1
|
Siddiqui AJ, Adnan M, Saxena J, Alam MJ, Abdelgadir A, Badraoui R, Singh R. Therapeutic Potential of Plant- and Marine-Derived Bioactive Compounds in Prostate Cancer: Mechanistic Insights and Translational Applications. Pharmaceuticals (Basel) 2025; 18:286. [PMID: 40143065 PMCID: PMC11946378 DOI: 10.3390/ph18030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
It is widely recognized that prostate cancer is a multifaceted illness that is the second most common cause of cancer-related fatalities among males. Natural sources from both plants and marine organisms have long been used in treating various diseases and in the discovery of new pharmaceutical compounds. Medicinal plants, in particular, provide bioactive substances like alkaloids, phenolic compounds, terpenes, and steroids. In addition, marine natural products play a crucial role in the search for novel cancer treatments. A substantial number of anticancer drugs have been derived from natural sources, including plants, marine organisms, and microorganisms. In fact, over the past 60 years, 80% of new chemical entities have originated from natural sources, which are generally considered safer than synthetic compounds. This review seeks to emphasize the role of phytochemical compounds derived from both plant and marine sources in prostate cancer, highlighting their potential therapeutic impact. It is also intended to support global researchers working on the identification of natural-based treatments for prostate cancer.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| |
Collapse
|
2
|
Naponelli V, Piscazzi A, Mangieri D. Cellular and Molecular Mechanisms Modulated by Genistein in Cancer. Int J Mol Sci 2025; 26:1114. [PMID: 39940882 PMCID: PMC11818640 DOI: 10.3390/ijms26031114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Genistein (4',5,7-trihydroxyisoflavone) is a phytoestrogen belonging to a subclass of natural flavonoids that exhibits a wide range of pharmacological functions, including antioxidant and anti-inflammatory properties. These characteristics make genistein a valuable phytochemical compound for the prevention and/or treatment of cancer. Genistein effectively inhibits tumor growth and dissemination by modulating key cellular mechanisms. This includes the suppression of angiogenesis, the inhibition of epithelial-mesenchymal transition, and the regulation of cancer stem cell proliferation. These effects are mediated through pivotal signaling pathways such as JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin. Moreover, genistein interferes with the function of specific cyclin/CDK complexes and modulates the activation of Bcl-2/Bax and caspases, playing a critical role in halting tumor cell division and promoting apoptosis. The aim of this review is to discuss in detail the key cellular and molecular mechanisms underlying the pleiotropic anticancer effects of this flavonoid.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Annamaria Piscazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
3
|
Qiao F, Binkowski TA, Broughan I, Chen W, Natarajan A, Schiltz GE, Scheidt KA, Anderson WF, Bergan R. Protein Structure Inspired Discovery of a Novel Inducer of Anoikis in Human Melanoma. Cancers (Basel) 2024; 16:3177. [PMID: 39335149 PMCID: PMC11429909 DOI: 10.3390/cancers16183177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Drug discovery historically starts with an established function, either that of compounds or proteins. This can hamper discovery of novel therapeutics. As structure determines function, we hypothesized that unique 3D protein structures constitute primary data that can inform novel discovery. Using a computationally intensive physics-based analytical platform operating at supercomputing speeds, we probed a high-resolution protein X-ray crystallographic library developed by us. For each of the eight identified novel 3D structures, we analyzed binding of sixty million compounds. Top-ranking compounds were acquired and screened for efficacy against breast, prostate, colon, or lung cancer, and for toxicity on normal human bone marrow stem cells, both using eight-day colony formation assays. Effective and non-toxic compounds segregated to two pockets. One compound, Dxr2-017, exhibited selective anti-melanoma activity in the NCI-60 cell line screen. In eight-day assays, Dxr2-017 had an IC50 of 12 nM against melanoma cells, while concentrations over 2100-fold higher had minimal stem cell toxicity. Dxr2-017 induced anoikis, a unique form of programmed cell death in need of targeted therapeutics. Our findings demonstrate proof-of-concept that protein structures represent high-value primary data to support the discovery of novel acting therapeutics. This approach is widely applicable.
Collapse
Affiliation(s)
- Fangfang Qiao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | | | - Irene Broughan
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weining Chen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Raymond Bergan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
4
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
5
|
Zhang Y, Zhang H. MKK4 inhibitor: the hope for liver failure prevention and potential small liver graft transplantation. Chin J Nat Med 2024; 22:483-485. [PMID: 38906596 DOI: 10.1016/s1875-5364(24)60617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 06/23/2024]
Affiliation(s)
- Yanqiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Qiao F, Binknowski TA, Broughan I, Chen W, Natarajan A, Schiltz GE, Scheidt KA, Anderson WF, Bergan R. Protein Structure Inspired Drug Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594634. [PMID: 38826221 PMCID: PMC11142055 DOI: 10.1101/2024.05.17.594634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Drug discovery starts with known function, either of a compound or a protein, in-turn prompting investigations to probe 3D structure of the compound-protein interface. As protein structure determines function, we hypothesized that unique 3D structural motifs represent primary information denoting unique function that can drive discovery of novel agents. Using a physics-based protein structure analysis platform developed by us, designed to conduct computationally intensive analysis at supercomputing speeds, we probed a high-resolution protein x-ray crystallographic library developed by us. We selected 3D structural motifs whose function was not otherwise established, that offered environments supporting binding of drug-like chemicals and were present on proteins that were not established therapeutic targets. For each of eight potential binding pockets on six different proteins we accessed a 60 million compound library and used our analysis platform to evaluate binding. Using eight-day colony formation assays acquired compounds were screened for efficacy against human breast, prostate, colon and lung cancer cells and toxicity against human bone marrow stem cells. Compounds selectively inhibiting cancer growth segregated to two pockets on separate proteins. The compound, Dxr2-017, exhibited selective activity against human melanoma cells in the NCI-60 cell line screen, had an IC50 of 19 nM against human melanoma M14 cells in our eight-day assay, while over 2100-fold higher concentrations inhibited stem cells by less than 30%. We show that Dxr2-017 induces anoikis, a unique form of programmed cell death in need of targeted therapeutics. The predicted target protein for Dxr2-017 is expressed in bacteria, not in humans. This supports our strategy of focusing on unique 3D structural motifs. It is known that functionally important 3D structures are evolutionarily conserved. Here we demonstrate proof-of-concept that protein structure represents high value primary data to support discovery of novel therapeutics. This approach is widely applicable.
Collapse
Affiliation(s)
- Fangfang Qiao
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | | | - Irene Broughan
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weining Chen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Gary E. Schiltz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Raymond Bergan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
7
|
Neuberger A, Sobolevsky AI. Molecular pharmacology of the onco-TRP channel TRPV6. Channels (Austin) 2023; 17:2266669. [PMID: 37838981 PMCID: PMC10578198 DOI: 10.1080/19336950.2023.2266669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
TRPV6, a representative of the vanilloid subfamily of TRP channels, serves as the principal calcium uptake channel in the gut. Dysregulation of TRPV6 results in disturbed calcium homeostasis leading to a variety of human diseases, including many forms of cancer. Inhibitors of this oncochannel are therefore particularly needed. In this review, we provide an overview of recent advances in structural pharmacology that uncovered the molecular mechanisms of TRPV6 inhibition by a variety of small molecules, including synthetic and natural, plant-derived compounds as well as some prospective and clinically approved drugs.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | |
Collapse
|
8
|
Xia Y, Su Q, Li X, Yan S, Liu J, He C, Huang H, Jiang W, Pang Y. Two CYP93A enzymes play a dual role in isoflavonoid biosynthesis in Glycine max L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108073. [PMID: 37839274 DOI: 10.1016/j.plaphy.2023.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Glycine max L. is rich in isoflavonoids with diverse biological activities. However, isoflavonoid biosynthetic pathway is not fully elucidated in soybean. In the present study, we investigated characteristics of all the thirteen CYP93 subfamily members, and found GmCYP93A1, GmCYP93A2, and GmCYP93A3 are closely clustered, preferentially expressed in roots, and highly inducible by elicitor. When expressed in yeast, GmCYP93A1 was active towards liquiritigenin, naringenin, and 3,9-dihydroxyptercarpan, GmCYP93A2 towards 3,9-dihydroxyptercarpan with strict substrate specificity, whereas GmCYP93A3 did not show any activity towards all the tested substrates. Both GmCYP93A1 and GmCYP93A2 could catalyze 3,9-dihydroxyptercarpan into daidzein and glycinol, with both hydroxylation and aryl migration activity. Site-directed mutagenesis assays revealed that mutation in Thr446 to Ser446 in heme-binding domain increased the enzyme activity of GmCYP93A1 towards 3,9-dihydroxyptercarpan, which highlights its key amino acid residues as shown with its molecular docking with 3,9-dihydroxyptercarpan and HEM. Overexpression of GmCYP93A1 and GmCYP93A2 in the soybean hairy roots reduced the content of daidzein, whereas knockdown of these two genes increased genistein content, indicating changes in expression level of GmCYP93A1 and GmCYP93A2 altered isoflavonoid flux in soybean. Our studies on the activity of GmCYP93A1 and GmCYP93A2 enriched diverse functions of CYP93 subfamily in soybean isoflavonoid pathway, which is valuable for further understanding and bioengineering of isoflavonoid pathway in soybean.
Collapse
Affiliation(s)
- Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qian Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xue Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Su Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jinyue Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Chunfeng He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Zhang X, Huang Y, Zhu H, Liu Z, Zhang L, Li Z, Niu Y, Zhang H. Genistein microparticles prepared by antisolvent recrystallization with low-speed homogenization process. Food Chem 2023; 408:135250. [PMID: 36563619 DOI: 10.1016/j.foodchem.2022.135250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
To create genistein particles, a brand-new antisolvent recrystallization technique was employed. The response surface approach was utilized to optimize the single factor test findings, which were acquired via the preliminary tests. The ideal liquid-to-liquid ratio was 9, the solution concentration was 21 mg/mL, the nozzle diameter was 700 μm, the feed rate was 39.65 mL/min, and the homogenization rate was 1500 rpm. The smallest mean particle size measured was 202.782 nm. SEM was used to study the powder's morphology, while thermal analysis and infrared imaging were used to evaluate its characteristics. The homogeneous antisolvent recrystallization method-prepared GMP has a better dissolving rate and stronger antioxidant activity when compared to genistein powder. The antisolvent recrystallization approach used in this study, which uses low-speed homogenizing instead of conventional grinding and homogenizing, can successfully reduce particle size, improve bioavailability, and use less energy. This topic may thus be made popular because it has real-world applications.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China; Northeast Agricultural University, Harbin 150030, China; Heilongjiang Xueqin Technology Co., LTD, Harbin 150030, China.
| | - Yan Huang
- Jiaying University, Meizhou 514015, China
| | - Hongwei Zhu
- Northeast Agricultural University, Harbin 150030, China; Heilongjiang Xueqin Technology Co., LTD, Harbin 150030, China
| | - Zhiwei Liu
- Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
| | - Lubin Zhang
- Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China
| | - Zhiru Li
- Northeast Agricultural University, Harbin 150030, China; Heilongjiang Xueqin Technology Co., LTD, Harbin 150030, China
| | - Yaqian Niu
- Northeast Agricultural University, Harbin 150030, China
| | | |
Collapse
|
10
|
Neuberger A, Trofimov YA, Yelshanskaya MV, Nadezhdin KD, Krylov NA, Efremov RG, Sobolevsky AI. Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein. Nat Commun 2023; 14:2659. [PMID: 37160865 PMCID: PMC10169861 DOI: 10.1038/s41467-023-38352-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Calcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials. Despite the pharmacological value, the molecular mechanism of TRPV6 inhibition by genistein has remained enigmatic. We use cryo-EM combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to show that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4-S5 and S6-TRP helix regions. The unprecedented mechanism of TRPV6 inhibition by genistein uncovers new possibilities in structure-based drug design.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
McNamara B, Harold J, Manavella D, Bellone S, Mutlu L, Hartwich TMP, Zipponi M, Yang-Hartwich Y, Demirkiran C, Verzosa MSZ, Yang K, Choi J, Dong W, Buza N, Hui P, Altwerger G, Huang GS, Andikyan V, Clark M, Ratner E, Azodi M, Schwartz PE, Burton EA, Inagaki H, Albers A, Zhang C, Bollag G, Schlessinger J, Santin AD. Uterine leiomyosarcomas harboring MAP2K4 gene amplification are sensitive in vivo to PLX8725, a novel MAP2K4 inhibitor. Gynecol Oncol 2023; 172:65-71. [PMID: 36958197 PMCID: PMC10192120 DOI: 10.1016/j.ygyno.2023.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
INTRODUCTION Uterine leiomyosarcomas (uLMS) are rare, highly aggressive tumors. Up to 30% of uLMS may harbor gain of function (GOF) in the MAP2K4 gene, important for tumor cell proliferation, differentiation and metastasis. We investigated the in vivo activity of a novel MAP2K4 inhibitor, PLX8725, against uLMS harboring MAP2K4 gene-amplification. METHODS Two fully characterized uLMS (i.e., LEY-11 and LEY-16) were grafted into female CB-17/SCID mice. Treatments with control vehicle or PLX8725 (50 mg/kg) were given via oral gavage daily on weekdays for up to 60 days. Tumor volume differences were calculated with two-way ANOVA. Pharmacokinetic (PK) and mechanistic studies of PLX8725 in uLMS PDX models were also performed. RESULTS Both uLMS tumors evaluated demonstrated GOF in MAP2K4 (i.e., 3 CNV in both LEY-11 and LEY-16). Tumor growth inhibition was significantly greater in both PDX LEY-11 and PDX LEY-16 treated with PLX8725 when compared to controls (p < 0.001). Median overall survival was also significantly longer in both PDX LEY-11 (p = 0.0047) and PDX LEY-16 (p = 0.0058) treatment cohorts when compared to controls. PLX8725 oral treatment was well tolerated, and PK studies demonstrated that oral PLX8725 gives extended exposure in mice. Ex vivo tumor samples after PLX8725 exposure decreased phosphorylated-ATR, JNK and p38, and increased expression of apoptotic molecules on western blot. CONCLUSION PLX8725 demonstrates promising in vivo activity against PDX models of uLMS harboring GOF alterations in the MAP2K4 gene with tolerable toxicity. Phase I trials of PLX8725 in advanced, recurrent, chemotherapy-resistant uLMS patients are warranted.
Collapse
Affiliation(s)
- Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Justin Harold
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Diego Manavella
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Tobias Max Philipp Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Margherita Zipponi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Miguel Skyler Z Verzosa
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Kevin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, 02841 Seoul, Republic of Korea
| | - Weilai Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Gloria S Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Vaagn Andikyan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Mitchell Clark
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | - Peter E Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America
| | | | - Hiroaki Inagaki
- Plexxikon Inc., South San Francisco, CA 94080, United States of America
| | - Aaron Albers
- Plexxikon Inc., South San Francisco, CA 94080, United States of America
| | - Chao Zhang
- Plexxikon Inc., South San Francisco, CA 94080, United States of America
| | - Gideon Bollag
- Plexxikon Inc., South San Francisco, CA 94080, United States of America
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, CT 06520, United States of America
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
| |
Collapse
|
12
|
Katzengruber L, Sander P, Laufer S. MKK4 Inhibitors-Recent Development Status and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24087495. [PMID: 37108658 PMCID: PMC10144091 DOI: 10.3390/ijms24087495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
MKK4 (mitogen-activated protein kinase kinase 4; also referred to as MEK4) is a dual-specificity protein kinase that phosphorylates and regulates both JNK (c-Jun N-terminal kinase) and p38 MAPK (p38 mitogen-activated protein kinase) signaling pathways and therefore has a great impact on cell proliferation, differentiation and apoptosis. Overexpression of MKK4 has been associated with aggressive cancer types, including metastatic prostate and ovarian cancer and triple-negative breast cancer. In addition, MKK4 has been identified as a key regulator in liver regeneration. Therefore, MKK4 is a promising target both for cancer therapeutics and for the treatment of liver-associated diseases, offering an alternative to liver transplantation. The recent reports on new inhibitors, as well as the formation of a startup company investigating an inhibitor in clinical trials, show the importance and interest of MKK4 in drug discovery. In this review, we highlight the significance of MKK4 in cancer development and other diseases, as well as its unique role in liver regeneration. Furthermore, we present the most recent progress in MKK4 drug discovery and future challenges in the development of MKK4-targeting drugs.
Collapse
Affiliation(s)
- Leon Katzengruber
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Pascal Sander
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
13
|
New dual functional CYP450 gene involves in isoflavone biosynthesis in Glycine max L. Synth Syst Biotechnol 2023; 8:157-167. [PMID: 36714060 PMCID: PMC9860299 DOI: 10.1016/j.synbio.2023.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Glycine max L. accumulates a large amount of isoflavonoid compounds, which is beneficial for plant defense, plant-microbe symbiotic interactions, and human health. Several CYP450 subfamily genes are involved in the flavonoid biosynthetic pathway in plants. In the present study, we found 24 CYP82 subfamily genes were differentially expressed in various tissues of soybean, in Phytophthora sojae-infected soybean varieties and in soybean hairy roots treated with cell wall glucan elicitor. Six of them (GmCYP82A2, GmCYP82A3, GmCYP82A4, GmCYP82A23, GmCYP82C20 and GmCYP82D26) were co-expressed with other known isoflavonoid pathway genes in soybean. Their enzymatic activity in yeast feeding assays showed that only GmCYP82D26 was able to convert naringenin to daidzein with both aryl migration and dehydration function. When GmCYP82D26 was over-expressed in soybean hairy roots, the contents of the two major isoflavonoid aglycones in soybean (daidzein and genistein) were reduced, but total flavonoids were not affected. When GmCYP82D26 was suppressed by RNAi in the hairy roots, daidzein content was decreased but genistein content was increased, with unchanged total flavonoid content. GmCYP82D26 was found to be localized in the endoplasmic reticulum at subcellular level when transiently expressed in tobacco leaf epidermis. GmCYP82D26 gene was preferentially expressed in roots, with low expression level in other tissues in soybean. Homology modeling and molecular docking showed that GmCYP82D26 could form hydrogen bond with both HEM and naringenin at C5-OH and C4 carbonyl. All these results indicated that GmCYP82D26 possesses new and dual enzymatic activity, which bridges the two branches (daidzein and genistein branch) of isoflavonoid pathway in soybean.
Collapse
|
14
|
Tanabe H, Suzuki T, Ohishi T, Isemura M, Nakamura Y, Unno K. Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020525. [PMID: 36677584 PMCID: PMC9862901 DOI: 10.3390/molecules28020525] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs' expression. Other mechanisms by which EGCG inhibits MMPs include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress the production of inflammatory cytokines such as TNFα and IL-1β. Findings from studies on EGCG presented here may be useful in the development of more effective anti-MMP agents, which would give beneficial effects on cancer and other diseases.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Faculty of Health and Welfare Science, Nayoro City University, Nayoro 096-8641, Hokkaido, Japan
- Correspondence: (H.T.); (T.O.)
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women’s College of Liberal Arts, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu 410-0301, Shizuoka, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Correspondence: (H.T.); (T.O.)
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiko Unno
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
15
|
Javed A, Özduman G, Altun S, Duran D, Yerli D, Özar T, Şimşek F, Korkmaz KS. Mitotic Kinase Inhibitors as Therapeutic Interventions for Prostate Cancer: Evidence from In Vitro Studies. Endocr Metab Immune Disord Drug Targets 2023; 23:1699-1712. [PMID: 36872354 DOI: 10.2174/1871530323666230303092243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 03/07/2023]
Abstract
Prostate cancer is one of the devastating diseases characterized by genetic changes leading to uncontrolled growth and metastasis of the cells of the prostate gland and affects men worldwide. Conventional hormonal and chemotherapeutic agents are effective in mitigating the disease if diagnosed at an early stage. All dividing eukaryotic cells require mitotic progression for the maintenance of genomic integrity in progeny populations. The protein kinases, upon activation and de-activation in an ordered fashion, lead to spatial and temporal regulation of the cell division process. The entry into mitosis along with the progression into sub-phases of mitosis is ensured due to the activity of mitotic kinases. These kinases include Polo-Like-Kinase 1 (PLK1), Aurora kinases, and Cyclin-Dependent- Kinase 1 (CDK1), among others. The mitotic kinases, among others, are usually overexpressed in many cancers and can be targeted using small molecule inhibitors to reduce the effects of these regulators on mechanisms, such as regulation of genomic integrity and mitotic fidelity. In this review, we attempted to discuss the appropriate functions of mitotic kinases revealed through cell culture studies and the impact of their respective inhibitors derived in pre-clinical studies. The review is designed to elucidate the growing field of small molecule inhibitors and their functional screening or mode of action at the cellular and molecular level in the context of Prostate Cancer. Therefore, studies performed specifically on cells of Prostatic-origin are narrated in this review, culminating in a comprehensive view of the specific field of mitotic kinases that can be targeted for therapy of Prostate cancer.
Collapse
Affiliation(s)
- Aadil Javed
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Gülseren Özduman
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Sevda Altun
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Doğan Duran
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Dilan Yerli
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Tilbe Özar
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Faruk Şimşek
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
16
|
Affiliation(s)
- Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Livia Basile
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
18
|
Ivashkevich A. The role of isoflavones in augmenting the effects of radiotherapy. Front Oncol 2022; 12:800562. [PMID: 36936272 PMCID: PMC10016616 DOI: 10.3389/fonc.2022.800562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 08/31/2022] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major health problems and the second cause of death worldwide behind heart disease. The traditional soy diet containing isoflavones, consumed by the Asian population in China and Japan has been identified as a protective factor from hormone-related cancers. Over the years the research focus has shifted from emphasizing the preventive effect of isoflavones from cancer initiation and promotion to their efficacy against established tumors along with chemo- and radiopotentiating effects. Studies performed in mouse models and results of clinical trials emphasize that genistein or a mixture of isoflavones, containing in traditional soy diet, could be utilized to both potentiate the response of cancer cells to radiotherapy and reduce radiation-induced toxicity in normal tissues. Currently ongoing clinical research explores a potential of another significant isoflavone, idronoxil, also known as phenoxodiol, as radiation enhancing agent. In the light of the recent clinical findings, this article reviews the accumulated evidence which support the clinically desirable interactions of soy isoflavones with radiation therapy resulting in improved tumor treatment. This review discusses important aspects of the development of isoflavones as anticancer agents, and mechanisms potentially relevant to their activity in combination with radiation therapy of cancer. It gives a critical overview of studies characterizing isoflavone targets such as topoisomerases, ENOX2/PMET, tyrosine kinases and ER receptor signaling, and cellular effects on the cell cycle, DNA damage, cell death, and immune responses.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
- Noxopharm, Gordon, NSW, Australia
- *Correspondence: Alesia Ivashkevich,
| |
Collapse
|
19
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
20
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
21
|
Baier A, Szyszka R. Compounds from Natural Sources as Protein Kinase Inhibitors. Biomolecules 2020; 10:biom10111546. [PMID: 33198400 PMCID: PMC7698043 DOI: 10.3390/biom10111546] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The advantage of natural compounds is their lower number of side-effects when compared to most synthetic substances. Therefore, over the past several decades, the interest in naturally occurring compounds is increasing in the search for new potent drugs. Natural compounds are playing an important role as a starting point when developing new selective compounds against different diseases. Protein kinases play a huge role in several diseases, like cancers, neurodegenerative diseases, microbial infections, or inflammations. In this review, we give a comprehensive view of natural compounds, which are/were the parent compounds in the development of more potent substances using computational analysis and SAR studies.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Animal Physiology and Toxicology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Ryszard Szyszka
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
22
|
Jiang J, Jiang B, He Z, Ficarro SB, Che J, Marto JA, Gao Y, Zhang T, Gray NS. Discovery of Covalent MKK4/7 Dual Inhibitor. Cell Chem Biol 2020; 27:1553-1560.e8. [PMID: 32916088 DOI: 10.1016/j.chembiol.2020.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
MKK4/7 are kinases that phosphorylate JNKs and regulate the MAPK signaling pathway. Their overexpression has been associated with tumorigenesis and aggressiveness in cancers such as breast, prostate, non-small cell lung, and pediatric leukemia, making them a potential target for inhibitor development. Here, we report the discovery, development, and validation of a dual MKK4/7 inhibitor, BSJ-04-122, that covalently targets a conserved cysteine located before the DFG motif and displays excellent kinome selectivity. BSJ-04-122 exhibits potent cellular target engagement and induces robust target-specific downstream effects. The combination of the dual MKK4/7 inhibitor with a selective, covalent JNK inhibitor demonstrated an enhanced antiproliferative activity against triple-negative breast cancer cells. Taken together, the results show that BSJ-04-122 represents a pharmacological probe for MKK4/7 and credential covalent targeting as a way to explore the therapeutic potential of these kinases.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Gao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Daouk R, Bahmad HF, Saleh E, Monzer A, Ballout F, Kadara H, Abou-Kheir W. Genome-wide gene expression analysis of a murine model of prostate cancer progression: Deciphering the roles of IL-6 and p38 MAPK as potential therapeutic targets. PLoS One 2020; 15:e0237442. [PMID: 32790767 PMCID: PMC7425932 DOI: 10.1371/journal.pone.0237442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most commonly diagnosed cancer and the second leading cause of cancer-related deaths among adult males globally. The poor prognosis of PCa is largely due to late diagnosis of the disease when it has already progressed to an advanced stage marked by androgen-independence, thus necessitating new strategies for early detection and treatment. We construe that these direly needed advances are limited by our poor understanding of early events in the progression of PCa and that would thus represent ideal targets for early intervention. To begin to fill this void, we interrogated molecular "oncophenotypes" that embody the transition of PCa from an androgen-dependent (AD) to-independent (AI) state. METHODS To accomplish this aim, we used our previously established AD and AI murine PCa cell lines, PLum-AD and PLum-AI, respectively, which recapitulate primary and progressive PCa morphologically and molecularly. We statistically surveyed global gene expressions in these cell lines by microarray analysis. Differential profiles were functionally interrogated by pathways, gene set enrichment and topological gene network analyses. RESULTS Gene expression analysis of PLum-AD and PLum-AI transcriptomes (n = 3 each), revealed 723 differentially expressed genes (392 upregulated and 331 downregulated) in PLum-AI compared to PLum-AD cells. Gene set analysis demonstrated enrichment of biological functions and pathways in PLum-AI cells that are central to tumor aggressiveness including cell migration and invasion facilitated by epithelial-to-mesenchymal transition (EMT). Further analysis demonstrated that the p38 mitogen-activated protein kinase (MAPK) was predicted to be significantly activated in the PLum-AI cells, whereas gene sets previously associated with favorable response to the p38 inhibitor SB203580 were attenuated (i.e., inversely enriched) in the PLum-AI cells, suggesting that these aggressive cells may be therapeutically vulnerable to p38 inhibition. Gene set and gene-network analysis also alluded to activation of other signaling networks particularly those associated with enhanced EMT, inflammation and immune function/response including, but not limited to Tnf, IL-6, Mmp 2, Ctgf, and Ptges. Accordingly, we chose SB203580 and IL-6 to validate their effect on PLum-AD and PLum-AI. Some of the common genes identified in the gene-network analysis were validated at the molecular and functional level. Additionally, the vulnerability to SB203580 and the effect of IL-6 were also validated on the stem/progenitor cell population using the sphere formation assay. CONCLUSIONS In summary, our study highlights pathways associated with an augmented malignant phenotype in AI cells and presents new high-potential targets to constrain the aggressive malignancy seen in the castration-resistant PCa.
Collapse
Affiliation(s)
- Reem Daouk
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States of America
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States of America
| | - Eman Saleh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Ballout
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
24
|
Kwong AJ, Scheidt KA. Non-'classical' MEKs: A review of MEK3-7 inhibitors. Bioorg Med Chem Lett 2020; 30:127203. [PMID: 32389527 PMCID: PMC7299838 DOI: 10.1016/j.bmcl.2020.127203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The MAPK pathways are an enduring area of interest due to their essential roles in cell processes. Increased expression and activity can lead to a multitude of diseases, sparking research efforts in developing inhibitors against these kinases. Though great strides have been made in developing MEK1/2 inhibitors, there is a notable lack of chemical probes for MEK3-7, given their central role in stimuli response, cell growth, and development. This review summarizes the progress that has been made on developing small molecule probes for MEK3-7, the specific disease states in which they have been studied, and their potential to become novel therapeutics.
Collapse
Affiliation(s)
- Ada J Kwong
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States.
| |
Collapse
|
25
|
Xu WF, Wang ZJ, Li K, Shen YQ, Lu K, Lv XY, Wen YX, Jin RM. Huai Qi Huang-induced Apoptosis via Down-regulating PRKCH and Inhibiting RAF/MEK/ERK Pathway in Ph+ Leukemia Cells. Curr Med Sci 2020; 40:354-362. [DOI: 10.1007/s11596-020-2181-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/05/2020] [Indexed: 02/07/2023]
|
26
|
Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells 2020; 9:cells9020460. [PMID: 32085497 PMCID: PMC7072821 DOI: 10.3390/cells9020460] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) represents a major cause of cancer mortality among men in developed countries. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa; in this condition, tumor cells acquire the ability to escape cell death and develop resistance to current therapies. Thus, new therapeutic approaches for PCa management are urgently needed. In this setting, natural products have been extensively studied for their anti-PCa activities, such as tumor growth suppression, cell death induction, and inhibition of metastasis and angiogenesis. Additionally, numerous studies have shown that phytochemicals can specifically target the androgen receptor (AR) signaling, as well as the PCa stem cells (PCSCs). Interestingly, many clinical trials have been conducted to test the efficacy of nutraceuticals in human subjects, and they have partially confirmed the promising results obtained in vitro and in preclinical models. This article summarizes the anti-cancer mechanisms and therapeutic potentials of different natural compounds in the context of PCa prevention and treatment.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- SPILLOproject, 20037 Paderno Dugnano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- Correspondence: ; Tel.: +39-0250318213
| |
Collapse
|
27
|
Chen X, Hao A, Li X, Ye K, Zhao C, Yang H, Ma H, Hu L, Zhao Z, Hu L, Ye F, Sun Q, Zhang H, Wang H, Yao X, Fang Z. Activation of JNK and p38 MAPK Mediated by ZDHHC17 Drives Glioblastoma Multiforme Development and Malignant Progression. Theranostics 2020; 10:998-1015. [PMID: 31938047 PMCID: PMC6956818 DOI: 10.7150/thno.40076] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023] Open
Abstract
Rationale: Glioblastoma multiforme (GBM) almost invariably gain invasive phenotype with limited therapeutic strategy and ill-defined mechanism. By studying the aberrant expression landscape of gliomas, we find significant up-regulation of p-MAPK level in GBM and a potent independent prognostic marker for overall survival. DHHC family was generally expressed in glioma and closely related to the activation of MAPK signaling pathway, but its role and clinical significance in GBM development and malignant progression are yet to be determined. Method: Bioinformatics analysis, western blotting and immunohistochemistry (IHC) were performed to detect the expression of ZDHHC17 in GBM. The biological function of ZDHHC17 was demonstrated by a series of in vitro and in vivo experiments. Pharmacological treatment, flow cytometry, Transwell migration assay, Co- Immunoprecipitation and GST pulldown were carried out to demonstrate the potential mechanisms of ZDHHC17. Results: ZDHHC17 is up-regulated and coordinated with MAPK activation in GBM. Mechanistically, ZDHHC17 interacts with MAP2K4 and p38/JNK to build a signaling module for MAPK activation and malignant progression. Notably, the ZDHHC17-MAP2K4-JNK/p38 signaling module contributes to GBM development and malignant progression by promoting GBM cell tumorigenicity and glioma stem cell (GSC) self-renewal. Moreover, we identify a small molecule, genistein, as a specific inhibitor to disrupt ZDHHC17-MAP2K4 complex formation for GBM cell proliferation and GSC self-renewal. Moreover, genistein, identified herein as a lead candidate for ZDHHC17-MAP2K4 inhibition, demonstrated potential therapeutic effect in patients with ZDHHC17-expressing GBM. Conclusions: Our study identified disruption of a previously unrecognized signaling module as a target strategy for GBM treatment, and provided direct evidence of the efficacy of its inhibition in glioma using a specific inhibitor.
Collapse
|
28
|
Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA Interplay in Genitourinary Cancers. Cells 2019; 8:E1619. [PMID: 31842336 PMCID: PMC6952810 DOI: 10.3390/cells8121619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Genitourinary cancers (GCs) include a large group of different types of tumors localizing to the kidney, bladder, prostate, testis, and penis. Despite highly divergent molecular patterns, most GCs share commonly disturbed signaling pathways that involve the activity of TGF-β (transforming growth factor beta). TGF-β is a pleiotropic cytokine that regulates key cancer-related molecular and cellular processes, including proliferation, migration, invasion, apoptosis, and chemoresistance. The understanding of the mechanisms of TGF-β actions in cancer is hindered by the "TGF-β paradox" in which early stages of cancerogenic process are suppressed by TGF-β while advanced stages are stimulated by its activity. A growing body of evidence suggests that these paradoxical TGF-β actions could result from the interplay with microRNAs: Short, non-coding RNAs that regulate gene expression by binding to target transcripts and inducing mRNA degradation or inhibition of translation. Here, we discuss the current knowledge of TGF-β signaling in GCs. Importantly, TGF-β signaling and microRNA-mediated regulation of gene expression often act in complicated feedback circuits that involve other crucial regulators of cancer progression (e.g., androgen receptor). Furthermore, recently published in vitro and in vivo studies clearly indicate that the interplay between microRNAs and the TGF-β signaling pathway offers new potential treatment options for GC patients.
Collapse
Affiliation(s)
- Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education; 01-813 Warsaw, Poland;
| | - Piotr Kryst
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | - Slawomir Poletajew
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | | |
Collapse
|
29
|
Mishra RK, Deibler KK, Clutter MR, Vagadia PP, O'Connor M, Schiltz GE, Bergan R, Scheidt KA. Modeling MEK4 Kinase Inhibitors through Perturbed Electrostatic Potential Charges. J Chem Inf Model 2019; 59:4460-4466. [PMID: 31566378 DOI: 10.1021/acs.jcim.9b00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MEK4, mitogen-activated protein kinase kinase 4, is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. With advances in both computer and biological high-throughput screening, selective chemical entities can be discovered. Structure-based quantitative structure-activity relationship (QSAR) modeling often fails to generate accurate models due to poor alignment of training sets containing highly diverse compounds. Here we describe a highly predictive, nonalignment based robust QSAR model based on a data set of strikingly diverse MEK4 inhibitors. We computed the electrostatic potential (ESP) charges using a density functional theory (DFT) formalism of the donor and acceptor atoms of the ligands and hinge residues. Novel descriptors were then generated from the perturbation of the charge densities of the donor and acceptor atoms and were used to model a diverse set of 84 compounds, from which we built a robust predictive model.
Collapse
Affiliation(s)
- Rama K Mishra
- Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Pharmacology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| | - Kristine K Deibler
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Matthew R Clutter
- Chemistry of Life Processes Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| | - Purav P Vagadia
- Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Matthew O'Connor
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Pharmacology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| | - Raymond Bergan
- Knight Cancer Institute , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Karl A Scheidt
- Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Pharmacology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States.,Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Chemistry of Life Processes Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| |
Collapse
|
30
|
Diet and lifestyle considerations for patients with prostate cancer. Urol Oncol 2019; 38:105-117. [PMID: 31327752 DOI: 10.1016/j.urolonc.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To review the literature and provide recommendations on diet and lifestyle considerations in patients with prostate cancer using evidence from randomized controlled trials (RCTs) with additional considerations based on observational evidence. MATERIALS AND METHODS We initiated our search on ClinicalTrials.gov combining the term "prostate cancer" with a variety of diet and lifestyle factors. We then supplemented our summary of publications from registered trials by including other publications available on Pubmed. RESULTS There is a well-established benefit of exercise for improving functional outcomes and pelvic floor muscle training for improving treatment-related adverse effects. Multimodality interventions that integrate several factors (e.g., low-saturated fat, plant-based, whole-food diets with exercise, and stress reduction) appear to have the most clinically significant benefit for patients with prostate cancer. Ongoing multimodality interventions are including the efficacy of implementation strategies as observed outcomes. Limited RCT evidence suggests a clinically significant benefit for guided imagery/progressive muscle relaxation, Pilates, and lycopene-rich diets and a modest benefit for green tea, qigong, massage, and avoidance of nonprescribed vitamin and mineral supplements. Observational and single arm trial evidence indicates a need for further exploration of acupuncture, coffee, cruciferous vegetables, fish, Larrea tridentata, mushrooms, and vegetable-derived fats and avoidance of eggs, dairy, poultry with skin, processed red meat, and saturated fat. Published trials suggest no benefit from hypnosis, milk thistle, pomegranate, soy, or omega-3 fatty acid supplementation. CONCLUSIONS Our search demonstrated that most diet and lifestyle factors identified from observational studies have limited data from RCTs. Few items have shown early evidence of benefit. The best recommendation for patients with prostate cancer is to form a habit of wellness through healthy eating, aerobic and resistance exercise, and psychological well-being. Future trial development should consider how interventions can be implemented into real world practice.
Collapse
|
31
|
Zhang H, Gordon R, Li W, Yang X, Pattanayak A, Fowler G, Zhang L, Catalona WJ, Ding Y, Xu L, Huang X, Jovanovic B, Kelly DL, Jiang H, Bergan R. Genistein treatment duration effects biomarkers of cell motility in human prostate. PLoS One 2019; 14:e0214078. [PMID: 30917169 PMCID: PMC6436751 DOI: 10.1371/journal.pone.0214078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/06/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Long term dietary consumption of genistein by Chinese men is associated with decreased PCa metastasis and mortality. Short term treatment of US men with prostate cancer (PCa) with genistein decreases MMP-2 in prostate tissue. MEK4 regulates MMP-2 expression, drives PCa metastasis, and genistein inhibits MEK4, decreases MMP-2 expression and dietary dosing inhibits human PCa metastasis in mice. This study examines short- versus long-term treatment effects of genistein in humans and in vitro. METHODS AND FINDINGS US men with localized PCa were treated on a phase II trial with genistein (N = 14) versus not (N = 14) for one month prior to radical prostatectomy. Prostate epithelial cells were removed from fresh frozen tissue by laser capture microdissection, and the expression of 12,000 genes profiled. Genistein significantly altered the expression of four genes, three had established links to cancer cell motility and metastasis. Of these three, one was a non-coding transcript, and the other two were BASP1 and HCF2. Genistein increased BASP1 expression in humans, and its engineered over expression and knockdown demonstrated that it suppressed cell invasion in all six human prostate cell lines examined. Genistein decreased HCF2 expression in humans, and it was shown to increase cell invasion in all cell lines examined. The expression of MMP-2, MEK4 and BASP1 was then measured in formalin fixed prostate tissue from N = 38 Chinese men living in China and N = 41 US men living in the US, both cohorts with localized PCa. MMP-2 was 52% higher in Chinese compared to US tissue (P < 0.0001), MEK4 was 48% lower (P < 0.0001), and BASP1 was unaltered. Treatment of PC3 human PCa cells in vitro for up to 8 weeks demonstrated that short term genistein treatment decreased MMP-2, while long term treatment increased it, both changes being significant (P<0.05) compared to untreated control cells. Long term genistein-treated cells retained their responsiveness to genistein's anti-motility effect. CONCLUSIONS Genistein inhibits pathways in human prostate that drive transformation to a lethal high motility phenotype. Long term treatment induces compensatory changes in biomarkers of efficacy. The current strategy of using such biomarkers after short term intervention as go/no-go determinants in early phase chemoprevention trials should be carefully examined.
Collapse
Affiliation(s)
- Hu Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Wenqi Li
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ximing Yang
- Department of Pathology, Northwestern University, Chicago, Illinois, United States of America
| | - Abhinandan Pattanayak
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Graham Fowler
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Limin Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - William J. Catalona
- Department of Urology, Northwestern University, Chicago, Illinois, United States of America
| | - Yongzeng Ding
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Li Xu
- Department of Gastroenterology, Xiang’an Hospital of Xiamen University, FujianXiamen, China
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Borko Jovanovic
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - David L. Kelly
- Fred & Pamela Buffet Cancer Center, University Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
32
|
Deibler KK, Schiltz GE, Clutter MR, Mishra RK, Vagadia PP, O’Connor M, George MD, Gordon R, Fowler G, Bergan R, Scheidt KA. Synthesis and Biological Evaluation of 3-Arylindazoles as Selective MEK4 Inhibitors. ChemMedChem 2019; 14:615-620. [PMID: 30707493 PMCID: PMC6476181 DOI: 10.1002/cmdc.201900019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/30/2019] [Indexed: 01/19/2023]
Abstract
Herein we report the discovery of a novel series of highly potent and selective mitogen-activated protein kinase kinase 4 (MEK4) inhibitors. MEK4 is an upstream kinase in MAPK signaling pathways that phosphorylates p38 MAPK and JNK in response to mitogenic and cellular stress queues. MEK4 is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. Optimization of this series via structure-activity relationships and molecular modeling led to the identification of compound 6 ff (4-(6-fluoro-2H-indazol-3-yl)benzoic acid), a highly potent and selective MEK4 inhibitor. This series of inhibitors is the first of its kind in both activity and selectivity and will be useful in further defining the role of MEK4 in prostate and other cancers.
Collapse
Affiliation(s)
- Kristine K. Deibler
- Department of Chemistry, Northwestern University, Evanston, 60208, Illinois, USA,
| | - Gary E. Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, 60611, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, 60611, Illinois, USA
| | - Matthew R. Clutter
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, 60611, Illinois, USA
- Chemistry of Life Process Institute, Northwestern University, Evanston, 60208, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, 60208, Illinois, USA
| | - Rama K. Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, 60611, Illinois, USA
| | - Purav P. Vagadia
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, 60208, USA
| | - Matthew O’Connor
- Department of Chemistry, Northwestern University, Evanston, 60208, Illinois, USA,
| | - Mariam Donny George
- Chemistry of Life Process Institute, Northwestern University, Evanston, 60208, Illinois, USA
| | - Ryan Gordon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Graham Fowler
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Raymond Bergan
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, Evanston, 60208, Illinois, USA,
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, 60611, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, 60611, Illinois, USA
- Chemistry of Life Process Institute, Northwestern University, Evanston, 60208, Illinois, USA
| |
Collapse
|
33
|
Ajdžanovic V, Filipovic B, Miljic D, Mijatovic S, Maksimovic-Ivanic D, Miler M, Živanovic J, Miloševic V. Prostate cancer metastasis and soy isoflavones: a dogfight over a bone. EXCLI JOURNAL 2019; 18:106-126. [PMID: 30956643 PMCID: PMC6449674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/12/2019] [Indexed: 11/04/2022]
Abstract
Prostate cancer is a complex, progressive, bone-tropic disease, which is usually associated with skeletal issues, poor mobility and a fatal outcome when it reaches the metastatic phase. Soy isoflavones, steroid-like compounds from soy-based food/dietary supplements, have been found to decrease the risk of prostate cancer in frequent consumers. Herein, we present a systematization of the data on soy isoflavone effects at different stages of metastatic prostate cancer progression, with a particular interest in the context of bone-related molecular events. Specifically, soy isoflavones have been determined to downregulate the prostate cancer cell androgen receptors, reverse the epithelial to mesenchymal transition of these cells, decrease the expressions of prostate-specific antigen, matrix metalloproteinase and serine proteinase, and reduce the superficial membrane fluidity in prostate cancer cells. In addition, soy isoflavones suppress the angiogenesis that follows prostate cancer growth, obstruct prostate cancer cells adhesion to the vascular endothelium and their extravasation in the area of future bone lesions, improve the general bone morphofunctional status, have a beneficial effect on prostate cancer metastasis-caused osteolytic/osteoblastic lesions and possibly affect the pre-metastatic niche formation. The observed, multilevel antimetastatic properties of soy isoflavones imply that they should be considered as promising components of combined therapeutic approaches to advanced prostate cancer.
Collapse
Affiliation(s)
- Vladimir Ajdžanovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Branko Filipovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Dragana Miljic
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jasmina Živanovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Verica Miloševic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
35
|
Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling. Int J Mol Sci 2018; 19:E2624. [PMID: 30189583 PMCID: PMC6165334 DOI: 10.3390/ijms19092624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and β (ERβ), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| |
Collapse
|
36
|
Dutta B, Park JE, Qing ITY, Kon OL, Sze SK. Soy-Derived Phytochemical Genistein Modifies Chromatome Topology to Restrict Cancer Cell Proliferation. Proteomics 2018; 18:e1700474. [PMID: 29963755 DOI: 10.1002/pmic.201700474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Epidemiological data indicate that human cancer risk is significantly reduced by the consumption of soy-based foods containing the "phytoestrogen" genistein, which can signal via host cell estrogen receptors. While additional chemoprotective effects of genistein induced by epigenetic factors have also been reported, the key molecules and mechanisms involved are poorly defined. We therefore investigated genistein effects on chromatin-bound proteins in the estrogen receptor-deficient cell line MDA-MB-231 which is insensitive to phytoestrogen signaling. After exposure to low-dose genistein for >1 month, MDA-MB-231 cells exhibited stable epigenetic alterations that are analyzed via partial MNase digestion and TMT-based quantitative proteomics. 3177 chromatin-bound proteins are identified with high confidence, including 882 molecules that displayed altered binding topology after cell conditioning with genistein. Prolonged phytochemical exposure conferred heritable changes in the binding topology of key epigenetic regulators including ATRX, SUV39H1/H2, and HP1BP3 that are preserved in untreated progeny, resulting in sustained downregulation of proliferation genes and reduced cell growth. These data indicate that soy derivative genistein exerts complex estrogen receptor-independent effects on the epigenome likely to influence tumorigenesis by restricting cell growth.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ivan Toh Yi Qing
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Oi Lian Kon
- Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
37
|
Xu L, Gordon R, Farmer R, Pattanayak A, Binkowski A, Huang X, Avram M, Krishna S, Voll E, Pavese J, Chavez J, Bruce J, Mazar A, Nibbs A, Anderson W, Li L, Jovanovic B, Pruell S, Valsecchi M, Francia G, Betori R, Scheidt K, Bergan R. Precision therapeutic targeting of human cancer cell motility. Nat Commun 2018; 9:2454. [PMID: 29934502 PMCID: PMC6014988 DOI: 10.1038/s41467-018-04465-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Increased cancer cell motility constitutes a root cause of end organ destruction and mortality, but its complex regulation represents a barrier to precision targeting. We use the unique characteristics of small molecules to probe and selectively modulate cell motility. By coupling efficient chemical synthesis routes to multiple upfront in parallel phenotypic screens, we identify that KBU2046 inhibits cell motility and cell invasion in vitro. Across three different murine models of human prostate and breast cancer, KBU2046 inhibits metastasis, decreases bone destruction, and prolongs survival at nanomolar blood concentrations after oral administration. Comprehensive molecular, cellular and systemic-level assays all support a high level of selectivity. KBU2046 binds chaperone heterocomplexes, selectively alters binding of client proteins that regulate motility, and lacks all the hallmarks of classical chaperone inhibitors, including toxicity. We identify a unique cell motility regulatory mechanism and synthesize a targeted therapeutic, providing a platform to pursue studies in humans. In this study, the authors identify and validate a halogen-substituted isoflavanone able to inhibit prostate cancer cell motility, invasion and metastasis in vitro and in vivo. They demonstrate its ability to selectively inhibit activation of client proteins that stimulate cell motility.
Collapse
Affiliation(s)
- Li Xu
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Gastroenterology, Xiang'an Hospital of Xiamen University, Fujian, 361101, Xiamen, China
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Rebecca Farmer
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Abhinandan Pattanayak
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Andrew Binkowski
- Department of Computer Science, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Michael Avram
- Department of Anesthesiology, Northwestern University, Chicago, IL, 60611, USA
| | - Sankar Krishna
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Eric Voll
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Janet Pavese
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Juan Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - James Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Andrew Mazar
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Antoinette Nibbs
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Wayne Anderson
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL, 60611, USA
| | - Lin Li
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Borko Jovanovic
- Department of Preventive Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sean Pruell
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matias Valsecchi
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rick Betori
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Karl Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
38
|
Chan KKL, Siu MKY, Jiang YX, Wang JJ, Leung THY, Ngan HYS. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer. Cancer Cell Int 2018; 18:65. [PMID: 29743815 PMCID: PMC5930957 DOI: 10.1186/s12935-018-0559-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 04/19/2018] [Indexed: 01/09/2023] Open
Abstract
Background Ovarian cancer is the most lethal gynaecological malignancy. Chemotherapy is the main stay of treatment for metastatic disease, with modest response rates but significant side effects. Therefore, there is a need for alternative therapies that can control the disease while offering good quality of life. Ovarian cancer cells express both estrogen receptor subtypes (ERα and ERβ). There is growing evidence that ERβ is anti-oncogenic. Genistein and daidzein are phytoestrogens found in soybeans and they display higher affinity to bind ERβ. ERB-041 is a potent selective ERβ agonist. In this study, we aimed to investigate the effects of genistein, daidzein and ERB-041 on ovarian cancer. Methods Ovarian cancer cell lines were treated with genistein, daidzein and ERB-041 in pharmacological doses. Cell migration, invasion, proliferation, cell cycle arrest, apoptosis and sphere formation were assessed by Transwell migration and invasion assays, XTT assay, focus formation, flow cytometry and sphere formation assay, respectively. Immunoblotting analysis was performed to determine the downstream signaling pathways. Results We found that genistein, daidzein and ERB-041 significantly inhibited ovarian cancer cell migration, invasion, proliferation, as well as induced cell cycle arrest and apoptosis. Significantly inhibitory effect on the size and number of sphere formed in genistein, daidzein and ERB-041 treated cells was also demonstrated. Moreover, genistein, daidzein and ERB-041 treatment reduced p-FAK, p-PI3K, p-AKT, p-GSK3β, p21 or cyclin D1 expression in ovarian cancer cells. Conclusion Genistein, daidzein and ERB-041 decreased ovarian cancer cell migration, invasion, proliferation and sphere formation, and induced cell cycle arrest and apoptosis with altered FAK and PI3K/AKT/GSK signaling and p21/cyclin D1 expression, suggesting their roles on ovarian cancer cell metastasis, tumorigenesis and stem-like properties and their potential as alternative therapies for ovarian cancer patients. Electronic supplementary material The online version of this article (10.1186/s12935-018-0559-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen K L Chan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Michelle K Y Siu
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Yu-Xin Jiang
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Jing-Jing Wang
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Thomas H Y Leung
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| |
Collapse
|
39
|
Fu F, Wan X, Wang D, Kong Z, Zhang Y, Huang W, Wang C, Wu H, Li Y. MicroRNA-19a acts as a prognostic marker and promotes prostate cancer progression via inhibiting VPS37A expression. Oncotarget 2017; 9:1931-1943. [PMID: 29416742 PMCID: PMC5788610 DOI: 10.18632/oncotarget.23026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related deaths among males worldwide. However, the molecular mechanisms underlying the progression of PCa remain unclear. Despite several reported miRNAs in prostate cancer, these reports lacked system-level identification of differentially expressed miRNAs in large sample size. Moreover, it's still largely unknown how miRNAs result in tumorigenesis and progression of PCa. Therefore, by analyzing three public databases, we identified 16 upregulated miRNAs and 13 downregulated miRNAs, and validated miR-19a was one of the most upregulated miRNAs using qRT-PCR. The dual-luciferase reporter assays indicated VPS37A was a potential target of miR-19a. Functional assays revealed miR-19a served as an oncogene by inhibiting VPS37A. Notably, a significant inverse correlation of miR-19a and VPS37A expression was observed in PCa specimens. Moreover, miR-19a-high and VPS37A-low phenotypes were associated with poor prognosis with biochemical recurrence-free probability. In this study, we confirmed the oncogenic role of miR-19a via targeting VPS37A in PCa, identifying miR-19a and VPS37A as diagnosis and therapeutic biomarkers for PCa.
Collapse
Affiliation(s)
- Fangqiu Fu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Xuechao Wan
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Dan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Zhe Kong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Yalong Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Wenhua Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Chenji Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| | - Hai Wu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| | - Yao Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
40
|
Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, Lu X, Chen K, Xia Y, Lu J, Zhou Y, Fan X, Mo W, Xu L, Guo C. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer 2017; 117:1518-1528. [PMID: 28926527 PMCID: PMC5680469 DOI: 10.1038/bjc.2017.323] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/23/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genistein is a natural isoflavone with many health benefits, including antitumour effects. Increased hypoxia-inducible factor 1 α (HIF-1α) levels and glycolysis in tumour cells are associated with an increased risk of mortality, cancer progression, and resistance to therapy. However, the effect of genistein on HIF-1α and glycolysis in hepatocellular carcinoma (HCC) is still unclear. METHODS Cell viability, apoptosis rate, lactate production, and glucose uptake were measured in HCC cell lines with genistein incubation. Lentivirus-expressed glucose transporter 1 (GLUT1) or/and hexokinase 2 (HK2) and siRNA of HIF-1α were used to test the direct target of genistein. Subcutaneous xenograft mouse models were used to measure in vivo efficacy of genistein and its combination with sorafenib. RESULTS Genistein inhibited aerobic glycolysis and induced mitochondrial apoptosis in HCC cells. Neither inhibitors nor overexpression of HK2 or GLUTs enhance or alleviate this effect. Although stabiliser of HIF-1α reversed the effect of genistein, genistein no longer has effects on HIF-1α siRNA knockdown HCC cells. In addition, genistein enhanced the antitumour effect of sorafenib in sorafenib-resistant HCC cells and HCC-bearing mice. CONCLUSIONS Genistein sensitised aerobic glycolytic HCC cells to apoptosis by directly downregulating HIF-1α, therefore inactivating GLUT1 and HK2 to suppress aerobic glycolysis. The inhibitory effect of genistein on tumour cell growth and glycolysis may help identify effective treatments for HCC patients at advanced stages.
Collapse
Affiliation(s)
- Sainan Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Kunshan First People’s Hospital Affiliated to Jiangsu University, Kunshan, JiangSu 215300, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
41
|
Deibler KK, Mishra RK, Clutter MR, Antanasijevic A, Bergan R, Caffrey M, Scheidt KA. A Chemical Probe Strategy for Interrogating Inhibitor Selectivity Across the MEK Kinase Family. ACS Chem Biol 2017; 12:1245-1256. [PMID: 28263556 PMCID: PMC5652073 DOI: 10.1021/acschembio.6b01060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MEK4 is an upstream kinase in MAPK signaling pathways where it phosphorylates p38 MAPK and JNK in response to mitogenic and cellular stress queues. MEK4 is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. Despite a high level of sequence homology in the ATP-binding site, most reported MEK inhibitors are selective for MEK1/2 and display reduced potency toward other MEKs. Here, we present the first functional and binding selectivity-profiling platform of the MEK family. We applied the platform to profile a set of known kinase inhibitors and used the results to develop an in silico approach for small molecule docking against MEK proteins. The docking studies identified molecular features of the ligands and corresponding amino acids in MEK proteins responsible for high affinity binding versus those driving selectivity. WaterLOGSY and saturation transfer difference (STD) NMR spectroscopy techniques were utilized to understand the binding modes of active compounds. Further minor synthetic manipulations provide a proof of concept by showing how information gained through this platform can be utilized to perturb selectivity across the MEK family. This inhibitor-based approach pinpoints key features governing MEK family selectivity and clarifies empirical selectivity profiles for a set of kinase inhibitors. Going forward, the platform provides a rationale for facilitating the development of MEK-selective inhibitors, particularly MEK4 selective inhibitors, and repurposing of kinase inhibitors for probing the structural selectivity of isoforms.
Collapse
Affiliation(s)
- Kristine K. Deibler
- Department of Chemistry, Northwestern University, Evanston, 60208, Illinois, United States
| | - Rama K. Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Matthew R. Clutter
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Aleksandar Antanasijevic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Ave, Chicago, Illinois 60607, United States
| | - Raymond Bergan
- Knight Cancer Institute, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd., Portland, Oregon 97239, United States
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Ave, Chicago, Illinois 60607, United States
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, Evanston, 60208, Illinois, United States
- Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
42
|
Szeja W, Grynkiewicz G, Rusin A. Isoflavones, their Glycosides and Glycoconjugates. Synthesis and Biological Activity. CURR ORG CHEM 2016; 21:218-235. [PMID: 28553156 PMCID: PMC5427819 DOI: 10.2174/1385272820666160928120822] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
Abstract
Glycosylation of small biologically active molecules, either of natural or synthetic origin, has a profound impact on their solubility, stability, and bioactivity, making glycoconjugates attractive compounds as therapeutic agents or nutraceuticals. A large proportion of secondary metabolites, including flavonoids, occur in plants as glycosides, which adds to the molecular diversity that is much valued in medicinal chemistry studies. The subsequent growing market demand for glycosidic natural products has fueled the development of various chemical and biotechnological methods of glycosides preparation. The review gives an extensive overview of the processes of the synthesis of isoflavones and discusses recently developed major routes towards isoflavone-sugar formation processes. Special attention is given to the derivatives of genistein, the main isoflavone recognized as a useful lead in several therapeutic categories, with particular focus on anticancer drug design. The utility of chemical glycosylations as well as glycoconjugates preparation is discussed in some theoretical as well as practical aspects. Since novel approaches to chemical glycosylations and glycoconjugations are abundant and many of them proved suitable for derivatization of polyphenols a new body of evidence has emerged, indicating that sugar moiety can play a much more significant role, when attached to a pharmacophore, then being a mere “solubilizer”. In many cases, it has been demonstrated that semisynthetic glycoconjugates are much more potent cytostatic and cytotoxic agents than reference isoflavones. Moreover, the newly designed glycosides or glycoside mimics can act through different mechanisms than the parent active molecule.
Collapse
Affiliation(s)
- Wiesław Szeja
- Silesian Technical University, Department of Chemistry, Krzywoustego 4, 44-100 Gliwice, Poland
| | | | - Aleksandra Rusin
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze AK 15, 44-100 Gliwice, Poland
| |
Collapse
|
43
|
Messina M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016; 8:E754. [PMID: 27886135 PMCID: PMC5188409 DOI: 10.3390/nu8120754] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/10/2023] Open
Abstract
Soyfoods have long been recognized as sources of high-quality protein and healthful fat, but over the past 25 years these foods have been rigorously investigated for their role in chronic disease prevention and treatment. There is evidence, for example, that they reduce risk of coronary heart disease and breast and prostate cancer. In addition, soy alleviates hot flashes and may favorably affect renal function, alleviate depressive symptoms and improve skin health. Much of the focus on soyfoods is because they are uniquely-rich sources of isoflavones. Isoflavones are classified as both phytoestrogens and selective estrogen receptor modulators. Despite the many proposed benefits, the presence of isoflavones has led to concerns that soy may exert untoward effects in some individuals. However, these concerns are based primarily on animal studies, whereas the human research supports the safety and benefits of soyfoods. In support of safety is the recent conclusion of the European Food Safety Authority that isoflavones do not adversely affect the breast, thyroid or uterus of postmenopausal women. This review covers each of the major research areas involving soy focusing primarily on the clinical and epidemiologic research. Background information on Asian soy intake, isoflavones, and nutrient content is also provided.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., 26 Spadina Parkway, Pittsfield, MA 01201, USA.
| |
Collapse
|
44
|
Wan X, Huang W, Yang S, Zhang Y, Zhang P, Kong Z, Li T, Wu H, Jing F, Li Y. Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression. Int J Biochem Cell Biol 2016; 79:249-260. [PMID: 27594411 DOI: 10.1016/j.biocel.2016.08.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/18/2016] [Accepted: 08/29/2016] [Indexed: 11/17/2022]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed and secondly leading cause of cancer death among males. But the precise mechanism of prostate cancer progression, including microRNAs (miRNAs) functioning in it, is still needs further study. We found miR-27a to be down-regulated in prostate cancer, and we investigated the mechanism and role of miRNA-27a in prostate cancer. MiR-27a, a transcriptional target of AR, was an androgen-induced miRNA in LNCaP cells. In castration-resistant prostate cancer (CRPC) cells, we for the first time reported that miR-27a was downregulated by PI3K signaling. MiR-27a functioned as a tumor suppressor in prostate cancer. Over-expression of miR-27a decreased prostate cancer cell proliferation and migration, and induced prostate cancer cell cycle arrest and apoptosis. MAP2K4, miR-27a's direct target gene, functioned as an oncogene in prostate cancer by reducing G1-S phase arrest and inhibiting cell apoptosis of prostate cancer cells. In conclusion, miR-27a functions as a tumor suppressor by suppressing MAP2K4 which acts as an oncogene in prostate cancer cell lines; we also provided a new mechanism of castration-resistant prostate cancer mediated by miR-27a that downregulation of miR-27a caused by aberrant AR signaling and PI3K/Akt signaling after androgen deprivation therapy (ADT) would promote the progression of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Xuechao Wan
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Wenhua Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Shu Yang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Yalong Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Pu Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Zhe Kong
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Tao Li
- Shanghai Institute of Planned Parenthood Research Hospital, WHO Collaborating Center for Research in Human Reproduction, Shanghai 200433, PR China
| | - Hai Wu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Fengxiang Jing
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200433, PR China.
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
45
|
刘 蜀, 刘 祎, 李 荣. [Expressions of MAP2K4 and estrogen receptor and their clinical significance in invasive breast cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:488-493. [PMID: 28446401 PMCID: PMC6744108 DOI: 10.3969/j.issn.1673-4254.2017.04.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To explore the association of mitogen-activated protein kinase kinase-4 (MAP2K4) with the pathological features, prognosis and expression of estrogen receptor (ER) in patients with breast cancer. METHODS The expression of MAP2K4 was detected immunohistochemically in 102 breast cancer tissues. Chi square test was used to analyze the correlation of MAP2K4 expression with the clinicopathological features of the patients. Kaplan-Meier and log rank test were used for survival analysis of the patients. Multivariate survival analysis was performed using Cox proportional hazard regression model. The correlation between the expressionsof MAP2K4 and ER was investigated using Spearman rank correlation test. RESULTS Immunohistochemical analysis revealed low MAP2K4 expression in 55.9%(57/102) and high MAP2K4 expression in 44.1%(45/102) of the breast cancer tissues. The expression of MAP2K4 was significantly correlated with the pathological grades of breast cancer (P=0.011). Kaplan-Meier survival analysis showed that patients with a high expression of MAP2K4 had a shorter overall survival rate than those with low MAP2K4 expressions (P=0.009). Multivariate analysis identified high expression of MAP2K4 as the independent predictor of a poor outcome of patients with breast cancer. The expressions of MAP2K4 and ER were not significantly correlated, but ER-negative patients with a high MAP2K4 expressionshowed the shortest overall survival time. CONCLUSION Overexpression of MAP2K4 promotes the progression in breast cancer and is associated with a poor outcome of the patients. TheER-negativepatients with a high MAP2K4 expression have the shortest overall survival time, suggestingthe value of combined examination of MAP2K4 and ER in accurate estimation of the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- 蜀 刘
- 贵阳市妇幼保健院乳腺科,广西 贵阳 550003Guizhou Maternity and Child Health Hospital, Guiyang 550003, China
| | - 祎祎 刘
- 南方医科大学中西医结合医院,广东 广州 510315Cancer Center, TCM-integrated Hospital, Southern Medical University, Guangzhou 510315, China
| | - 荣 李
- 南方医科大学南方医院,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
46
|
Messina M. Impact of Soy Foods on the Development of Breast Cancer and the Prognosis of Breast Cancer Patients. Complement Med Res 2016; 23:75-80. [PMID: 27161216 DOI: 10.1159/000444735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The relationship between soy food intake and breast cancer has been rigorously investigated for more than 25 years. The identification of isoflavones as possible chemopreventive agents helped fuel this line of investigation. These diphenolic compounds, which are found in uniquely-rich amounts in soy beans, possess both estrogen-dependent and -independent properties that potentially inhibit the development of breast cancer. Observational studies show that among Asian women higher soy consumption is associated with an approximate 30% reduction in risk of developing breast cancer. However, evidence suggests that for soy to reduce breast cancer risk consumption must occur early in life, that is during childhood and/or adolescence. Despite the interest in the role of soy in reducing breast cancer risk concerns have arisen that soy foods, because they contain isoflavones, may increase the likelihood of high-risk women developing breast cancer and worsen the prognosis of breast cancer patients. However, extensive clinical and epidemiologic data show these concerns to be unfounded. Clinical trials consistently show that isoflavone intake does not adversely affect markers of breast cancer risk, including mammographic density and cell proliferation. Furthermore, prospective epidemiologic studies involving over 11,000 women from the USA and China show that postdiagnosis soy intake statistically significantly reduces recurrence and improves survival.
Collapse
|
47
|
Xiao X, Liu Z, Wang R, Wang J, Zhang S, Cai X, Wu K, Bergan RC, Xu L, Fan D. Genistein suppresses FLT4 and inhibits human colorectal cancer metastasis. Oncotarget 2016; 6:3225-39. [PMID: 25605009 PMCID: PMC4413649 DOI: 10.18632/oncotarget.3064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/13/2014] [Indexed: 01/06/2023] Open
Abstract
Dietary consumption of genistein, found in soy, has been associated with a potentially protective role in colorectal cancer (CRC) development and progression. Herein we demonstrate that genistein will inhibit human CRC cell invasion and migration, that it does so at non-cytotoxic concentrations and we demonstrate this in multiple human CRC cell lines. After orthotopic implantation of human CRC tumors into mice, oral genistein did not inhibit tumor growth, but did inhibit distant metastasis formation, and was non-toxic to mice. Using a qPCR array, we screened for genistein-induced changes in gene expression, followed by Western blot confirmation, demonstrating that genistein downregulated matrix metalloproteinase 2 and Fms-Related Tyrosine Kinase 4 (FLT4; vascular endothelial growth factor receptor 3). After demonstrating that genistein suppressed neo-angiogenesis in mouse tumors, we examined FLT4 expression in primary CRC and adjacent normal colonic tissue from 60 human subjects, demonstrating that increased FLT4 significantly correlates with increased stage and decreased survival. In summary, we demonstrate for the first time that genistein inhibits human CRC metastasis at dietary, non-toxic, doses. FLT4 is identified as a marker of metastatic disease, and as a response marker for small molecule therapeutics that inhibit CRC metastasis.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Zhiguo Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Rui Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Jiayin Wang
- The Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Song Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Xiqiang Cai
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Raymond C Bergan
- Department of Medicine, Robert H. Lurie Cancer Center and Center for Drug Discovery and Chemical Biology of Northwestern University, Chicago, IL, USA
| | - Li Xu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| |
Collapse
|
48
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
49
|
Plasma genistein and risk of prostate cancer in Chinese population. Int Urol Nephrol 2015; 47:965-70. [PMID: 25971353 PMCID: PMC4445252 DOI: 10.1007/s11255-015-0981-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022]
Abstract
Objectives Genistein is one of the main soy isoflavones in our daily diet. There were studies proving that high-dietary intake of genistein may relate to the low morbidity and mortality of prostate cancer (PCa) in the Asian population. Since there were few studies of plasma genistein level in the Chinese population, we performed this study to preliminarily evaluate the associations among plasma genistein, epidemiologic factors and PCa in a Chinese population. Methods Between 2012 and 2013, 100 men over the age of 40 underwent prostate biopsy for PCa at Huashan Hospital, Shanghai, China. Clinical information, epidemiologic information and blood samples were collected prior to biopsy for each patient. All patients underwent 10-core ultrasound-guided transperineal prostate biopsy, and the pathology results were collected after biopsy. We measured the plasma genistein concentration of the blood samples and analyzed the results along with the clinical and epidemiologic information. Results Among the 100 patients, 46 (46.0 %) were diagnosed with PCa. The median plasma genistein concentration of non-PCa patients (728.6 ng/ml) was significantly higher than that of PCa patients (513.0 ng/ml) (P < 0.05). In the univariate analysis, we found that age and smoking history were related to PCa (P < 0.05). In the multivariate analysis, we found that age, smoking history and plasma genistein were related to PCa (P < 0.05). The age-adjusted odds ratio of PCa risk comparing plasma genistein level above median to that below median was 0.31 (95 % CI 0.13–0.71). Conclusion Our study suggested that high concentration of plasma genistein level may contribute to the low incidence of prostate cancer in Chinese population.
Collapse
|
50
|
Dastmalchi M, Dhaubhadel S. Proteomic insights into synthesis of isoflavonoids in soybean seeds. Proteomics 2015; 15:1646-57. [PMID: 25757747 DOI: 10.1002/pmic.201400444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/25/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
Abstract
Soybean seeds are the major human dietary source of isoflavonoids, a class of plant natural products almost entirely exclusive to legumes. Isoflavonoids reduce the risk of a number of chronic human illnesses. Biosynthesis and accumulation of this class of compounds is a multigenic and complex trait, with a great deal of variability among soybean cultivars and with respect to the environment. There is a wealth of genomic, transcriptomic, and metabolomics data regarding isoflavonoid biosynthesis, but the connection between multigene families and their cognate proteins is a missing link that could provide us with a great deal of functional information. The changing proteome of the developing seed can shed light on the correlative increase in isoflavonoids, while the maternal seed coat proteome can provide the link with inherited metabolic and signaling machinery. In this effort, 'seed-filling' proteomics has revealed key secondary metabolite enzymes that quantitatively vary throughout seed development. Seed coat proteomics has revealed the existence of metabolic apparatus specific to isoflavonoid biosynthesis (isoflavonoid reductase) that could potentially influence the chemical content of this organ. The future of proteomic analysis of isoflavonoid biosynthesis should be centered on the development of quantitative, tissue-specific proteomes that emphasize low-abundance metabolic proteins to extract the whole suite of factors involved.
Collapse
Affiliation(s)
- Mehran Dastmalchi
- Department of Biology, University of Western Ontario, London, Canada
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, London, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, Canada
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, London, Canada
| |
Collapse
|