1
|
Cong G, Zhu X, Chen XR, Chen H, Chong W. Mechanisms and therapeutic potential of the hedgehog signaling pathway in cancer. Cell Death Discov 2025; 11:40. [PMID: 39900571 PMCID: PMC11791101 DOI: 10.1038/s41420-025-02327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
A sort of major malignant disease, cancer can compromise human health wherever. Some mechanisms of the occurrence and evolution of cancer still seem elusive even now. Consequently, the therapeutic strategies for cancer must continually evolve. The hedgehog signaling pathway, a critical mediator in the normal development of numerous organs and the pathogenesis of cancer, is typically quiescent but is aberrantly activated in several malignancies. Extensive research has delineated that the aberrant activity of the hedgehog signaling pathway, whether autocrine or paracrine, is implicated in the initiation and progression of various neoplasms, including medulloblastoma (MB), basal cell carcinoma (BCC) and so on. Thus, notably Smo inhibitors, the opening of inhibitors of the hedgehog signaling pathway has become a topic of research attention. This review aims to summarize four aberrant activation pathways and the influence of hedgehog signaling pathway associated chemicals on tumor formation and development. Additionally, it will explore the therapeutic potential of targeted interventions in the hedgehog signaling pathway for cancer treatment.
Collapse
Affiliation(s)
- Ge Cong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Xingyu Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Xin Ru Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 250021, Jinan, China.
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China.
| |
Collapse
|
2
|
Darade AR, Lapteva M, Ling V, Kalia YN. Polymeric micelles for cutaneous delivery of the hedgehog pathway inhibitor TAK-441: Formulation development and cutaneous biodistribution in porcine and human skin. Int J Pharm 2023; 644:123349. [PMID: 37633540 DOI: 10.1016/j.ijpharm.2023.123349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
TAK-441 is a potent inhibitor of the hedgehog pathway (IC50 4.4 nM) developed for the treatment of basal cell carcinoma that is active against the vismodegib-resistant Smoothened receptor D473H mutant. The objective of this study was to develop a micelle-based formulation of TAK-441 using D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) and to investigate its cutaneous delivery and biodistribution. The micelles were prepared using solvent evaporation and incorporation of TAK-441 in the TPGS micelles increased aqueous solubility ∼40-fold. The optimal formulation, a 3% HPMC hydrogel of TAK-441 loaded TPGS micelles, retained ∼92% of the initial TAK-441 content (2.5 mgTAK-441/g) after storage at 4 °C for 6 months. Finite dose experiments using human skin demonstrated that this formulation resulted in significantly greater cutaneous deposition of TAK-441 after 12 h than a non-micelle control formulation, (0.40 ± 0.11 µg/cm2 and 0.05 ± 0.02 µg/cm2, respectively) - no transdermal permeation was observed. The cutaneous biodistribution profile demonstrated that TAK-441 was predominantly delivered to the viable epidermis and upper dermis. Delivery from the HPMC hydrogel formulation resulted in TAK-441 epidermal concentrations that were several thousand-fold higher than the IC50, with almost negligible transdermal permeation, thereby decreasing the risk of systemic side effects in vivo.
Collapse
Affiliation(s)
- Aditya R Darade
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Vincent Ling
- Takeda Pharmaceuticals, Drug Delivery Technologies Search and Evaluation, 40 Landsdowne St, Cambridge MA 02139, United States
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Vukmanovic Nosrat I, Palacios JL, Kezian S, Luong G, Tran A, Vu K, Henson BS, Nosrat P, Lutfy K, Nosrat CA. Brain-derived neurotrophic factor overexpression in taste buds diminishes chemotherapy induced taste loss. Eur J Neurosci 2022; 56:4967-4982. [PMID: 35986485 PMCID: PMC9804163 DOI: 10.1111/ejn.15799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/05/2023]
Abstract
Vismodegib is used in patients suffering from advanced basal cell carcinoma (BCC), but 100% of the patients taking it report dysgeusia and 50% discontinue the treatment. Treatment with neurotrophic factors can stimulate neuronal survival and functional improvement in injured organs. Here, we analysed novel transgenic mouse lines in which brain-derived neurotrophic factor (BDNF) is overexpressed in taste buds, to examine whether higher levels of BDNF would reduce or prevent negative side effects of vismodegib in the taste system. BDNF plays crucial roles for development, target innervation, and survival of gustatory neurons and taste buds. The behavioural test in this study showed that vehicle-treated wild-type mice prefered 10 mM sucrose over water, whereas vismodegib treatment in wild-type mice caused total taste loss. Gustducin-BDNF mice had a significantly increased preference for low concentration of sucrose solution over water compared to wild-type mice, and most importantly the transgenic mice were able to detect low concentrations of sucrose following vismodegib treatment. We evaluated taste cell morphology, identity, innervation and proliferation using immunohistochemistry. All drug-treated mice exhibited deficits, but because of a possible functional upcycled priming of the peripheral gustatory system, GB mice demonstrated better morphological preservation of the peripheral gustatory system. Our study indicates that overexpression of BDNF in taste buds plays a role in preventing degeneration of taste buds. Counteracting the negative side effects of vismodegib treatment might improve compliance and achieve better outcome in patients suffering from advanced BCC.
Collapse
Affiliation(s)
| | - Jerry L. Palacios
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Steven Kezian
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Gloria Luong
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Andrew Tran
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Kim Vu
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Bradley S. Henson
- College of Dental MedicineWestern University of Health SciencesPomonaCaliforniaUSA
| | - Philip Nosrat
- College of Dental MedicineWestern University of Health SciencesPomonaCaliforniaUSA
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of PharmacyWestern University of Health SciencesPomonaCaliforniaUSA
| | | |
Collapse
|
4
|
Onishi H, Nakamura K, Yanai K, Nagai S, Nakayama K, Oyama Y, Fujimura A, Ozono K, Yamasaki A. Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review). Oncol Rep 2022; 47:93. [DOI: 10.3892/or.2022.8304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/25/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Katsuya Nakamura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kosuke Yanai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Shuntaro Nagai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yasuhiro Oyama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akiko Fujimura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Keigo Ozono
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akio Yamasaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
5
|
Ichimiya S, Onishi H, Nagao S, Koga S, Sakihama K, Nakayama K, Fujimura A, Oyama Y, Imaizumi A, Oda Y, Nakamura M. GLI2 but not GLI1/GLI3 plays a central role in the induction of malignant phenotype of gallbladder cancer. Oncol Rep 2021; 45:997-1010. [PMID: 33650666 PMCID: PMC7860001 DOI: 10.3892/or.2021.7947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
We previously reported that Hedgehog (Hh) signal was enhanced in gallbladder cancer (GBC) and was involved in the induction of malignant phenotype of GBC. In recent years, therapeutics that target Hh signaling have focused on molecules downstream of smoothened (SMO). The three transcription factors in the Hh signal pathway, glioma‑associated oncogene homolog 1 (GLI1), GLI2, and GLI3, function downstream of SMO, but their biological role in GBC remains unclear. In the present study, the biological significance of GLI1, GLI2, and GLI3 were analyzed with the aim of developing novel treatments for GBC. It was revealed that GLI2, but not GLI1 or GLI3, was involved in the cell cycle‑mediated proliferative capacity in GBC and that GLI2, but not GLI1 or GLI3, was involved in the enhanced invasive capacity through epithelial‑mesenchymal transition. Further analyses revealed that GLI2 may function in mediating gemcitabine sensitivity and that GLI2 was involved in the promotion of fibrosis in a mouse xenograft model. Immunohistochemical staining of 66 surgically resected GBC tissues revealed that GLI2‑high expression patients had fewer numbers of CD3+ and CD8+ tumor‑infiltrating lymphocytes (TILs) and increased programmed cell death ligand 1 (PD‑L1) expression in cancer cells. These results suggest that GLI2, but not GLI1 or GLI3, is involved in proliferation, invasion, fibrosis, PD‑L1 expression, and TILs in GBC and could be a novel therapeutic target. The results of this study provide a significant contribution to the development of a new treatment for refractory GBC, which has few therapeutic options.
Collapse
Affiliation(s)
- Shu Ichimiya
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Shinjiro Nagao
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Satoko Koga
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kukiko Sakihama
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akiko Fujimura
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yasuhiro Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akira Imaizumi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
6
|
Martins PC, Filipe RV, Barbosa R, Julião I, Azevedo R, Ribeiro M, de Sousa A. Basal cell carcinoma: multimodal treatment and the role of neoadjuvant vismodegib. Autops Case Rep 2019; 9:e2019116. [PMID: 31641658 PMCID: PMC6771444 DOI: 10.4322/acr.2019.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022]
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer. It generally has an indolent course with low rates of metastasis and mortality. However, BCC is locally invasive and can cause significant morbidity due to destructive local spread. We report our experience with a patient who was referred to our skin cancer unit due to a previously neglected lesion on the parietal region of the scalp, which had developed for 7 years. The patient was prescribed vismodegib on the basis that surgery could cause excessive functional and aesthetic damage. The patient had an objective partial response after 20 months of treatment. He was then submitted to radical skin excision, leaving a large defect that was reconstructed using a free latissimus dorsi muscle flap. The patient recovered well, and at the 1-year follow-up there were no signs of local recurrence. Our case demonstrates the value of vismodegib treatment prior to surgery in a locally advanced, high-risk scalp BCC and highlights the importance of an individualized and specialized approach with these patients, within a multidisciplinary team.
Collapse
Affiliation(s)
- Pedro Carvalho Martins
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Surgical Oncology Service. Porto, Portugal
| | - Rita Valença Filipe
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Reconstructive and Plastic Surgery Service. Porto, Portugal
| | - Rui Barbosa
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Reconstructive and Plastic Surgery Service. Porto, Portugal
| | - Ivo Julião
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Medical Oncology Service. Porto, Portugal
| | - Rosa Azevedo
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Pathological Anatomy Service. Porto, Portugal
| | - Matilde Ribeiro
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Reconstructive and Plastic Surgery Service. Porto, Portugal
| | - Abreu de Sousa
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Surgical Oncology Service. Porto, Portugal
| |
Collapse
|
7
|
Abstract
Basal cell carcinoma (BCC) is the most common malignancy worldwide, arising from non-keratinizing cells within the basal layer of the epidermis. The incidence of BCC continues to rise annually, increasing the burden of management of these carcinomas and the morbidity associated with their treatment. While surgical interventions such as Mohs micrographic surgery and surgical excision are the standard of care and yield the highest cure rates, the number of non-surgical interventions approved for the treatment of BCC continues to expand. We review various surgical and non-surgical approaches to the treatment of BCC, focusing on targeted molecular therapies that are approved for locally advanced or recurrent disease.
Collapse
Affiliation(s)
- Mariam Totonchy
- Department of Dermatology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208059, New Haven, CT 06520-8059, Connecticut, USA
| | - David Leffell
- Department of Dermatology, Section of Cutaneous Oncology and Dermatologic Surgery , Yale University School of Medicine, 40 Temple Street 5A, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Armas-López L, Zúñiga J, Arrieta O, Ávila-Moreno F. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget 2017; 8:60684-60703. [PMID: 28948003 PMCID: PMC5601171 DOI: 10.18632/oncotarget.19527] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation and epigenetic mechanisms closely control gene expression through diverse physiological and pathophysiological processes. These include the development of germ layers and post-natal epithelial cell-tissue differentiation, as well as, involved with the induction, promotion and/or progression of human malignancies. Diverse studies have shed light on the molecular similarities and differences involved in the stages of embryological epithelial development and dedifferentiation processes in malignant tumors of epithelial origin, of which many focus on lung carcinomas. In lung cancer, several transcriptional, epigenetic and genetic aberrations have been described to partly arise from environmental risk factors, but ethnic genetic predisposition factors may also play a role. The classification of the molecular hallmarks of cancer has been essential to study and achieve a comprehensive view of the interaction networks between cell signaling pathways and functional roles of the transcriptional and epigenetic regulatory mechanisms. This has in turn increased understanding on how these molecular networks are involved in embryo-layers and malignant diseases development. Ultimately, a major biomedicine goal is to achieve a thorough understanding of their roles as diagnostic, prognostic and treatment response indicators in lung oncological patients. Recently, several notable cell-signaling pathways have been studied based on their contribution to promoting and/or regulating the engagement of different cancer hallmarks, among them genome instability, exacerbated proliferative signaling, replicative immortality, tumor invasion-metastasis, inflammation, and immune-surveillance evasion mechanisms. Of these, the Hedgehog-GLI (Hh) cell-signaling pathway has been identified as a main molecular contribution into several of the abovementioned functional embryo-malignancy processes. Nonetheless, the systematic study of the regulatory epigenetic and transcriptional mechanisms has remained mostly unexplored, which could identify the interaction networks between specific biomarkers and/or new therapeutic targets in malignant tumor progression and resistance to lung oncologic therapy. In the present work, we aimed to revise the most important up-to-date experimental and clinical findings in biology, embryology and cancer research regarding the Hh pathway. We explore the potential control of the transcriptional-epigenetic programming versus reprogramming mechanisms associated with its Hh-GLI cell signaling pathway members. Last, we present a summary of this information to systematically integrate the Hh signaling pathway to identify and propose novel compound strategies or better oncological therapeutic schemes for lung cancer patients.
Collapse
Affiliation(s)
- Leonel Armas-López
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| | - Oscar Arrieta
- Instituto Nacional de Cancerología (INCAN), Thoracic Oncology Clinic, Mexico City, México
| | - Federico Ávila-Moreno
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| |
Collapse
|
9
|
Verkouteren J, Ramdas K, Wakkee M, Nijsten T. Epidemiology of basal cell carcinoma: scholarly review. Br J Dermatol 2017; 177:359-372. [DOI: 10.1111/bjd.15321] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Affiliation(s)
- J.A.C. Verkouteren
- Department of Dermatology; Erasmus MC Cancer Institute; Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| | - K.H.R. Ramdas
- Department of Dermatology; Erasmus MC Cancer Institute; Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| | - M. Wakkee
- Department of Dermatology; Erasmus MC Cancer Institute; Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| | - T. Nijsten
- Department of Dermatology; Erasmus MC Cancer Institute; Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| |
Collapse
|
10
|
Cupressus sempervirens extract inhibited human basal cell carcinoma tumorigenesis, local invasion, and angiogenic property. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2370-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Abstract
Gorlin syndrome, also known as nevoid basal cell carcinoma syndrome, is a rare autosomal dominant disorder with multiple manifestations including early onset of cutaneous basal cell carcinomas (BCCs). Radiotherapy has traditionally been contraindicated due to reports of BCC induction. We describe here a patient treated successfully with radiotherapy with no tumour induction at 57 months of follow-up. A comprehensive literature review of radiotherapy outcomes in patients with Gorlin syndrome suggests radiotherapy may be a feasible treatment option for adult patients with treatment refractory lesions or surgical contraindication.
Collapse
Affiliation(s)
- Sarah Baker
- Division of Radiation Oncology, Department of Oncology, University of Alberta & Cross Cancer Institute, Edmonton, Canada
| | - Kurian Joseph
- Division of Radiation Oncology, Department of Oncology, University of Alberta & Cross Cancer Institute, Edmonton, Canada
| | - Patricia Tai
- Department of Radiation Oncology, University of Saskatchewan & Allan Blair Cancer Center, Regina, Canada
| |
Collapse
|
12
|
Identification of anaplastic lymphoma kinase as a potential therapeutic target in Basal Cell Carcinoma. Oncotarget 2014; 4:2237-48. [PMID: 24163262 PMCID: PMC3926823 DOI: 10.18632/oncotarget.1357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The pathogenesis of BCC is associated with sonic hedgehog (SHH) signaling. Vismodegib, a smoothened inhibitor that targets this pathway, is now in clinical use for advanced BCC patients, but its efficacy is limited. Therefore, new therapeutic options for this cancer are required. We studied gene expression profiling of BCC tumour tissues coupled with laser capture microdissection to identify tumour specific receptor tyrosine kinase expression that can be targeted by small molecule inhibitors. We found a >250 fold increase (FDR<10−4) of the oncogene, anaplastic lymphoma kinase (ALK) as well as its ligands, pleiotrophin and midkine in BCC compared to microdissected normal epidermis. qRT-PCR confirmed increased expression of ALK (p<0.05). Stronger expression of phosphorylated ALK in BCC tumour nests than normal skin was observed by immunohistochemistry. Crizotinib, an FDA-approved ALK inhibitor, reduced keratinocyte proliferation in culture, whereas a c-Met inhibitor did not. Crizotinib significantly reduced the expression of GLI1 and CCND2 (members of SHH-pathway) mRNA by approximately 60% and 20%, respectively (p<0.01). Our data suggest that ALK may increase GLI1 expression in parallel with the conventional SHH-pathway and promote keratinocyte proliferation. Hence, an ALK inhibitor alone or in combination with targeting SHH-pathway molecules may be a potential treatment for BCC patients.
Collapse
|
13
|
Onishi H, Katano M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J Gastroenterol 2014; 20:2335-2342. [PMID: 24605030 PMCID: PMC3942836 DOI: 10.3748/wjg.v20.i9.2335] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive and difficult cancers to treat. Despite numerous research efforts, limited success has been achieved in the therapeutic management of patients with this disease. In the current review, we focus on one component of morphogenesis signaling, Hedgehog (Hh), with the aim of developing novel, effective therapies for the treatment of pancreatic cancer. Hh signaling contributes to the induction of a malignant phenotype in pancreatic cancer and is responsible for maintaining pancreatic cancer stem cells. In addition, we propose a novel concept linking Hh signaling and tumor hypoxic conditions, and discuss the effects of Hh inhibitors in clinical trials. The Hh signaling pathway may represent a potential therapeutic target for patients with refractory pancreatic cancer.
Collapse
|
14
|
Molin SC, Grgic M, Ruzicka T, Herzinger T. Silencing of the cell cycle checkpoint gene 14-3-3σ in basal cell carcinomas correlates with reduced expression of IKK-α. J Eur Acad Dermatol Venereol 2013; 28:1113-6. [PMID: 24219383 DOI: 10.1111/jdv.12309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/30/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND 14-3-3σ is down-regulated in a large proportion of basal cell carcinomas (BCC). IkappaB kinase α (IKK-α), one of the two catalytic subunits of the IKK complex involved in NF-kappaB-activation, also functions as a modulator of epidermal development and differentiation. Down-regulation of IKK-α causes hyperplasia and promotes skin cancer. IKK-α has been found to regulate the expression of 14-3-3σ by shielding its promoter from hypermethylation and thereby preventing its silencing in mouse keratinocytes. OBJECTIVES To evaluate the potential role of IKK-α in the silencing of 14-3-3σ in basal cell carcinoma. MATERIALS AND METHODS Expression of 14-3-3σ and IKK-α was studied by immunohistochemistry in 33 sporadic BCCs and 26 BCCs from patients with basal cell nevus syndrome (BCNS). RESULTS Marked reduction or absence of 14-3-3σ was found in 24 (92%) BCCs from BCNS patients, and in 29 (88%) sporadic BCCs. Marked reduction or absence of IKK-α was found in 22 (85%) BCCs from patients with BCNS, and in 27 (82%) sporadic BCCs. Expression levels for 14-3-3σ and IKK-α correlated positively in 92% of BCCs from BCNS patients, and in 85% of sporadic BCCs. CONCLUSIONS Our findings suggest that down-regulation of IKK-α is required for 14-3-3σ promoter methylation and silencing in the pathogenesis of BCC. Besides, our observation that 14-3-3σ silencing is also frequently found in BCC from patients with BCNS suggests a possible link between the sonic hedgehog/patched and 14-3-3σ/IKK-α pathways.
Collapse
Affiliation(s)
- S C Molin
- Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig Maximilian University, Munich, Germany
| | | | | | | |
Collapse
|
15
|
Harris PJ, Speranza G, Dansky Ullmann C. Targeting embryonic signaling pathways in cancer therapy. Expert Opin Ther Targets 2012; 16:131-45. [DOI: 10.1517/14728222.2011.645808] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
The hedgehog pathway conditions the bone microenvironment for osteolytic metastasis of breast cancer. Int J Breast Cancer 2011; 2012:298623. [PMID: 22295244 PMCID: PMC3262601 DOI: 10.1155/2012/298623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 01/29/2023] Open
Abstract
The microenvironment at the site of tumor metastasis plays a key role in determining the fate of the metastasizing tumor cells. This ultimately has a direct impact on the progression of cancer. Bone is the preferred site of metastasis of breast cancer. Painful, debilitating osteolytic lesions are formed as a result of crosstalk between breast cancer cells and cells in the bone, predominantly the osteoblasts and osteoclasts. In this paper, we have discussed the temporal and spatial role of hedgehog (Hh) signaling in influencing the fate of metastatic breast cancer cells in bone. By virtue of its secreted ligands, the Hh pathway is capable of homotypic and heterotypic signaling and consequently altering the microenvironment in the bone. We also have put into perspective the therapeutic implications of using Hh inhibitors to prevent and/or treat bone metastases of breast cancer.
Collapse
|
17
|
Onishi H, Katano M. Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci 2011; 102:1756-60. [PMID: 21679342 DOI: 10.1111/j.1349-7006.2011.02010.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hedgehog (Hh) signaling is an important factor in growth and patterning during embryonic development. A mutation in Patched, Smoothened or Gli1, which regulate the Hh signaling pathway, might lead to the onset of glioblastoma, basal cell carcinoma, medulloblastoma and rhabdomyosarcoma. Recently, Hh signaling has been reported to be activated in a ligand-dependent manner, contributing to carcinogenesis and cancer progression. Hedgehog signaling is reactivated in various types of cancer, and this contributes to cancer progression by facilitating proliferation, invasion and cell survival. Moreover, Hh signaling is associated with several other signaling pathways that contribute to cancer progression. These observations indicate that controlling Hh signaling might become a target for novel molecular targeting therapy.
Collapse
Affiliation(s)
- Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
18
|
Abstract
Animal models of cancer have been instrumental in understanding the progression and therapy of hereditary cancer syndromes. The ability to alter the genome of an individual mouse cell in both constitutive and inducible approaches has led to many novel insights into their human counterparts. In this review, knockout mouse models of inherited human cancer syndromes are presented and insights from the study of these models are highlighted.
Collapse
Affiliation(s)
- Sohail Jahid
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | | |
Collapse
|
19
|
Chung CH, Dignam JJ, Hammond ME, Klimowicz AC, Petrillo SK, Magliocco A, Jordan R, Trotti A, Spencer S, Cooper JS, Le QT, Ang KK. Glioma-associated oncogene family zinc finger 1 expression and metastasis in patients with head and neck squamous cell carcinoma treated with radiation therapy (RTOG 9003). J Clin Oncol 2011; 29:1326-34. [PMID: 21357786 DOI: 10.1200/jco.2010.32.3295] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Glioma-associated oncogene family zinc finger 1 (GLI1) expression was assessed to determine a potential role of hedgehog (Hh) signaling in head and neck squamous cell carcinoma (HNSCC). Additional proteins known to be modulated by Hh signaling, including beta-catenin (CTNNB1) and epidermal growth factor receptor (EGFR), were also assessed to determine the correlation among these distinct signaling pathways. PATIENTS AND METHODS Nuclear GLI1 and CTNNB1 expression levels were determined in tumors from patients enrolled on Radiation Therapy Oncology Group (RTOG) 9003, a radiation fractionation trial. The results were also correlated with previously determined EGFR expression. The expression levels were evaluated in relation to three end points: time to metastasis (TTM), time to disease progression (TDP), and overall survival (OS). RESULTS Among 1,068 eligible patients, data on GLI1, CTNNB1, and EGFR were available in 339, 164, and 300 patients, respectively. Although CTNNB1 expression did not differentiate prognosis, GLI1 was associated with poorer outcomes, adjusted for age, TNM stages, and Karnofsky performance score, and the significant influence persisted in a multivariable analysis (quartile 4 [Q4] v Q1 to Q3: TTM hazard ratio [HR], 2.7; 95% CI, 1.5 to 4.9; TDP HR, 1.6; 95% CI, 1.1 to 2.5; OS HR, 1.9; 95% CI, 1.4 to 2.7). The significance of GLI1 persisted in a multivariable analysis that included EGFR expression levels. CONCLUSION These data suggest that Hh signaling may play an important role in metastasis and that GLI1 could serve as a marker in HNSCC, but the regulatory mechanisms and oncogenic significance need further investigation. Risk classification based on this analysis needs a validation in independent cohorts.
Collapse
Affiliation(s)
- Christine H Chung
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St, CRB-1 Room 344, Baltimore, MD 21231-1000, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Beach DF, Somer R. Novel approach to Gorlin syndrome: a patient treated with oral capecitabine. J Clin Oncol 2011; 29:e397-401. [PMID: 21357787 DOI: 10.1200/jco.2010.33.3393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Douglas F Beach
- University of Medicine and Denistry of New Jersey Robert Wood Johnson Medical School, Camden, NJ, USA
| | | |
Collapse
|
21
|
Choumi F, Hamama J, Sabani H, Moumine M, Nassih M, Rzin A, Oukabli M, Bouzidi A. [Multiple mandibular "cysts"]. ACTA ACUST UNITED AC 2011; 112:126-9. [PMID: 21277607 DOI: 10.1016/j.stomax.2010.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/11/2010] [Accepted: 12/20/2010] [Indexed: 11/30/2022]
Affiliation(s)
- F Choumi
- Service de chirurgie plastique, maxillo-faciale et stomatologie, hôpital militaire d'instruction Mohamed V, faculté de médecine et de pharmacie, université Mohammed V, Rabat, Maroc.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Arai MA, Tateno C, Koyano T, Kowithayakorn T, Kawabe S, Ishibashi M. New hedgehog/GLI-signaling inhibitors from Adenium obesum. Org Biomol Chem 2011; 9:1133-9. [DOI: 10.1039/c0ob00677g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Gerstenblith MR, Goldstein AM, Tucker MA. Hereditary genodermatoses with cancer predisposition. Hematol Oncol Clin North Am 2010; 24:885-906. [PMID: 20816579 PMCID: PMC3276063 DOI: 10.1016/j.hoc.2010.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this article hereditary genodermatoses with cancer predisposition are reviewed, including nevoid basal cell carcinoma syndrome, neurofibromatosis types 1 and 2, tuberous sclerosis complex, xeroderma pigmentosum, and dyskeratosis congenita. Hereditary melanoma is also included, though it differs from the others in several respects. The underlying genetic aberrations causing these syndromes are largely known, allowing novel treatments to be developed for some of these disorders. Early recognition and diagnosis allows for close follow-up and surveillance for associated malignancies.
Collapse
Affiliation(s)
- Meg R. Gerstenblith
- Genetic Epidemiology Branch/Division of Cancer Epidemiology and Genetics, National Cancer Institute/National Institutes of Health, Building EPS/Room 7003, 6120 Executive Boulevard, Rockville, MD 20892-7236, Phone: (301)-435-5164, Fax: (301)-402-4489,
| | - Alisa M. Goldstein
- Genetic Epidemiology Branch/Division of Cancer Epidemiology and Genetics, National Cancer Institute/National Institutes of Health, Building EPS/Room 7004, 6120 Executive Boulevard, Rockville, MD 20892-7236, Phone: (301)-496-4376, Fax: (301)-402-4489,
| | - Margaret A. Tucker
- Genetic Epidemiology Branch/Division of Cancer Epidemiology and Genetics, National Cancer Institute/National Institutes of Health, Building EPS/Room 7003, 6120 Executive Boulevard, Rockville, MD 20892-7236, Phone: (301)-496-4375, Fax: (301)-402-4489,
| |
Collapse
|
24
|
Jeannette T, Olga L, Irene P. Cbfa1/Runx2 expression in an ossifying basal cell carcinoma of the eyelid. Arch Dermatol Res 2010; 302:695-700. [DOI: 10.1007/s00403-010-1067-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 06/17/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
25
|
Barakat MT, Humke EW, Scott MP. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol Med 2010; 16:337-48. [PMID: 20696410 DOI: 10.1016/j.molmed.2010.05.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 02/07/2023]
Abstract
The Hedgehog (Hh) cascade controls cell proliferation, differentiation and patterning of tissues during embryogenesis but is largely suppressed in the adult. The Hh pathway can become reactivated in cancer. Here, we assimilate data from recent studies to understand how and when the Hh pathway is turned on to aid the neoplastic process. Hh signaling is now known to have a role in established tumors, enabling categorization of tumors based on the role Hh signaling plays in their growth. This categorization has relevance for prognosis and targeted therapeutics. In the first category, abnormal Hh signaling initiates the tumor. In the second category, Hh signaling helps maintain the tumor. In the third category, Hh signaling is implicated but its role is not yet defined.
Collapse
Affiliation(s)
- Monique T Barakat
- Department of Developmental Biology, Howard Hughes Medical Institute, Clark Center West W252, 318 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | | | | |
Collapse
|
26
|
Visioli F, Martins CAM, Heitz C, Rados PV, Sant'Ana Filho M. Is Nevoid Basal Cell Carcinoma Syndrome Really So Rare?: Proposal for an Investigative Protocol Based on a Case Series. J Oral Maxillofac Surg 2010; 68:903-8. [DOI: 10.1016/j.joms.2009.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 03/08/2009] [Indexed: 10/19/2022]
|
27
|
Mimeault M, Batra SK. Recent advances on skin-resident stem/progenitor cell functions in skin regeneration, aging and cancers and novel anti-aging and cancer therapies. J Cell Mol Med 2009; 14:116-34. [PMID: 19725922 PMCID: PMC2916233 DOI: 10.1111/j.1582-4934.2009.00885.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances in skin-resident adult stem/progenitor cell research have revealed that these immature and regenerative cells with a high longevity provide critical functions in maintaining skin homeostasis and repair after severe injuries along the lifespan of individuals. The establishment of the functional properties of distinct adult stem/progenitor cells found in skin epidermis and hair follicles and extrinsic signals from their niches, which are deregulated during their aging and malignant transformation, has significantly improved our understanding on the etiopathogenesis of diverse human skin disorders and cancers. Particularly, enhanced ultraviolet radiation exposure, inflammation and oxidative stress and telomere attrition during chronological aging may induce severe DNA damages and genomic instability in the skin-resident stem/progenitor cells and their progenies. These molecular events may result in the alterations in key signalling components controlling their self-renewal and/or regenerative capacities as well as the activation of tumour suppressor gene products that trigger their growth arrest and senescence or apoptotic death. The progressive decline in the regenerative functions and/or number of skin-resident adult stem/progenitor cells may cause diverse skin diseases with advancing age. Moreover, the photoaging, telomerase re-activation and occurrence of different oncogenic events in skin-resident adult stem/progenitor cells may also culminate in their malignant transformation into cancer stem/progenitor cells and skin cancer initiation and progression. Therefore, the anti-inflammatory and anti-oxidant treatments and stem cell-replacement and gene therapies as well as the molecular targeting of their malignant counterpart, skin cancer-initiating cells offer great promise to treat diverse skin disorders and cancers.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
28
|
Konishi A, Sakai R, Ohta M, Fujii H, Moriwaki SI, Horiguchi Y. Multiple basal cell carcinomas on the lateral neck linearly arranged along the lines of Blaschko occurring 50 years after X-ray radiation therapy for lymphadenitis coli tuberculosa. J Dermatol 2008; 35:680-2. [PMID: 19017051 DOI: 10.1111/j.1346-8138.2008.00547.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Arai MA, Tateno C, Hosoya T, Koyano T, Kowithayakorn T, Ishibashi M. Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorg Med Chem 2008; 16:9420-4. [DOI: 10.1016/j.bmc.2008.09.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 12/22/2022]
|
30
|
Wang Q, Huang S, Yang L, Zhao L, Yin Y, Liu Z, Chen Z, Zhang H. Down-regulation of Sonic hedgehog signaling pathway activity is involved in 5-fluorouracil-induced apoptosis and motility inhibition in Hep3B cells. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00456.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Ogata K, Ikeda M, Miyoshi K, Yamamoto Y, Yamamoto T, Osaki T, Michimukai E, Tanaka Y, Sakamoto A, Oakamoto T, Kodama H. Naevoid basal cell carcinoma syndrome with a palmar epidermoid cyst, milia and maxillary cysts. Br J Dermatol 2008. [DOI: 10.1111/j.1365-2133.2001.04389.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Hosoya T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M. Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription. Chembiochem 2008; 9:1082-92. [PMID: 18357592 DOI: 10.1002/cbic.200700511] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aberrant hedgehog (Hh)/GLI signaling pathway causes the formation and progression of a variety of tumors. To search for Hh/GLI inhibitors, we screened for naturally occurring inhibitors of the transcriptional activator GLI1 by using a cell-based assay. We identified zerumbone (1), zerumbone epoxide (2), staurosporinone (9), 6-hydroxystaurosporinone (10), arcyriaflavin C (11) and 5,6-dihydroxyarcyriaflavin A (12) as inhibitors of GLI-mediated transcription. In addition, we isolated physalins F (17) and B (18) from Physalis minima, which are also potent inhibitors. These compounds also inhibited GLI2-mediated transactivation. Semiquantitative RT-PCR and Western blotting analysis further revealed that 1, 9, 17, and 18 decreased Hh-related component expressions. We also show that inhibitors of GLI-mediated transactivation reduce the level of the antiapoptosis Bcl2 expression. Finally, these identified compounds were cytotoxic to PANC1 pancreatic cancer cells, which express Hh/GLI components. These results strongly suggest that the cytotoxicity of the compounds to PANC1 cells correlates with their inhibition of GLI-mediated transcription.
Collapse
Affiliation(s)
- Takahiro Hosoya
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
33
|
Salmon B, Princ G, Wierzba CB. [Odontogenic keratocyst related to a Gorlin syndrome: a case report]. Arch Pediatr 2008; 15:406-9. [PMID: 18325751 DOI: 10.1016/j.arcped.2008.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 01/03/2008] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
We are reporting here, the case of a 9 years old boy with Gorlin syndrome diagnosis. Current knowledge on this syndrome is reviewed.
Collapse
Affiliation(s)
- B Salmon
- Département de chirurgie buccale, faculté de chirurgie dentaire de Paris-V, 1 rue Maurice-Arnoux, 92120 Montrouge, France.
| | | | | |
Collapse
|
34
|
Ho W, Murphy G. Update on the pathogenesis of post-transplant skin cancer in renal transplant recipients. Br J Dermatol 2007; 158:217-24. [DOI: 10.1111/j.1365-2133.2007.08363.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Athar M, Tang X, Lee JL, Kopelovich L, Kim AL. Hedgehog signalling in skin development and cancer. Exp Dermatol 2006; 15:667-77. [PMID: 16881963 DOI: 10.1111/j.1600-0625.2006.00473.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basal cell carcinoma (BCC) is the most common human malignancy, affecting 750,000 Americans each year. The understanding of mutations that are known to activate hedgehog (Hh) signalling pathway genes, including PATCHED (PTCH), sonic hedgehog (Shh) and smoothened (Smo), has substantially expanded our current understanding of the genetic basis of BCC development. The Hh signalling pathway is one of the most fundamental signal transduction pathways in embryonic development. In skin, the Shh pathway is crucial for maintaining stem cell population, and for regulating hair follicle and sebaceous gland development. This pathway plays a minimal role in adult tissues, but is known to be activated in many neoplasms, including those arising in the skin. In this review, we attempt to summarize the results of published studies on some important aspects of the Shh pathway and its involvement in skin development and carcinogenesis. We also provide a description of various animal models that have been developed, based on our knowledge of the Shh pathway in human skin cancers. Additionally, we include a brief description of studies conducted in our laboratory and by others on the chemoprevention of BCCs. This review therefore provides a current understanding of the role of the Shh pathway in skin development and neoplasia. It also provides a basis for the molecular target-based chemoprevention and therapeutic management of skin cancer.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
36
|
Onilude OE, Lusher ME, Lindsey JC, Pearson ADJ, Ellison DW, Clifford SC. APC and CTNNB1 mutations are rare in sporadic ependymomas. ACTA ACUST UNITED AC 2006; 168:158-61. [PMID: 16843107 DOI: 10.1016/j.cancergencyto.2006.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 11/19/2022]
Abstract
The ependymoma is the second most common malignant brain tumor of childhood; however, its molecular basis is poorly understood. The formation of multiple ependymomas has been reported as an occasional feature of Turcot syndrome type 2 (TS2), a familial cancer syndrome caused by inherited mutations of the APC tumor suppressor gene, and characterised by the concurrence of a primary CNS tumor (predominantly medulloblastoma) and multiple colorectal adenomas. APC is a critical component of the Wnt/Wingless signaling pathway, which is disrupted in sporadic cancers (e.g., colorectal adenomas, hepatocellular carcinomas, and medulloblastomas) by somatic mutations affecting multiple genes encoding alternative pathway components, including APC and CTNNB1 (encoding beta-catenin). To investigate any role for genetic disruption of the Wnt/Wingless pathway in sporadic ependymomas, we performed mutation analysis of APC and CTNNB1 in 77 primary tumors. Two synonymous APC polymorphisms (PRO1442PRO; THR1493THR) were identified, which were detected at equivalent rates in ependymomas and control nonneoplastic DNA samples (n =50); however, no further APC or CTNNB1 sequence variations were found. In summary, although inherited APC mutations may be associated with ependymoma development in certain TS2 cases, these data indicate that somatic mutations affecting APC and CTNNB1 do not play a major role in the pathogenesis of sporadic ependymomas.
Collapse
Affiliation(s)
- Olabisi E Onilude
- Northern Institute for Cancer Research, University of Newcastle, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
37
|
R Yang X, Pfeiffer RM, Goldstein AM. Influence of glutathione-S-transferase (GSTM1, GSTP1, GSTT1) and cytochrome p450 (CYP1A1, CYP2D6) polymorphisms on numbers of basal cell carcinomas (BCCs) in families with the naevoid basal cell carcinoma syndrome. J Med Genet 2006; 43:e16. [PMID: 16582078 PMCID: PMC2563218 DOI: 10.1136/jmg.2005.035006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The naevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant multisystem disorder with variable expression. NBCCS patients have variable susceptibility to development of basal cell carcinoma (BCC). Previous studies have shown that polymorphisms of some metabolic genes encoding the cytochrome p450 (CYP) and glutathione-S-transferase (GST) enzymes influenced the numbers of BCCs in sporadic BCC cases. OBJECTIVE To determine whether allelic variants of these genes contribute to the variation in numbers of BCCs observed in NBCCS families. METHODS Genotyping and analysis was carried out in 152 members (69 affected and 83 unaffected) of 13 families with NBCCS for seven polymorphisms in five metabolic genes including CYP1A1, CYP2D6, GSTM1, GSTP1, and GSTT1. RESULTS GSTP1 Val105 and GSTP1 Val114 alleles were significantly associated with fewer BCC numbers (odds ratio (OR)105 = 0.55 (95% confidence interval, 0.35 to 0.88); OR114 = 0.20 (0.05 to 0.88)). The Val(105) allele showed a dose dependent effect (OR(Ile/Val) = 0.58 (0.34 to 0.88); OR(Val/Val) = 0.34 (0.14 to 0.78)). In addition, fewer jaw cysts were observed in carriers of the three p450 polymorphisms (CYP1A1m1, CYP1A1m2, and CYP2D6*4) (OR(CYP1A1m1) = 0.27 (0.12 to 0.58); OR(CYP1A1m2) = 0.25 (0.08 to 0.78); OR(CYP2D6*4) = 0.33 (0.18 to 0.60)). CONCLUSIONS Genetic variants might contribute to the variation in numbers of BCCs and jaw cysts observed in NBCCS families.
Collapse
|
38
|
Pazzaglia S. Ptc1 heterozygous knockout mice as a model of multi-organ tumorigenesis. Cancer Lett 2006; 234:124-34. [PMID: 15925443 DOI: 10.1016/j.canlet.2005.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 03/15/2005] [Indexed: 11/16/2022]
Abstract
Mutations in the Ptc1 gene are responsible for basal cell nevus (BCN) syndrome, and are commonly found in sporadic basal cell carcinomas (BCC) and in medulloblastoma (MB). Ptc1 hemizygosity in mice underlies this model's susceptibility to multi-organ tumorigenesis. Similar to BCN syndrome patients, the Ptc1 mouse model is characterized by tumor predisposition and radiation hypersensitivity. Ptc1(+/-) mice develop spontaneous rhabdomyosarcoma (RMS) and medulloblastoma (MB), as well as BCC following radiation exposure. The close phenotypic resemblance to the human disease makes these mice a unique preclinical model to test chemopreventive and therapeutic interventions.
Collapse
Affiliation(s)
- Simonetta Pazzaglia
- Biotechnology Unit, ENEA CR-Casaccia, Via Anguillarese 301, 00060 Rome, Italy.
| |
Collapse
|
39
|
Nakanishi G, Kim YS, Nakajima T, Jetten AM. Regulatory role for Krüppel-like zinc-finger protein Gli-similar 1 (Glis1) in PMA-treated and psoriatic epidermis. J Invest Dermatol 2006; 126:49-60. [PMID: 16417217 PMCID: PMC1435652 DOI: 10.1038/sj.jid.5700018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, we analyze the expression and potential function of the Krüppel-like zinc-finger protein Gli-similar protein 1 (Glis1) in normal and inflammatory skin and in the differentiation of epidermal keratinocytes. Glis1 mRNA is not expressed in normal human epidermis, but is significantly induced in psoriatic epidermis and in mouse skin upon treatment with the tumor promoter phorbol-12-myristate-13-acetate (PMA). The expression of Glis1 is restricted to the suprabasal layers. These observations suggest that Glis1 expression is associated with hyperplastic, inflammatory epidermis. Consistent with these findings, Glis1 mRNA is not expressed in undifferentiated or differentiated normal human epidermal keratinocytes (NHEK) in culture, but is dramatically induced after the addition of PMA or interferon gamma. A similar induction of Glis1 mRNA by PMA treatment was observed in the immortalized epidermal keratinocyte cell line NHEK-HPV, whereas PMA did not induce Glis1 in HaCaT cells or in several squamous cell carcinoma cell lines. To obtain insight into its function, Glis1 and a C-terminal deletion mutant Glis1DeltaC were expressed in NHEK-HPV cells and changes in epidermal differentiation and gene expression examined. Microarray analysis revealed that Glis1DeltaC promoted PMA-induced epidermal differentiation, as indicated by increased expression of many differentiation-specific genes. This, in association with its induction in psoriasis, suggests that transcriptional factor Glis1 is involved in the regulation of aberrant differentiation observed in psoriatic epidermis.
Collapse
Affiliation(s)
- Gen Nakanishi
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | |
Collapse
|
40
|
Abstract
In this review the epidemiology and pathogenetic aspects of UV-induced malignant skin tumours (basal cell carcinoma, squamous cell carcinoma and melanoma) are discussed with regard to current literature. Whereas present knowledge, in particular, gained from experimental data, permits substantial conclusions about the development of squamous cell carcinoma, the situation for basal cell carcinoma and melanoma does not appear to be unequivocally clear. One reason for this can be explained by the fact that there exist no adequate animal models for these tumours that could exactly reflect the biological behaviour in man. Although there is no doubt about a causal role of sun exposure, this relationship is based on mere epidemiological facts.
Collapse
Affiliation(s)
- Herbert Hönigsmann
- Klinische Abteilung für Spezielle Dermatologie/Umweltdermatosen, Allgemeines Krankenhaus der Stadt Wien, Medizinische Universität Wien, Osterreich.
| | | |
Collapse
|
41
|
Shin S, Dalton S, Stice SL. Human Motor Neuron Differentiation from Human Embryonic Stem Cells. Stem Cells Dev 2005; 14:266-9. [PMID: 15969621 DOI: 10.1089/scd.2005.14.266] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The therapeutic potential of embryonic stem (ES) cells is promising, but in many cases limited by our inability to promote their differentiation to specific cell types, such as motor neurons. Here we provide the first report of the successful differentiation of human ES cells to cells of a motor neuron phenotype. A renewable source of neuroepithelial cells was generated from human ES cells. Extracellular signals were then employed to induce motor neuron differentiation and related gene expression by these cells. OLIG2 and HLXB9 gene expression increased upon the addition of basic fibroblast growth factor, retinoic acid, and sonic hedgehog, as a motor neuron phenotype expressing Islet1 and choline acetyltransferase (ChAT) developed. This study demonstrates that neuroepithelial cells derived from human ES cells are renewable progenitors capable of generating motor neurons at levels that may be therapeutically useful. Sonic hedgehog, basic fibroblast growth factor, and retinoic acid differentially influence human motor neuron differentiation by mechanisms that remain to be defined.
Collapse
Affiliation(s)
- Soojung Shin
- Regenerative BioScience Center, University of Georgia, Athens, GA 30605, USA
| | | | | |
Collapse
|
42
|
Barnes EA, Heidtman KJ, Donoghue DJ. Constitutive activation of the shh-ptc1 pathway by a patched1 mutation identified in BCC. Oncogene 2005; 24:902-15. [PMID: 15592520 DOI: 10.1038/sj.onc.1208240] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the transmembrane receptor patched1 (ptc1) are responsible for the majority of basal cell carcinoma (BCC) cases. Many of these mutations, including ptc1-Q688X, result in premature truncation of the ptc1 protein. ptc1-Q688X has been identified in patients with both BCC and nevoid basal cell carcinoma syndrome, an inheritable disorder causing a predisposition to cancer susceptibility. Here we describe a mechanism by which ptc1-Q688X causes constitutive cellular signaling. Cells expressing ptc1-Q688X demonstrate an increase in cell cycle progression and induce cell transformation. The ptc1-Q688X mutant enhances Gli1 activity, a downstream reporter of sonic hedgehog (shh)-ptc1 signaling, independent of shh stimulation. In contrast to wild-type ptc1, ptc1-Q688X fails to associate with endogenous cyclin B1. Expression of nuclear-targeted cyclin B1 derivatives promotes Gli1-dependent transcription, which correlates temporally with cyclin B1-cdk1 kinase activity. Coexpression of wild-type ptc1 with a nuclear-targeted cyclin B1 derivative, mutated to mimic constitutive phosphorylation, dramatically decreases Gli1 activity. In addition, the coexpression of this constitutively nuclear cyclin B1 derivative with ptc1-Q688X substantially enhances foci formation. These studies therefore describe a molecular mechanism for the aberrant activity of ptc1-Q688X that includes the premature activation of the transcription factor Gli1.
Collapse
Affiliation(s)
- Elizabeth A Barnes
- Department of Chemistry and Biochemistry, Center for Molecular Genetics, University of California, 9500 Gilman Drive, Urey Hall-6114, San Diego, La Jolla, CA 92093-0367, USA
| | | | | |
Collapse
|
43
|
Bignold LP. The cell-type-specificity of inherited predispositions to tumours: review and hypothesis. Cancer Lett 2005; 216:127-46. [PMID: 15533589 DOI: 10.1016/j.canlet.2004.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/28/2004] [Accepted: 07/29/2004] [Indexed: 12/19/2022]
Abstract
Most hereditary predispositions to tumours affect only one particular cell type of the body but the genes bearing the relevant germ-line mutation are not cell-type-specific. Some predisposition syndromes include increased risks of lesions (developmental or tumourous) of unrelated cell types, in any individual predisposed to the main lesion (e.g. osteosarcoma in patients predisposed to retinoblastoma). Other predispositions to additional lesions occur only in members of some families with the predisposition to the basic lesion (e.g. Gardner's syndrome in some families suffering familial adenomatous polyposis). In yet other predisposition syndromes, different mutations of the same gene are associated with markedly differing family-specific clinical syndromes. In particular, identical germline mutations (e.g. in APC, RET and PTEN genes), have been found associated with differing clinical syndromes in different families. This paper reviews previously suggested mechanisms of the cell-type specificity of inherited predispositions to tumour. Models of tumour formation in predisposition syndromes are discussed, especially those involving a germline mutation (the first 'hit') of a tumour suppressor gene (TSG) and a second (somatic) hit on the second allele of the same TSG. A modified model is suggested, such that the second hit is a co-mutation of the second allele of the TSG and a regulator which is specific for growth and/or differentiation of the cell type which is susceptible to the tumour predisposition. In some cases of tumour, the second hit may be large enough to be associated with a cytogenetically-demonstrable abnormality of the part of the chromosome carrying the TSG, but in other cases, the co-mutation may be of 'sub-cytogenetic' size (i.e. 10(2)-10(5) bases). For the latter, mutational mechanisms of frameshift and impaired fidelity of replication of DNA by DNA polyerases may sometimes be involved. Candidate cell-type-specific regulators may include microRNAs and perhaps transcription factors. It is suggested that searching the introns within 10(5)-10(6) bases either side of known of exonic mutations of TSGs associated with inherited tumour predisposition might reveal microRNA cell-type-specific regulators. Additional investigations may involve fluorescent in situ hybridisations on interphase tumour nuclei.
Collapse
Affiliation(s)
- Leon P Bignold
- Division of Tissue Pathology, Institute of Medical and Veterinary Science, PO Box 14, Rundle Mall, Adelaide, SA 5001, Australia.
| |
Collapse
|
44
|
Hime GR, Lada H, Fietz MJ, Gillies S, Passmore A, Wicking C, Wainwright BJ. Functional analysis in Drosophila indicates that the NBCCS/PTCH1 mutation G509V results in activation of smoothened through a dominant-negative mechanism. Dev Dyn 2004; 229:780-90. [PMID: 15042702 DOI: 10.1002/dvdy.10499] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in the human homolog of the patched gene are associated with the developmental (and cancer predisposition) condition Nevoid Basal Cell Carcinoma Syndrome (NBCCS), as well as with sporadic basal cell carcinomas. Most mutations that have been identified in the germline of NBCCS patients are truncating or frameshift mutations, with amino acid substitutions rarely found. We show that a missense mutation in the sterol-sensing domain G509V acts as a dominant negative when assayed in vivo in Drosophila. Ectopic expression of a Drosophila patched transgene, carrying the analogous mutation to G509V, causes ectopic activation of Hedgehog target genes and ectopic membrane stabilisation of Smoothened. The G509V transgene behaves in a manner similar, except in its subcellular distribution, to a C-terminal truncation that has been characterised previously as a dominant-negative protein. G509V exhibits vesicular localisation identical to the wild-type protein, but the C-terminal truncated Patched molecule is localised predominantly to the plasma membrane. This finding suggests that dominant-negative function can be conferred by interruption of different aspects of Patched protein behaviour. Another mutation at the same residue, G509R, did not exhibit dominant-negative activity, suggesting that simple removal of the glycine at 509 is not sufficient to impart dominant-negative function.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Cell Biology, University of Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
45
|
James LF, Panter KE, Gaffield W, Molyneux RJ. Biomedical applications of poisonous plant research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:3211-30. [PMID: 15161174 DOI: 10.1021/jf0308206] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Research designed to isolate and identify the bioactive compounds responsible for the toxicity of plants to livestock that graze them has been extremely successful. The knowledge gained has been used to design management techniques to prevent economic losses, predict potential outbreaks of poisoning, and treat affected animals. The availability of these compounds in pure form has now provided scientists with tools to develop animal models for human diseases, study modes of action at the molecular level, and apply such knowledge to the development of potential drug candidates for the treatment of a number of genetic and infectious conditions. These advances are illustrated by specific examples of biomedical applications of the toxins of Veratrum californicum (western false hellebore), Lupinus species (lupines), and Astragalus and Oxytropis species (locoweeds).
Collapse
Affiliation(s)
- Lynn F James
- Poisonous Plant Research Laboratory, Agricultural Research Service, US Department of Agriculture, 1150 East 1400 North, Logan, Utah 84341, USA.
| | | | | | | |
Collapse
|
46
|
Mancuso M, Pazzaglia S, Tanori M, Hahn H, Merola P, Rebessi S, Atkinson MJ, Di Majo V, Covelli V, Saran A. Basal cell carcinoma and its development: insights from radiation-induced tumors in Ptch1-deficient mice. Cancer Res 2004; 64:934-41. [PMID: 14871823 DOI: 10.1158/0008-5472.can-03-2460] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations in Patched (Ptch1) are implicated in constitutive activation of the Sonic hedgehog pathway in human basal cell carcinomas (BCCs), and inherited Ptch1 mutations underlie basal cell nevus syndrome in which a typical feature is multiple BCC occurring with greater incidence in portals of radiotherapy. Mice in which one copy of Ptch1 is inactivated show increased susceptibility to spontaneous tumor development and hypersensitivity to radiation-induced tumorigenesis, providing an ideal in vivo model to study the typical pathologies associated with basal cell nevus syndrome. We therefore examined BCC development in control and irradiated Ptch1(neo67/+) mice. We show that unirradiated mice develop putative BCC precursor lesions, i.e., basaloid hyperproliferation areas arising from both follicular and interfollicular epithelium, and that these lesions progress to nodular and infiltrative BCCs only in irradiated mice. Data of BCC incidence, multiplicity, and latency support the notion of epidermal hyperproliferations, nodular and infiltrative BCC-like tumors representing different stages of tumor development. This is additionally supported by the pattern of p53 protein expression observed in BCC subtypes and by the finding of retention of the normal remaining Ptch1 allele in all nodular, circumscribed BCCs analyzed compared with its constant loss in infiltrative BCCs. Our data suggest chronological tumor progression from basaloid hyperproliferations to nodular and then infiltrative BCC occurring in a stepwise fashion through the accumulation of sequential genetic alterations.
Collapse
Affiliation(s)
- Mariateresa Mancuso
- Biotechnology Unit and Radiation Protection Unit, ENEA-Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Centro Ricerche, Casaccia, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
The Hedgehog Pathway. Dermatol Surg 2004. [DOI: 10.1097/00042728-200404000-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Manfredi M, Vescovi P, Bonanini M, Porter S. Nevoid basal cell carcinoma syndrome: a review of the literature. Int J Oral Maxillofac Surg 2004; 33:117-24. [PMID: 15050066 DOI: 10.1054/ijom.2003.0435] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2003] [Indexed: 11/18/2022]
Abstract
The nevoid basal cell carcinoma syndrome (NBCCS) or Gorlin-Goltz Syndrome is an autosomal dominant disorder principally characterized by cutaneous basal cell carcinomas, multiple keratocysts, and skeletal anomalies. The present report reviews current knowledge of this disorder that has profound relevance to specialists in Oral and Maxillo-Facial Surgery, Oral Medicine and Radiology.
Collapse
Affiliation(s)
- M Manfredi
- Sezione di Odontostomatologia--Dipartimento Scienze Otorino-Odonto Oftalmologiche e Cervico-Facciali, Università degli Studi di Parma, Italy.
| | | | | | | |
Collapse
|
50
|
Bigelow RLH, Chari NS, Unden AB, Spurgers KB, Lee S, Roop DR, Toftgard R, McDonnell TJ. Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem 2003; 279:1197-205. [PMID: 14555646 DOI: 10.1074/jbc.m310589200] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Basal cell carcinomas (BCCs) express high levels of the antiapoptotic proto-oncogene, bcl-2, and we have shown that bcl-2 contributes to the malignant phenotype in a transgenic mouse model. The basis of bcl-2 transcriptional regulation in keratinocytes is unknown. The sonic hedgehog (SHH) signaling pathway is frequently altered in BCCs. Mediators of shh signaling include the downstream transactivator, gli-1, and transrepressor, gli-3. Seven candidate gli binding sites were identified in the bcl-2 promoter. Cotransfection of increasing amounts of gli-1 in keratinoycytes resulted in a corresponding dose-dependent increase in bcl-2 promoter luciferase activity. Gli-1 was also able to up-regulate endogenous bcl-2. Gli-3 cotransfection resulted in no significant changes in bcl-2 promoter activity compared with control. Gli-3 has been demonstrated to be proteolytically processed into an N-terminal repressive form that can inhibit downstream transactivation by gli-1. Gli-3 mutants possessing only the N-terminal region or the C-terminal region were made and used in luciferase assays. The N terminus of gli-3 inhibited gli-1 transactivation of the bcl-2 promoter. Gel shift analysis and luciferase assays demonstrated that gli binding site 4 (-428 to -420), is important for gli transcriptional regulation. Skin samples from transgenic mice expressing an RU486 gli-1 transgene exhibited significantly higher levels of endogenous bcl-2 protein in epidermal keratinocytes as assessed by immunoblotting and immunohistochemistry. Together, these findings provide consistent evidence that gli proteins can transcriptionally regulate the bcl-2 promoter and that gli-3 can inhibit transactivation by gli-1. These studies further suggest that one consequence of the deregulation of shh signaling in BCC is the up-regulation of bcl-2.
Collapse
Affiliation(s)
- Rebecca L H Bigelow
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|