1
|
Song L, Lin J, Yang W, Zhang L, Liu H, Wei J, Li Y. Early metabolomics revealed the sensitivity of sacubitril/valsartan to person with end-stage renal disease accompanied by heart failure. J Pharm Biomed Anal 2025; 260:116790. [PMID: 40058083 DOI: 10.1016/j.jpba.2025.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 04/06/2025]
Abstract
Heart failure (HF) is a major complication in patients with end-stage renal disease (ESRD) and is the leading cause of death in this high-risk population. Sacubitril/Valsartan is an angiotensin receptor-neprilysin inhibitor (ARNI) that has been shown to improve treatment outcomes in patients with ESRD accompanied by HF. Unfortunately, in clinical practice, some patients who received sacubitril/valsartan treatment not only did not show a good therapeutic effect, but also got worse with the passage of time. To explore potential biomarkers for predicting the clinical efficacy of sacubitril/valsartan, serum samples were prospectively collected upon admission and again collected after sacubitril/valsartan treatment was completed. Patients were divided into good response group (GR) and poor response group (PR). At the same time, samples before treatment were divided into GR group and PR group by sample tracing and matching, and metabolomics analysis was conducted. In the end, a total of 9 different metabolites were identified between patients in the early GR and PR groups. In order to find more effective biomarkers, two algorithms, random forest (RF) and support vector machine (SVM), were used for metabolite selection and performance evaluation, and three kinds of Lysophosphatidylcholine (LysoPC) metabolites showed good predictive effect, and the expression of the enzyme phospholipase A2 group IVA (PLA2G4A), associated with this metabolite was significantly elevated in the PR group. The disordered metabolism may reduce the sensitivity of patients to sacubitril/valsartan treatment, and PLA2G4A targeted inhibitors may be a promising therapeutic strategy to improve the sensitivity of patients with ESRD and HF to sacubitril/valsartan treatment.
Collapse
Affiliation(s)
- Lili Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiayi Lin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weiyu Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lijuan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huimin Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Wang F, Guo Z, Tang W, Cao W, Dong X, Xu Y, Wang C, Xie J, Shi X, Luo Z, Zheng Y, Zhang G, Ren N, Zhang N, Wei D, Du L, Li N, Tan F. Lipidomic signatures as predictive biomarkers for early-onset lung cancer: Identification and development of a risk prediction model. J Adv Res 2025:S2090-1232(25)00205-X. [PMID: 40180245 DOI: 10.1016/j.jare.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer-related mortality worldwide. While traditionally associated with older adults, early-onset lung cancer (EOLC) is rising, particularly in Asia, which accounts for 75.9% of global cases. Existing lung cancer screening guidelines primarily focus on older populations, which may result in missed opportunities for early detection in younger individuals. Given its distinct clinical characteristics, EOLC warrants dedicated research and targeted interventions. OBJECTIVES This study aims to characterize the lipidomic profiles specific to EOLC patients (aged 18-49 years) and develop a biomarker-based predictive model to improve risk assessment and early detection. METHODS The discovery and validation sets included 117 EOLC cases and 121 non-EOLC controls, all aged 18-49 years. Targeted lipidomics analysis, combined with logistic regression, was performed on plasma samples to identify differentially expressed lipids species. Clustering and pathway analyses were conducted to uncover and visualize the internal signatures of the identified lipids. Key lipids were refined using the LASSO-bootstrap regression method combined with the Boruta algorithm. A random forest model was subsequently employed to develop a robust prediction model for EOLC. RESULTS A total of 843 lipids were identified, with 60 differentially expressed lipids detected, of which 33 were validated in the validation set. Cluster analysis revealed that passive smoking (OR: 2.75, 95% CI: 1.08-7.29) and current smoking (OR: 15.65, 95% CI: 2.55-142.10) were associated with elevated lipid metabolite profiles in EOLC patients. The validated lipids were further refined using LASSO and Boruta methods, which ultimately selected 6 lipids for inclusion in a prediction model constructed with random forest. This model achieved an area under the curve (AUC) of 0.874 in the validation set. CONCLUSION Our study identified lipidomic signatures associated with the risk of EOLC, offering potential translational implications for lung cancer prevention strategies.
Collapse
Affiliation(s)
- Fei Wang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zeming Guo
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Cao
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuesi Dong
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongjie Xu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chenran Wang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiaxin Xie
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoyue Shi
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zilin Luo
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yadi Zheng
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Na Ren
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Zhang
- Department of Cancer Prevention, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Donghua Wei
- Office for Cancer Prevention and Control, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Lingbin Du
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
3
|
Kapri A, Singh D, Onteru SK. Deciphering Aflatoxin B1 affected critical molecular pathways governing cancer: A bioinformatics study using CTD and PANTHER databases. Mycotoxin Res 2025; 41:93-111. [PMID: 39417919 DOI: 10.1007/s12550-024-00563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Aflatoxin B1 (AFB1) is a fungal toxin consistently found as a contaminant in food products such as cereals, nuts, spices, and oilseeds. AFB1 exposure can lead to hepatotoxicity, cancer, immune suppression, reproductive deficiency, nutritional dysfunction, and growth impairment. AFB1 has also been listed as one of the most potent human carcinogens by the International Agency for Research on Cancer. Although the correlation between AFB1 exposure and cancer initiation and progression is already reported in the literature, very little information is available about what molecular pathways are affected during cancer development. Considering this, we first selected AFB1-responsive genes involved in five deadliest cancer types including lung, colorectal, liver, stomach, and breast cancers from the Comparative Toxicogenomics Database (CTD). Then, using the PANTHER database, a statistical overrepresentation test was performed to identify the significantly affected pathways in each cancer type. The gonadotropin-releasing hormone receptor (GnRHR) pathway, the CCKR signaling pathway, and angiogenesis were found to be the most affected pathways in lung, breast, liver, and stomach cancers. In addition, AFB1 toxicity majorly impacted apoptosis and Wnt signaling pathways in liver and stomach cancers, respectively. Moreover, the most affected pathways in colorectal cancer were the Wnt, CCKR, and GnRHR pathways. Furthermore, gene analysis was also performed for the most affected pathways associated with each cancer and identified thirteen key genes (e.g., FOS, AKT1) that may serve as biological markers for a particular type of AFB1-induced cancer as well as for in vitro AFB1 toxicological studies using specific cancer cell lines.
Collapse
Affiliation(s)
- Ankita Kapri
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
4
|
Ashcroft FJ, Bourboula A, Mahammad N, Barbayianni E, Feuerherm AJ, Nguyen TT, Hayashi D, Kokotou MG, Alevizopoulos K, Dennis EA, Kokotos G, Johansen B. Next generation thiazolyl ketone inhibitors of cytosolic phospholipase A 2 α for targeted cancer therapy. Nat Commun 2025; 16:164. [PMID: 39747052 PMCID: PMC11696576 DOI: 10.1038/s41467-024-55536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Eicosanoids are key players in inflammatory diseases and cancer. Targeting their production by inhibiting Group IVA cytosolic phospholipase A2 (cPLA2α) offers a promising approach for cancer therapy. In this study, we synthesize a second generation of thiazolyl ketone inhibitors of cPLA2α starting with compound GK470 (AVX235) and test their in vitro and cellular activities. We identify a more potent and selective lead molecule, GK420 (AVX420), which we test in parallel with AVX235 and a structurally unrelated compound, AVX002 for inhibition of cell viability across a panel of cancer cell lines. From this, we show that activity of polycomb group repressive complex 2 is a key molecular determinant of sensitivity to cPLA2α inhibition, while resistance depends on antioxidant response pathways. Consistent with these results, we show that elevated intracellular reactive oxygen species and activating transcription factor 4 target gene expression precede cell death in AVX420-sensitive T-cell acute lymphoblastic leukemia cells. Our findings imply cPLA2α may support cancer by mitigating oxidative stress and inhibiting tumor suppressor expression and suggest that AVX420 has potential for treating acute leukemias and other cancers that are susceptible to oxidative cell death.
Collapse
Affiliation(s)
- Felicity J Ashcroft
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asimina Bourboula
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Nur Mahammad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Efrosini Barbayianni
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Astrid J Feuerherm
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh Thuy Nguyen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Edward A Dennis
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, USA
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece.
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
5
|
Hugo C, Asante I, Sadybekov A, Katritch V, Yassine HN. Development of Calcium-Dependent Phospholipase A2 Inhibitors to Target Cellular Senescence and Oxidative Stress in Neurodegenerative Diseases. Antioxid Redox Signal 2024; 41:1100-1116. [PMID: 39575710 DOI: 10.1089/ars.2024.0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Significance: Cellular senescence is a critical process underlying aging and is associated with age-related diseases such as Alzheimer's disease. Lipids are implicated in cellular senescence. Fatty acids, particularly eicosanoids, have been associated with various forms of senescence and inflammation, and the associated reactive oxygen species production has been proposed as a therapeutic target for mitigating senescence. When overactivated, calcium-dependent phospholipase A2 (cPLA2) catalyzes the conversion of arachidonic acid into eicosanoids such as leukotrienes and prostaglandins. Recent Advances: With a growing understanding of the importance of lipids as mediators and modulators of senescence, cPLA2 has emerged as a compelling drug target. cPLA2 overactivation plays a significant role in several pathways associated with senescence, including neuroinflammation and oxidative stress. Critical Issues: Previous cPLA2 inhibitors have shown potential in ameliorating inflammation and oxidative stress, but the dominant hurdles in the central nervous system-targeting drug discovery are specificity and blood-brain barrier penetrance. Future Directions: With the need for more effective drugs against neurological diseases, we emphasize the significance of discovering new brain-penetrant, potent, and specific cPLA2 inhibitors. We discuss how the recently developed Virtual Synthon Hierarchical Enumeration Screening, an iterative synthon-based approach for fast structure-based virtual screening of billions of compounds, provides an efficient exploration of large chemical spaces for the discovery of brain-penetrant cPLA2 small-molecule inhibitors. Antioxid. Redox Signal. 41, 1100-1116.
Collapse
Affiliation(s)
- Cristelle Hugo
- Department of Neurology, Keck School of Medicine, Los Angeles, California, USA
| | - Isaac Asante
- Department of Ophthalmology, Keck School of Medicine, Los Angeles, California, USA
- Department of Clinical Pharmacy, Mann School of Pharmacy, Los Angeles, California, USA
- Medical Systems Innovation (ITEMS), USC Institute for Technology, Los Angeles, California, USA
| | - Anastasiia Sadybekov
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, Los Angeles, California, USA
- Center for Personalized Brain Health, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Wang G, Shen X, Jin W, Song C, Dong M, Zhou Z, Wang X. Elucidating the role of S100A10 in CD8 + T cell exhaustion and HCC immune escape via the cPLA2 and 5-LOX axis. Cell Death Dis 2024; 15:573. [PMID: 39117605 PMCID: PMC11310305 DOI: 10.1038/s41419-024-06895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a complex immune evasion mechanism posing a challenge to treatment. The role of the S100A10 gene in various cancers has garnered significant attention. This study aims to elucidate the impact of S100A10 on CD8+ T cell exhaustion via the cPLA2 and 5-LOX axis, thereby elucidating its role in immune evasion in HCC. By analyzing the HCC-related data from the GEO and TCGA databases, we identified differentially expressed genes associated with lipid metabolism and developed a prognostic risk model. Subsequently, through RNA-seq and PPI analyses, we determined vital lipid metabolism genes and downstream factors S100A10, ACOT7, and SMS, which were significantly correlated with CD8+ T cell infiltration. Given the most significant expression differences, we selected S100A10 for further investigation. Both in vitro and in vivo experiments were conducted, including co-culture experiments of CD8+ T cells with MHCC97-L cells, Co-IP experiments, and validation in an HCC mouse model. S100A10 was significantly overexpressed in HCC tissues and potentially regulates CD8+ T cell exhaustion and lipid metabolism reprogramming through the cPLA2 and 5-LOX axis. Silencing S100A10 could inhibit CD8+ T cell exhaustion, further suppressing immune evasion in HCC. S100A10 may activate the cPLA2 and 5-LOX axis, initiating lipid metabolism reprogramming and upregulating LTB4 levels, thus promoting CD8+ T cell exhaustion in HCC tissues, facilitating immune evasion by HCC cells, ultimately impacting the growth and migration of HCC cells. This research highlights the critical role of S100A10 via the cPLA2 and 5-LOX axis in immune evasion in HCC, providing new theoretical foundations and potential targets for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaowei Shen
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chao Song
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
7
|
Hart M, Isuri RK, Ramos D, Osharovich SA, Rodriguez AE, Harmsen S, Dudek GC, Huck JL, Holt DE, Popov AV, Singhal S, Delikatny EJ. Non-Small Cell Lung Cancer Imaging Using a Phospholipase A2 Activatable Fluorophore. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:490-500. [PMID: 39056064 PMCID: PMC11267604 DOI: 10.1021/cbmi.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer, the most common cause of cancer-related death in the United States, requires advanced intraoperative detection methods to improve evaluation of surgical margins. In this study we employed DDAO-arachidonate (DDAO-A), a phospholipase A2 (PLA2) activatable fluorophore, designed for the specific optical identification of lung cancers in real-time during surgery. The in vitro fluorescence activation of DDAO-A by porcine sPLA2 was tested in various liposomal formulations, with 100 nm extruded EggPC showing the best overall characteristics. Extruded EggPC liposomes containing DDAO-A were tested for their stability under various storage conditions, demonstrating excellent stability for up to 4 weeks when stored at -20 °C or below. Cell studies using KLN 205 and LLC1 lung cancer cell lines showed DDAO-A activation was proportional to cell number. DDAO-A showed preferential activation by human recombinant cPLA2, an isoform highly specific to arachidonic acid-containing lipids, when compared to a control probe, DDAO palmitate (DDAO-P). In vivo studies with DBA/2 mice bearing KLN 205 lung tumors recapitulated these results, with preferential activation of DDAO-A relative to DDAO-P following intratumoral injection. Topical application of DDAO-A-containing liposomes to human (n = 10) and canine (n = 3) lung cancers ex vivo demonstrated the preferential activation of DDAO-A in tumor tissue relative to adjacent normal lung tissue, with fluorescent tumor-to-normal ratios (TNR) of up to 5.2:1. The combined results highlight DDAO-A as a promising candidate for clinical applications, showcasing its potential utility in intraoperative and back-table imaging and topical administration during lung cancer surgeries. By addressing the challenge of residual microscopic disease at resection margins and offering stability in liposomal formulations, DDAO-A emerges as a potentially valuable tool for advancing precision lung cancer surgery and improving curative resection rates.
Collapse
Affiliation(s)
- Michael
C. Hart
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ritesh K. Isuri
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Drew Ramos
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sofya A. Osharovich
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrea E. Rodriguez
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Harmsen
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Grace C. Dudek
- Department
of Biology, University of Pennsylvania, 102 Leidy Laboratories 433 S University
Ave, Philadelphia, Pennsylvania 19104, United States
| | - Jennifer L. Huck
- Department
of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David E. Holt
- Department
of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoliy V. Popov
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sunil Singhal
- Department
of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Edward J. Delikatny
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Weber S, Unger K, Alunni-Fabbroni M, Hirner-Eppeneder H, Öcal E, Zitzelsberger H, Mayerle J, Malfertheiner P, Ricke J. Metabolomic Analysis of Human Cirrhosis and Hepatocellular Carcinoma: A Pilot Study. Dig Dis Sci 2024; 69:2488-2501. [PMID: 38652389 PMCID: PMC11258188 DOI: 10.1007/s10620-024-08446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Molecular changes in HCC development are largely unknown. As the liver plays a fundamental role in the body's metabolism, metabolic changes are to be expected. AIMS We aimed to identify metabolomic changes in HCC in comparison to liver cirrhosis (LC) patients, which could potentially serve as novel biomarkers for HCC diagnosis and prognosis. METHODS Metabolite expression from 38 HCC from the SORAMIC trial and 32 LC patients were analyzed by mass spectrometry. Metabolites with significant differences between LC and HCC at baseline were analyzed regarding expression over follow-up. In addition, association with overall survival was tested using univariate Cox proportional-hazard analysis. RESULTS 41 metabolites showed differential expression between LC and HCC patients. 14 metabolites demonstrated significant changes in HCC patients during follow-up. Campesterol, lysophosphatidylcholine, octadecenoic and octadecadienoic acid, and furoylglycine showed a differential expression in the local ablation vs. palliative care group. High expression of eight metabolites (octadecenoic acid, 2-hydroxybutyrate, myo-inositol, isocitrate, erythronic acid, creatinine, pseudouridine, and erythrol) were associated with poor overall survival. The association between poor OS and octadecenoic acid and creatinine remained statistically significant even after adjusting for tumor burden and LC severity. CONCLUSION Our findings give promising insides into the metabolic changes during HCC carcinogenesis and provide candidate biomarkers for future studies. Campesterol and furoylglycine in particular were identified as possible biomarkers for HCC progression. Moreover, eight metabolites were detected as predictors for poor overall survival.
Collapse
Affiliation(s)
- Sabine Weber
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Centre Munich, 85622, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377, Munich, Germany
| | | | | | - Elif Öcal
- Department of Radiology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Centre Munich, 85622, Neuherberg, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Peter Malfertheiner
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
9
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
10
|
Bernardelli C, Caretti A, Lesma E. Dysregulated lipid metabolism in lymphangioleiomyomatosis pathogenesis as a paradigm of chronic lung diseases. Front Med (Lausanne) 2023; 10:1124008. [PMID: 36744130 PMCID: PMC9894443 DOI: 10.3389/fmed.2023.1124008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
A chronic inflammatory condition characterizes various lung diseases. Interestingly, a great contribution to inflammation is made by altered lipids metabolism, that can be caused by the deregulation of the mammalian target of rapamycin complex-1 (mTORC1) activity. There is evidence that one of mTOR downstream effectors, the sterol regulatory element-binding protein (SREBP), regulates the transcription of enzymes involved in the de novo fatty acid synthesis. Given its central role in cell metabolism, mTOR is involved in several biological processes. Among those, mTOR is a driver of senescence, a process that might contribute to the establishment of chronic lung disease because the characteristic irreversible inhibition of cell proliferation, associated to the acquisition of a pro-inflammatory senescence-associated secretory phenotype (SASP) supports the loss of lung parenchyma. The deregulation of mTORC1 is a hallmark of lymphangioleiomyomatosis (LAM), a rare pulmonary disease predominantly affecting women which causes cystic remodeling of the lung and progressive loss of lung function. LAM cells have senescent features and secrete SASP components, such as growth factors and pro-inflammatory molecules, like cancer cells. Using LAM as a paradigm of chronic and metastatic lung disease, here we review the published data that point out the role of dysregulated lipid metabolism in LAM pathogenesis. We will discuss lipids' role in the development and progression of the disease, to hypothesize novel LAM biomarkers and to propose the pharmacological regulation of lipids metabolism as an innovative approach for the treatment of the disease.
Collapse
Affiliation(s)
- Clara Bernardelli
- Laboratory of Pharmacology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Caretti
- Laboratory of Biochemistry and Molecular Biology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Lesma
- Laboratory of Pharmacology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy,*Correspondence: Elena Lesma,
| |
Collapse
|
11
|
Zhang C, Xu L, Endo M, Kahyo T, Kikushima K, Horikawa M, Murakami M, Waliullah A, Hasan M, Sakamoto T, Takahashi Y, Aramaki S, Ozawa T, Setou M. Blue light alters cellular lipidome—Light-induced lipidomic changes can be modulated by optogenetically engineered cPLA2α. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Go S, Lee DY, Choi WI, Jeong J. Association between use of antacid medications (proton pump inhibitors and histamine-2 receptor antagonists) and the incidence of lung cancer: A population-based cohort analysis. Medicine (Baltimore) 2022; 101:e30399. [PMID: 36086741 PMCID: PMC10980457 DOI: 10.1097/md.0000000000030399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/26/2022] [Indexed: 01/12/2023] Open
Abstract
This study investigated the association between antacid administration and lung cancer incidence in a real-world setting. This was a nationwide, retrospective cohort study. The cohort comprised random samples (n = 1,031,392) from the entire South Korean population in 2002. The duration of antacid administration between January 2006 and December 2010 was recorded for each participant. Newly developed lung cancers were counted during the 5-year observation period (January 1, 2006 to December 31, 2010). A total of 437,370 participants aged ≥ 40 years were included, of whom 301,201 (68.9%) had antacid exposure before the diagnosis of lung cancer. A total of 1230 (0.28%) antacid-exposed patients developed lung cancer. Among patients with no antacid exposure or underexposure (n = 136,171), 597 (0.44%) developed lung cancer. In the multivariable analysis, antacid exposure before the diagnosis of lung cancer was independently associated with a reduced incidence of lung cancer (hazard ratio: 0.64; 95% confidence interval: 0.55-0.74; P < .001). Antacid use might be independently associated with a decreased risk of lung cancer development in this cohort study.
Collapse
Affiliation(s)
- Subin Go
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Dong Yoon Lee
- Department of Preventive Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Won-Il Choi
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Jihyeon Jeong
- Department of Statistics, Kyungpook National University, Bukgu, Daegu, Republic of Korea
| |
Collapse
|
13
|
Spatiotemporal expression pattern of miR-205, miR-26a-5p, miR-17-5p, let-7b-5p, and their target genes during different stages of corpus luteum in Egyptian buffaloes. J Genet Eng Biotechnol 2022; 20:37. [PMID: 35212793 PMCID: PMC8881532 DOI: 10.1186/s43141-022-00320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
Abstract
Background No doubt that the corpus luteum (CL) plays a vital role in the regulation of female cyclicity in mammals. The scenarios among microRNAs (miRNAs) and their target genes and steroid hormones {estradiol (E2) and progesterone (P4)} are required for better understanding the molecular regulation of CL during its formation, maturation, and regression. We aimed to (I) study the changes in the relative abundance of miR-205, miR-26a-5p, miR-17-5p, and let-7b-5p and their target genes: LHCGR, CASP3, PCNA, AMH, and PLA2G3, during different stages of corpus luteum in Egyptian buffaloes, and (II) and to address different scenarios between steroid concentrations in the serum and the expression pattern of selected miRNAs and their targets. Methods The paired ovaries and blood samples were collected from apparently healthy 50 buffalo cows at a private abattoir. The ovaries bearing CL were macroscopically divided according to their morphological structure and color into hemorrhagic (CLH), developing (CLD), mature (CLM), regressed (CLR), and albicans (CLA). Small pieces from different stages of CL (CLH, CLD, CLM, CLR, and CLA) were cut and immediately kept at − 80 °C for total RNA isolation and qRT-PCR. The serum was separated for steroid level estimation. Results The LHCGR was expressed during different stages of CL, and the peak of expression was at the mid-luteal stage. The CASP3 revealed a stage-specific response at different stages of CL. The PCNA has an essential role in cellular proliferation in buffaloes CL. Both expression patterns of PLA2G3 and AMH were found over the various developmental and regression stages. It was noticed that miR-205 is conserved to target LHCGR and CASP3 transcripts. Moreover, CASP3 and AMH were targeted via miR-26a-5p. Additionally, the CASP3 and PLA2G3 were targeted via let-7b-5p. The P4 level reached its peak during CLM. There were positive and negative strong correlations between miRNAs (miR-26a-5p and miR-205), target genes (LHCGR and CASP3) during different stages of CL, and steroid hormones in the serum. Conclusions Taken together, the orchestrated pattern among miRNAs, target genes, and steroid hormones is essential for maintaining the proper development and function of CL in buffalo cows. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00320-9.
Collapse
|
14
|
Chen BR, Wei TW, Tang CP, Sun JT, Shan TK, Fan Y, Yang TT, Li YF, Ma Y, Wang SB, Wang ZM, Wang H, Shi JZ, Liu L, Chen JW, Zhou LH, Du C, Sun R, Wang QM, Wang LS. MNK2-eIF4E axis promotes cardiac repair in the infarcted mouse heart by activating cyclin D1. J Mol Cell Cardiol 2022; 166:91-106. [DOI: 10.1016/j.yjmcc.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022]
|
15
|
Mahammad N, Ashcroft FJ, Feuerherm AJ, Elsaadi S, Vandsemb EN, Børset M, Johansen B. Inhibition of Cytosolic Phospholipase A2α Induces Apoptosis in Multiple Myeloma Cells. Molecules 2021; 26:molecules26247447. [PMID: 34946532 PMCID: PMC8705991 DOI: 10.3390/molecules26247447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Cytosolic phospholipase A2α (cPLA2α) is the rate-limiting enzyme in releasing arachidonic acid and biosynthesis of its derivative eicosanoids. Thus, the catalytic activity of cPLA2α plays an important role in cellular metabolism in healthy as well as cancer cells. There is mounting evidence suggesting that cPLA2α is an interesting target for cancer treatment; however, it is unclear which cancers are most relevant for further investigation. Here we report the relative expression of cPLA2α in a variety of cancers and cancer cell lines using publicly available datasets. The profiling of a panel of cancer cell lines representing different tissue origins suggests that hematological malignancies are particularly sensitive to the growth inhibitory effect of cPLA2α inhibition. Several hematological cancers and cancer cell lines overexpressed cPLA2α, including multiple myeloma. Multiple myeloma is an incurable hematological cancer of plasma cells in the bone marrow with an emerging requirement of therapeutic approaches. We show here that two cPLA2α inhibitors AVX420 and AVX002, significantly and dose-dependently reduced the viability of multiple myeloma cells and induced apoptosis in vitro. Our findings implicate cPLA2α activity in the survival of multiple myeloma cells and support further studies into cPLA2α as a potential target for treating hematological cancers, including multiple myeloma.
Collapse
Affiliation(s)
- Nur Mahammad
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
- Correspondence: (N.M.); (B.J.)
| | - Felicity J. Ashcroft
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
| | - Astrid J. Feuerherm
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
| | - Samah Elsaadi
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (S.E.); (E.N.V.); (M.B.)
| | - Esten N. Vandsemb
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (S.E.); (E.N.V.); (M.B.)
| | - Magne Børset
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (S.E.); (E.N.V.); (M.B.)
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, 7491 Trondheim, Norway
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
- Correspondence: (N.M.); (B.J.)
| |
Collapse
|
16
|
Sung K, Hosoya K, Murase Y, Deguchi T, Kim S, Sunaga T, Okumura M. Visualizing the cancer stem-like properties of canine tumour cells with low proteasome activity. Vet Comp Oncol 2021; 20:324-335. [PMID: 34719098 DOI: 10.1111/vco.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Cancer stem-like cells (CSCs) cause treatment failure in various tumours; however, establishing CSC-targeted therapies has been hampered by difficulties in the identification and isolation of this small sub-population of cells. Recent studies have revealed that tumour cells with low proteasome activity display a CSC phenotype that can be utilized to image CSCs in canines. This study visualizes and reveals the CSC-like properties of tumour cells with low proteasome activity in HMPOS (osteosarcoma) and MegTCC (transitional cell carcinoma), which are canine cell lines. The parent cells were genetically engineered to express ZsGreen1, a fluorescent protein connected to the carboxyl-terminal degron of canine ornithine decarboxylase that accumulates with low proteasome activity (ZsG+ cells). ZsG+ cells were imaged and the mode of action of this system was confirmed using a proteasome inhibitor (MG-132), which increased the ZsGreen1 fluorescence intensity. The CSC-like properties of ZsG+ cells were evaluated on the basis of cell divisions, cell cycle, the expression of CSC markers and tumourigenicity. ZsG+ cells underwent asymmetric divisions and had a low percentage of G0/G1 phase cells; moreover, ZsG+ cells expressed CSC markers such as CD133 and showed a large tumourigenic capability. In histopathological analysis, ZsG+ cells were widely distributed in the tumour samples derived from ZsG+ cells and in the proliferative regions of the tumours. The results of this study indicate that visualized canine tumour cells with low proteasome activity have a CSC-like phenotype and that this visualization system can be utilized to identify and isolate canine CSCs.
Collapse
Affiliation(s)
- Koangyong Sung
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Murase
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Razdan A, Main NM, Chiu V, Shackel NA, de Souza P, Bryant K, Scott KF. Targeting the eicosanoid pathway in hepatocellular carcinoma. Am J Cancer Res 2021; 11:2456-2476. [PMID: 34249410 PMCID: PMC8263695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023] Open
Abstract
Liver cancer has variable incidence worldwide and high mortality. Histologically, the most common subtype of liver cancer is hepatocellular carcinoma (HCC). Approximately 30-40% of HCC patients are diagnosed at an advanced stage, and at present, there are limited treatment options for such patients. The current first-line therapy with tyrosine kinase inhibitors, sorafenib or lenvatinib, prolongs survival by a median of about 2.5-3 months after which the disease normally progresses. Additionally, many patients discontinue the use of tyrosine kinase inhibitors due to toxicity or may not be suitable candidates due to co-morbidity or frailty. It is, therefore, imperative to identify novel therapeutic targets for advanced HCC patients. Persistent injury to the liver as a result of insults such as hepatitis B or C viral (HBV or HCV) infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), results in chronic inflammation, which progresses to hepatic fibrosis and later, cirrhosis, provides the conditions for initiation of HCC. One of the key pathways studied for its role in inflammation and carcinogenesis is the eicosanoid pathway. In this review, we briefly outline the eicosanoid pathway, describe the mechanisms by which some pathway members either facilitate or counter the development of liver diseases, with the focus on NAFLD/hepatic fibrosis/cirrhosis, and HCC. We describe the link between the eicosanoid pathway, inflammation and these liver diseases, and identify components of the eicosanoid pathway that may be used as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Anshuli Razdan
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nathan M Main
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Vincent Chiu
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nicholas A Shackel
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
- School of Medicine, University of WollongongWollongong, NSW, Australia
| | - Katherine Bryant
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Kieran F Scott
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| |
Collapse
|
18
|
Phospholipase Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983572 DOI: 10.1007/978-981-32-9620-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Breast cancer progression results from subversion of multiple intra- or intercellular signaling pathways in normal mammary tissues and their microenvironment, which have an impact on cell differentiation, proliferation, migration, and angiogenesis. Phospholipases (PLC, PLD and PLA) are essential mediators of intra- and intercellular signaling. They hydrolyze phospholipids, which are major components of cell membrane that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid, and arachidonic acid. Enzymatic processing of phospholipids by phospholipases converts these molecules into lipid mediators that regulate multiple cellular processes, which in turn can promote breast cancer progression. Thus, dysregulation of phospholipases contributes to a number of human diseases, including cancer. This review describes how phospholipases regulate multiple cancer-associated cellular processes, and the interplay among different phospholipases in breast cancer. A thorough understanding of the breast cancer-associated signaling networks of phospholipases is necessary to determine whether these enzymes are potential targets for innovative therapeutic strategies.
Collapse
|
19
|
Filippova N, Nabors LB. ELAVL1 Role in Cell Fusion and Tunneling Membrane Nanotube Formations with Implication to Treat Glioma Heterogeneity. Cancers (Basel) 2020; 12:E3069. [PMID: 33096700 PMCID: PMC7590168 DOI: 10.3390/cancers12103069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Homotypic and heterotypic cell fusions via permanent membrane fusions and temporal tunneling nanotube formations in the glioma microenvironment were recently documented in vitro and in vivo and mediate glioma survival, plasticity, and recurrence. Chronic inflammation, a hypoxic environment, aberrant mitochondrial function, and ER stress due to unfolded protein accumulation upregulate cell fusion events, which leads to tumor heterogeneity and represents an adaptive mechanism to promote tumor cell survival and plasticity in cytotoxic, nutrient-deprived, mechanically stressed, and inflammatory microenvironments. Cell fusion is a multistep process, which consists of the activation of the cellular stress response, autophagy formation, rearrangement of cytoskeletal architecture in the areas of cell-to-cell contacts, and the expression of proinflammatory cytokines and fusogenic proteins. The mRNA-binding protein of ELAV-family HuR is a critical node, which orchestrates the stress response, autophagy formation, cytoskeletal architecture, and the expression of proinflammatory cytokines and fusogenic proteins. HuR is overexpressed in gliomas and is associated with poor prognosis and treatment resistance. Our review provides a link between the HuR role in the regulation of cell fusion and tunneling nanotube formations in the glioma microenvironment and the potential suppression of these processes by different classes of HuR inhibitors.
Collapse
Affiliation(s)
- Natalia Filippova
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Louis B. Nabors
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
20
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Metabolomics Analysis of Laparoscopic Surgery Combined with Wuda Granule to Promote Rapid Recovery of Patients with Colorectal Cancer Using UPLC/Q-TOF-MS/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5068268. [PMID: 32104193 PMCID: PMC7040410 DOI: 10.1155/2020/5068268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/20/2019] [Accepted: 12/21/2019] [Indexed: 12/30/2022]
Abstract
Surgery is the primary curative treatment for patients with nonmetastasized colorectal cancer (CRC). Rate of complications, morbidity, mortality, and overall survival of patients with CRC are factors associated with speed of recovery following surgery. Wuda granule (WD) is a traditional Chinese medicine (TCM) prescription used to promote rapid recovery after surgery. However, the specific mechanism of action of WD has not been characterized. Our study included 60 patients with clear histopathological evidence of colon or rectal cancer who underwent CRC laparoscopic surgery and 30 healthy individuals. Serum biochemistry and clinical evaluation of gastrointestinal function showed that WD could improve the nutritional status and gastrointestinal function and reduce the level of inflammation of patients with CRC following laparoscopic surgery. In addition, we used UPLC/Q-TOF-MS/MS-based metabolomics analysis to determine the mechanism of WD-related rapid recovery following laparoscopic surgery in patients with CRC. Twenty metabolites associated with arachidonic acid, alanine, aspartate and glutamate, α-linolenic acid, pyruvate, histidine, and glycerophospholipids were identified. The results suggested that the therapeutic mechanism of laparoscopic surgery combined with WD may be related to regulation of nutritional status, inflammation, immune function, energy, and gastrointestinal function in patients with CRC. This study also highlighted the ability of TCM compounds to interact with multiple targets to induce synergistic effects. This study may result in further studies of WD as a therapeutic agent to promote recovery following surgical resection of CRC tumors.
Collapse
|
22
|
Noreldeen HAA, Liu X, Xu G. Metabolomics of lung cancer: Analytical platforms and their applications. J Sep Sci 2019; 43:120-133. [DOI: 10.1002/jssc.201900736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Hamada A. A. Noreldeen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
- University of Chinese Academy of Sciences Beijing P. R. China
- Marine Chemistry LabMarine Environment DivisionNational Institute of Oceanography and Fisheries Hurghada Egypt
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| |
Collapse
|
23
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Tunset HM, Feuerherm AJ, Selvik LKM, Johansen B, Moestue SA. Cytosolic Phospholipase A2 Alpha Regulates TLR Signaling and Migration in Metastatic 4T1 Cells. Int J Mol Sci 2019; 20:ijms20194800. [PMID: 31569627 PMCID: PMC6801560 DOI: 10.3390/ijms20194800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/02/2022] Open
Abstract
Metastatic disease is the leading cause of death in breast cancer patients. Disrupting the cancer cell’s ability to migrate may be a strategy for hindering metastasis. Cytosolic phospholipase A2 α (cPLA2α), along with downstream proinflammatory and promigratory metabolites, has been implicated in several aspects of tumorigenesis, as well as metastasis, in various types of cancer. In this study, we aim to characterize the response to reduced cPLA2α activity in metastatic versus non-metastatic cells. We employ an isogenic murine cell line pair displaying metastatic (4T1) and non-metastatic (67NR) phenotype to investigate the role of cPLA2α on migration. Furthermore, we elucidate the effect of reduced cPLA2α activity on global gene expression in the metastatic cell line. Enzyme inhibition is achieved by using a competitive pharmacological inhibitor, cPLA2α inhibitor X (CIX). Our data show that 4T1 expresses significantly higher cPLA2α levels as compared to 67NR, and the two cell lines show different sensitivity to the CIX treatment with regards to metabolism and proliferation. Inhibition of cPLA2α at nontoxic concentrations attenuates migration of highly metastatic 4T1 cells, but not non-metastatic 67NR cells. Gene expression analysis indicates that processes such as interferon type I (IFN-I) signaling and cell cycle regulation are key processes regulated by cPLA2a in metastatic 4T1 cells, supporting the findings from the biological assays. This study demonstrates that two isogenic cancer cell lines with different metastatic potential respond differently to reduced cPLA2α activity. In conclusion, we argue that cPLA2α is a potential therapeutic target in cancer and that enzyme inhibition may inhibit metastasis through an anti-migratory mechanism, possibly involving Toll-like receptor signaling and type I interferons.
Collapse
Affiliation(s)
- Hanna Maja Tunset
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
| | - Astrid Jullumstrø Feuerherm
- Center for Oral Health Services and Research (TkMidt), 7030 Trondheim, Norway.
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Linn-Karina Myrland Selvik
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
- Department of Health Sciences, Nord University, P.O. Box 1490, 8049 Bodø, Norway.
| |
Collapse
|
25
|
Yang J, Zhang Z, Zhao Y, Cheng J, Zhao C, Wang Z. CCT α is a novel biomarker for diagnosis of laryngeal squamous cell cancer. Sci Rep 2019; 9:11823. [PMID: 31413263 PMCID: PMC6694151 DOI: 10.1038/s41598-019-47895-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Choline phosphate-based delivery systems can target the acidic tumor microenvironment. In this study, we set out to evaluate the diagnostic value of Choline phosphate cytidylyltransferase-α (CCTα) in laryngeal squamous cell cancer (LSCC). The expression of CCTα was detected using immunohistochemistry in 50 LSCC patients’ tissues and 16 vocal polyps as control group. Then, clinical data was collected and we used receiver operating characteristic curve (ROC) to estimate the potential of CCTα as diagnostic biomarker. We found CCTα levels to be significantly high in the tissues derived from LSCC patients, (p < 0.001). Further, we observed a positive correlation of CCTα with tumor size (p < 0.001), TNM stage (p < 0.001), lymph node metastasis (p < 0.001) as well as the grade of LSCC malignancy (p < 0.001). Furthermore, AUC was determined to be 0.939 by ROC, and the optimal cutoff value 3.100, with 76.0% sensitivity and 100% specificity. We also found an epigenetic basis of CCTα over-expression in LSCC tissues with significantly reduced methylation of CCTα in LSCC tissues, compared to vocal polyps (p < 0.001). These results support epigenetically-induced over-expression of CCTα as a potential diagnostic marker for LSCC.
Collapse
Affiliation(s)
- Jingpu Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Zhuping Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Central Hospital of Wuhan, 26 Shengli Street, Wuhan, 430014, China
| | - Yin Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Jinzhang Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Chang Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Zonggui Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
26
|
Bernardini M, Brossa A, Chinigo G, Grolez GP, Trimaglio G, Allart L, Hulot A, Marot G, Genova T, Joshi A, Mattot V, Fromont G, Munaron L, Bussolati B, Prevarskaya N, Fiorio Pla A, Gkika D. Transient Receptor Potential Channel Expression Signatures in Tumor-Derived Endothelial Cells: Functional Roles in Prostate Cancer Angiogenesis. Cancers (Basel) 2019; 11:cancers11070956. [PMID: 31288452 PMCID: PMC6678088 DOI: 10.3390/cancers11070956] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Transient receptor potential (TRP) channels control multiple processes involved in cancer progression by modulating cell proliferation, survival, invasion and intravasation, as well as, endothelial cell (EC) biology and tumor angiogenesis. Nonetheless, a complete TRP expression signature in tumor vessels, including in prostate cancer (PCa), is still lacking. Methods: In the present study, we profiled by qPCR the expression of all TRP channels in human prostate tumor-derived ECs (TECs) in comparison with TECs from breast and renal tumors. We further functionally characterized the role of the ‘prostate-associated’ channels in proliferation, sprout formation and elongation, directed motility guiding, as well as in vitro and in vivo morphogenesis and angiogenesis. Results: We identified three ‘prostate-associated’ genes whose expression is upregulated in prostate TECs: TRPV2 as a positive modulator of TEC proliferation, TRPC3 as an endothelial PCa cell attraction factor and TRPA1 as a critical TEC angiogenic factor in vitro and in vivo. Conclusions: We provide here the full TRP signature of PCa vascularization among which three play a profound effect on EC biology. These results contribute to explain the aggressive phenotype previously observed in PTEC and provide new putative therapeutic targets.
Collapse
Affiliation(s)
- Michela Bernardini
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Alessia Brossa
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy
| | - Giorgia Chinigo
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Guillaume P Grolez
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
| | - Giulia Trimaglio
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Laurent Allart
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
| | - Audrey Hulot
- Univ. Lille, Institut Français de Bioinformatique, bilille, F-59000 Lille, France
| | - Guillemette Marot
- Univ. Lille, Institut Français de Bioinformatique, bilille, F-59000 Lille, France
- Univ. Lille, Inria, CHU Lille, EA 2694-MODAL-Models for Data Analysis and Learning, F-59000 Lille, France
| | - Tullio Genova
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Aditi Joshi
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Virginie Mattot
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161, F-59000 Lille, France
| | - Gaelle Fromont
- Inserm UMR 1069, Université de Tours, 37000 Tours, France
| | - Luca Munaron
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy
| | - Natalia Prevarskaya
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
| | - Alessandra Fiorio Pla
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France
- Department of Life Science and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Dimitra Gkika
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France.
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, F-59655 Villeneuve d'Ascq, France.
| |
Collapse
|
27
|
Yazlovitskaya EM, Viquez OM, Tu T, De Arcangelis A, Georges-Labouesse E, Sonnenberg A, Pozzi A, Zent R. The laminin binding α3 and α6 integrins cooperate to promote epithelial cell adhesion and growth. Matrix Biol 2019; 77:101-116. [PMID: 30193894 PMCID: PMC6399080 DOI: 10.1016/j.matbio.2018.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
Abstract
Integrins, the major receptors for cell-extracellular matrix (ECM) interactions, regulate multiple cell biological processes including adhesion, migration, proliferation and growth factor-dependent signaling. The principal laminin (LM) binding integrins α3β1, α6β1 and α6β4 are usually co-expressed in cells and bind to multiple laminins with different affinities making it difficult to define their specific function. In this study, we generated kidney epithelial collecting duct (CD) cells that lack both the α3 and α6 integrin subunits. This deletion impaired cell adhesion and migration to LM-332 and LM-511 more than deleting α3 or α6 alone. Cell adhesion mediated by both α3β1 and α6 integrins was PI3K independent, but required K63-linked polyubiquitination of Akt by the ubiquitin-modifying enzyme TRAF6. Moreover, we provide evidence that glial-derived neurotrophic factor (GDNF) and fibroblast growth factor 10 (FGF10)- mediated cell signaling, spreading and proliferation were severely compromised in double integrin α3/α6- but not single α3- or α6-null CD cells. Interestingly, these growth factor-dependent cell functions required both PI3K- and TRAF6-dependent Akt activation. These data suggest that expression of the integrin α3 or α6 subunit is sufficient to mediate GDNF- and FGF10-dependent spreading, proliferation and signaling on LM-511. Thus, our study shows that α3 and α6 containing integrins promote distinct functions and signaling by CD cells on laminin substrata.
Collapse
Affiliation(s)
| | - Olga M Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN 37232, USA
| | - Tianxiang Tu
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN 37232, USA
| | - Adele De Arcangelis
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U1258, Université de Strasbourg, Illkirch, France
| | - Elisabeth Georges-Labouesse
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U1258, Université de Strasbourg, Illkirch, France
| | - Arnoud Sonnenberg
- Division of Cell Biology, Netherlands Cancer Institute, 1066, CX, Amsterdam, Netherlands
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN 37232, USA; Department of Cancer Biology, Nashville, TN 37232, USA; Veterans Affairs Hospital, Nashville, TN 37232, USA.
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN 37232, USA; Department of Cancer Biology, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Hospital, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Pang X, Yin P, Han J, Wang Z, Zheng F, Chen X. cPLA 2a correlates with metastasis and poor prognosis of osteosarcoma by facilitating epithelial-mesenchymal transition. Pathol Res Pract 2019; 215:152398. [PMID: 31003849 DOI: 10.1016/j.prp.2019.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Osteosarcoma (OS) patients with metastasis have very dismal prognoses, and lack effective target therapies. Overexpression of cytosolic phospholipase A2 (cPLA2) has been shown to promote progression in several types of cancers, but its functions in OS have not been investigated. MATERIALS AND METHODS In our study, the expression of cPLA2a was detected with immunohistochemistry in 102 cases of OS. The clinical significance of cPLA2a was evaluated by analyzing its correlation with clinicopathological factors. The prognostic significance of cPLA2a was estimated by univariate and multivariate analysis. The oncogenic functions of cPLA2a on cell proliferation and invasion were investigated by MTT assay and tranwell assay respectively. Western blotting was applied to detect the markers of epithelial-mesenchymal transition (EMT) after silencing cPLA2a expression or inhibiting its activity by a specific antagonist. RESULTS In our study, high expression of cPLA2a was significantly associated with metastasis and advanced Enneking stage. High cPLA2a expression was significantly associated with poor prognosis and it was an independent prognostic biomarker of OS. By silencing cPLA2a or inhibiting its activity by a specific antagonist, we demonstrated that cPLA2a promoted cell invasion of OS cells via inducing the EMT process. CONCLUSIONS High cPLA2a expression was an independent prognostic biomarker of OS, and cPLA2a could promote OS cell invasion via inducing the EMT process, indicating that cPLA2a was an independent prognostic biomarker and may be an effective drug target for OS.
Collapse
Affiliation(s)
- Xumei Pang
- Department of Oncology, Yidu Central Hospital of Weifang City, Weifang, China
| | - Peng Yin
- Department of Orthopedic Surgery, Yidu Central Hospital of Weifang City, Weifang, China
| | - Jiliang Han
- Department of Radiotherapy, Yidu Central Hospital of Weifang City, Weifang, China
| | - Zhiqian Wang
- Department of Oncology, Yidu Central Hospital of Weifang City, Weifang, China
| | - Feng Zheng
- Department of Orthopedics, The Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Xuanhuang Chen
- Department of Orthopedics, The Affiliated Hospital of Putian University, Putian, Fujian, China.
| |
Collapse
|
29
|
Jee SH, Kim M, Kim M, Yoo HJ, Kim H, Jung KJ, Hong S, Lee JH. Metabolomics Profiles of Hepatocellular Carcinoma in a Korean Prospective Cohort: The Korean Cancer Prevention Study-II. Cancer Prev Res (Phila) 2018; 11:303-312. [DOI: 10.1158/1940-6207.capr-17-0249] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/11/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
|
30
|
Park MH, Yun HM, Hwang CJ, Park SI, Han SB, Hwang DY, Yoon DY, Kim S, Hong JT. Presenilin Mutation Suppresses Lung Tumorigenesis via Inhibition of Peroxiredoxin 6 Activity and Expression. Theranostics 2017; 7:3624-3637. [PMID: 29109765 PMCID: PMC5667337 DOI: 10.7150/thno.21408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023] Open
Abstract
Some epidemiological studies suggest an inverse correlation between cancer incidence and Alzheimer's disease (AD). In this study, we demonstrated experimental evidences for this inverse relationship. In the co-expression network analysis using the microarray data and GEO profile of gene expression omnibus data analysis, we showed that the expression of peroxiredoxin 6 (PRDX6), a tumor promoting protein was significantly increased in human squamous lung cancer, but decreased in mutant presenilin 2 (PS2) containing AD patient. We also found in animal model that mutant PS2 transgenic mice displayed a reduced incidence of spontaneous and carcinogen-induced lung tumor development compared to wildtype transgenic mice. Agreed with network and GEO profile study, we also revealed that significantly reduced expression of PRDX6 and activity of iPLA2 in these animal models. PS2 mutations increased their interaction with PRDX6, thereby increasing iPLA2 cleavage via increased γ-secretase leading to loss of PRDX6 activity. However, knockdown or inhibition of γ-secretase abolished the inhibitory effect of mutant PSs. Moreover, PS2 mutant skin fibroblasts derived from patients with AD showed diminished iPLA2 activity by the elevated γ-secretase activity. Thus, the present data suggest that PS2 mutations suppress lung tumor development by inhibiting the iPLA2 activity of PRDX6 via a γ-secretase cleavage mechanism and may explain the inverse relationship between cancer and AD incidence.
Collapse
|
31
|
Kim JU, Cox IJ, Taylor-Robinson SD. The Quest for Relevant Hepatocellular Carcinoma Biomarkers. Cell Mol Gastroenterol Hepatol 2017; 4:283-284. [PMID: 28795124 PMCID: PMC5540696 DOI: 10.1016/j.jcmgh.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jin U Kim
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - I Jane Cox
- Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom
| | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Viquez OM, Yazlovitskaya EM, Tu T, Mernaugh G, Secades P, McKee KK, Georges-Labouesse E, De Arcangelis A, Quaranta V, Yurchenco P, Gewin LC, Sonnenberg A, Pozzi A, Zent R. Integrin alpha6 maintains the structural integrity of the kidney collecting system. Matrix Biol 2016; 57-58:244-257. [PMID: 28043890 DOI: 10.1016/j.matbio.2016.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
Laminins are a major constituent of the basement membranes of the kidney collecting system. Integrins, transmembrane receptors formed by non-covalently bound α and β subunits, serve as laminin receptors, but their role in development and homeostasis of the kidney collecting system is poorly defined. Integrin α3β1, one of the major laminin receptors, plays a minor role in kidney collecting system development, while the role of α6 containing integrins (α6β1 and α6β4), the other major laminin receptors, is unknown. Patients with mutations in α6 containing integrins not only develop epidermolysis bullosa, but also have abnormalities in the kidney collecting system. In this study, we show that selectively deleting the α6 or β4 integrin subunits at the initiation of ureteric bud development in mice does not affect morphogenesis. However, the collecting system becomes dilated and dysmorphic as the mice age. The collecting system in both null genotypes was also highly susceptible to unilateral ureteric obstruction injury with evidence of excessive tubule dilatation and epithelial cell apoptosis. Mechanistically, integrin α6-null collecting duct cells are unable to withstand high mechanical force when adhered to laminin. Thus, we conclude that α6 integrins are important for maintaining the integrity of the kidney collecting system by enhancing tight adhesion of the epithelial cells to the basement membrane. These data give a mechanistic explanation for the association between kidney collecting system abnormalities in patients and epidermolysis bullosa.
Collapse
Affiliation(s)
- Olga M Viquez
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eugenia M Yazlovitskaya
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tianxiang Tu
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pablo Secades
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Elizabeth Georges-Labouesse
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, Inserm, U964, Illkirch, CNRS, UMR 7104, Illkirch, Université de Strasbourg, Strasbourg, France
| | - Adele De Arcangelis
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, Inserm, U964, Illkirch, CNRS, UMR 7104, Illkirch, Université de Strasbourg, Strasbourg, France
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Peter Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Leslie C Gewin
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Hospital, Nashville, TN 37232, USA
| | - Arnoud Sonnenberg
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Ambra Pozzi
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Hospital, Nashville, TN 37232, USA
| | - Roy Zent
- Division of Nephrology and Hypertension and Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Hospital, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Kim E, Kim J, Maelandsmo GM, Johansen B, Moestue SA. Anti-angiogenic therapy affects the relationship between tumor vascular structure and function: A correlation study between micro-computed tomography angiography and dynamic contrast enhanced MRI. Magn Reson Med 2016; 78:1513-1522. [PMID: 27888545 DOI: 10.1002/mrm.26547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE To compare the effects of two anti-angiogenic drugs, bevacizumab and a cytosolic phospholipase A2-α inhibitor (AVX235), on the relationship between vascular structure and dynamic contrast enhanced (DCE)-MRI measurements in a patient-derived breast cancer xenograft model. METHODS Mice bearing MAS98.12 tumors were randomized into three groups: bevacizumab-treated (n = 9), AVX235-treated (n = 9), and control (n = 8). DCE-MRI was performed pre- and post-treatment. Median initial area under the concentration-time curve (IAUC60 ) and volume transfer constant (Ktrans ) were computed for each tumor. Tumors were excised for ex vivo micro-CT (computed tomography) angiography, from which the vascular surface area (VSA) and fractional blood volume (FBV) were computed. Spearman correlation coefficients (ρ) were computed to evaluate the associations between the DCE-MRI and micro-CT parameters. RESULTS With the groups pooled, IAUC60 and Ktrans correlated significantly with VSA (ρ = 0.475 and 0.527; P = 0.019 and 0.008). There were no significant correlations within the control group. There were various significant correlations within the treatment groups, but the correlations in the bevacizumab group were of opposite sign, for example, Ktrans versus FBV: AVX235, ρ = 0.800 (P = 0.014); bevacizumab, ρ = -0.786 (P = 0.023). CONCLUSION DCE-MRI measurements can highly depend on vascular structure. The relationship between vascular structure and function changed markedly after anti-angiogenic treatment. Magn Reson Med 78:1513-1522, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jana Kim
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gunhild Mari Maelandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Berit Johansen
- Department of Biology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siver Andreas Moestue
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
34
|
Williams MD, Xian L, Huso T, Park JJ, Huso D, Cope LM, Gang DR, Siems WF, Resar L, Reeves R, Hill HH. Fecal Metabolome in Hmga1 Transgenic Mice with Polyposis: Evidence for Potential Screen for Early Detection of Precursor Lesions in Colorectal Cancer. J Proteome Res 2016; 15:4176-4187. [PMID: 27696867 DOI: 10.1021/acs.jproteome.6b00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Because colorectal cancer (CRC) remains a leading cause of cancer mortality worldwide, more accessible screening tests are urgently needed to identify early stage lesions. We hypothesized that highly sensitive, metabolic profile analysis of stool samples will identify metabolites associated with early stage lesions and could serve as a noninvasive screening test. We therefore applied traveling wave ion mobility mass spectrometry (TWIMMS) coupled with ultraperformance liquid chromatography (UPLC) to investigate metabolic aberrations in stool samples in a transgenic model of premalignant polyposis aberrantly expressing the gene encoding the high mobility group A (Hmga1) chromatin remodeling protein. Here, we report for the first time that the fecal metabolome of Hmga1 mice is distinct from that of control mice and includes metabolites previously identified in human CRC. Significant alterations were observed in fatty acid metabolites and metabolites associated with bile acids (hypoxanthine xanthine, taurine) in Hmga1 mice compared to controls. Surprisingly, a marked increase in the levels of distinctive short, arginine-enriched, tetra-peptide fragments was observed in the transgenic mice. Together these findings suggest that specific metabolites are associated with Hmga1-induced polyposis and abnormal proliferation in intestinal epithelium. Although further studies are needed, these data provide a compelling rationale to develop fecal metabolomic analysis as a noninvasive screening tool to detect early precursor lesions to CRC in humans.
Collapse
Affiliation(s)
- Michael D Williams
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Lingling Xian
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Tait Huso
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Jeong-Jin Park
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - David Huso
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Leslie M Cope
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - David R Gang
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - William F Siems
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Linda Resar
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Raymond Reeves
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Herbert H Hill
- Department of Chemistry, ‡School of Molecular Biosciences, and §Institute of Biological Chemistry, Washington State University , Pullman, Washington 99164, United States.,Department of Medicine, ¶Department of Oncology, and ∥Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| |
Collapse
|
35
|
Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KSVGK, Chintala R, Duddukuri GR. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41:48-81. [PMID: 26853158 DOI: 10.1016/j.semcancer.2016.02.001] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A2s (PLA2s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA2s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed.
Collapse
Affiliation(s)
- Nagendra Sastry Yarla
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India; Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bhadrapura Lakkappa Dhananjaya
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global Campus, Jain University, Kanakapura Taluk, Ramanagara 562 112, Karnataka, India
| | - Kaladhar S V G K Dowluru
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India; Department of Microbiology and Bioinformatics, Bilaspur University, Bilaspur 495 001, Chhattisgarh, India
| | - Ramakrishna Chintala
- Department of Environmental Sciences, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Govinda Rao Duddukuri
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India.
| |
Collapse
|
36
|
Yadav SK, Sharma SK, Farooque A, Kaushik G, Kaur B, Pathak CM, Dwarakanath BS, Khanduja KL. Cytosolic phospholipase A2 (cPLA2) IVA as a potential signature molecule in cigarette smoke condensate induced pathologies in alveolar epithelial lineages. Lipids Health Dis 2016; 15:129. [PMID: 27528014 PMCID: PMC4986351 DOI: 10.1186/s12944-016-0300-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/03/2016] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Smoking is one of the leading causes of millions of deaths worldwide. During cigarette smoking, most affected and highly exposed cells are the alveolar epithelium and generated oxidative stress in these cells leads to death and damage. Several studies suggested that oxidative stress causes membrane remodeling via Phospholipase A2s but in the case of cigarette smokers, mechanistically study is not yet fully defined. In view of present perspective, we evaluated the involvement of cytosolic phospholipase A2 (cPLA2) IVA as therapeutic target in cigarette smoke induced pathologies in transformed type I and type II alveolar epithelial cells. METHODS Transformed type I (WI26) and type II (A549) alveolar epithelial cells were used for the present study. Cigarette smoke condensate (CSC) was prepared from most commonly used cigarette (Gold Flake with filter) by the Indian population. CSC-induced molecular changes were evaluated through cell viability using MTT assay, reactive oxygen species (ROS) measurement using 2,7 dichlorodihydrofluorescin diacetate (DCFH-DA), cell membrane integrity using fluorescein diacetate (FDA) and ethidium bromide (EtBr) staining, super oxide dismutase (SOD) levels, cPLA2 activity and molecular involvement of specific cPLA2s at selected 24 h time period. RESULTS CSC-induced response on both type of epithelial cells shown significantly reduction in cell viability, declined membrane integrity, with differential escalation of ROS levels in the range of 1.5-15 folds and pointedly increased cPLA2 activity (p < 0.05). Likewise, we observed distinction antioxidant potential in these two types of lineages as type I cells had considerably higher SOD levels when compared to type II cells (p < 0.05). Further molecular expression of all cPLA2s increased significantly in a dose dependent manner, specifically cytosolic phospholipase A2 IVA with maximum manifestation of 3.8 folds. Interestingly, CSC-induced ROS levels and cPLA2s expression were relatively higher in A549 cells as compared to WI26 cells. CONCLUSIONS The present study indicates that among all cPLA2s, specific cPLA2 IVA are the main enzymes involved in cigarette smoke induced anomalies in type I and type II lung epithelial cells and targeting them holds tremendous possibilities in cigarette smoke induced lung pathologies.
Collapse
Affiliation(s)
- Subodh K. Yadav
- Department of Biophysics, PGIMER Chandigarh, Chandigarh, 160012 India
- Present address: Department of CSIC, PGIMER Chandigarh, Chandigarh, 160012 India
| | - Sanjeev K. Sharma
- Department of Biophysics, PGIMER Chandigarh, Chandigarh, 160012 India
| | | | - Gaurav Kaushik
- Department of Biophysics, PGIMER Chandigarh, Chandigarh, 160012 India
- Present address: Surgery, School of Medicine, KU Medical Center (KUMC), Kansas City, KS 66160 USA
| | - Balwinder Kaur
- Department of Biophysics, PGIMER Chandigarh, Chandigarh, 160012 India
| | - Chander M. Pathak
- Department of Biophysics, PGIMER Chandigarh, Chandigarh, 160012 India
| | - Bilikere S. Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences, New Delhi, India
- Present address: Central Research Facility, Sri Ramachandra University, Porur, Chennai, 600116 India
| | | |
Collapse
|
37
|
Chandrasekharan JA, Marginean A, Sharma-Walia N. An insight into the role of arachidonic acid derived lipid mediators in virus associated pathogenesis and malignancies. Prostaglandins Other Lipid Mediat 2016; 126:46-54. [PMID: 27450483 DOI: 10.1016/j.prostaglandins.2016.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/25/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022]
Abstract
Several studies shed light on the size and diversity of the lipidome, along with its role in physiological and pathological processes in human health. Besides that, lipids also function as important signaling mediators. This review focuses on discussing the role of arachidonic acid (AA) derived lipids as mediators in diseases with special emphasis on viral infections. Structurally, arachidonic acid derived lipids, also referred to as lipid mediators, can be classified into three specific classes: Class 1-eicosanoids derived from arachidonic acid metabolism; Class 2-lysophospholipids consisting of either a glycerol or a sphingosine backbone; Class 3-AA and ω-3 polyunsaturated fatty acid (PUFA) derivatives. Class 1 and 2 lipids are commonly referred to as pro-inflammatory molecules, which are found upregulated in diseases like cancer and viral infection. Class 3 lipids are anti-inflammatory molecules, which could be potentially used in treatment of diseases associated with inflammation. The function of each class has been elucidated as unique and contributory to an overall cellular homeostasis. Current work in this field is promising and will surely usher in a new era of lipid understanding and control not only at the molecular level, but also in terms of holistic patient care.
Collapse
Affiliation(s)
- Jayashree A Chandrasekharan
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandru Marginean
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
38
|
Kim JU, Shariff MIF, Crossey MME, Gomez-Romero M, Holmes E, Cox IJ, Fye HKS, Njie R, Taylor-Robinson SD. Hepatocellular carcinoma: Review of disease and tumor biomarkers. World J Hepatol 2016; 8:471-484. [PMID: 27057305 PMCID: PMC4820639 DOI: 10.4254/wjh.v8.i10.471] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and now the second commonest global cause of cancer death. HCC tumorigenesis is relatively silent and patients experience late symptomatic presentation. As the option for curative treatments is limited to early stage cancers, diagnosis in non-symptomatic individuals is crucial. International guidelines advise regular surveillance of high-risk populations but the current tools lack sufficient sensitivity for early stage tumors on the background of a cirrhotic nodular liver. A number of novel biomarkers have now been suggested in the literature, which may reinforce the current surveillance methods. In addition, recent metabonomic and proteomic discoveries have established specific metabolite expressions in HCC, according to Warburg’s phenomenon of altered energy metabolism. With clinical validation, a simple and non-invasive test from the serum or urine may be performed to diagnose HCC, particularly benefiting low resource regions where the burden of HCC is highest.
Collapse
|
39
|
Supinski GS, Alimov AP, Wang L, Song XH, Callahan LA. Calcium-dependent phospholipase A2 modulates infection-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2016; 310:L975-84. [PMID: 26968769 DOI: 10.1152/ajplung.00312.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/09/2016] [Indexed: 11/22/2022] Open
Abstract
Calpain activation contributes to the development of infection-induced diaphragm weakness, but the mechanisms by which infections activate calpain are poorly understood. We postulated that skeletal muscle calcium-dependent phospholipase A2 (cPLA2) is activated by cytokines and has downstream effects that induce calpain activation and muscle weakness. We determined whether cPLA2 activation mediates cytokine-induced calpain activation in isolated skeletal muscle (C2C12) cells and infection-induced diaphragm weakness in mice. C2C12 cells were treated with the following: 1) vehicle; 2) cytomix (TNF-α 20 ng/ml, IL-1β 50 U/ml, IFN-γ 100 U/ml, LPS 10 μg/ml); 3) cytomix + AACOCF3, a cPLA2 inhibitor (10 μM); or 4) AACOCF3 alone. At 24 h, we assessed cell cPLA2 activity, mitochondrial superoxide generation, calpain activity, and calpastatin activity. We also determined if SS31 (10 μg/ml), a mitochondrial superoxide scavenger, reduced cytomix-mediated calpain activation. Finally, we determined if CDIBA (10 μM), a cPLA2 inhibitor, reduced diaphragm dysfunction due to cecal ligation puncture in mice. Cytomix increased C2C12 cell cPLA2 activity (P < 0.001) and superoxide generation; AACOCF3 and SS31 blocked increases in superoxide generation (P < 0.001). Cytomix also activated calpain (P < 0.001) and inactivated calpastatin (P < 0.01); both AACOCF3 and SS31 prevented these changes. Cecal ligation puncture reduced diaphragm force in mice, and CDIBA prevented this reduction (P < 0.001). cPLA2 modulates cytokine-induced calpain activation in cells and infection-induced diaphragm weakness in animals. We speculate that therapies that inhibit cPLA2 may prevent diaphragm weakness in infected, critically ill patients.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Alexander P Alimov
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Xiao-Hong Song
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Leigh A Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
40
|
Kim E, Tunset HM, Cebulla J, Vettukattil R, Helgesen H, Feuerherm AJ, Engebråten O, Mælandsmo GM, Johansen B, Moestue SA. Anti-vascular effects of the cytosolic phospholipase A2 inhibitor AVX235 in a patient-derived basal-like breast cancer model. BMC Cancer 2016; 16:191. [PMID: 26951085 PMCID: PMC4782288 DOI: 10.1186/s12885-016-2225-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group IVA cytosolic phospholipase A2 (cPLA2α) plays an important role in tumorigenesis and angiogenesis. It is overexpressed in basal-like breast cancer (BLBC), which is aggressive and usually triple-negative, making it unresponsive to current targeted therapies. Here, we evaluated the anti-angiogenic effects of a specific cPLA2α inhibitor, AVX235, in a patient-derived triple-negative BLBC model. METHODS Mice bearing orthotopic xenografts received i.p. injections of AVX235 or DMSO vehicle daily for 1 week and then every other day for up to 19 days. Six treated and six control mice were terminated after 2 days of treatment, and the tumors excised for high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) and prostaglandin E2 (PGE2) enzyme immunoassay (EIA) analysis. A 1-week imaging study was performed on a separate cohort of mice. Longitudinal dynamic contrast enhanced (DCE)-MRI was performed before, after 4 days, and after 1 week of treatment. The mice were then perfused with a radiopaque vascular casting agent, and the tumors excised for micro-CT angiography. Subsequently, tumors were sectioned and stained with lectin and for Ki67 or α-smooth muscle actin to quantify endothelial cell proliferation and vessel maturity, respectively. Partial least squares discriminant analysis was performed on the multivariate HR MAS MRS data, and non-parametric univariate analyses using Mann-Whitney U tests (α = 0.05) were performed on all other data. RESULTS Glycerophosphocholine and PGE2 levels, measured by HR MAS MRS and EIA, respectively, were lower in treated tumors after 2 days of treatment. These molecular changes are expected downstream effects of cPLA2α inhibition and were followed by significant tumor growth inhibition after 8 days of treatment. DCE-MRI revealed that AVX235 treatment caused a decrease in tumor perfusion. Concordantly, micro-CT angiography showed that vessel volume fraction, density, and caliber were reduced in treated tumors. Moreover, histology showed decreased endothelial cell proliferation and fewer immature vessels in treated tumors. CONCLUSIONS These results demonstrate that cPLA2α inhibition with AVX235 resulted in decreased vascularization and perfusion and subsequent inhibition of tumor growth. Thus, cPLA2α inhibition may be a potential new therapeutic option for triple-negative basal-like breast cancer.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491, Trondheim, Norway.
| | - Hanna Maja Tunset
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491, Trondheim, Norway.
| | - Jana Cebulla
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491, Trondheim, Norway.
| | - Riyas Vettukattil
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491, Trondheim, Norway.
| | - Heidi Helgesen
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491, Trondheim, Norway.
| | - Astrid Jullumstrø Feuerherm
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491, Trondheim, Norway.
| | - Olav Engebråten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, P.O. Box 4953 Nydalen, Oslo, 0424, Norway.
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, P.O. Box 4953 Nydalen, Oslo, 0424, Norway.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491, Trondheim, Norway.
| | - Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491, Trondheim, Norway.
| |
Collapse
|
41
|
Priolo C, Ricoult SJH, Khabibullin D, Filippakis H, Yu J, Manning BD, Clish C, Henske EP. Tuberous sclerosis complex 2 loss increases lysophosphatidylcholine synthesis in lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2015; 53:33-41. [PMID: 25780943 DOI: 10.1165/rcmb.2014-0379rc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a destructive lung disease affecting women. LAM is caused by mutations in the tuberous sclerosis complex (TSC) genes. The TSC protein complex inhibits the mechanistic/mammalian target of rapamycin complex 1 (mTORC1), which is a master regulator of cellular metabolism. Using mass spectrometry-based lipid profiling, we analyzed plasma from patients with LAM and discovered elevated levels of four lysophosphatidylcholine (LPC) species (C16:0, C18:0, C18:1, and C20:4) compared with those in healthy control women. To investigate whether these lipids are generated in a TSC2-dependent manner, we profiled in vitro preclinical models of TSC/LAM and found significant LPC accumulation in TSC2-deficient cells relative to TSC2-expressing control cells. These lysoglycerophospholipid changes occurred alongside changes in other phospholipid and neutral lipid species. Treatment with rapamycin or torin1 or down-regulation of sterol regulatory element-binding protein (SREBP), a lipogenic transcription factor, did not suppress LPC in TSC2-deficient cells. Inhibition of distinct isoforms of phospholipase A2 decreased the proliferation of TSC2-deficient cells. Collectively, these results demonstrate that TSC2-deficient cells have enhanced choline phospholipid metabolism and reveal a novel function of the TSC proteins in choline lysoglycerophospholipid metabolism, with implications for disease pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Priolo
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stéphane J H Ricoult
- 2 Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - Damir Khabibullin
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harilaos Filippakis
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jane Yu
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brendan D Manning
- 2 Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - Clary Clish
- 3 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elizabeth P Henske
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Deletion of phospholipase A2 group IVc induces apoptosis in rat mammary tumour cells by the nuclear factor-κB/lipocalin 2 pathway. Biochem J 2015; 469:315-24. [PMID: 26013918 DOI: 10.1042/bj20150064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Although some forms of phospholipase A2, the initiator of the arachidonic acid cascade, contribute to carcinogenesis in many organs, the contribution of phospholipase A2 group IVc (Pla2g4c) remains to be clarified and the function of the enzyme in cancer development is unknown. The Hirosaki hairless rat (HHR), a mutant rat strain with autosomal recessive inheritance, derived spontaneously from the Sprague-Dawley rat (SDR). The HHRs showed a lower incidence and much smaller volume of mammary tumours induced by 7,12-dimethylbenz[a]anthracene, and a markedly increased number of TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling)-positive apoptotic cells was detected. Array comparative genomic hybridization and PCR analyses revealed the deletion of 50-kb genomic DNA on 1q21, including Pla2g4c, in HHRs. The Pla2g4c gene was expressed in the ductal carcinoma cells and myoepithelial cells in SDRs, but not in HHRs. The direct involvement of Pla2g4c in the prevention of cell death was demonstrated through the inhibition of its expression in rat mammary tumour RMT-1 cells using siRNA. This treatment also induced expression of lipocalin 2 (Lcn2) and other NF-κB (nuclear factor κB)-related genes. siRNA-induced apoptosis was inhibited by Lcn2 repression or NF-κB inhibitors. This is the first report on Pla2g4c gene-deficient rats and their low susceptibility to mammary carcinogenesis by enhancing NF-κB/Lcn2-induced apoptosis.
Collapse
|
43
|
Leslie CC. Cytosolic phospholipase A₂: physiological function and role in disease. J Lipid Res 2015; 56:1386-402. [PMID: 25838312 DOI: 10.1194/jlr.r057588] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206; and Departments of Pathology and Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
44
|
Proteomic and metabonomic biomarkers for hepatocellular carcinoma: a comprehensive review. Br J Cancer 2015; 112:1141-56. [PMID: 25826224 PMCID: PMC4385954 DOI: 10.1038/bjc.2015.38] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/04/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks third in overall global cancer-related mortality. Symptomatic presentation often means advanced disease where potentially curative treatment options become very limited. Numerous international guidelines propose the routine monitoring of those with the highest risk factors for the condition in order to diagnose potential tumourigenesis early. To aid this, the fields of metabonomic- and proteomic-based biomarker discovery have applied advanced tools to identify early changes in protein and metabolite expression in HCC patients vs controls. With robust validation, it is anticipated that from these candidates will rise a high-performance non-invasive test able to diagnose early HCC and related conditions. This review gathers the numerous markers proposed by studies using mass spectrometry and proton nuclear magnetic resonance spectroscopy and evaluates areas of consistency as well as discordance.
Collapse
|
45
|
Yazlovitskaya EM, Tseng HY, Viquez O, Tu T, Mernaugh G, McKee KK, Riggins K, Quaranta V, Pathak A, Carter BD, Yurchenco P, Sonnenberg A, Böttcher RT, Pozzi A, Zent R. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell 2015; 26:1857-74. [PMID: 25808491 PMCID: PMC4436831 DOI: 10.1091/mbc.e14-07-1203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
This study demonstrates that integrin α3β1 interactions with both α3- and α5-containing laminins regulate ureteric bud (UB) development by functionally modulating the Akt signaling pathway. In addition, the work done shows that K63-linked polyubiquitination plays a previously unrecognized role in integrin α3β1–dependent cell signaling required for UB development and that this may be a novel general mechanism whereby integrins regulate signaling pathways. The collecting system of the kidney develops from the ureteric bud (UB), which undergoes branching morphogenesis, a process regulated by multiple factors, including integrin–extracellular matrix interactions. The laminin (LM)-binding integrin α3β1 is crucial for this developmental program; however, the LM types and LM/integrin α3β1–dependent signaling pathways are poorly defined. We show that α3 chain–containing LMs promote normal UB branching morphogenesis and that LM-332 is a better substrate than LM-511 for stimulating integrin α3β1–dependent collecting duct cell functions. We demonstrate that integrin α3β1–mediated cell adhesion to LM-332 modulates Akt activation in the developing collecting system and that Akt activation is PI3K independent but requires decreased PTEN activity and K63-linked polyubiquitination. We identified the ubiquitin-modifying enzyme TRAF6 as an interactor with the integrin β1 subunit and regulator of integrin α3β1–dependent Akt activation. Finally, we established that the developmental defects of TRAF6- and integrin α3–null mouse kidneys are similar. Thus K63-linked polyubiquitination plays a previously unrecognized role in integrin α3β1–dependent cell signaling required for UB development and may represent a novel mechanism whereby integrins regulate signaling pathways.
Collapse
Affiliation(s)
- Eugenia M Yazlovitskaya
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Hui-Yuan Tseng
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Olga Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Tianxiang Tu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Karen Riggins
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Amrita Pathak
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Peter Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Arnoud Sonnenberg
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 Veterans Affairs Hospital, Nashville, TN 37232
| |
Collapse
|
46
|
Cellular oxidative stress response mediates radiosensitivity in Fus1-deficient mice. Cell Death Dis 2015; 6:e1652. [PMID: 25695605 PMCID: PMC4669799 DOI: 10.1038/cddis.2014.593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 01/26/2023]
Abstract
Mechanism of radiosensitivity of normal tissues, a key factor in determining the toxic side effects of cancer radiotherapy, is not fully understood. We recently demonstrated that deficiency of mitochondrial tumor suppressor, Fus1, increases radiosensitivity at the organismal, tissue and cellular levels. Since Fus1-deficient mice and cells exhibit high levels of oxidative stress, we hypothesized that dysregulation of cellular antioxidant defenses may contribute to the increased radiosensitivity. To address this potential mechanism, we treated the Fus1 KO mice with an inhibitor of pathogenic oxidative reactions, pyridoxamine (PM). Treatment with PM ameliorated IR-induced damage to GI epithelium of Fus1 KO mice and significantly increased the survival of irradiated mice. In cultured Fus1 KO epithelial cells, IR-induced oxidative stress was enhanced because of inadequate cellular antioxidant defenses, such as low levels and/or activities of cytochrome C, Sod 2 and STAT3. This resulted in dysregulation of IR-induced DNA-damage response and DNA synthesis. Treatment of Fus1 KO cells with PM or Sod 2 mimetic Tempol normalized the oxidative stress response, thus compensating to a significant degree for inadequate antioxidant response. Our findings using Fus1 KO radiosensitive mice suggest that radiosensitivity is mediated via dysregulation of antioxidant response and defective redox homeostasis.
Collapse
|
47
|
Nemenoff R, Gijon M. Inflammation and Lung Cancer: Eicosanoids. INFLAMMATION AND LUNG CANCER 2015:161-189. [DOI: 10.1007/978-1-4939-2724-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
48
|
Biswas NK, Das S, Maitra A, Sarin R, Majumder PP. Somatic mutations in arachidonic acid metabolism pathway genes enhance oral cancer post-treatment disease-free survival. Nat Commun 2014; 5:5835. [PMID: 25517499 DOI: 10.1038/ncomms6835] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/11/2014] [Indexed: 01/17/2023] Open
Abstract
The arachidonic acid metabolism (AAM) pathway promotes tumour progression. Chemical inhibitors of AAM pathway prolong post-treatment survival of cancer patients. Here we test whether non-synonymous somatic mutations in genes of this pathway, acting as natural inhibitors, increase post-treatment survival. We identify loss-of-function somatic mutations in 15 (18%) of 84 treatment-naïve oral cancer patients by whole-exome sequencing, which we map to genes of AAM pathway. Patients (n = 53) who survived ≥ 12 months after surgery without recurrence have significantly (P = 0.007) higher proportion (26% versus 3%) of mutations than those who did not (n = 31). Patients with mutations have a significantly (P = 0.003) longer median disease-free survival (24 months) than those without (13 months). Compared with the presence of a mutation, absence of any mutation increases the hazard ratio for death (11.3) significantly (P = 0.018). The inferences are strengthened when we pool our data with The Cancer Genome Atlas (TCGA) data. In patients with AAM pathway mutations, some downstream pathways, such as the PI3K-Akt pathway, are downregulated.
Collapse
Affiliation(s)
- Nidhan K Biswas
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium (2nd Floor), Kalyani 741251, India
| | - Subrata Das
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium (2nd Floor), Kalyani 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium (2nd Floor), Kalyani 741251, India
| | - Rajiv Sarin
- Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium (2nd Floor), Kalyani 741251, India
| |
Collapse
|
49
|
Liu J, Mazzone PJ, Cata JP, Kurz A, Bauer M, Mascha EJ, Sessler DI. Serum Free Fatty Acid Biomarkers of Lung Cancer. Chest 2014; 146:670-679. [DOI: 10.1378/chest.13-2568] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
50
|
Lupo G, Motta C, Salmeri M, Spina-Purrello V, Alberghina M, Anfuso CD. An in vitro retinoblastoma human triple culture model of angiogenesis: a modulatory effect of TGF-β. Cancer Lett 2014; 354:181-8. [PMID: 25128651 DOI: 10.1016/j.canlet.2014.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 01/15/2023]
Abstract
Retinoblastoma is the most common intraocular tumour in children. In view of understanding the molecular mechanisms through which angiogenic switch on happens in the early phases of reciprocal interaction between tumour and cells constituting retinal microvessel, Transwell co-cultures constituted by human retinal endothelial cells (HREC), pericytes (HRPC), and human retinoblastoma cell line Y-79 were performed. Y-79 enhanced HREC proliferation, reduced by the introduction of HRPC in triple culture. In HREC/HRPC cultures, TGF-β in media increased, decreasing in triple cultures. High VEGF levels in triple cultures witnessed the establishment of a strongly in vitro angiogenic environment. Y-79 induced in HREC an increase in c- and iPLA2, phospho-cPLA2, inducible COX-2 protein expressions, PLA2 activities and prostaglandin E2 (PGE2) release. These effects were attenuated when HRPC were introduced in triple culture. Moreover, antibody silencing of TGF-β demonstrated a strong correlation between the signalling pathway triggered by TGF-β of pericytal origin and the phospholipase activation and the modulation of PGE2 release. Inhibiting VEGFA effect, the HRPC loss in triple culture decreased, showing its modulatory effect on their survival. Relying on the data here presented, sustaining the pericytal survival in a tumour retinal environment could ensure the integrity of microvessels and the TGF-β supply, essential for controlling aberrant endothelial pruning and angiogenesis.
Collapse
Affiliation(s)
- Gabriella Lupo
- Dipartimento di Biomedicina Clinica e Molecolare, Università di Catania, Italy
| | - Carla Motta
- Dipartimento di Biomedicina Clinica e Molecolare, Università di Catania, Italy
| | - Mario Salmeri
- Dipartimento di Scienze Bio-Mediche, Università di Catania, Italy
| | | | - Mario Alberghina
- Dipartimento di Biomedicina Clinica e Molecolare, Università di Catania, Italy
| | | |
Collapse
|