1
|
Zhou L, Li Z, Zhou S, Wang B, Liang Z, Hu S, Zhang H, Duan L, Zhao D, Cheng L, Ren H, Wakimoto H, Li M. Targeting NAD + biosynthesis suppresses TGF-β1/Smads/RAB26 axis and potentiates cisplatin cytotoxicity in non-small cell lung cancer brain metastasis. Acta Neuropathol Commun 2025; 13:56. [PMID: 40069888 PMCID: PMC11895195 DOI: 10.1186/s40478-025-01967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) plays an important role in tumor progression, but its role in non-small cell lung cancer with brain metastasis (NSCLC BM) remains unclear. Herein, we investigated NAD+ biosynthesis targeting as a new therapeutic strategy for NSCLC BM. Therapeutic activity of nicotinamide phosphoribosyl transferase (NAMPT) inhibitors was evaluated in mouse models of NSCLC BM and using various assays such as NAD+ quantitation, cell viability, and apoptosis assays. To explore impact on downstream signaling, RNA sequencing was used in NAMPT inhibitor-treated and control cells, followed by validation with genetic knockdown, western blot and qRT-PCR. Expression of NAMPT and downstream proteins in human NSCLC BM and its association with patient prognosis were examined. Finally, combination of NAMPT inhibitor and cisplatin was tested in vivo. Systemic treatment with NAMPT inhibitors demonstrated intracranial activity in an NSCLC BM model. NAMPT inhibitors decreased cellular NAD levels and suppressed proliferation and invasion, and induced apoptosis in NSCLC cells. Supplementation with NAD+ precursor NMN rescued these NAMPT inhibitor effects. Mechanistically, disruption of NAMPT-mediated NAD+ biosynthesis suppressed TGF-β1/Smads/RAB26 signaling, leading to inhibition of NSCLC cells. Expression of NAMPT/TGF-β1/Smads/RAB26 axis proteins was upregulated in NSCLC BM tissues and correlated with poor prognosis. Combining NAMPT inhibitors with cisplatin further extended the survival of NSCLC BM-bearing mice. Targeting NAD+ biosynthesis provides a new therapeutic strategy for NSCLC BM and can be effectively combined with cisplatin. Our studies identified the TGF-β1/Smads/RAB26 signaling downstream of NAMPT, which was targeted by NAMPT inhibition to mediate anti-cancer effects.
Collapse
Affiliation(s)
- Liyun Zhou
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Zhiying Li
- Department of Neurosurgery, The 7th People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Shengli Zhou
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Bin Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Zhen Liang
- Department of Neurosurgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Sen Hu
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Hang Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Lin Duan
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Dongxu Zhao
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Luyao Cheng
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Hang Ren
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Ming Li
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China.
| |
Collapse
|
2
|
Kollmar J, Xu J, Gonzalves D, Baur JA, Li LZ, Tchou J, Xu HN. Differential Mitochondrial Redox Responses to the Inhibition of NAD + Salvage Pathway of Triple Negative Breast Cancer Cells. Cancers (Basel) 2024; 17:7. [PMID: 39796638 PMCID: PMC11718843 DOI: 10.3390/cancers17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD+. Over expression of Nampt, the rate-limiting enzyme of the NAD+ biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy. However, TNBC cells have heterogeneous responses to Nampt inhibition, which contributes to the diverse outcomes. There is a lack of imaging biomarkers to differentiate among TNBC cells under metabolic stress and identify which are responsive. We aimed to characterize and differentiate among a panel of TNBC cell lines under NAD-deficient stress and identify which subtypes are more dependent on the NAD salvage pathway. Methods: Optical redox imaging (ORI), a label-free live cell imaging microscopy technique was utilized to acquire intrinsic fluorescence intensities of NADH and FAD-containing flavoproteins (Fp) thus the mitochondrial redox ratio Fp/(NADH + Fp) in a panel of TNBC cell lines. Various fluorescence probes were then added to the cultures to image the mitochondrial ROS, mitochondrial membrane potential, mitochondrial mass, and cell number. Results: Various TNBC subtypes are sensitive to Nampt inhibition in a dose- and time-dependent manner, they have differential mitochondrial redox responses; furthermore, the mitochondrial redox indices linearly correlated with mitochondrial ROS induced by various doses of a Nampt inhibitor. Moreover, the changes in the redox indices correlated with growth inhibition. Additionally, the redox state was found fully recovered after removing the Nampt inhibitor. Conclusions: This study supports the utility of ORI in rapid metabolic phenotyping of TNBC cells under NAD-deficient stress to identify responsive cells and biomarkers of treatment response, facilitating combination therapy strategies.
Collapse
Affiliation(s)
- Jack Kollmar
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Junmei Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Diego Gonzalves
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Julia Tchou
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| |
Collapse
|
3
|
Gao Y, Zheng H. Role of mitochondria and potential of mitochondria-targeted therapy in BRAF mutant cancer: A review. Crit Rev Oncol Hematol 2024; 203:104484. [PMID: 39197669 DOI: 10.1016/j.critrevonc.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
The classical mitogen-activated protein kinase (MAPK) signaling pathway, the Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK protein kinase cascade, is a conserved cascade that regulates cell growth, differentiation, and proliferation. The significance of BRAF in cancer was established with the discovery of cancer-activating mutations in BRAF in several human tumors in 2002. Currently, BRAF is recognized as a driver mutation that affects cancer phenotypes in different ways, making it an important therapeutic target for cancer. BRAF-selective inhibitors have shown promise in clinical trials involving patients with metastatic melanoma. However, resistance mechanisms to BRAF inhibitors therapy have resulted in short-lived therapeutic responses. Further in-depth research is imperative to explore resistance mechanisms that oppose the effectiveness of BRAF inhibitors. Metabolic reprogramming has emerging role in BRAF-mutant cancers. In particular, mitochondrial metabolism and its closely related signaling pathways mediated by mitochondria have become recognized as potential new targets for treating BRAF-mutant cancers. This review, examines the progress in understanding BRAF mutations in cancer, the clinicopathological correlation of BRAF inhibitors, and recent advances in mitochondrial metabolism, mitochondrial dynamics and mitochondrial mediated death in BRAF-mutant cancer. This review will inform future cancer research and lay the foundation for novel treatment combinations of BRAF-mutant cancers.
Collapse
Affiliation(s)
- Yanyan Gao
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hua Zheng
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Gasparrini M, Giovannuzzi S, Nocentini A, Raffaelli N, Supuran CT. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) in cancer: a patent review. Expert Opin Ther Pat 2024; 34:565-582. [PMID: 38861278 DOI: 10.1080/13543776.2024.2367006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
5
|
Ponzone L, Audrito V, Landi C, Moiso E, Levra Levron C, Ferrua S, Savino A, Vitale N, Gasparrini M, Avalle L, Vantaggiato L, Shaba E, Tassone B, Saoncella S, Orso F, Viavattene D, Marina E, Fiorilla I, Burrone G, Abili Y, Altruda F, Bini L, Deaglio S, Defilippi P, Menga A, Poli V, Porporato PE, Provero P, Raffaelli N, Riganti C, Taverna D, Cavallo F, Calautti E. RICTOR/mTORC2 downregulation in BRAF V600E melanoma cells promotes resistance to BRAF/MEK inhibition. Mol Cancer 2024; 23:105. [PMID: 38755661 PMCID: PMC11097536 DOI: 10.1186/s12943-024-02010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.
Collapse
Affiliation(s)
- Luca Ponzone
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, 15121, Italy
| | - Claudia Landi
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Enrico Moiso
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Chiara Levra Levron
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10126, Italy
| | - Sara Ferrua
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Aurora Savino
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Nicoletta Vitale
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Lidia Avalle
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, 15121, Italy
| | - Lorenza Vantaggiato
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Enxhi Shaba
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Beatrice Tassone
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Department of Personal Care, dsm-firmenich, Kaiseraugst, 4303, Switzerland
| | - Stefania Saoncella
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Francesca Orso
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Daniele Viavattene
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Eleonora Marina
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Irene Fiorilla
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, 15121, Italy
| | - Giulia Burrone
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10124, Italy
| | - Youssef Abili
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- GenomeUp, Rome, 00144, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Luca Bini
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Silvia Deaglio
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Medical Sciences, University of Turin, Turin, 10124, Italy
| | - Paola Defilippi
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Alessio Menga
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Valeria Poli
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Paolo Ettore Porporato
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Paolo Provero
- Neuroscience Department "Rita Levi Montalcini", University of Turin, Turin, 10126, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Chiara Riganti
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Oncology, University of Turin, Turin, 10124, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Enzo Calautti
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy.
| |
Collapse
|
6
|
Yong J, Cai S, Zeng Z. Targeting NAD + metabolism: dual roles in cancer treatment. Front Immunol 2023; 14:1269896. [PMID: 38116009 PMCID: PMC10728650 DOI: 10.3389/fimmu.2023.1269896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for various oxidation-reduction reactions in mammalian cells, particularly during energy production. Malignant cells increase the expression levels of NAD+ biosynthesis enzymes for rapid proliferation and biomass production. Furthermore, mounting proof has indicated that NAD-degrading enzymes (NADases) play a role in creating the immunosuppressive tumor microenvironment (TME). Interestingly, both inhibiting NAD+ synthesis and targeting NADase have positive implications for cancer treatment. Here we summarize the detrimental outcomes of increased NAD+ production, the functions of NAD+ metabolic enzymes in creating an immunosuppressive TME, and discuss the progress and clinical translational potential of inhibitors for NAD+ synthesis and therapies targeting NADase.
Collapse
Affiliation(s)
- Jiaxin Yong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Songqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
8
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
9
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
10
|
Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches. Cancers (Basel) 2022; 14:cancers14092059. [PMID: 35565188 PMCID: PMC9103253 DOI: 10.3390/cancers14092059] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The advantages and applications of using the non-invasive way to detect serum biomarkers for assessing cancer diagnosis and prognosis have been explored. Nicotinamide phosphoribosyltransferase (NAMPT), also designated as pre-B-cell colony-enhancing factor (PBEF) or visfatin, is a secreted adipokine known to modulate tumor malignancies. Its significance in predicting cancer patient’s survival outcome further renders the implementation of NAMPT in clinical practice. In this review, recent discoveries of NAMPT in cancer studies were focused and integrated. We aim to provide updates for researchers who are proposing relevant objectives. Abstract Nicotinamide phosphoribosyltransferase (NAMPT) is notable for its regulatory roles in tumor development and progression. Emerging evidence regarding NAMPT somatic mutations in cancer patients, NAMPT expressional signatures in normal tissues and cancers, and the prognostic significance of NAMPT in many cancer types has attracted attention, and NAMPT is considered a potential biomarker of cancer. Recent discoveries have demonstrated the indirect association and direct biological functions of NAMPT in modulating cancer metastasis, proliferation, angiogenesis, cancer stemness, and chemoresistance to anticancer drugs. These findings warrant further investigation of the underlying mechanisms to provide knowledge for developing novel cancer therapeutics. In this review article, we explore recent research developments involving the oncogenic activities of NAMPT by summarizing current knowledge regarding NAMPT somatic mutations, clinical trials, transcriptome data, and clinical information and discoveries related to the NAMPT-induced signaling pathway in modulating hallmarks of cancer. Furthermore, the comprehensive representation of NAMPT RNA expression in a pancancer panel as well as in specific normal cell types at single-cell level are demonstrated. The results suggest potential sites and cell types that could facilitate NAMPT-related tumorigenesis. With this review, we aim to shed light on the regulatory roles of NAMPT in tumor development and progression, and provide information to guide future research directions in this field.
Collapse
|
11
|
Gasparrini M, Audrito V. NAMPT: A critical driver and therapeutic target for cancer. Int J Biochem Cell Biol 2022; 145:106189. [PMID: 35219878 DOI: 10.1016/j.biocel.2022.106189] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) possesses a vital role in mammalian cells due to its activity as a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. NAD is an essential redox cofactor, but it also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain tumor growth and survival and energetic needs. A common strategy that several tumor types adopt to sustain NAD synthesis is to over-express NAMPT. However, beside its intracellular functions, this enzyme has a second life outside of cells exerting cytokine-like functions and mediating pro-inflammatory conditions activating signaling pathways. While the effects of NAMPT/NAD axis on energetic metabolism in tumors has been well-established, increasing evidence demonstrated the impact of NAMPT over-expression (intra-/extra-cellular) on several tumor cellular processes, including DNA repair, gene expression, signaling pathways, proliferation, invasion, stemness, phenotype plasticity, metastatization, angiogenesis, immune regulation, and drug resistance. For all these reasons, NAMPT targeting has emerged as promising anti-cancer strategy to deplete NAD and impair cellular metabolism, but also to counteract the other NAMPT-related functions. In this review, we summarize the key role of NAMPT in multiple biological processes implicated in cancer biology and the impact of NAMPT inhibition as therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Valentina Audrito
- Department of Molecular Biotechnology and Health Sciences & Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
12
|
Audrito V, Moiso E, Ugolini F, Messana VG, Brandimarte L, Manfredonia I, Bianchi S, De Logu F, Nassini R, Szumera-Ciećkiewicz A, Taverna D, Massi D, Deaglio S. Tumors carrying BRAF-mutations over-express NAMPT that is genetically amplified and possesses oncogenic properties. J Transl Med 2022; 20:118. [PMID: 35272691 PMCID: PMC8908704 DOI: 10.1186/s12967-022-03315-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 01/01/2023] Open
Abstract
Background Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD) biosynthesis, is up-regulated in several cancers, including metastatic melanoma (MM). The BRAF oncogene is mutated in different cancer types, among which MM and thyroid carcinoma (THCA) are prominent. Drugs targeting mutant BRAF are effective, especially in MM patients, even though resistance rapidly develops. Previous data have linked NAMPT over-expression to the acquisition of BRAF resistance, paving the way for therapeutic strategies targeting the two pathways. Methods Exploiting the TCGA database and a collection of MM and THCA tissue microarrays we studied the association between BRAF mutations and NAMPT expression. BRAF wild-type (wt) cell lines were genetically engineered to over-express the BRAF V600E construct to demonstrate a direct relationship between over-activation of the BRAF pathway and NAMPT expression. Responses of different cell line models to NAMPT (i)nhibitors were studied using dose–response proliferation assays. Analysis of NAMPT copy number variation was performed in the TCGA dataset. Lastly, growth and colony forming assays were used to study the tumorigenic functions of NAMPT itself. Results The first finding of this work is that tumor samples carrying BRAF-mutations over-express NAMPT, as demonstrated by analyzing the TCGA dataset, and MM and THC tissue microarrays. Importantly, BRAF wt MM and THCA cell lines modified to over-express the BRAF V600E construct up-regulated NAMPT, confirming a transcriptional regulation of NAMPT following BRAF oncogenic signaling activation. Treatment of BRAF-mutated cell lines with two different NAMPTi was followed by significant reduction of tumor growth, indicating NAMPT addiction in these cells. Lastly, we found that several tumors over-expressing the enzyme, display NAMPT gene amplification. Over-expression of NAMPT in BRAF wt MM cell line and in fibroblasts resulted in increased growth capacity, arguing in favor of oncogenic properties of NAMPT. Conclusions Overall, the association between BRAF mutations and NAMPT expression identifies a subset of tumors more sensitive to NAMPT inhibition opening the way for novel combination therapies including NAMPTi with BRAFi/MEKi, to postpone and/or overcome drug resistance. Lastly, the over-expression of NAMPT in several tumors could be a key and broad event in tumorigenesis, substantiated by the finding of NAMPT gene amplification. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03315-9.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Via Nizza, 52, 10126, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Filippo Ugolini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Via Nizza, 52, 10126, Torino, Italy
| | - Lorenzo Brandimarte
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Via Nizza, 52, 10126, Torino, Italy
| | - Ilaria Manfredonia
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Via Nizza, 52, 10126, Torino, Italy
| | - Simonetta Bianchi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Daniela Massi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Silvia Deaglio
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Via Nizza, 52, 10126, Torino, Italy.
| |
Collapse
|
13
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Sharma P, Xu J, Williams K, Easley M, Elder JB, Lonser R, Lang FF, Lapalombella R, Sampath D, Puduvalli VK. Inhibition of nicotinamide phosphoribosyltransferase, the rate-limiting enzyme of the nicotinamide adenine dinucleotide salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress. Neuro Oncol 2021; 24:229-244. [PMID: 34260721 PMCID: PMC8804900 DOI: 10.1093/neuonc/noab175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Tumor-specific metabolic processes essential for cell survival are promising targets to potentially circumvent intratumoral heterogeneity, a major resistance factor in gliomas. Tumor cells preferentially using nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway for synthesis of NAD, a critical cofactor for diverse biological processes including cellular redox reactions, energy metabolism and biosynthesis. NAMPT is overexpressed in most malignancies, including gliomas, and can serve as a tumor-specific target. METHODS Effects of pharmacological inhibition of NAMPT on cellular oxygen consumption rate, extracellular acidification, mitochondrial respiration, cell proliferation, invasion and survival were assessed through in vitro and ex vivo studies on genetically heterogeneous glioma cell lines, glioma stem-like cells (GSCs) and mouse and human ex vivo organotypic glioma slice culture models. RESULTS Pharmacological inhibition of the NAD salvage biosynthesis pathway using a highly specific inhibitor, KPT-9274, resulted in reduction of NAD levels and related downstream metabolites, inhibited proliferation, and induced apoptosis in vitro in cell lines and ex vivo in human glioma tissue. These effects were mediated by mitochondrial dysfunction, DNA damage and increased oxidative stress leading to apoptosis in GSCs independent of genotype, IDH status or MGMT promoter methylation status. Conversely, NAMPT inhibition had minimal in vitro effects on normal human astrocytes (NHA) and no apparent in vivo toxicity in non-tumor-bearing mice. CONCLUSIONS Pharmacological NAMPT inhibition by KPT9274 potently targeted genetically heterogeneous gliomas by activating mitochondrial dysfunction. Our preclinical results provide a rationale for targeting the NAMPT-dependent alternative NAD biosynthesis pathway as a novel clinical strategy against gliomas.
Collapse
Affiliation(s)
- Pratibha Sharma
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Xu
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katie Williams
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michelle Easley
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Brad Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Russell Lonser
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Lapalombella
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Deepa Sampath
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinay K Puduvalli
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Fiorito V, Allocco AL, Petrillo S, Gazzano E, Torretta S, Marchi S, Destefanis F, Pacelli C, Audrito V, Provero P, Medico E, Chiabrando D, Porporato PE, Cancelliere C, Bardelli A, Trusolino L, Capitanio N, Deaglio S, Altruda F, Pinton P, Cardaci S, Riganti C, Tolosano E. The heme synthesis-export system regulates the tricarboxylic acid cycle flux and oxidative phosphorylation. Cell Rep 2021; 35:109252. [PMID: 34133926 DOI: 10.1016/j.celrep.2021.109252] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/21/2020] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Heme is an iron-containing porphyrin of vital importance for cell energetic metabolism. High rates of heme synthesis are commonly observed in proliferating cells. Moreover, the cell-surface heme exporter feline leukemia virus subgroup C receptor 1a (FLVCR1a) is overexpressed in several tumor types. However, the reasons why heme synthesis and export are enhanced in highly proliferating cells remain unknown. Here, we illustrate a functional axis between heme synthesis and heme export: heme efflux through the plasma membrane sustains heme synthesis, and implementation of the two processes down-modulates the tricarboxylic acid (TCA) cycle flux and oxidative phosphorylation. Conversely, inhibition of heme export reduces heme synthesis and promotes the TCA cycle fueling and flux as well as oxidative phosphorylation. These data indicate that the heme synthesis-export system modulates the TCA cycle and oxidative metabolism and provide a mechanistic basis for the observation that both processes are enhanced in cells with high-energy demand.
Collapse
Affiliation(s)
- Veronica Fiorito
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Anna Lucia Allocco
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Sara Petrillo
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, Torino, Italy
| | - Simone Torretta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Francesca Destefanis
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Valentina Audrito
- Immunogenetics Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paolo Provero
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Omics Sciences, San Raffaele Scientific Institute IRCSS, Milano, Italy
| | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Deborah Chiabrando
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paolo Ettore Porporato
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Silvia Deaglio
- Immunogenetics Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Cardaci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
16
|
Metabolic Interplay between the Immune System and Melanoma Cells: Therapeutic Implications. Biomedicines 2021; 9:biomedicines9060607. [PMID: 34073463 PMCID: PMC8227307 DOI: 10.3390/biomedicines9060607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.
Collapse
|
17
|
Zhang F, Tang X, Fan S, Liu X, Sun J, Ju C, Liang Y, Liu R, Zhou R, Yu B, Zhang C, Zhang Z, Kang T, Huang G, Lv XB. Targeting the p300/NONO axis sensitizes melanoma cells to BRAF inhibitors. Oncogene 2021; 40:4137-4150. [PMID: 34017080 DOI: 10.1038/s41388-021-01834-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023]
Abstract
BRAF inhibitors (BRAFi) that target BRAF V600E kinase, a driver mutation found in 50% of melanomas, show a significant antitumor response, but the common emergence of acquired resistance remains a challenge. Abnormal expression of RAF isoforms CRAF and ARAF reactivates pERK1/2, which plays crucial roles in the acquisition of resistance of melanoma cells. However, the mechanisms of dysregulation of RAF isoforms in resistant melanoma cells remain unknown. Here, we identified NONO interacted with and stabilized both CRAF and ARAF in melanoma cells, and that NONO was acetylated at 198K by p300 acetyltransferase, which stabilized NONO via antagonizing its ubiquitination/degradation mediated by RNF8. The upregulation of both p300 and NONO promoted the rebound of pERK1/2 and the subsequent resistance of melanoma cells to BRAFi, and the activation of ERK1/2 in turn induced p300 to form a positive feedback loop in resistant melanoma cells. There was a positive correlation between p300 and NONO in resistant melanoma cells and clinical samples, and p300 inhibitor C646 overcame the resistance of resistant melanoma cells to BRAF inhibitors in vitro and in vivo. Our findings reveal that targeting the positive feedback loop of p300-NONO-CRAF/ARAF-pERK1/2 may be excellent strategies to overcome the resistance of BRAF inhibitors for melanoma patients.
Collapse
Affiliation(s)
- Feifei Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xiaofeng Tang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Song Fan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Jun Sun
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Cheng Ju
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yiping Liang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Ruihao Zhou
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Bo Yu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Guofu Huang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
18
|
Olszańska J, Pietraszek-Gremplewicz K, Nowak D. Melanoma Progression under Obesity: Focus on Adipokines. Cancers (Basel) 2021; 13:cancers13092281. [PMID: 34068679 PMCID: PMC8126042 DOI: 10.3390/cancers13092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Obesity is a rapidly growing public health problem and the reason for numerous diseases in the human body, including cancer. This article reviews the current knowledge of the effect of molecules secreted by adipose tissue-adipokines on melanoma progression. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Abstract Obesity is a growing problem in the world and is one of the risk factors of various cancers. Among these cancers is melanoma, which accounts for the majority of skin tumor deaths. Current studies are looking for a correlation between obesity and melanoma. They suspect that a potential cause of its development is connected to the biology of adipokines, active molecules secreted by adipose tissue. Under physiological conditions, adipokines control many processes, including lipid and glucose homeostasis, insulin sensitivity, angiogenesis, and inflammations. However, when there is an increased amount of fat in the body, their secretion is dysregulated. This article reviews the current knowledge of the effect of adipokines on melanoma growth. This work focuses on the molecular pathways by which adipose tissue secreted molecules modify the angiogenesis, migration, invasion, proliferation, and death of melanoma cells. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Further studies may contribute to the innovations of therapies and the use of adipokines as predictive and/or prognostic biomarkers.
Collapse
|
19
|
Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, Bosenberg M, Ceol CJ, Burd CE, Chi P, Herlyn M, Holmen SL, Karreth FA, Kaufman CK, Khan S, Kobold S, Leucci E, Levy C, Lombard DB, Lund AW, Marie KL, Marine JC, Marais R, McMahon M, Robles-Espinoza CD, Ronai ZA, Samuels Y, Soengas MS, Villanueva J, Weeraratna AT, White RM, Yeh I, Zhu J, Zon LI, Hurlbert MS, Merlino G. Melanoma models for the next generation of therapies. Cancer Cell 2021; 39:610-631. [PMID: 33545064 PMCID: PMC8378471 DOI: 10.1016/j.ccell.2021.01.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
There is a lack of appropriate melanoma models that can be used to evaluate the efficacy of novel therapeutic modalities. Here, we discuss the current state of the art of melanoma models including genetically engineered mouse, patient-derived xenograft, zebrafish, and ex vivo and in vitro models. We also identify five major challenges that can be addressed using such models, including metastasis and tumor dormancy, drug resistance, the melanoma immune response, and the impact of aging and environmental exposures on melanoma progression and drug resistance. Additionally, we discuss the opportunity for building models for rare subtypes of melanomas, which represent an unmet critical need. Finally, we identify key recommendations for melanoma models that may improve accuracy of preclinical testing and predict efficacy in clinical trials, to help usher in the next generation of melanoma therapies.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Kristen L Mueller
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Niroshana Anandasabapathy
- Department of Dermatology, Meyer Cancer Center, Program in Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY 10026, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France; INSERM, Biology and Pathologies of Melanocytes, Team 1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology, and Immunobiology, Yale University, New Haven, CT, USA
| | - Craig J Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christin E Burd
- Departments of Molecular Genetics, Cancer Biology, and Genetics, The Ohio State University, Biomedical Research Tower, Room 918, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Sheri L Holmen
- Department of Surgery, University of Utah Health Sciences Center, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Charles K Kaufman
- Washington University School of Medicine, Department of Medicine, Division of Oncology, Department of Developmental Biology, McDonnell Science Building, 4518 McKinley Avenue, St. Louis, MO 63110, USA
| | - Shaheen Khan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany; Member of the German Center for Lung Research (DZL), German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium; Trace, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium
| | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David B Lombard
- Department of Pathology, Institute of Gerontology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology and Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kerrie L Marie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Richard Marais
- CRUK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Martin McMahon
- Department of Dermatology & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico; Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maria S Soengas
- Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Jessie Villanueva
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, and Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Richard M White
- Department of Cancer Biology & Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Glenn Merlino
- Center for Cancer Research, NCI, NIH, 37 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Cao D, Chu L, Xu Z, Gong J, Deng R, Wang B, Zhou S. Visfatin facilitates gastric cancer malignancy by targeting snai1 via the NF-κB signaling. Hum Exp Toxicol 2021; 40:1646-1655. [PMID: 33823623 DOI: 10.1177/09603271211006168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. METHODS The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. RESULTS Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. CONCLUSION Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.
Collapse
Affiliation(s)
- D Cao
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - L Chu
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Z Xu
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - J Gong
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - R Deng
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - B Wang
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - S Zhou
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
21
|
Giacalone S, Spigariolo CB, Bortoluzzi P, Nazzaro G. Oral nicotinamide: The role in skin cancer chemoprevention. Dermatol Ther 2021; 34:e14892. [PMID: 33595161 DOI: 10.1111/dth.14892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/13/2021] [Indexed: 12/28/2022]
Abstract
The incidence of skin cancer has gradually increased in the last years and exposition to ultraviolet radiation remains the main risk factor. We performed a comprehensive review on the role of nicotinamide (NAM) in the chemoprevention of skin cancers. NAM, a water-soluble form of vitamin B3, interferes with skin carcinogenesis as it regulates immunosuppressor genes such as p53 and sirtuins and restores intracellular level of NAD+, a co-enzyme essential for energy production. Efficacy and safety of NAM was evaluated in a Phase III double-blinded control-placebo study (ONTRAC), thus demonstrating that the incidence of actinic keratoses and non-melanoma skin cancers was lower in the nicotinamide group than in placebo group. Further studies showed the efficacy of NAM also in transplanted patients and among inhabitants living in arsenic contamination areas. Despite the quick response to NAM supplementation, its intake need to be carried on chronically as the efficacy seems to vanish rapidly.
Collapse
Affiliation(s)
- Serena Giacalone
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cristina B Spigariolo
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Bortoluzzi
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianluca Nazzaro
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
22
|
Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X, He Y, Xiang W, Han Q, Tang L, Yang W, Wang H. NAD + Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion. Cell Metab 2021; 33:110-127.e5. [PMID: 33171124 DOI: 10.1016/j.cmet.2020.10.021] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/04/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
NAD+ metabolism is implicated in aging and cancer. However, its role in immune checkpoint regulation and immune evasion remains unclear. Here, we find nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ biogenesis, drives interferon γ (IFNγ)-induced PD-L1 expression in multiple types of tumors and governs tumor immune evasion in a CD8+ T cell-dependent manner. Mechanistically, NAD+ metabolism maintains activity and expression of methylcytosine dioxygenase Tet1 via α-ketoglutarate (α-KG). IFNγ-activated Stat1 facilitates Tet1 binding to Irf1 to regulate Irf1 demethylation, leading to downstream PD-L1 expression on tumors. Importantly, high NAMPT-expressing tumors are more sensitive to anti-PD-L1 treatment and NAD+ augmentation enhances the efficacy of anti-PD-L1 antibody in immunotherapy-resistant tumors. Collectively, these data delineate an NAD+ metabolism-dependent epigenetic mechanism contributing to tumor immune evasion, and NAD+ replenishment combined with PD-(L)1 antibody provides a promising therapeutic strategy for immunotherapy-resistant tumors.
Collapse
Affiliation(s)
- Hongwei Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai 200438, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai 200438, China
| | - Cian Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Dan Ye
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Yufei He
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qin Han
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Liang Tang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China
| | - Wen Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China.
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
23
|
Audrito V, Messana VG, Moiso E, Vitale N, Arruga F, Brandimarte L, Gaudino F, Pellegrino E, Vaisitti T, Riganti C, Piva R, Deaglio S. NAMPT Over-Expression Recapitulates the BRAF Inhibitor Resistant Phenotype Plasticity in Melanoma. Cancers (Basel) 2020; 12:cancers12123855. [PMID: 33419372 PMCID: PMC7766175 DOI: 10.3390/cancers12123855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Malignant melanoma (MM) is the most fatal skin cancer due to its high metastatic potential. Treatment strategies are dramatically changing due to the introduction of BRAF/MEK inhibitors (i) and immunotherapy; however, multiple resistant mechanisms rapidly occur including metabolic rewiring. This study aimed to establish the driver role of the nicotinamide adenine dinucleotide (NAD)-biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) in BRAFi resistance development. We defined that NAMPT over-expressing MM cells were strikingly similar to cells that acquired resistance to BRAFi in terms of growth, invasion, and phenotype plasticity. These findings confirmed NAMPT as a key factor in melanoma progression and in the onset of BRAFi resistance in melanoma patients, opening new therapeutic possibilities for this subset of patients. Abstract Serine–threonine protein kinase B-RAF (BRAF)-mutated metastatic melanoma (MM) is a highly aggressive type of skin cancer. Treatment of MM patients using BRAF/MEK inhibitors (BRAFi/MEKi) eventually leads to drug resistance, limiting any clinical benefit. Herein, we demonstrated that the nicotinamide adenine dinucleotide (NAD)-biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) is a driving factor in BRAFi resistance development. Using stable and inducible NAMPT over-expression systems, we showed that forced NAMPT expression in MM BRAF-mutated cell lines led to increased energy production, MAPK activation, colony-formation capacity, and enhance tumorigenicity in vivo. Moreover, NAMPT over-expressing cells switched toward an invasive/mesenchymal phenotype, up-regulating expression of ZEB1 and TWIST, two transcription factors driving the epithelial to mesenchymal transition (EMT) process. Consistently, within the NAMPT-overexpressing cell line variants, we observed an increased percentage of a rare, drug-effluxing stem cell-like side population (SP) of cells, paralleled by up-regulation of ABCC1/MRP1 expression and CD133-positive cells. The direct correlation between NAMPT expression and gene set enrichments involving metastasis, invasiveness and mesenchymal/stemness properties were verified also in melanoma patients by analyzing The Cancer Genome Atlas (TCGA) datasets. On the other hand, CRISPR/Cas9 full knock-out NAMPT BRAFi-resistant MM cells are not viable, while inducible partial silencing drastically reduces tumor growth and aggressiveness. Overall, this work revealed that NAMPT over-expression is both necessary and sufficient to recapitulate the BRAFi-resistant phenotype plasticity.
Collapse
Affiliation(s)
- Valentina Audrito
- Cancer Immunogenetics Lab, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (V.G.M.); (N.V.); (F.A.); (L.B.); (F.G.); (T.V.)
- Correspondence: (V.A.); (S.D.); Tel.: +39-0116709535-37 (V.A. & S.D.)
| | - Vincenzo Gianluca Messana
- Cancer Immunogenetics Lab, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (V.G.M.); (N.V.); (F.A.); (L.B.); (F.G.); (T.V.)
| | - Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nicoletta Vitale
- Cancer Immunogenetics Lab, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (V.G.M.); (N.V.); (F.A.); (L.B.); (F.G.); (T.V.)
| | - Francesca Arruga
- Cancer Immunogenetics Lab, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (V.G.M.); (N.V.); (F.A.); (L.B.); (F.G.); (T.V.)
| | - Lorenzo Brandimarte
- Cancer Immunogenetics Lab, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (V.G.M.); (N.V.); (F.A.); (L.B.); (F.G.); (T.V.)
| | - Federica Gaudino
- Cancer Immunogenetics Lab, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (V.G.M.); (N.V.); (F.A.); (L.B.); (F.G.); (T.V.)
| | - Elisa Pellegrino
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, 10126 Turin, Italy; (E.P.); (R.P.)
| | - Tiziana Vaisitti
- Cancer Immunogenetics Lab, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (V.G.M.); (N.V.); (F.A.); (L.B.); (F.G.); (T.V.)
| | - Chiara Riganti
- Department of Oncology, University of Turin, 10126 Turin, Italy;
| | - Roberto Piva
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, 10126 Turin, Italy; (E.P.); (R.P.)
| | - Silvia Deaglio
- Cancer Immunogenetics Lab, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (V.G.M.); (N.V.); (F.A.); (L.B.); (F.G.); (T.V.)
- Correspondence: (V.A.); (S.D.); Tel.: +39-0116709535-37 (V.A. & S.D.)
| |
Collapse
|
24
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
25
|
Li X, Cai Y. Risk stratification of cutaneous melanoma reveals carcinogen metabolism enrichment and immune inhibition in high-risk patients. Aging (Albany NY) 2020; 12:16457-16475. [PMID: 32858528 PMCID: PMC7485700 DOI: 10.18632/aging.103734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Cutaneous melanoma (CM) is the most lethal form of skin cancer. Risk assessment should facilitate stratified surveillance and guide treatment selection. Here, based on the mRNA-seq data from 419 CM patients in the Cancer Genome Atlas (TCGA), we developed a prognostic 21-gene signature to distinguish the outcomes of high- and low-risk patients, which was further validated in two external cohorts. The signature achieved a higher C-index as compared with other known biomarkers and clinical characteristics in both the TCGA and validation cohorts. Notably, in high-risk patients the expression levels of three driver genes, BRAF, NRAS, and NF1 in the MAPK pathway, were lower but exhibited a stronger positive correlation as compared with low-risk patients. Moreover, the genes involved in nicotinamide adenine dinucleotide metabolism were negatively correlated with the expression of BRAF in the high-risk group. Function analysis revealed that the upregulated genes in the high-risk group were enriched in the cytochrome P450-mediated metabolism of chemical carcinogens. Furthermore, the low-risk group had high levels of gamma delta T cells infiltration, while regulatory T cells were accumulated in the high-risk group. The present study offers a promising new prognostic signature for CM, and provides insight into the mechanisms of melanoma progression.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Yunpeng Cai
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| |
Collapse
|
26
|
Avagliano A, Fiume G, Pelagalli A, Sanità G, Ruocco MR, Montagnani S, Arcucci A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front Oncol 2020; 10:722. [PMID: 32528879 PMCID: PMC7256186 DOI: 10.3389/fonc.2020.00722] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift from glycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey the metabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Targeting complex, adaptive responses in melanoma therapy. Cancer Treat Rev 2020; 86:101997. [PMID: 32179238 DOI: 10.1016/j.ctrv.2020.101997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023]
Abstract
Our understanding of the complex, adaptive mechanisms of response to targeted therapies in metastatic melanoma is now leading to more effective combination treatments. These include the simultaneous inhibition of signalling pathways and metabolic programmes, as well as epigenetic mechanisms or immunological checkpoints. We review the latest pre-clinical and clinical results of strategies to delay tumor progression through combination approaches, and also highlight some of the problems ahead, including patient stratification, the complexity of targeting adaptive responses, and the management of more severe toxicities that result from double and triple-drug treatments.
Collapse
|
28
|
Ye C, Qi L, Li X, Wang J, Yu J, Zhou B, Guo C, Chen J, Zheng S. Targeting the NAD + salvage pathway suppresses APC mutation-driven colorectal cancer growth and Wnt/β-catenin signaling via increasing Axin level. Cell Commun Signal 2020; 18:16. [PMID: 32005247 PMCID: PMC6995173 DOI: 10.1186/s12964-020-0513-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/17/2020] [Indexed: 02/05/2023] Open
Abstract
Background The role and mechanism of the nicotinamide adenine dinucleotide (NAD+) salvage pathway in cancer cell proliferation is poorly understood. Nicotinamide phosphoribosyltransferase (NAMPT), which converts nicotinamide into NAD+, is the rate-limiting enzyme in the NAD+ salvage pathway. Here, we assessed the role of NAMPT in the proliferation of colorectal cancer. Methods Real-time PCR, immunohistochemistry, western blotting, and analyses of datasets from Oncomine and Gene Expression Omnibus were conducted to assess the expression of NAMPT at the mRNA and protein levels in colorectal cancer. The Kaplan Meier plotter online tool was used to evaluate the prognostic role of NAMPT. Knockdown of NAMPT was performed to assess the role of NAMPT in colorectal cancer cell proliferation and tumorigenesis both in vitro and in vivo. Overexpression of NAMPT was used to evaluate impact of NAMPT on colorectal cancer cell proliferation in vitro. NAD+ quantitation, immunofluorescence, dual luciferase assay and western blot were used to explore the mechanism of colorectal cancer proliferation. Transwell migration and invasion assays were conducted to assess the role of NAMPT in cell migration and invasion abilities of colorectal cancer cells. Results Our study indicated that the inhibition of NAMPT decreased proliferation capacity of colorectal cancer cells both in vitro and in vivo. Conversely, overexpression of NAMPT could promote cell proliferation in vitro. NAMPT inhibition induced β-catenin degradation by increasing Axin expression levels; this resulted in the inhibition of Wnt/β-catenin signaling and cell proliferation in colorectal cancer. The addition of nicotinamide mononucleotide, the enzymatic product of NAMPT, effectively reversed β-catenin protein degradation and inhibited growth. Similarly, the knockdown of Axin also decreased the cell death induced by the inhibition of NAMPT. In addition, we showed that colorectal cancer tissues harbored significantly higher levels of NAMPT than the levels harbored by paired normal tissues, especially in colorectal cancer stages I and II. And the overexpression of NAMPT was associated with unfavorable survival results. Conclusions Our findings reveal that NAMPT plays an important role in colorectal cancer proliferation via Wnt/β-catenin pathway, which could have vital implications for the diagnosis, prognosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China.,Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310016, Hangzhou, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Biting Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China. .,Reseach Center for Air Pollution and Health, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China.
| |
Collapse
|
29
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Liu CL, Cheng SP, Chen MJ, Lin CH, Chen SN, Kuo YH, Chang YC. Quinolinate Phosphoribosyltransferase Promotes Invasiveness of Breast Cancer Through Myosin Light Chain Phosphorylation. Front Endocrinol (Lausanne) 2020; 11:621944. [PMID: 33613454 PMCID: PMC7890081 DOI: 10.3389/fendo.2020.621944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Perturbed Nicotinamide adenine dinucleotide (NAD+) homeostasis is involved in cancer progression and metastasis. Quinolinate phosphoribosyltransferase (QPRT) is the rate-limiting enzyme in the kynurenine pathway participating in NAD+ generation. In this study, we demonstrated that QPRT expression was upregulated in invasive breast cancer and spontaneous mammary tumors from MMTV-PyVT transgenic mice. Knockdown of QPRT expression inhibited breast cancer cell migration and invasion. Consistently, ectopic expression of QPRT promoted cell migration and invasion in breast cancer cells. Treatment with QPRT inhibitor (phthalic acid) or P2Y11 antagonist (NF340) could reverse the QPRT-induced invasiveness and phosphorylation of myosin light chain. Similar reversibility could be observed following treatment with Rho inhibitor (Y16), ROCK inhibitor (Y27632), PLC inhibitor (U73122), or MLCK inhibitor (ML7). Altogether, these results indicate that QPRT enhanced breast cancer invasiveness probably through purinergic signaling and might be a potential prognostic indicator and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Shan-Na Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Hue Kuo
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- *Correspondence: Yuan-Ching Chang,
| |
Collapse
|
31
|
Tucci M, Passarelli A, Mannavola F, Felici C, Stucci LS, Cives M, Silvestris F. Immune System Evasion as Hallmark of Melanoma Progression: The Role of Dendritic Cells. Front Oncol 2019; 9:1148. [PMID: 31750245 PMCID: PMC6848379 DOI: 10.3389/fonc.2019.01148] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Melanoma is an immunogenic tumor whose relationship with immune cells resident in the microenvironment significantly influences cancer cell proliferation, progression, and metastasis. During melanomagenesis, both immune and melanoma cells undergo the immunoediting process that includes interconnected phases as elimination, equilibrium, and escape or immune evasion. In this context, dendritic cells (DCs) are active players that indirectly counteract the proliferation of melanoma cells. Moreover, DC maturation, migration, and cross-priming as well as their functional interplay with cytotoxic T-cells through ligands of immune checkpoint receptors result impaired. A number of signals propagated by highly proliferating melanoma cells and accessory cells as T-cells, natural killer cells (NKs), tumor-associated macrophages (TAMs), T-regulatory cells (T-regs), myeloid-derived suppressor cells (MDSCs), and endothelial cells participate to create an immunosuppressive milieu that results engulfed of tolerogenic factors and interleukins (IL) as IL-6 and IL-10. To underline the role of the immune infiltrate in blocking the melanoma progression, it has been described that the composition, density, and distribution of cytotoxic T-cells in the surrounding stroma is predictive of responsiveness to immunotherapy. Here, we review the major mechanisms implicated in melanoma progression, focusing on the role of DCs.
Collapse
Affiliation(s)
- Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
32
|
Managò A, Audrito V, Mazzola F, Sorci L, Gaudino F, Gizzi K, Vitale N, Incarnato D, Minazzato G, Ianniello A, Varriale A, D'Auria S, Mengozzi G, Politano G, Oliviero S, Raffaelli N, Deaglio S. Extracellular nicotinate phosphoribosyltransferase binds Toll like receptor 4 and mediates inflammation. Nat Commun 2019; 10:4116. [PMID: 31511522 PMCID: PMC6739309 DOI: 10.1038/s41467-019-12055-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/14/2019] [Indexed: 12/17/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are molecules that can be actively or passively released by injured tissues and that activate the immune system. Here we show that nicotinate phosphoribosyltransferase (NAPRT), detected by antibody-mediated assays and mass spectrometry, is an extracellular ligand for Toll-like receptor 4 (TLR4) and a critical mediator of inflammation, acting as a DAMP. Exposure of human and mouse macrophages to NAPRT activates the inflammasome and NF-κB for secretion of inflammatory cytokines. Furthermore, NAPRT enhances monocyte differentiation into macrophages by inducing macrophage colony-stimulating factor. These NAPRT-induced effects are independent of NAD-biosynthetic activity, but rely on NAPRT binding to TLR4. In line with our finding that NAPRT mediates endotoxin tolerance in vitro and in vivo, sera from patients with sepsis contain the highest levels of NAPRT, compared to patients with other chronic inflammatory conditions. Together, these data identify NAPRT as a endogenous ligand for TLR4 and a mediator of inflammation. The enzyme nicotinate phosphoribosyltransferase (NAPRT) mediates the rate-limiting step in NAD salvage pathway starting from nicotinic acid. Here the authors show that NAPRT can be detected extracellularly, binds to Toll like receptor 4, and activates NF-kB signaling and cytokine production in macrophage via NAD synthesis-independent pathways.
Collapse
Affiliation(s)
- Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Division of Bioinformatics and Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Nicoletta Vitale
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Gabriele Minazzato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alice Ianniello
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | | | | | - Giulio Mengozzi
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Gianfranco Politano
- Department of Control and Computer Engineering, Polytechnic University of Turin, Turin, Italy
| | - Salvatore Oliviero
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
33
|
Audrito V, Managò A, Gaudino F, Deaglio S. Targeting metabolic reprogramming in metastatic melanoma: The key role of nicotinamide phosphoribosyltransferase (NAMPT). Semin Cell Dev Biol 2019; 98:192-201. [PMID: 31059816 DOI: 10.1016/j.semcdb.2019.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Cancer cells rewire their metabolism to support proliferation, growth and survival. In metastatic melanoma the BRAF oncogenic pathway is a master regulator of this process, highlighting the importance of metabolic reprogramming in the pathogenesis of this tumor and offering potential therapeutic approaches. Metabolic adaptation of melanoma cells generally requires increased amounts of NAD+, an essential redox cofactor in cellular metabolism and a signaling molecule. Nicotinamide phosphoribosyltransferase (NAMPT) is the most important NAD+ biosynthetic enzyme in mammalian cells and a direct target of the BRAF oncogenic signaling pathway. These findings suggest that NAMPT is an attractive new therapeutic target, particularly in combination strategies with BRAF or MEK inhibitors. Here we review current knowledge on how oncogenic signaling reprograms metabolism in BRAF-mutated melanoma, and discuss how NAMPT/NAD+ axis contributes to these processes. Lastly, we present evidence supporting a role of NAMPT as a novel therapeutic target in metastatic melanoma.
Collapse
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy.
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy.
| |
Collapse
|
34
|
Ballotti R, Healy E, Bertolotto C. Nicotinamide as a chemopreventive therapy of skin cancers. Too much of good thing? Pigment Cell Melanoma Res 2019; 32:601-602. [PMID: 30742742 DOI: 10.1111/pcmr.12772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Robert Ballotti
- INSERM, C3M, Université Nice Côte d'Azur, Nice, France.,INSERM, U1065, Biology and Pathologies of Melanocytes, Equipe labellisée ARC 2015, Nice, France
| | - Eugene Healy
- Dermatopharmacology, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Corine Bertolotto
- INSERM, C3M, Université Nice Côte d'Azur, Nice, France.,INSERM, U1065, Biology and Pathologies of Melanocytes, Equipe labellisée ARC 2015, Nice, France
| |
Collapse
|
35
|
Bertolotto C, Ohanna M, Ballotti R. [Key role of nicotinamide phosphoribosyltransferase (NAMPT) and NAD metabolism in the transition of melanoma cells to an invasive and drug-resistant phenotype]. Med Sci (Paris) 2019; 34:1025-1028. [PMID: 30623759 DOI: 10.1051/medsci/2018283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Corine Bertolotto
- Université Nice Côte d'Azur, Inserm, C3M, 151, route Saint Antoine de Ginestière, 06204 Nice, France - Inserm, U1065, Biology and pathologies of melanocytes. Équipe labellisée ARC 2015, Nice, France
| | - Mickaël Ohanna
- Université Nice Côte d'Azur, Inserm, C3M, 151, route Saint Antoine de Ginestière, 06204 Nice, France - Inserm, U1065, Biology and pathologies of melanocytes. Équipe labellisée ARC 2015, Nice, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, Inserm, C3M, 151, route Saint Antoine de Ginestière, 06204 Nice, France - Inserm, U1065, Biology and pathologies of melanocytes. Équipe labellisée ARC 2015, Nice, France
| |
Collapse
|
36
|
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a novel marker for patients with BRAF-mutated metastatic melanoma. Oncotarget 2018; 9:18997-19005. [PMID: 29721178 PMCID: PMC5922372 DOI: 10.18632/oncotarget.24871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Metastatic melanoma carrying BRAF mutations represent a still unmet medical need as success of BRAF inhibitors is limited by development of resistance. Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme in NAD biosynthesis. An extracellular form (eNAMPT) possesses cytokine-like functions and is up-regulated in inflammatory disorders, including cancer. Here we show that eNAMPT is actively released in culture supernatants of melanoma cell lines. Furthermore, cells that become resistant to BRAF inhibitors (BiR) show a significant increase of eNAMPT levels. Plasma from mice xenografted with BiR cell lines contain higher eNAMPT levels compared to tumor-free animals. Consistently, eNAMPT levels are elevated in 113 patients with BRAF-mutated metastatic melanoma compared to 50 with localized disease or to 38 healthy donors, showing a direct correlation with markers of tumor burden, such as LDH, or aggressive disease (such as PD-L1). eNAMPT concentrations decrease in response to therapy with BRAF/MEK inhibitors, but increase again at progression, as inferred from the serial analysis of 50 patients. Lastly, high eNAMPT levels correlate with a significantly shorter overall survival. Our findings suggest that eNAMPT is a novel marker of tumor burden and response to therapy in patients with metastatic melanoma carrying BRAF mutations.
Collapse
|