1
|
Morales F, Montserrat-de la Paz S, Leon MJ, Rivero-Pino F. Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children's Health Status: A Literature Review. Nutrients 2023; 16:1. [PMID: 38201831 PMCID: PMC10780435 DOI: 10.3390/nu16010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Malnutrition refers to a person's status as under- or overnourished, and it is usually associated with an inflammation status, which can subsequently imply a different health status, as the risk of infection is increased, along with a deterioration of the immune system. Children's immune systems are generally more susceptible to problems than adults. In the situation of malnutrition, because malnourished children's immune systems are compromised, they are more likely to die. However, little is known about the underlying mechanism of altered immune functioning and how it relates to starvation. Nutritional interventions have been reported as cost-effective strategies to prevent or treat the development of malnourishment, considering the link between food intake and health, especially in children, and also the susceptibility of this population to diseases and how their health status during childhood might affect their long-term physiological growth. The ingestion of specific nutrients (e.g., vitamins or oligoelements) has been reported to contribute to the proper functioning of children's immune systems. In this review, we aim to describe the basis of malnutrition and how this is linked to the immune system, considering the role of nutrients in the modulation of the immune system and the risk of infection that can occur in these situations in children, as well as to identify nutritional interventions to improve their health.
Collapse
Affiliation(s)
- Fátima Morales
- Department of Preventive Medicine and Public Health, School of Medicine, University of Seville, 41009 Sevilla, Spain;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Maria J. Leon
- Department of Microbiology and Parasitology, School of Pharmacy, University of Seville, C. Profesor Garcia Gonzalez 2, 41012 Seville, Spain;
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Gholizadeh M, Basafa Roodi P, Abaj F, Shab-Bidar S, Saedisomeolia A, Asbaghi O, lak M. Influence of Vitamin A supplementation on inflammatory biomarkers in adults: a systematic review and meta-analysis of randomized clinical trials. Sci Rep 2022; 12:21384. [PMID: 36496428 PMCID: PMC9735279 DOI: 10.1038/s41598-022-23919-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Vitamin A is an anti-oxidant which has been presumed to act as an anti-infective vitamin in many studies. This study aimed to evaluate the association between vitamin A supplementation and c-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) levels in randomized control trials (RCTs) studies on adults. A systematic search was performed on databases including PUBMED, SCOPUS, and the Cochrane library. The studies included were considered for data extraction and subsequently assessed for effect. Weighted mean differences (WMD) and 95% confidence intervals (CIs) were evaluated. Among 13,219 articles 13 studies were included for analysis of CRP and TNF-α, as well as 9 studies included for IL-6 in quality and quantity. The pooled WMD analysis of CRP demonstrated that vitamin A supplementation significantly increased CRP concentration with (WMD: 0.84 mg/L; 95% CI 0.29-1.39, I2 = 0.96.2% and p value < 0.003). However, there was no significant correlation between vitamin A supplementation and lower plasma TNF-α (p < 0.45)). Subgroup analysis by dosage demonstrate significant association between vitamin A supplementation and IL-6 in dosage with 50,000 with (WMD: - 1.53 mg/L; 95% CI - 2.36 to - 0.71, p value < 0.00001) as well as a negative significant association was seen at 44 weeks of supplementation with 50,000 IU/day retinyl palmitate and TNF-a in chronic hepatitis B conditions with (- 0.94 (- 1.19, - 0.69) p < 0.0001). The result of this study demonstrates that supplementation of vitamin A at low and high dosages for short and long durations increases the CRP plasma concentrations on adults and vitamin A supplementation decreases the TNF-α concentrations in chronic hepatitis B on adults. Therefore, there is an inverse association between vitamin A supplementation and plasma and fecal IL-6 concentrations in many infection conditions.
Collapse
Affiliation(s)
- Mohammad Gholizadeh
- grid.411600.2Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Poorya Basafa Roodi
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Saedisomeolia
- grid.14709.3b0000 0004 1936 8649School of Human Nutrition, Research Associate, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Quebec, H9X 3V9 Canada
| | - Omid Asbaghi
- grid.411600.2Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid lak
- grid.411465.30000 0004 0367 0851Department of Public Health, Faculty of Medical Sciences, Islamic Azad University of Arak, Arak, Iran
| |
Collapse
|
3
|
Imdad A, Mayo-Wilson E, Haykal MR, Regan A, Sidhu J, Smith A, Bhutta ZA. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst Rev 2022; 3:CD008524. [PMID: 35294044 PMCID: PMC8925277 DOI: 10.1002/14651858.cd008524.pub4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Vitamin A deficiency (VAD) is a major public health problem in low- and middle-income countries, affecting 190 million children under five years of age and leading to many adverse health consequences, including death. Based on prior evidence and a previous version of this review, the World Health Organization has continued to recommend vitamin A supplementation (VAS) for children aged 6 to 59 months. The last version of this review was published in 2017, and this is an updated version of that review. OBJECTIVES To assess the effects of vitamin A supplementation (VAS) for preventing morbidity and mortality in children aged six months to five years. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, six other databases, and two trials registers up to March 2021. We also checked reference lists and contacted relevant organisations and researchers to identify additional studies. SELECTION CRITERIA Randomised controlled trials (RCTs) and cluster-RCTs evaluating the effect of synthetic VAS in children aged six months to five years living in the community. We excluded studies involving children in hospital and children with disease or infection. We also excluded studies evaluating the effects of food fortification, consumption of vitamin A rich foods, or beta-carotene supplementation. DATA COLLECTION AND ANALYSIS For this update, two review authors independently assessed studies for inclusion resolving discrepancies by discussion. We performed meta-analyses for outcomes, including all-cause and cause-specific mortality, disease, vision, and side effects. We used the GRADE approach to assess the quality of the evidence. MAIN RESULTS The updated search identified no new RCTs. We identified 47 studies, involving approximately 1,223,856 children. Studies were set in 19 countries: 30 (63%) in Asia, 16 of these in India; 8 (17%) in Africa; 7 (15%) in Latin America, and 2 (4%) in Australia. About one-third of the studies were in urban/periurban settings, and half were in rural settings; the remaining studies did not clearly report settings. Most studies included equal numbers of girls and boys and lasted about one year. The mean age of the children was about 33 months. The included studies were at variable overall risk of bias; however, evidence for the primary outcome was at low risk of bias. A meta-analysis for all-cause mortality included 19 trials (1,202,382 children). At longest follow-up, there was a 12% observed reduction in the risk of all-cause mortality for VAS compared with control using a fixed-effect model (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.83 to 0.93; high-certainty evidence). Nine trials reported mortality due to diarrhoea and showed a 12% overall reduction for VAS (RR 0.88, 95% CI 0.79 to 0.98; 1,098,538 children; high-certainty evidence). There was no evidence of a difference for VAS on mortality due to measles (RR 0.88, 95% CI 0.69 to 1.11; 6 studies, 1,088,261 children; low-certainty evidence), respiratory disease (RR 0.98, 95% CI 0.86 to 1.12; 9 studies, 1,098,538 children; low-certainty evidence), and meningitis. VAS reduced the incidence of diarrhoea (RR 0.85, 95% CI 0.82 to 0.87; 15 studies, 77,946 children; low-certainty evidence), measles (RR 0.45, 95% CI 0.30 to 0.69; 2 studies, 1,982 children; low-certainty evidence), Bitot's spots (RR 0.42, 95% CI 0.33 to 0.53; 5 studies, 1,063,278 children; moderate-certainty evidence), night blindness (RR 0.32, 95% CI 0.21 to 0.50; 2 studies, 22,972 children; moderate-certainty evidence), and VAD (RR 0.71, 95% CI 0.65 to 0.78; 4 studies, 2262 children, moderate-certainty evidence). However, there was no evidence of a difference on incidence of respiratory disease (RR 0.99, 95% CI 0.92 to 1.06; 11 studies, 27,540 children; low-certainty evidence) or hospitalisations due to diarrhoea or pneumonia. There was an increased risk of vomiting within the first 48 hours of VAS (RR 1.97, 95% CI 1.44 to 2.69; 4 studies, 10,541 children; moderate-certainty evidence). AUTHORS' CONCLUSIONS This update identified no new eligible studies and the conclusions remain the same. VAS is associated with a clinically meaningful reduction in morbidity and mortality in children. Further placebo-controlled trials of VAS in children between six months and five years of age would not change the conclusions of this review, although studies that compare different doses and delivery mechanisms are needed. In populations with documented VAD, it would be unethical to conduct placebo-controlled trials.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Evan Mayo-Wilson
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maya R Haykal
- College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Allison Regan
- College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jasleen Sidhu
- College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Abigail Smith
- Health Sciences Library, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
4
|
Hooper L, Esio-Bassey C, Brainard J, Fynn J, Jennings A, Jones N, Tailor BV, Abdelhamid A, Coe C, Esgunoglu L, Fallon C, Gyamfi E, Hill C, Howard Wilsher S, Narayanan N, Oladosu T, Parkinson E, Prentice E, Qurashi M, Read L, Getley H, Song F, Welch AA, Aggett P, Lietz G. Evidence to Underpin Vitamin A Requirements and Upper Limits in Children Aged 0 to 48 Months: A Scoping Review. Nutrients 2022; 14:407. [PMID: 35276767 PMCID: PMC8840537 DOI: 10.3390/nu14030407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Vitamin A deficiency is a major health risk for infants and children in low- and middle-income countries. This scoping review identified, quantified, and mapped research for use in updating nutrient requirements and upper limits for vitamin A in children aged 0 to 48 months, using health-based or modelling-based approaches. Structured searches were run on Medline, EMBASE, and Cochrane Central, from inception to 19 March 2021. Titles and abstracts were assessed independently in duplicate, as were 20% of full texts. Included studies were tabulated by question, methodology and date, with the most relevant data extracted and assessed for risk of bias. We found that the most recent health-based systematic reviews and trials assessed the effects of supplementation, though some addressed the effects of staple food fortification, complementary foods, biofortified maize or cassava, and fortified drinks, on health outcomes. Recent isotopic tracer studies and modelling approaches may help quantify the effects of bio-fortification, fortification, and food-based approaches for increasing vitamin A depots. A systematic review and several trials identified adverse events associated with higher vitamin A intakes, which should be useful for setting upper limits. We have generated and provide a database of relevant research. Full systematic reviews, based on this scoping review, are needed to answer specific questions to set vitamin A requirements and upper limits.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Chizoba Esio-Bassey
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Julii Brainard
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Judith Fynn
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Amy Jennings
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Natalia Jones
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Bhavesh V. Tailor
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Asmaa Abdelhamid
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Calvin Coe
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Latife Esgunoglu
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Ciara Fallon
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Ernestina Gyamfi
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Claire Hill
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Stephanie Howard Wilsher
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Nithin Narayanan
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Titilopemi Oladosu
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Ellice Parkinson
- School of Health Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Emma Prentice
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Meysoon Qurashi
- Department of Medicine, Luton and Dunstable Hospital NHS Foundation Trust, Lewsey Road, Luton LU4 0DZ, UK;
| | - Luke Read
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Harriet Getley
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Fujian Song
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Ailsa A. Welch
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (C.E.-B.); (J.B.); (J.F.); (A.J.); (B.V.T.); (A.A.); (C.C.); (L.E.); (C.F.); (E.G.); (C.H.); (S.H.W.); (N.N.); (T.O.); or (E.P.); (L.R.); (H.G.); (F.S.); (A.A.W.)
| | - Peter Aggett
- Lancashire School of Postgraduate Medicine and Health, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Georg Lietz
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| |
Collapse
|
5
|
Hernáez Á, Lassale C, Castro-Barquero S, Babio N, Ros E, Castañer O, Tresserra-Rimbau A, Pintó X, Martínez-González MÁ, Corella D, Salas-Salvadó J, Alonso-Gómez ÁM, Lapetra J, Fiol M, Gómez-Gracia E, Serra-Majem L, Sacanella E, García-Arellano A, Sorlí JV, Díaz-López A, Cofán M, Estruch R. Mediterranean Diet and White Blood Cell Count-A Randomized Controlled Trial. Foods 2021; 10:1268. [PMID: 34199545 PMCID: PMC8227102 DOI: 10.3390/foods10061268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022] Open
Abstract
We aimed to assess the effects of the antioxidant-rich Mediterranean diet (MedDiet) on white blood cell count. Our study population included participants in the PREvención con DIeta MEDiterránea study (average age 67 years old, 58% women, high cardiovascular risk). We assessed whether a MedDiet intervention enriched in extra-virgin olive oil or nuts, versus a low-fat control diet, modified the incidence of leukocytosis (>11 × 109 leukocytes/L), mild leukopenia (<4.5 × 109 leukocytes/L), or severe leukopenia (<3.5 × 109 leukocytes/L) in individuals without the condition at baseline (n = 3190, n = 2925, and n = 3190, respectively). We also examined whether MedDiet modified the association between leukocyte count alterations and all-cause mortality. Both MedDiet interventions were associated with a lower risk of developing leukopenia (incidence rates: 5.06% in control diet, 3.29% in MedDiet groups combined; hazard ratio [95% confidence interval]: 0.54 [0.36-0.80]) and severe leukopenia (incidence rates: 1.26% in control diet, 0.46% in MedDiet groups combined; hazard ratio: 0.25 [0.10-0.60]). High cumulative adherence to a MedDiet was linked to lower risk of leukocytosis (incidence rates: 2.08% in quartile 1, 0.65% in quartile 4; HRQ4-Q1: 0.29 [0.085-0.99]) and attenuated the association between leukopenia and all-cause mortality (P-interaction = 0.032). In brief, MedDiet decreased the incidence of white blood cell count-related alterations in high cardiovascular risk individuals.
Collapse
Affiliation(s)
- Álvaro Hernáez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (E.R.); (E.S.); (M.C.); (R.E.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473 Oslo, Norway
| | - Camille Lassale
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sara Castro-Barquero
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (E.R.); (E.S.); (M.C.); (R.E.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Nancy Babio
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Unitat de Nutrició Humana, 43201 Reus, Spain
- Institut d’Investigació Pere Virgili (IISPV), 43204 Reus, Spain
| | - Emilio Ros
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (E.R.); (E.S.); (M.C.); (R.E.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, 08036 Barcelona, Spain
| | - Olga Castañer
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Anna Tresserra-Rimbau
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Unitat de Nutrició Humana, 43201 Reus, Spain
- Institut d’Investigació Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Xavier Pintó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Lipids and Vascular Risk Unit, Internal Medicine Service, Hospital Universitario de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain
| | - Miguel Ángel Martínez-González
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Dolores Corella
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Department of Preventive Medicine, Universidad de Valencia, 46010 Valencia, Spain
| | - Jordi Salas-Salvadó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Unitat de Nutrició Humana, 43201 Reus, Spain
- Institut d’Investigació Pere Virgili (IISPV), 43204 Reus, Spain
| | - Ángel M. Alonso-Gómez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - José Lapetra
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Research Unit, Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, 41013 Sevilla, Spain
| | - Miquel Fiol
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Son Espases, 07120 Palma de Mallorca, Spain
| | - Enrique Gómez-Gracia
- Department of Preventive Medicine and Public Health, Universidad de Málaga, 29071 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - Lluis Serra-Majem
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Instituto de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de Salud, 35016 Las Palmas, Spain
| | - Emilio Sacanella
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (E.R.); (E.S.); (M.C.); (R.E.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Internal Medicine Service, Hospital Clínic, 08036 Barcelona, Spain
| | - Ana García-Arellano
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
- Servicio Navarro de Salud (Osasunbidea), 31003 Pamplona, Spain
| | - José V. Sorlí
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Department of Preventive Medicine, Universidad de Valencia, 46010 Valencia, Spain
| | - Andrés Díaz-López
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Institut d’Investigació Pere Virgili (IISPV), 43204 Reus, Spain
- Serra Hunter Fellow, Universitat Rovira i Virgili, 43201 Reus, Spain
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Montserrat Cofán
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (E.R.); (E.S.); (M.C.); (R.E.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, 08036 Barcelona, Spain
| | - Ramón Estruch
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (S.C.-B.); (E.R.); (E.S.); (M.C.); (R.E.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (C.L.); (N.B.); (O.C.); (A.T.-R.); (X.P.); (M.Á.M.-G.); (D.C.); (J.S.-S.); (Á.M.A.-G.); (J.L.); (M.F.); (L.S.-M.); (A.G.-A.); (J.V.S.); (A.D.-L.)
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Internal Medicine Service, Hospital Clínic, 08036 Barcelona, Spain
| |
Collapse
|
6
|
Sheftel J, Tanumihardjo SA. Systematic Review and Meta-Analysis of the Relative Dose-Response Tests to Assess Vitamin A Status. Adv Nutr 2021; 12:904-941. [PMID: 33130884 PMCID: PMC8166547 DOI: 10.1093/advances/nmaa136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Vitamin A (VA) is an essential nutrient often lacking in the diets of people in developing countries. Accurate biomarkers of VA status are vital to inform public health policy and monitor interventions. The relative dose-response (RDR) and modified-RDR (MRDR) tests are semi-quantitative screening tests for VA deficiency that have been used in Demographic and Health Surveys and VA intervention studies. A systematic review and meta-analysis of sensitivity and specificity were conducted to summarize the physiological evidence to support the RDR tests as methods to assess VA status and investigate the impact of different pathological and physiological states on the tests. A total of 190 studies were screened for inclusion, with 21 studies comparing the RDR tests with the gold-standard biomarker, liver VA concentration (68% and 80% sensitivity and 85% and 69% specificity for the RDR and MRDR, respectively). Nearly all studies with VA interventions in VA-deficient populations demonstrated a response of the tests to VA intake that would be expected to improve VA status. The impacts of chronic liver disease, protein malnutrition, age, pregnancy and lactation, infection and inflammation, and various other conditions were examined in 51 studies. The RDR and MRDR tests were reported to have been used in 39 observational studies, and the MRDR has been used in at least 6 national micronutrient surveys. The RDR and MRDR are sensitive tests for determining population VA status and assessing VA interventions. Although they are robust to most physiological and pathological states, caution may be warranted when using the tests in neonates, individuals with chronic liver disease, and those with protein or iron malnutrition. Research on further improvements to the tests to increase accessibility, such as sampling breast milk instead of blood or using intramuscular doses in subjects with malabsorption, will allow wider adoption. This review was registered with PROSPERO as CRD42019124180.
Collapse
Affiliation(s)
- Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Tourkochristou E, Triantos C, Mouzaki A. The Influence of Nutritional Factors on Immunological Outcomes. Front Immunol 2021; 12:665968. [PMID: 34135894 PMCID: PMC8201077 DOI: 10.3389/fimmu.2021.665968] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Through food intake, humans obtain a variety of nutrients that are essential for growth, cellular function, tissue development, energy, and immune defense. A special interaction between nutrients and gut-associated lymphoid tissue occurs in the intestinal tract. Enterocytes of the intestinal barrier act as sensors for antigens from nutrients and the intestinal microbiota, which they deliver to the underlying immune system of the lamina propria, triggering an immune response. Studies investigating the mechanism of influence of nutrition on immunological outcomes have highlighted an important role of macronutrients (proteins, carbohydrates, fatty acids) and micronutrients (vitamins, minerals, phytochemicals, antioxidants, probiotics) in modulating immune homeostasis. Nutrients exert their role in innate immunity and inflammation by regulating the expression of TLRs, pro- and anti-inflammatory cytokines, thus interfering with immune cell crosstalk and signaling. Chemical substrates derived from nutrient metabolism may act as cofactors or blockers of enzymatic activity, influencing molecular pathways and chemical reactions associated with microbial killing, inflammation, and oxidative stress. Immune cell function appears to be influenced by certain nutrients that form parts of the cell membrane structure and are involved in energy production and prevention of cytotoxicity. Nutrients also contribute to the initiation and regulation of adaptive immune responses by modulating B and T lymphocyte differentiation, proliferation and activation, and antibody production. The purpose of this review is to present the available data from the field of nutritional immunology to elucidate the complex and dynamic relationship between nutrients and the immune system, the delineation of which will lead to optimized nutritional regimens for disease prevention and patient care.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
8
|
Tanumihardjo SA. Biological evidence to define a vitamin A deficiency cutoff using total liver vitamin A reserves. Exp Biol Med (Maywood) 2021; 246:1045-1053. [PMID: 33765844 PMCID: PMC8113730 DOI: 10.1177/1535370221992731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vitamin A is a fat-soluble vitamin involved in essential functions including growth, immunity, reproduction, and vision. The vitamin A Dietary Reference Intakes (DRIs) for North Americans suggested that a minimally acceptable total liver vitamin A reserve (TLR) is 0.07 µmol/g, which is not explicitly expressed as a vitamin A deficiency cutoff. The Biomarkers of Nutrition for Development panel set the TLR cutoff for vitamin A deficiency at 0.1 µmol/g based on changes in biological response of several physiological parameters at or above this cutoff. The criteria used to formulate the DRIs include clinical ophthalmic signs of vitamin A deficiency, circulating plasma retinol concentrations, excretion of vitamin A metabolites in the bile, and long-term storage of vitamin A as protection against vitamin A deficiency during times of low dietary intake. This review examines the biological responses that occur as TLRs are depleted. In consideration of all of the DRI criteria, the review concludes that induced biliary excretion and long-term vitamin A storage do not occur until TLRs are >0.10 µmol/g. If long-term storage is to continue to be part of the DRI criteria, vitamin A deficiency should be set at a minimum cutoff of 0.10 µmol/g and should be set higher during times of enhanced requirements where TLRs can be rapidly depleted, such as during lactation or in areas with high infection burden. In population-based surveys, cutoffs are important when using biomarkers of micronutrient status to define the prevalence of deficiency and sufficiency to inform public health interventions. Considering the increasing use of quantitative biomarkers of vitamin A status that indirectly assess TLRs, i.e. the modified-relative-dose response and retinol-isotope dilution tests, setting a TLR as a vitamin A deficiency cutoff is important for users of these techniques to estimate vitamin A deficiency prevalence. Future researchers and policymakers may suggest that DRIs should be set with regard to optimal health and not merely to prevent a micronutrient deficiency.
Collapse
Affiliation(s)
- Sherry A Tanumihardjo
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|