastrointestinal digestion, GNMF was collected at 5, 30 and 55 minutes of processing at the gastric stage and after the intestinal stage. Then, samples of GNMF with faecal slurry were collected at 0, 24 and 48 h of colonic fermentation. Results showed fibre-dependence on apparent viscosity. Although psyllium was partially broken down in the stomach (decrease in particle size), it was the most viscous at the colonic stage, opposite to the potato fibre, but both led to the highest total SFCA and acetic acid production profile. On a microbiological level, the most relevant increase of bacterial growth was observed in the faecal Lactobacillus species, especially for HPMC and potato fibre, that were not digested until reaching the colon. Besides fibre fermentability, viscosity also influenced microbial growth, and it is necessary to characterise these changes to understand fibre functionality.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Torres JD, Dueik V, Carré D, Bouchon P. Effect of the Addition of Soluble Dietary Fiber and Green Tea Polyphenols on Acrylamide Formation and In Vitro Starch Digestibility in Baked Starchy Matrices. Molecules 2019; 24:molecules24203674. [PMID: 31614753 PMCID: PMC6833046 DOI: 10.3390/molecules24203674] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/11/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Starch digestibility may be affected by food microstructural changes, as well as by specific interactions with some biomolecules, such as soluble dietary fibers (SDFs). It is well-known that acrylamide (AA) is a toxic and potentially carcinogenic compound formed in starchy food products processed at temperatures above 120 °C. This study aimed to investigate the effect of the addition of SDF and green tea polyphenols (GTP) on AA formation and in vitro starch digestibility in baked starchy matrices. The formulations were prepared using gluten and wheat starch, ensuring ~40 ± 2% (wet basis, w.b.) moisture in the doughs. In some samples, 7.5% (dry basis, d.b.) of starch was replaced with inulin (IN), polydextrose (PD) or partially hydrolyzed guar gum (PHGG), and/or with GTP at 1% (d.b). Acrylamide was determined by gas chromatography–mass spectrometry, and the in vitro starch digestibility using the Englyst method. The GTP was able to reduce AA content by ~48%, and a combination of IN-GTP allowed it to be reduced by up to ~64%, revealing the lowest rapidly available glucose content (~17 mg/g glucose). While a PD-GTP mixture reduced the AA content by around ~57% and gave the highest unavailable glucose fraction (~74 mg/g glucose) compared to the control. This study showed how functional ingredients could be used to develop successfully healthier starchy bakery foods.
Collapse
Affiliation(s)
- José David Torres
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, P.O. Box 306, Santiago 6904411, Chile.
| | - Verónica Dueik
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, P.O. Box 306, Santiago 6904411, Chile.
- Comercial e Industrial SOLUTEC Ltda. Almirante Churruca 3130, Santiago 8370653, Chile.
| | - David Carré
- Comercial e Industrial SOLUTEC Ltda. Almirante Churruca 3130, Santiago 8370653, Chile.
| | - Pedro Bouchon
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, P.O. Box 306, Santiago 6904411, Chile.
| |
Collapse
|
44
|
Effect of processing on the in vitro digestion characteristics of oat products by using a dynamic rat stomach-duodenum model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Paraiso RLM, Watanabe A, Andreas CJ, Turner D, Zane P, Dressman J. In-vitro–in-silico investigation of the negative food effect of zolpidem when administered as immediate-release tablets. J Pharm Pharmacol 2019; 71:1663-1676. [DOI: 10.1111/jphp.13161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
The main objective of the present work was to combine in-vitro and in-silico tools to better understand the in-vivo behavior of the immediate release (IR) formulation of zolpidem in the fasted and fed states.
Methods
The dissolution of zolpidem was evaluated using biorelevant media simulating the gastric and intestinal environment in the fasted and fed states. Additionally, the influence of high viscosity and high fat content on the release of zolpidem under fed state conditions was investigated. The in-vitro results were combined with a physiologically based pharmacokinetic (PBPK) model constructed with Simcyp® to simulate the zolpidem pharmacokinetic profile in both prandial states.
Key findings
In vitro biorelevant dissolution experiments representing the fasted and fed states, combinedwith PBPKmodelling, were able to simulate the plasma profiles from the clinical food effect studies well. Experiments reflecting the pH and fat content of themeal led to a good prediction of the zolpidem plasma profile in the fed state, whereas increasing the viscosity of the gastricmedia led to an under-prediction.
Conclusions
This work demonstrates that the combination of biorelevant dissolution testing and PBPK modelling is very useful for understanding the in-vivo behavior of zolpidem in the fasted and fed states. This approach could be implemented in the development of other drugs exhibiting negative food effects, saving resources and bringing new drug products to the market faster.
Collapse
Affiliation(s)
| | - Ayahisa Watanabe
- Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Cord J Andreas
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - David Turner
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | - Patricia Zane
- Drug Disposition, Safety, and Animal Research (DSAR), Sanofi U.S., Bridgewater, NJ, USA
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Hardacre AK, Lentle RG, Yap SY, Monro JA. Predicting the viscosity of digesta from the physical characteristics of particle suspensions using existing rheological models. J R Soc Interface 2019; 15:rsif.2018.0092. [PMID: 29792306 DOI: 10.1098/rsif.2018.0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/01/2018] [Indexed: 11/12/2022] Open
Abstract
The measurement of the viscosity of digesta is complicated by settling and compositional changes that accompany digestion. The current work determined whether the apparent and relative viscosities (ηa and ηr) of digesta could be accurately determined from the actual and maximum solid volume fractions (ϕ and ϕmax, respectively) using the Maron-Pierce equation. The rheological properties of digesta from the small intestine of six pigs were determined at a shear rate of 1 s-1 at 37°C. A series of suspensions of plant fibre in a Newtonian liquid (70% aqueous fructose) were made at viscosities similar to pig digesta by adjusting ϕ The relationships between the apparent and relative viscosities (ηa and ηr) and the plant fibre properties; aspect ratio (AR) and ϕ and ϕmax were then determined for digesta and the suspensions. The ARs for the digesta and plant fibre particles were determined using image analysis of scanning electron micrographs and ηa from rheometric flow curves at 37°C, ϕ from image analysis and gas pycnometry, and ϕmax from AR and suspension viscosity. The ηr of pig digesta and the test suspensions calculated using the Maron-Pierce equation were, with the exception of two outliers, in proportion with ηa determined using a rheometer, indicating that ηr could be successfully predicted from the Maron-Pierce equation.
Collapse
Affiliation(s)
- Allan K Hardacre
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Roger G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand .,Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Sia-Yen Yap
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - John A Monro
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.,Plant and Food Research, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|
47
|
Sun J, Zhang N, Ye H, Wu D, Shu X. High-throughput method for preliminary screening of high dietary fiber rice. Food Chem 2019; 300:125192. [PMID: 31362158 DOI: 10.1016/j.foodchem.2019.125192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022]
Abstract
Dietary fiber has several benefits for humans, and the development of healthier rice with an improved dietary fiber composition has attracted increasing amounts of attention. Based on the method of AOAC 2002.02, we developed a simplified method to screen polished rice containing high total dietary fiber (TDF). Mutant cw with a high TDF content could be distinguished easily from R7954 (indica) and Nipponbare (japonica) by the digestion-resistant phenotype, which is characterized as an almost intact grain after hydrolysis by pepsin, pancreatic α-amylase and amyloglucosidase. The individuals identified from the F2 population showed digestion resistance all had TDF content higher than 5%, while those without a digestion-resistant phenotype had TDF content lower than 5%. The phenotype of digestion resistance could be a valuable index for identifying rice with higher TDF content, and the identification of this phenotype provides a simplified, economical and high throughput method for high TDF rice breeding.
Collapse
Affiliation(s)
- Jian Sun
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, China
| | - Ning Zhang
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Hongxia Ye
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
48
|
Darooghegi Mofrad M, Mozaffari H, Mousavi SM, Sheikhi A, Milajerdi A. The effects of psyllium supplementation on body weight, body mass index and waist circumference in adults: A systematic review and dose-response meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2019; 60:859-872. [PMID: 30880409 DOI: 10.1080/10408398.2018.1553140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Previous studies reported inconsistent findings regarding the effects of psyllium supplementation on obesity measures. This systematic review and meta-analysis was performed to summarize data from available randomized clinical trials (RCTs) on the effect of psyllium supplementation on body weight, body mass index (BMI), and waist circumference (WC) in adults.Methods: PubMed, SCOPUS, Cochrane Library, and Google Scholar were searched to identify relevant articles up to August 2018. The effect sizes were presented as weighted mean difference (WMD) and 95% confidence intervals (CI) by using random effects model. To detect dose-response relationships, we used fractional polynomial modeling.Results: A total of 22 RCTs were included. Meta-analysis did not find any significant effect of psyllium supplementation on body weight (MD: -0.28 kg, 95% CI: -0.78, 0.21, p = 0.268), BMI (MD: -0.19 kg/m2, 95% CI: -0.55, 0.15, p = 0.27) and WC (MD: -1.2 cm, 95% CI: -2.6, 0.2, p = 0.09). Subgroup analysis showed that psyllium dosage, kind of psyllium administration, duration of trial, study design, sample size, and gender were potential sources of heterogeneity. Moreover, there was nonlinear association between duration of psyllium consumption, BMI and WC.Conclusion: Psyllium supplementation does not reduce body weight, BMI, and WC significantly.
Collapse
Affiliation(s)
- Manije Darooghegi Mofrad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hadis Mozaffari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Sheikhi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Milajerdi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
49
|
Lazar V, Ditu LM, Pircalabioru GG, Picu A, Petcu L, Cucu N, Chifiriuc MC. Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Front Nutr 2019; 6:21. [PMID: 30931309 PMCID: PMC6424913 DOI: 10.3389/fnut.2019.00021] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract with its microbiota is a complex, open, and integrated ecosystem with a high environmental exposure. It is widely accepted that the healthy gut microbiotais essential for host homeostasis and immunostasis, harboring an enormous number and variety of microorganisms and genes tailored by hundreds of exogenous and intrinsic host factors. The occurrence of dysbiosis may contribute to host vulnerability and progression to a large spectrum of infectious and non-communicable diseases, including diabetes and obesity, two metabolic disorders that are showing an endemic trend nowadays. There is an urgent need to develop efficient strategies to prevent and treat metabolic disorders such as diabetes and obesity which are often associated with serious complications. In this paper, we give an overview on the implications of gut microbiota in diabesity, with a focus on the triangle gut microbiota—diet-host metabolism and on the way to manipulate the gut microbial ecosystem toward achieving novel diagnosis and predictive biomarkers with the final goal of reestablishing the healthy metabolic condition. The current research data regarding the precision/personalized nutrition suggest that dietary interventions, including administration of pre-, pro-, and syn-biotics, as well as antibiotic treatment should be individually tailored to prevent chronic diseases based on the genetic background, food and beverage consumption, nutrient intake, microbiome, metabolome, and other omic profiles.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Gratiela G Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Natalia Cucu
- Fundeni Clinical Institute, Bucharest, Romania.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| |
Collapse
|
50
|
Gartaula G, Dhital S, Deshmukh O, Netzel G, Gidley MJ. Rheological characterisation of cell walls from wheat flour and endosperm: Effects of diferulate crosslink hydrolysis. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|