1
|
Ni M, Parafioriti M, Esposito E, Danzi M, Cano O, Muzi L, Kayal Y, Ferro V, Vlodavsky I, Elli S, Naggi A, Petitou M, Guerrini M. Synthetic glycol-split heparin tri- and tetrasaccharides provide new insights into structural peculiarities for antiheparanase activity. Bioorg Med Chem 2025; 118:118052. [PMID: 39742858 DOI: 10.1016/j.bmc.2024.118052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Heparanase is the only known endo-β-glucuronidase able to cleave heparan sulfate, participating in degradation and remodelling of the extracellular matrix. Heparanase upregulation promotes tumor growth and metastasis, therefore, its inhibition is a target for anticancer therapies. Heparan sulfate mimetics bearing glycol-split (gs) units are one of the most promising class of heparanase inhibitors. Herein we describe a total synthesis of two trisaccharides (MeO-GlcNS6S-IdoA/GlcA-GlcNS6S-OMe) differing in epimeric uronic acid residues and one tetrasaccharide (MeO-IdoA-GlcNS6S-IdoA-GlcNS6S-OMe), together with their corresponding glycol-split versions, prepared by periodate oxidation and further modified either via reduction or Pinnick oxidation to obtain gs or tricarboxylated saccharides. An intermediate imine was observed during periodate oxidation, which causes formation of byproducts. Evaluation of the heparanase inhibitory activity showed that the glycol-split trisaccharides were more potent than their intact uronic acid congeners. The binding interactions of the glycol-split trisaccharides with heparanase were investigated by a combined STD NMR and molecular docking approach, with good agreement obtained between the STD NMR experimental data, docking calculations and the in vitro activity results, helping to rationalize the observed inhibition data.
Collapse
Affiliation(s)
- Minghong Ni
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy.
| | - Michela Parafioriti
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy
| | - Emiliano Esposito
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy
| | - Margherita Danzi
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy
| | - Ornela Cano
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy
| | - Laura Muzi
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy
| | - Yasmin Kayal
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel
| | - Vito Ferro
- The University of Queensland, Brisbane, QLD 4072, Australia
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy
| | - Annamaria Naggi
- Centro Alta Tecnologia "Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni" Srl, via G. Colombo 81, 20133 Milan, Italy
| | - Maurice Petitou
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy
| |
Collapse
|
2
|
Li L, Barash U, Ilan N, Farhoud M, Zhang X, Vlodavsky I, Li JP. A New Synthesized Dicarboxylated Oxy-Heparin Efficiently Attenuates Tumor Growth and Metastasis. Cells 2024; 13:211. [PMID: 38334603 PMCID: PMC10854774 DOI: 10.3390/cells13030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors that support tumor growth. Heparanase expression is upregulated in human carcinomas, sarcomas, and hematological malignancies, correlating with increased tumor metastasis, vascular density, and shorter postoperative survival of cancer patients, and encouraging the development of heparanase inhibitors as anti-cancer drugs. Among these are heparin/HS mimetics, the only heparanase-inhibiting compounds that are being evaluated in clinical trials. We have synthesized dicarboxylated oxy-heparins (DCoxHs) containing three carboxylate groups per split residue (DC-Hep). The resulting lead compound (termed XII) was upscaled, characterized, and examined for its effectiveness in tumor models. Potent anti-tumorigenic effects were obtained in models of pancreatic carcinoma, breast cancer, mesothelioma, and myeloma, yielding tumor growth inhibition (TGI) values ranging from 21 to 70% and extending the survival time of the mice. Of particular significance was the inhibition of spontaneous metastasis in an orthotopic model of breast carcinoma following resection of the primary tumor. It appears that apart from inhibition of heparanase enzymatic activity, compound XII reduces the levels of heparanase protein and inhibits its cellular uptake and activation. Heparanase-dependent and -independent effects of XII are being investigated. Collectively, our pre-clinical studies with compound XII strongly justify its examination in cancer patients.
Collapse
Affiliation(s)
- Li Li
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China;
| | - Uri Barash
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel; (U.B.); (N.I.); (M.F.)
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel; (U.B.); (N.I.); (M.F.)
| | - Malik Farhoud
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel; (U.B.); (N.I.); (M.F.)
| | - Xiao Zhang
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden;
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel; (U.B.); (N.I.); (M.F.)
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
3
|
Chen XJ, Guo CH, Wang ZC, Yang Y, Pan YH, Liang JY, Sun MG, Fan LS, Liang L, Wang W. Hypoxia-induced ZEB1 promotes cervical cancer immune evasion by strengthening the CD47-SIRPα axis. Cell Commun Signal 2024; 22:15. [PMID: 38183060 PMCID: PMC10768116 DOI: 10.1186/s12964-023-01450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The dynamic interaction between cancer cells and tumour-associated macrophages (TAMs) in the hypoxic tumour microenvironment (TME) is an active barrier to the effector arm of the antitumour immune response. Cancer-secreted exosomes are emerging mediators of this cancer-stromal cross-talk in the TME; however, the mechanisms underlying this interaction remain unclear. METHODS Exosomes were isolated with ExoQuick exosome precipitation solution. The polarizing effect of TAMs was evaluated by flow cytometry, western blot analysis, immunofluorescence staining and in vitro phagocytosis assays. Clinical cervical cancer specimens and an in vivo xenograft model were also employed. RESULTS Our previous study showed that hypoxia increased the expression of ZEB1 in cervical squamous cell carcinoma (CSCC) cells, which resulted in increased infiltration of TAMs. Here, we found that hypoxia-induced ZEB1 expression is closely correlated with CD47-SIRPα axis activity in CSCC, which enables cancer cells to evade phagocytosis by macrophages and promotes tumour progression. ZEB1 was found to directly activate the transcription of the CD47 gene in hypoxic CSCC cells. We further showed that endogenous ZEB1 was characteristically enriched in hypoxic CSCC cell-derived exosomes and transferred into macrophages via these exosomes to promote SIRPα+ TAM polarization. Intriguingly, exosomal ZEB1 retained transcriptional activity and reprogrammed SIRPα+ TAMs via activation of the STAT3 signalling pathway in vitro and in vivo. STAT3 inhibition reduced the polarizing effect induced by exosomal ZEB1. Knockdown of ZEB1 increased the phagocytosis of CSCC cells by macrophages via decreasing CD47 and SIRPα expression. CONCLUSIONS Our results suggest that hypoxia-induced ZEB1 promotes immune evasion in CSCC by strengthening the CD47-SIRPα axis. ZEB1-targeted therapy in combination with CD47-SIRPα checkpoint immunotherapy may improve the outcomes of CSCC patients in part by disinhibiting innate immunity.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Chu-Hong Guo
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Zi-Ci Wang
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yang Yang
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yu-Hua Pan
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Jie-Ying Liang
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Mei-Ge Sun
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Liang-Sheng Fan
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, People's Republic of China.
| | - Wei Wang
- Guangzhou Medical University/Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
4
|
McGrath S, Shen YJ, Aragaki M, Motooka Y, Koga T, Gregor A, Bernards N, Cherin E, Demore CEM, Yasufuku K, Matsuura N. Imaging Microbubbles With Contrast-Enhanced Endobronchial Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:28-38. [PMID: 37813701 DOI: 10.1016/j.ultrasmedbio.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Endobronchial ultrasound (EBUS) is commonly used to guide transbronchial needle biopsies for the staging of lymph nodes in non-small cell lung cancer patients. Although contrast-enhanced ultrasound (CEUS) and microbubbles (MBs) can improve the diagnostic accuracy in tumors, the ability of contrast-enhanced EBUS (CE-EBUS) to image MBs has not yet been comprehensively evaluated. In this study, we assessed the ability of a CE-EBUS system (Olympus EU-ME2 PREMIER and BF-UC180F bronchoscope) to detect laboratory-synthesized MBs in comparison to clinical (Toshiba Aplio SSA-790A) and pre-clinical (VisualSonics Vevo 2100) CEUS systems in vitro and in vivo, respectively. METHODS Agar flow phantoms and reference tissue were used to assess CE-EBUS MB imaging in vitro, and A549 tumor-bearing athymic nude and AE17-OVA tumor-bearing C57BL/6 mice were used to assess MB detectability and perfusion in vivo, respectively. RESULTS Results revealed that despite the lower sensitivity of CE-EBUS to MB concentration in comparison to clinical CEUS, CE-EBUS yielded a similar contrast-to-tissue ratio (CTR) in vitro of 28.9 ± 4.5 dB for CE-EBUS, compared with 29.7 ± 2.6 dB for clinical CEUS (p < 0.05). In vivo, CE-EBUS generated a perfusion curve highly correlated with that obtained with the pre-clinical CEUS system (Pearson correlation coefficient = 0.927, p < 0.05). Moreover, CE-EBUS yielded a CTR 2.7 times higher than that obtained with the pre-clinical ultrasound system. CONCLUSION These findings together suggest that CE-EBUS can perform contrast imaging comparable to that produced by commercial pre-clinical and clinical ultrasound systems, with potential for clinical characterization of mediastinal lymph nodes in lung cancer patients.
Collapse
Affiliation(s)
- Sean McGrath
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yu-Jack Shen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Masato Aragaki
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Yamato Motooka
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Takamasa Koga
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Alexander Gregor
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Nicholas Bernards
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Emmanuel Cherin
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christine E M Demore
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kazuhiro Yasufuku
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Naomi Matsuura
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Sahu RK, Ruhi S, Jeppu AK, Al-Goshae HA, Syed A, Nagdev S, Widyowati R, Ekasari W, Khan J, Bhattacharjee B, Goyal M, Bhattacharya S, Jangde RK. Malignant mesothelioma tumours: molecular pathogenesis, diagnosis, and therapies accompanying clinical studies. Front Oncol 2023; 13:1204722. [PMID: 37469419 PMCID: PMC10353315 DOI: 10.3389/fonc.2023.1204722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
The pathetic malignant mesothelioma (MM) is a extremely uncommon and confrontational tumor that evolves in the mesothelium layer of the pleural cavities (inner lining- visceral pleura and outer lining- parietal pleura), peritoneum, pericardium, and tunica vaginalis and is highly resistant to standard treatments. In mesothelioma, the predominant pattern of lesions is a loss of genes that limit tumour growth. Despite the worldwide ban on the manufacture and supply of asbestos, the prevalence of mesothelioma continues to increase. Mesothelioma presents and behaves in a variety of ways, making diagnosis challenging. Most treatments available today for MM are ineffective, and the median life expectancy is between 10 and 12 months. However, in recent years, considerable progress has already been made in understanding the genetics and molecular pathophysiology of mesothelioma by addressing hippo signaling pathway. The development and progression of MM are related to many important genetic alterations. This is related to NF2 and/or LATS2 mutations that activate the transcriptional coactivator YAP. The X-rays, CT scans, MRIs, and PET scans are used to diagnose the MM. The MM are treated with surgery, chemotherapy, first-line combination chemotherapy, second-line treatment, radiation therapy, adoptive T-cell treatment, targeted therapy, and cancer vaccines. Recent clinical trials investigating the function of surgery have led to the development of innovative approaches to the treatment of associated pleural effusions as well as the introduction of targeted medications. An interdisciplinary collaborative approach is needed for the effective care of persons who have mesothelioma because of the rising intricacy of mesothelioma treatment. This article highlights the key findings in the molecular pathogenesis of mesothelioma, diagnosis with special emphasis on the management of mesothelioma.
Collapse
Affiliation(s)
- Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sakina Ruhi
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ayesha Syed
- Department of Anatomy, Physiology, and Biochemistry, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Sanjay Nagdev
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, Madhya Pradesh, India
| | - Retno Widyowati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Wiwied Ekasari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | | | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, MH, India
| | - Rajendra K. Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
6
|
Vlodavsky I, Kayal Y, Hilwi M, Soboh S, Sanderson RD, Ilan N. Heparanase-A single protein with multiple enzymatic and nonenzymatic functions. PROTEOGLYCAN RESEARCH 2023; 1:e6. [PMID: 37547889 PMCID: PMC10398610 DOI: 10.1002/pgr2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Yasmin Kayal
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Maram Hilwi
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Soaad Soboh
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Neta Ilan
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
7
|
Yang Y, Yuan F, Zhou H, Quan J, Liu C, Wang Y, Xiao F, Liu Q, Liu J, Zhang Y, Yu X. Potential roles of heparanase in cancer therapy: Current trends and future direction. J Cell Physiol 2023; 238:896-917. [PMID: 36924082 DOI: 10.1002/jcp.30995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Heparanase (HPSE; heparanase-1) is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulfate proteoglycans, thus modulating and facilitating the remodeling of the extracellular matrix and basement membrane. HPSE activity is strongly associated with major human pathological complications, including but not limited to tumor progress and angiogenesis. Several lines of literature have shown that overexpression of HPSE leads to enhanced tumor growth and metastatic transmission, as well as poor prognosis. Gene silencing of HPSE or treatment of tumor with compounds that block HPSE activity are shown to remarkably attenuate tumor progression. Therefore, targeting HPSE is considered as a potential therapeutical strategy for the treatment of cancer. Intriguingly, recent findings disclose that heparanase-2 (HPSE-2), a close homolog of HPSE but lacking enzymatic activity, can also regulate antitumor mechanisms. Given the pleiotropic roles of HPSE, further investigation is in demand to determine the precise mechanism of regulating action of HPSE in different cancer settings. In this review, we first summarize the current understanding of HPSE, such as its structure, subcellular localization, and tissue distribution. Furthermore, we systematically review the pro- and antitumorigenic roles and mechanisms of HPSE in cancer progress. In addition, we delineate HPSE inhibitors that have entered clinical trials and their therapeutic potential.
Collapse
Affiliation(s)
- Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Quan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Chongyang Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yi Wang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fen Xiao
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Qiao Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yujing Zhang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Yu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Heparanase Modulates Chromatin Accessibility. Cells 2023; 12:cells12060891. [PMID: 36980232 PMCID: PMC10047235 DOI: 10.3390/cells12060891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Heparanase is the sole endoglucuronidase that degrades heparan sulfate in the cell surface and extracellular matrix (ECM). Several studies have reported the localization of heparanase in the cell nucleus, but the functional role of the nuclear enzyme is still obscure. Subjecting mouse embryonic fibroblasts (MEFs) derived from heparanase knockout (Hpse-KO) mice and applying transposase-accessible chromatin with sequencing (ATAC-seq), we revealed that heparanase is involved in the regulation of chromatin accessibility. Integrating with genome-wide analysis of chromatin states revealed an overall low activity in the enhancer and promoter regions of Hpse-KO MEFs compared with wild-type (WT) MEFs. Western blot analysis of MEFs and tissues derived from Hpse-KO vs. WT mice confirmed reduced expression of H3K27ac (acetylated lysine at N-terminal position 27 of the histone H3 protein). Our results offer a mechanistic explanation for the well-documented attenuation of inflammatory responses and tumor growth in Hpse-KO mice.
Collapse
|
9
|
Su X, Wang B, Zhou Z, Li Z, Tong S, Chen S, Zhang N, Liu S, Zhang M. A positive feedback loop of heparanase/syndecan1/nerve growth factor regulates cancer pain progression. Korean J Pain 2023; 36:60-71. [PMID: 36536517 PMCID: PMC9812689 DOI: 10.3344/kjp.22277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background The purpose of this research was to assess the role of heparanase (HPSE)/syndecan1 (SDC1)/nerve growth factor (NGF) on cancer pain from melanoma. Methods The influence of HPSE on the biological function of melanoma cells and cancer pain in a mouse model was evaluated. Immunohistochemical staining was used to analyze HPSE and SDC1. HPSE, NGF, and SDC1 were detected using western blot. Inflammatory factors were detected using ELISA assay. Results HPSE promoted melanoma cell viability, proliferation, migration, invasion, and tumor growth, as well as cancer pain, while SST0001 treatment reversed the promoting effect of HPSE. HPSE up-regulated NGF, and NGF feedback promoted HPSE. High expression of NGF reversed the inhibitory effect of HPSE down-regulation on melanoma cell phenotype deterioration, including cell viability, proliferation, migration, and invasion. SST0001 down-regulated SDC1 expression. SDC1 reversed the inhibitory effect of SST0001 on cancer pain. Conclusions The results showed that HPSE promoted melanoma development and cancer pain by interacting with NGF/SDC1. It provides new insights to better understand the role of HPSE in melanoma and also provides a new direction for cancer pain treatment.
Collapse
Affiliation(s)
- Xiaohu Su
- Department of Anesthesiology, Suqian First People’s Hospital, Suqian City, Jiangsu Province, China
| | - Bingwu Wang
- Cancer Institute, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Zhaoyun Zhou
- Department of Anesthesiology, Tai’an Central Hospital, Tai’an City, Shandong Province, China
| | - Zixian Li
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Song Tong
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Simin Chen
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Nan Zhang
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Su Liu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Maoyin Zhang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China,Correspondence: Maoyin Zhang Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Quanshan District, Xuzhou City, Jiangsu Province 221002, China, Tel: +86-18168777315, Fax: +86-0516-85805911, E-mail:
| |
Collapse
|
10
|
Molecular Mechanism of Gleditsiae Spina for the Treatment of High-Grade Serous Ovarian Cancer Based on Network Pharmacology and Pharmacological Experiments. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5988310. [PMID: 35299895 PMCID: PMC8923798 DOI: 10.1155/2022/5988310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
Background Gleditsiae Spina, widely used in traditional Chinese medicine, has a good curative effect on malignant tumors such as ovarian cancer, but the mechanism is not clear. So, we aimed to analyze the pharmacological mechanism of Gleditsiae Spina in the treatment of high-grade serous ovarian cancer (HGSC) based on network pharmacology and biological experiments. Methods The main active ingredients of Gleditsiae Spina were identified by high performance liquid chromatography (HPLC) and mass spectrometry (MS), and the active ingredients were performed by ADME screening. The component targets of Gleditsiae Spina were screened using the PharmMapper platform, and differentially expressed genes in normal and HGSC tissues were identified through the GEO database. Thereafter, the network of “active ingredient-targets” was constructed by cytoscape 3.7.2 software. The protein-protein interaction network was established by the BioGenet database to mine the potential protein function. Biological processes and pathways were analyzed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The binding ability of the core components of the Gleditsiae Spina and the core target of HGSC was verified by molecular docking and molecular dynamics simulation, and the therapeutic effect of Gleditsiae Spina was proved in vitro through cytotoxicity experiments. The effect of Gleditsiae Spina on the core pathway is obtained by western blotting. Results Gleditsiae Spina had cytotoxicity on HGSC based on network pharmacology and biological experiments. Luteolin, genistein, D-(+)-tryptophan, ursolic acid, and berberine are the identified core active ingredients of Gleditsiae Spina for regulating HGSC, with HPSE, PI3KCA, AKT1, and CTNNB1as the ideal targets. The prediction results were verified by molecular docking, molecular dynamic simulation, cell viability, and western blot analysis. Conclusion Gleditsiae Spina mainly downregulates the expression of heparanase and β-catenin to affect the composition of tumor cytoplasmic matrix and can regulate the PI3K-AKT pathway, integrating multiple targets and multiple pathways to play a therapeutic role. It also provides a theoretical basis for the prevention of ovarian cancer and its treatment using traditional Chinese medicine in the future.
Collapse
|
11
|
Lapidot M, Saladi SV, Salgia R, Sattler M. Novel Therapeutic Targets and Immune Dysfunction in Malignant Pleural Mesothelioma. Front Pharmacol 2022; 12:806570. [PMID: 35069219 PMCID: PMC8776703 DOI: 10.3389/fphar.2021.806570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Advances in the treatment of malignant pleural mesothelioma (MPM) have been disappointing, despite the apparent need for new therapeutic options for this rare and devastating cancer. Drug resistance is common and surgical intervention has brought benefits only to a subset of patients. MPM is a heterogenous disease with a surprisingly low mutation rate and recent sequencing efforts have confirmed alterations in a limited number of tumor suppressors that do not provide apparent insights into the molecular mechanisms that drive this malignancy. There is increasing evidence that epigenetic regulation leads to immune evasion and transformation in MPM. Further, the low efficacy of immune checkpoint inhibitors is consistent with a suppression of genes involved in the anti-tumor immune response. We review three promising emerging therapeutic targets (STAT3, KDM4A, heparanase) and highlight their potential effects on the immune response.
Collapse
Affiliation(s)
- Moshe Lapidot
- Department of Thoracic Surgery, Galilee Medical Center, Nahariya, Israel
| | - Srinivas Vinod Saladi
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, United States
| | - Martin Sattler
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
12
|
Richardson PG, Palomo M, Kernan NA, Hildebrandt GC, Chao N, Carreras E. The importance of endothelial protection: the emerging role of defibrotide in reversing endothelial injury and its sequelae. Bone Marrow Transplant 2021; 56:2889-2896. [PMID: 34584241 PMCID: PMC8477726 DOI: 10.1038/s41409-021-01383-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022]
Abstract
Hepatic veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS), a potentially life-threatening complication of hematopoietic cell transplantation (HCT), results from prolonged sinusoidal endothelial cell activation and profound endothelial cell damage, with sequelae. Defibrotide, the only drug approved in the United States and Europe for treating VOD/SOS post-HCT, has European Commission orphan drug designation for preventing graft-versus-host disease (GvHD), associated with endothelial dysfunction. This endothelial cell protector and stabilizing agent restores thrombo-fibrinolytic balance and preserves endothelial homeostasis through antithrombotic, fibrinolytic, anti-inflammatory, anti-oxidative, and anti-adhesive activity. Defibrotide also preserves endothelial cell structure by inhibiting heparanase activity. Evidence suggests that downregulating p38 mitogen-activated protein kinase (MAPK) and histone deacetylases (HDACs) is key to defibrotide’s endothelial protective effects; phosphatidylinositol 3-kinase/Akt (PI3K/AKT) potentially links defibrotide interaction with the endothelial cell membrane and downstream effects. Despite defibrotide’s being most extensively studied in VOD/SOS, emerging preclinical and clinical data support defibrotide for treating or preventing other conditions driven by endothelial cell activation, dysfunction, and/or damage, such as GvHD, transplant-associated thrombotic microangiopathy, or chimeric antigen receptor T-cell (CAR-T) therapy-associated neurotoxicity, underpinned by cytokine release syndrome and endotheliitis. Further preclinical and clinical studies will explore defibrotide’s potential utility in a broader range of disorders resulting from endothelial cell activation and dysfunction.
Collapse
Affiliation(s)
- Paul G Richardson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Marta Palomo
- Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain.,Hematopathology, Department of Pathology, Centre de Diagnostic Biomedic (CDB), Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Nancy A Kernan
- Pediatric BMT Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Nelson Chao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Enric Carreras
- Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
| |
Collapse
|
13
|
Liu J, Knani I, Gross-Cohen M, Hu J, Wang S, Tang L, Ilan N, Yang S, Vlodavsky I. Role of heparanase 2 (Hpa2) in gastric cancer. Neoplasia 2021; 23:966-978. [PMID: 34343822 PMCID: PMC8349917 DOI: 10.1016/j.neo.2021.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
We report that gastric cancer patients exhibiting high levels of heparanase 2 (Hpa2) survive longer. Similarly, mice administrated with gastric carcinoma cells engineered to overexpress Hpa2 produced smaller tumors and survived longer than mice administrated with control cells. These beneficial effects were found to associate with increased phosphorylation of AMP-activated protein kinase (AMPK) that play an instrumental role in cell metabolism and is situated at the center of a tumor suppressor network. We also found that MG132, an inhibitor of the proteasome that results in proteotoxic stress, prominently enhances Hpa2 expression. Notably, Hpa2 induction by MG132 appeared to be mediated by AMPK, thus establishing a loop that feeds itself where Hpa2 enhances AMPK phosphorylation that, in turn, induces Hpa2 expression, possibly leading to attenuation of gastric tumorigenesis.
Heparanase is highly implicated in tumor metastasis due to its capacity to cleave heparan sulfate and, consequently, remodel the extracellular matrix underlying epithelial and endothelial cells. In striking contrast, only little attention was given to its close homolog, heparanase 2 (Hpa2), possibly because it lacks heparan sulfate-degrading activity typical of heparanase. We subjected sections of gastric carcinoma to immunostaining and correlated Hpa2 immunoreactivity with clinical records, including tumor grade, stage and patients' status. We over-expressed Hpa2 in gastric carcinoma cell lines and examined their tumorigenic properties in vitro and in vivo. We also evaluated the expression of Hpa2 by gastric carcinoma cells following inhibition of the proteasome, leading to proteotoxic stress, and the resulting signaling responsible for Hpa2 gene regulation. Here, we report that gastric cancer patients exhibiting high levels of Hpa2 survive longer. Similarly, mice administrated with gastric carcinoma cells engineered to over-express Hpa2 produced smaller tumors and survived longer than mice administrated with control cells. This was associated with increased phosphorylation of AMP-activated protein kinase (AMPK), a kinase that is situated at the center of a tumor suppressor network. We also found that MG132, an inhibitor of the proteasome that results in proteotoxic stress, prominently enhances Hpa2 expression. Notably, Hpa2 induction by MG132 appeared to be mediated by AMPK, and AMPK was found to induce the expression of Hpa2, thus establishing a loop that feeds itself where Hpa2 enhances AMPK phosphorylation that, in turn, induces Hpa2 expression, leading to attenuation of gastric tumorigenesis. These results indicate that high levels of Hpa2 in some tumors are due to stress conditions that tumors often experience due to their high rates of cell proliferation and high metabolic demands. This increase in Hpa2 levels by the stressed tumors appears critically important for patient outcomes.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ibrahim Knani
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Miriam Gross-Cohen
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Jiaxi Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Neta Ilan
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel.
| |
Collapse
|
14
|
Kinaneh S, Khamaysi I, Karram T, Hamoud S. Heparanase as a potential player in SARS-CoV-2 infection and induced coagulopathy. Biosci Rep 2021; 41:BSR20210290. [PMID: 34132790 PMCID: PMC8255537 DOI: 10.1042/bsr20210290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
During the current formidable COVID-19 pandemic, it is appealing to address ideas that may invoke therapeutic interventions. Clotting disorders are well recognized in patients infected with severe acute respiratory syndrome (SARS) caused by a novel coronavirus (SARS-CoV-2), which lead to severe complications that worsen the prognosis in these subjects. Increasing evidence implicate Heparan sulfate proteoglycans (HSPGs) and Heparanase in various diseases and pathologies, including hypercoagulability states. Moreover, HSPGs and Heparanase are involved in several viral infections, in which they enhance cell entry and release of the viruses. Herein we discuss the molecular involvement of HSPGs and heparanase in SARS-CoV-2 infection, namely cell entry and release, and the accompanied coagulopathy complications, which assumedly could be blocked by heparanase inhibitors such as Heparin and Pixatimod.
Collapse
Affiliation(s)
- Safa Kinaneh
- Department of Physiology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Iyad Khamaysi
- Department of Gastroenterology, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tony Karram
- Department of Vascular Surgery and Kidney Transplantation, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
15
|
Abstract
Heparanase is an endoglycosidase that degrades heparan sulfate side chains of heparan sulfate-proteoglycans. It liberates heparan sulfate-bound growth factors and thereby promotes blood vessel sprouting and angiogenesis. The subterranean blind mole rat, Spalax, is a wild mammal that lives most of its life in underground tunnels where it experiences sharp fluctuations in oxygen and carbon dioxide levels. We described two splice variants of heparanase from Spalax, Splice 7 and splice 36, both devoid of heparanase enzymatic activity. Splice 7 increases tumor growth, while splice 36 functions as a dominant negative to wild-type heparanase and decreases tumor growth and metastasis. Here, we describe two novel splice variants of Spalax heparanase, splice 67 and splice 612. These splice variants result in production of a shorter heparanase proteins that are similar to the wild-type native heparanase in their N-terminal but have unique C-terminals. Both splice 67 and 612 lack heparan sulfate degradation activity.
Collapse
|
16
|
Barash U, Rangappa S, Mohan CD, Vishwanath D, Boyango I, Basappa B, Vlodavsky I, Rangappa KS. New Heparanase-Inhibiting Triazolo-Thiadiazoles Attenuate Primary Tumor Growth and Metastasis. Cancers (Basel) 2021; 13:cancers13122959. [PMID: 34199150 PMCID: PMC8231572 DOI: 10.3390/cancers13122959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Heparanase is an endoglycosidase that plays a critical role in tumor progression and metastasis. The expression of heparanase in the tumor microenvironment is positively correlated with the aggressiveness of the tumor and is associated with poor prognosis. In this study, we have demonstrated that a new triazole–thiadiazole-bearing small molecule showed good heparanase inhibition along with attenuation of tumor growth and metastasis. To the best of our knowledge, this is the first report showing a marked decrease in primary tumor growth in mice treated with a small molecule that inhibits heparanase enzymatic activity. Given these encouraging results, studies are underway to better elucidate the mode of action and clinical significance of triazolo–thiadiazoles. Abstract Compelling evidence ties heparanase, an endoglycosidase that cleaves heparan sulfate side (HS) chains of proteoglycans, with all steps of tumor development, including tumor initiation, angiogenesis, growth, metastasis, and chemoresistance. Moreover, heparanase levels correlate with shorter postoperative survival of cancer patients, encouraging the development of heparanase inhibitors as anti-cancer drugs. Heparanase-inhibiting heparin/heparan sulfate-mimicking compounds and neutralizing antibodies are highly effective in animal models of cancer progression, yet none of the compounds reached the stage of approval for clinical use. The present study focused on newly synthesized triazolo–thiadiazoles, of which compound 4-iodo-2-(3-(p-tolyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenol (4-MMI) was identified as a potent inhibitor of heparanase enzymatic activity, cell invasion, experimental metastasis, and tumor growth in mouse models. To the best of our knowledge, this is the first report showing a marked decrease in primary tumor growth in mice treated with small molecules that inhibit heparanase enzymatic activity. This result encourages the optimization of 4-MMI for preclinical and clinical studies primarily in cancer but also other indications (i.e., colitis, pancreatitis, diabetic nephropathy, tissue fibrosis) involving heparanase, including viral infection and COVID-19.
Collapse
Affiliation(s)
- Uri Barash
- Technion Integrated Cancer Center (TICC), the Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (U.B.); (I.B.)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Nagamangala Taluk 571448, India;
| | | | - Divakar Vishwanath
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (D.V.); (B.B.)
| | - Ilanit Boyango
- Technion Integrated Cancer Center (TICC), the Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (U.B.); (I.B.)
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (D.V.); (B.B.)
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), the Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (U.B.); (I.B.)
- Correspondence: (I.V.); (K.S.R.)
| | - Kanchugarakoppal S. Rangappa
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore 570006, India
- Correspondence: (I.V.); (K.S.R.)
| |
Collapse
|
17
|
Gross-Cohen M, Yanku Y, Kessler O, Barash U, Boyango I, Cid-Arregui A, Neufeld G, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2) attenuates tumor growth by inducing Sox2 expression. Matrix Biol 2021; 99:58-71. [PMID: 34004353 DOI: 10.1016/j.matbio.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
The pro-tumorigenic properties of heparanase are well documented, and heparanase inhibitors are being evaluated clinically as anti-cancer therapeutics. In contrast, the role of heparanase 2 (Hpa2), a close homolog of heparanase, in cancer is largely unknown. Previously, we have reported that in head and neck cancer, high levels of Hpa2 are associated with prolonged patient survival and decreased tumor cell dissemination to regional lymph nodes, suggesting that Hpa2 functions to restrain tumorigenesis. Also, patients with high levels of Hpa2 were diagnosed as low grade and exhibited increased expression of cytokeratins, an indication that Hpa2 promotes or maintains epithelial cell differentiation and identity. To reveal the molecular mechanism underlying the tumor suppressor properties of Hpa2, and its ability to induce the expression of cytokeratin, we employed overexpression as well as gene editing (Crispr) approaches, combined with gene array and RNAseq methodologies. At the top of the list of many genes found to be affected by Hpa2 was Sox2. Here we provide evidence that silencing of Sox2 resulted in bigger tumors endowed with reduced cytokeratin levels, whereas smaller tumors were developed by cells overexpressing Sox2, suggesting that in head and neck carcinoma, Sox2 functions to inhibit tumor growth. Notably, Hpa2-null cells engineered by Crispr/Cas 9, produced bigger tumors vs control cells, and rescue of Hpa2 attenuated tumor growth. These results strongly imply that Hpa2 functions as a tumor suppressor in head and neck cancer, involving Sox2 upregulation mediated, in part, by the high-affinity interaction of Hpa2 with heparan sulfate.
Collapse
Affiliation(s)
- Miriam Gross-Cohen
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yifat Yanku
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ofra Kessler
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ilanit Boyango
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Gera Neufeld
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
18
|
Kaur R, Deb PK, Diwan V, Saini B. Heparanase Inhibitors in Cancer Progression: Recent Advances. Curr Pharm Des 2021; 27:43-68. [PMID: 33185156 DOI: 10.2174/1381612826666201113105250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An endo-β-glucuronidase enzyme, Heparanase (HPSE), degrades the side chains of polymeric heparan sulfate (HS), a glycosaminoglycan formed by alternate repetitive units of D-glucosamine and D-glucuronic acid/L-iduronic acid. HS is a major component of the extracellular matrix and basement membranes and has been implicated in processes of the tissue's integrity and functional state. The degradation of HS by HPSE enzyme leads to conditions like inflammation, angiogenesis, and metastasis. An elevated HPSE expression with a poor prognosis and its multiple roles in tumor growth and metastasis has attracted significant interest for its inhibition as a potential anti-neoplastic target. METHODS We reviewed the literature from journal publication websites and electronic databases such as Bentham, Science Direct, PubMed, Scopus, USFDA, etc., about HPSE, its structure, functions, and role in cancer. RESULTS The present review is focused on Heparanase inhibitors (HPIns) that have been isolated from natural resources or chemically synthesized as new therapeutics for metastatic tumors and chronic inflammatory diseases in recent years. The recent developments made in the HPSE structure and function are also discussed, which can lead to the future design of HPIns with more potency and specificity for the target. CONCLUSION HPIns can be a better target to be explored against various cancers.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Philadelphia, Jordan
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
19
|
Kayal Y, Singh P, Naroditsky I, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2) attenuates the growth of pancreatic carcinoma. Matrix Biol 2021; 98:21-31. [PMID: 33839221 DOI: 10.1016/j.matbio.2021.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
While the pro-tumorigenic properties of the ECM-degrading heparanase enzyme are well documented, the role of its close homolog, heparanase 2 (Hpa2), in cancer is largely unknown. We examined the role of Hpa2 in pancreatic cancer, a malignancy characterized by a dense fibrotic ECM associated with poor response to treatment and bad prognosis. We show that pancreatic ductal adenocarcinoma (PDAC) patients that exhibit high levels of Hpa2 survive longer than patients with low levels of Hpa2. Strikingly, overexpression of Hpa2 in pancreatic carcinoma cells resulted in a most prominent decrease in the growth of tumors implanted orthotopically and intraperitoneally, whereas Hpa2 silencing resulted in bigger tumors. We further found that Hpa2 enhances endoplasmic reticulum (ER) stress response and renders cells more sensitive to external stress, associating with increased apoptosis. Interestingly, we observed that ER stress induces the expression of Hpa2, thus establishing a feedback loop by which Hpa2 enhances ER stress that, in turn, induces Hpa2 expression. This leads to increased apoptosis and attenuated tumor growth. Altogether, Hpa2 emerges as a powerful tumor suppressor in pancreatic cancer.
Collapse
Affiliation(s)
- Yasmin Kayal
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Preeti Singh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
20
|
Chen XJ, Wei WF, Wang ZC, Wang N, Guo CH, Zhou CF, Liang LJ, Wu S, Liang L, Wang W. A novel lymphatic pattern promotes metastasis of cervical cancer in a hypoxic tumour-associated macrophage-dependent manner. Angiogenesis 2021; 24:549-565. [PMID: 33484377 PMCID: PMC8292274 DOI: 10.1007/s10456-020-09766-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022]
Abstract
Lymphatic remodelling in the hypoxic tumour microenvironment (TME) is critically involved in the metastasis of cervical squamous cell carcinoma (CSCC); however, its underlying mechanisms remain unclear. Here, we uncovered a novel lymphatic pattern in the hypoxic TME, wherein lymphatic vessels (LVs) are encapsulated by tumour-associated macrophages (TAMs) to form an interconnected network. We describe these aggregates as LVEM (LVs encapsulated by TAMs) considering their advantageous metastatic capacity and active involvement in early lymph node metastasis (LNM). Mechanistic investigations revealed that interleukin-10 (IL-10) derived from hypoxic TAMs adjacent to LVs was a prerequisite for lymphangiogenesis and LVEM formation through its induction of Sp1 upregulation in lymphatic endothelial cells (LECs). Interestingly, Sp1high LECs promoted the transactivation of C-C motif chemokine ligand 1 (CCL1) to facilitate TAM and tumour cell recruitment, thereby forming a positive feedback loop to strengthen the LVEM formation. Knockdown of Sp1 or blockage of CCL1 abrogated LVEM and consequently attenuated LNM. Notably, CSCCnon-LNM is largely devoid of hypoxic TAMs and the resultant LVEM, which might explain its metastatic delay. These findings identify a novel and efficient metastasis-promoting lymphatic pattern in the hypoxic TME, which might provide new targets for anti-metastasis therapy and prognostic assessment.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Wen-Fei Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Zi-Ci Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Nisha Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Chu-Hong Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Luo-Jiao Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, People's Republic of China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, People's Republic of China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
21
|
Rogers JM, Nawatha M, Lemma B, Vamisetti GB, Livneh I, Barash U, Vlodavsky I, Ciechanover A, Fushman D, Suga H, Brik A. In vivo modulation of ubiquitin chains by N-methylated non-proteinogenic cyclic peptides. RSC Chem Biol 2020; 2:513-522. [PMID: 34179781 PMCID: PMC8232551 DOI: 10.1039/d0cb00179a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer and other disease states can change the landscape of proteins post-translationally tagged with ubiquitin (Ub) chains. Molecules capable of modulating Ub chains are potential therapeutic agents, but their discovery represents a significant challenge. Recently, it was shown that de novo cyclic peptides, selected from trillion-member random libraries, are capable of binding particular Ub chains. However, these peptides were overwhelmingly proteinogenic, so the prospect of in vivo activity was uncertain. Here, we report the discovery of small, non-proteinogenic cyclic peptides, rich in non-canonical features like N-methylation, which can tightly and specifically bind Lys48-linked Ub chains. These peptides engage three Lys48-linked Ub units simultaneously, block the action of deubiquitinases and the proteasome, induce apoptosis in vitro, and attenuate tumor growth in vivo. This highlights the potential of non-proteinogenic cyclic peptide screening to rapidly find in vivo-active leads, and the targeting of ubiquitin chains as a promising anti-cancer mechanism of action.
Collapse
Affiliation(s)
- Joseph M Rogers
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mickal Nawatha
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Betsegaw Lemma
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ido Livneh
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Uri Barash
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Israel Vlodavsky
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
22
|
Zhang GL, Gutter-Kapon L, Ilan N, Batool T, Singh K, Digre A, Luo Z, Sandler S, Shaked Y, Sanderson RD, Wang XM, Li JP, Vlodavsky I. Significance of host heparanase in promoting tumor growth and metastasis. Matrix Biol 2020; 93:25-42. [PMID: 32534153 PMCID: PMC7704762 DOI: 10.1016/j.matbio.2020.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth and metastasis. We have utilized mice over-expressing (Hpa-tg) heparanase to reveal the role of host heparanase in tumor initiation, growth and metastasis. While in wild type mice tumor development in response to DMBA carcinogenesis was restricted to the mammary gland, Hpa-tg mice developed tumors also in their lungs and liver, associating with reduced survival of the tumor-bearing mice. Consistently, xenograft tumors (lymphoma, melanoma, lung carcinoma, pancreatic carcinoma) transplanted in Hpa-tg mice exhibited accelerated tumor growth and shorter survival of the tumor-bearing mice compared with wild type mice. Hpa-tg mice were also more prone to the development of metastases following intravenous or subcutaneous injection of tumor cells. In some models, the growth advantage was associated with infiltration of heparanase-high host cells into the tumors. However, in other models, heparanase-high host cells were not detected in the primary tumor, implying that the growth advantage in Hpa-tg mice is due to systemic factors. Indeed, we found that plasma from Hpa-tg mice enhanced tumor cell migration and invasion attributed to increased levels of pro-tumorigenic factors (i.e., RANKL, SPARC, MIP-2) in the plasma of Hpa-Tg vs. wild type mice. Furthermore, tumor aggressiveness and short survival time were demonstrated in wild type mice transplanted with bone marrow derived from Hpa-tg but not wild type mice. These results were attributed, among other factors, to upregulation of pro-tumorigenic (i.e., IL35+) and downregulation of anti-tumorigenic (i.e., IFN-γ+) T-cell subpopulations in the spleen, lymph nodes and blood of Hpa-tg vs. wild type mice and their increased infiltration into the primary tumor. Collectively, our results emphasize the significance of host heparanase in mediating the pro-tumorigenic and pro-metastatic interactions between the tumor cells and the host tumor microenvironment, immune cells and systemic factors.
Collapse
Affiliation(s)
- Gan-Lin Zhang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Lilach Gutter-Kapon
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel
| | - Tahira Batool
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Kailash Singh
- Department of Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Andreas Digre
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Zhengkang Luo
- Department of Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Stellan Sandler
- Department of Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Yuval Shaked
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao-Min Wang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Jin-Ping Li
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden.
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel.
| |
Collapse
|
23
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
24
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Koliesnik IO, Kuipers HF, Medina CO, Zihsler S, Liu D, Van Belleghem JD, Bollyky PL. The Heparan Sulfate Mimetic PG545 Modulates T Cell Responses and Prevents Delayed-Type Hypersensitivity. Front Immunol 2020; 11:132. [PMID: 32117279 PMCID: PMC7015948 DOI: 10.3389/fimmu.2020.00132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
The heparan sulfate mimetic PG545 (pixatimod) is under evaluation as an inhibitor of angiogenesis and metastasis including in human clinical trials. We have examined the effects of PG545 on lymphocyte phenotypes and function. We report that PG545 treatment suppresses effector T cell activation and polarizes T cells away from Th17 and Th1 and toward Foxp3+ regulatory T cell subsets in vitro and in vivo. Mechanistically, PG545 inhibits Erk1/2 signaling, a pathway known to affect both T cell activation and subset polarization. Interestingly, these effects are also observed in heparanase-deficient T cells, indicating that PG545 has effects that are independent of its role in heparanase inhibition. Consistent with these findings, administration of PG545 in a Th1/Th17-dependent mouse model of a delayed-type hypersensitivity led to reduced footpad inflammation, reduced Th17 memory cells, and an increase in FoxP3+ Treg proliferation. PG545 also promoted Foxp3+ Treg induction by human T cells. Finally, we examined the effects of other heparan sulfate mimetics PI-88 and PG562 on lymphocyte polarization and found that these likewise induced Foxp3+ Treg in vitro but did not reduce Th17 numbers or improve delayed-type hypersensitivity in this model. Together, these data indicate that PG545 is a potent inhibitor of Th1/Th17 effector functions and inducer of FoxP3+ Treg. These findings may inform the adaptation of PG545 for clinical applications including in inflammatory pathologies associated with type IV hypersensitivity responses.
Collapse
Affiliation(s)
- Ievgen O Koliesnik
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Carlos O Medina
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Svenja Zihsler
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Liu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Jonas D Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Beckman Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
26
|
Bhattacharya U, Gutter-Kapon L, Kan T, Boyango I, Barash U, Yang SM, Liu J, Gross-Cohen M, Sanderson RD, Shaked Y, Ilan N, Vlodavsky I. Heparanase and Chemotherapy Synergize to Drive Macrophage Activation and Enhance Tumor Growth. Cancer Res 2020; 80:57-68. [PMID: 31690669 PMCID: PMC6942624 DOI: 10.1158/0008-5472.can-19-1676] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/19/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
The emerging role of heparanase in tumor initiation, growth, metastasis, and chemoresistance is well recognized, encouraging the development of heparanase inhibitors as anticancer drugs. Unlike the function of heparanase in cancer cells, little attention has been given to heparanase contributed by cells composing the tumor microenvironment. Here, we focused on the cross-talk between macrophages, chemotherapy, and heparanase and the combined effect on tumor progression. Macrophages were markedly activated by chemotherapeutics paclitaxel and cisplatin, evidenced by increased expression of proinflammatory cytokines, supporting recent studies indicating that chemotherapy may promote rather than suppress tumor regrowth and spread. Strikingly, cytokine induction by chemotherapy was not observed in macrophages isolated from heparanase-knockout mice, suggesting macrophage activation by chemotherapy is heparanase dependent. paclitaxel-treated macrophages enhanced the growth of Lewis lung carcinoma tumors that was attenuated by a CXCR2 inhibitor. Mechanistically, paclitaxel and cisplatin activated methylation of histone H3 on lysine 4 (H3K4) in wild-type but not in heparanase-knockout macrophages. Furthermore, the H3K4 presenter WDR5 functioned as a molecular determinant that mediated cytokine induction by paclitaxel. This epigenetic, heparanase-dependent host-response mechanism adds a new perspective to the tumor-promoting functions of chemotherapy, and offers new treatment modalities to optimize chemotherapeutics. SIGNIFICANCE: Chemotherapy-treated macrophages are activated to produce proinflammatory cytokines, which are blunted in the absence of heparanase.
Collapse
Affiliation(s)
- Udayan Bhattacharya
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Lilach Gutter-Kapon
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tal Kan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ilanit Boyango
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - JingJing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuval Shaked
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
27
|
Heparanase Inhibition by Pixatimod (PG545): Basic Aspects and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:539-565. [PMID: 32274726 DOI: 10.1007/978-3-030-34521-1_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pixatimod is an inhibitor of heparanase, a protein which promotes cancer via its regulation of the extracellular environment by enzymatic cleavage of heparan sulfate (HS) and non-enzymatic signaling. Through its inhibition of heparanase and other HS-binding signaling proteins, pixatimod blocks a number of pro-cancerous processes including cell proliferation, invasion, metastasis, angiogenesis and epithelial-mesenchymal transition. Several laboratories have found that these activities have translated into potent activity using a range of different mouse cancer models, including approximately 30 xenograft and 20 syngeneic models. Analyses of biological samples from these studies have confirmed the heparanase targeting of this agent in vivo and the broad spectrum of anti-cancer effects that heparanase blockade achieves. Pixatimod has been tested in combination with a number of approved anti-cancer drugs demonstrating its clinical potential, including with gemcitabine, paclitaxel, sorafenib, platinum agents and an anti-PD-1 antibody. Clinical testing has shown pixatimod to be well tolerated as a monotherapy, and it is currently being investigated in combination with the anti-PD-1 drug nivolumab in a pancreatic cancer phase I trial.
Collapse
|
28
|
Vlodavsky I, Sanderson RD, Ilan N. Forty Years of Basic and Translational Heparanase Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:3-59. [PMID: 32274705 PMCID: PMC7142273 DOI: 10.1007/978-3-030-34521-1_1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes key developments in the heparanase field obtained 20 years prior to cloning of the HPSE gene and nearly 20 years after its cloning. Of the numerous publications and review articles focusing on heparanase, we have selected those that best reflect the progression in the field as well as those we regard important accomplishments with preference to studies performed by scientists and groups that contributed to this book. Apart from a general 'introduction' and 'concluding remarks', the abstracts of these studies are presented essentially as published along the years. We apologize for not being objective and not being able to include some of the most relevant abstracts and references, due to space limitation. Heparanase research can be divided into two eras. The first, initiated around 1975, dealt with identifying the enzyme, establishing the relevant assay systems and investigating its biological activities and significance in cancer and other pathologies. Studies performed during the first area are briefly introduced in a layman style followed by the relevant abstracts presented chronologically, essentially as appears in PubMed. The second era started in 1999 when the heparanase gene was independently cloned by 4 research groups [1-4]. As expected, cloning of the heparanase gene boosted heparanase research by virtue of the readily available recombinant enzyme, molecular probes, and anti-heparanase antibodies. Studies performed during the second area are briefly introduced followed by selected abstracts of key findings, arranged according to specific topics.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
29
|
Barash U, Spyrou A, Liu P, Vlodavsky E, Zhu C, Luo J, Su D, Ilan N, Forsberg-Nilsson K, Vlodavsky I, Yang X. Heparanase promotes glioma progression via enhancing CD24 expression. Int J Cancer 2019; 145:1596-1608. [PMID: 31032901 DOI: 10.1002/ijc.32375] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023]
Abstract
Heparanase is an endo-β-d-glucuronidase that cleaves heparan sulfate (HS) side chains of heparan sulfate proteoglycans. Compelling evidence tie heparanase levels with all steps of tumor formation including tumor initiation, growth, metastasis and chemo-resistance, likely involving augmentation of signaling pathways and gene transcription. In order to reveal the molecular mechanism(s) underlying the protumorigenic properties of heparanase, we established an inducible (Tet-on) system in U87 human glioma cells and applied gene array methodology in order to identify genes associated with heparanase induction. We found that CD24, a mucin-like cell adhesion protein, is consistently upregulated by heparanase and by heparanase splice variant devoid of enzymatic activity, whereas heparanase gene silencing was associated with decreased CD24 expression. This finding was further substantiated by a similar pattern of heparanase and CD24 immunostaining in glioma patients (Pearson's correlation; R = 0.66, p = 0.00001). Noteworthy, overexpression of CD24 stimulated glioma cell migration, invasion, colony formation in soft agar and tumor growth in mice suggesting that CD24 functions promote tumor growth. Likewise, anti-CD24 neutralizing monoclonal antibody attenuated glioma tumor growth, and a similar inhibition was observed in mice treated with a neutralizing mAb directed against L1 cell adhesion molecule (L1CAM), a ligand for CD24. Importantly, significant shorter patient survival was found in heparanase-high/CD24-high tumors vs. heparanase-high/CD24-low tumors for both high-grade and low-grade glioma (p = 0.02). Our results thus uncover a novel heparanase-CD24-L1CAM axis that plays a significant role in glioma tumorigenesis.
Collapse
Affiliation(s)
- Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Haifa, Israel
| | - Argyris Spyrou
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pei Liu
- Shantou University Medical College, Shantou, China
| | | | - Chenchen Zhu
- Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Shantou University Medical College, Shantou, China
| | - Dongsheng Su
- Shantou University Medical College, Shantou, China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Haifa, Israel
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Haifa, Israel
| | - Xiaojun Yang
- Shantou University Medical College, Shantou, China
| |
Collapse
|
30
|
Jin H, Cui M. New Advances of Heparanase in Human Diseases. Mini Rev Med Chem 2019; 20:90-95. [PMID: 31518222 DOI: 10.2174/1389557519666190913150959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/05/2019] [Accepted: 06/23/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This mini-review aims to discuss research works about heparanase published in 2016, 2017, 2018 and 2019 and provide a direction for therapy methods targeting heparanase. PATIENTS AND METHODS The relevant data were searched by using keywords "heparanase" "function", "diseases" and "inhibitors" in "PubMed", "Web of Science" and "China Knowledge Resource Integrated databases (CNKI)", and a hand-search was done to acquire peer-reviewed articles and reports about heparanase. RESULTS Except for tumor progression, pathological processes including procoagulant activities, preeclamptic placentas, inflammation and so on are all verified to be associated with heparanase activity. Also, these newly-found functions are closely related to certain cellular activities, including epithelial to Mesenchymal Transition (EMT). CONCLUSION It could be concluded that heparanase would be a potential and valuable therapy target.
Collapse
Affiliation(s)
- Hao Jin
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China
| | - Min Cui
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China
| |
Collapse
|
31
|
Chen XJ, Deng YR, Wang ZC, Wei WF, Zhou CF, Zhang YM, Yan RM, Liang LJ, Zhong M, Liang L, Wu S, Wang W. Hypoxia-induced ZEB1 promotes cervical cancer progression via CCL8-dependent tumour-associated macrophage recruitment. Cell Death Dis 2019; 10:508. [PMID: 31263103 PMCID: PMC6602971 DOI: 10.1038/s41419-019-1748-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 02/08/2023]
Abstract
The accumulation of tumour-associated macrophages (TAMs) in the hypoxic tumour microenvironment (TME) is associated with malignant progression in cancer. However, the mechanisms by which the hypoxic TME facilitates TAM infiltration are not fully understood. This study showed that high ZEB1 expression in hypoxic cervical cancer cell islets was positively correlated with CD163+ TAM accumulation. ZEB1 in hypoxic cancer cells promoted the migration of TAMs in vitro and altered the expression of multiple chemokines, especially CCL8. Mechanistically, hypoxia-induced ZEB1 activated the transcription of CCL8, which attracted macrophages via the CCR2-NF-κB pathway. Furthermore, ZEB1 and CCL8 were independent prognostic factors in cervical cancer patients based on The Cancer Genome Atlas (TCGA) data analysis. In conclusion, hypoxia-induced ZEB1 exerts unexpected functions in cancer progression by fostering a prometastatic environment through increased CCL8 secretion and TAM recruitment; thus, ZEB1 may serve as a candidate biomarker of tumour progression and provide a potential target for disrupting hypoxia-mediated TME remodelling.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Yuan-Run Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, 510360, Guangzhou, China
| | - Zi-Ci Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Wen-Fei Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Yan-Mei Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, 510515, Guangzhou, China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Luo-Jiao Liang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, 510515, Guangzhou, China.
- 1838 Guangzhou Avenue North, Baiyun District, 510515, Guangzhou, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China.
- 151 Yanjiang Road, Yuexiu District, 510120, Guangzhou, China.
| |
Collapse
|
32
|
Deng YR, Chen XJ, Chen W, Wu LF, Jiang HP, Lin D, Wang LJ, Wang W, Guo SQ. Sp1 contributes to radioresistance of cervical cancer through targeting G2/M cell cycle checkpoint CDK1. Cancer Manag Res 2019; 11:5835-5844. [PMID: 31303791 PMCID: PMC6610296 DOI: 10.2147/cmar.s200907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/21/2019] [Indexed: 01/27/2023] Open
Abstract
Background/aims Radioresistance remains a significant obstacle in the therapy of cervical cancer, and the mechanism of it is still unclear. We aimed to investigate the role of specificity protein 1 (Sp1) in radioresistance of cervical cancer. Methods Sp1 was examined immunohistochemically on tissues from 36 human cervical cancer patients. We used RT-qPCR and Western blot to examine the expression of Sp1 in irradiated cervical cancer cell lines SiHa and HeLa. The role of Sp1 in radioresistance of cervical cancer cells was assessed by colony-formation assay and cell cycle analysis. Dual-luciferase reporter assay was performed to detect the downstream of Sp1. Results High Sp1 expression was positively correlated with advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and lymphovascular space invasion (LVSI) of cervical cancer. The expression of Sp1 was dose-dependently increased in irradiated cervical cancer cell lines at both mRNA and protein levels. Colony-formation assay showed that alteration of Sp1 expression affected the survival of cervical cancer cells with radiotherapy (RT) treatment. Knockdown of Sp1 significantly strengthened the cellular response to radiation by inducing G2/M arrest in cervical cancer cells. Overexpression of Sp1 significantly decreased G2/M arrest in cervical cancer cells, which was related to upregulation of CDK1 expression. Dual-luciferase reporter assay showed the direct effect of Sp1 on the transcriptional activation of CDK1. Conclusion Sp1 may contribute to radioresistance through inhibiting G2/M phase arrest by targeting CDK1, and be considered as a potential therapeutic target to promote the effect of RT for patients with cervical cancer.
Collapse
Affiliation(s)
- Yuan-Run Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lan-Fang Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hui-Ping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Dan Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Li-Jing Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Sui-Qun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
33
|
Mohan CD, Hari S, Preetham HD, Rangappa S, Barash U, Ilan N, Nayak SC, Gupta VK, Basappa, Vlodavsky I, Rangappa KS. Targeting Heparanase in Cancer: Inhibition by Synthetic, Chemically Modified, and Natural Compounds. iScience 2019; 15:360-390. [PMID: 31103854 PMCID: PMC6548846 DOI: 10.1016/j.isci.2019.04.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023] Open
Abstract
Heparanase is an endoglycosidase involved in remodeling the extracellular matrix and thereby in regulating multiple cellular processes and biological activities. It cleaves heparan sulfate (HS) side chains of HS proteoglycans into smaller fragments and hence regulates tissue morphogenesis, differentiation, and homeostasis. Heparanase is overexpressed in various carcinomas, sarcomas, and hematological malignancies, and its upregulation correlates with increased tumor size, tumor angiogenesis, enhanced metastasis, and poor prognosis. In contrast, knockdown or inhibition of heparanase markedly attenuates tumor progression, further underscoring the potential of anti-heparanase therapy. Heparanase inhibitors were employed to interfere with tumor progression in preclinical studies, and selected heparin mimetics are being examined in clinical trials. However, despite tremendous efforts, the discovery of heparanase inhibitors with high clinical benefit and minimal adverse effects remains a therapeutic challenge. This review discusses the key roles of heparanase in cancer progression focusing on the status of natural, chemically modified, and synthetic heparanase inhibitors in various types of malignancies.
Collapse
Affiliation(s)
| | - Swetha Hari
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, AIMS Campus, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | | |
Collapse
|
34
|
Lapidot M, Barash U, Vlodavsky I, Pass H. Heparanase inhibitors restrain mesothelioma. Oncotarget 2018; 9:36830-36832. [PMID: 30627323 PMCID: PMC6305150 DOI: 10.18632/oncotarget.26243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/06/2018] [Indexed: 12/26/2022] Open
Abstract
Malignant mesothelioma is a highly aggressive form of cancer with poor prognosis due to lack of markers for early diagnosis and resistance to conventional therapies. Heparanase, the sole heparan sulfate (HS) degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, metastasis, angiogenesis, and inflammation. Heparanase accomplishes this by degrading HS and thereby facilitating cell invasion and regulating the bioavailability of heparin-binding proteins. Applying pre-clinical and clinical models of human mesothelioma and potent inhibitors of heparanase enzymatic activity (PG545, Defibrotide) we investigated the significance of heparanase in the pathogenesis of mesothelioma. We found that mesothelioma tumor growth was markedly attenuated by heparanase gene silencing and by heparanase inhibitors. Furthermore, heparanase inhibitors were more potent in vivo than conventional chemotherapy. Clinically, heparanase levels in patients’ pleural effusions could distinguish between malignant and benign effusions, and heparanase H-score (immunostaining of tumor specimens) above 90 was associated with reduced patient survival. These results strongly imply that heparanase plays an important role in mesothelioma tumor progression, thus encouraging the use of heparanase inhibitors in combination with existing drugs as a new therapeutic modality in mesothelioma clinical trials.
Collapse
Affiliation(s)
- Moshe Lapidot
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Barash
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Harvey Pass
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, USA
| |
Collapse
|
35
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
36
|
Lanzi C, Cassinelli G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018; 23:E2915. [PMID: 30413079 PMCID: PMC6278363 DOI: 10.3390/molecules23112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Beyond anticoagulation, the therapeutic potential of heparin derivatives and heparan sulfate (HS) mimetics (functionally defined HS mimetics) in oncology is related to their ability to bind and modulate the function of a vast array of HS-binding proteins with pivotal roles in cancer growth and progression. The definition of structural/functional determinants and the introduction of chemical modifications enabled heparin derivatives to be identified with greatly reduced or absent anticoagulant activity, but conserved/enhanced anticancer activity. These studies paved the way for the disclosure of structural requirements for the inhibitory effects of HS mimetics on heparanase, selectins, and growth factor receptor signaling, as well as for the limitation of side effects. Actually, HS mimetics affect the tumor biological behavior via a multi-target mechanism of action based on their effects on tumor cells and various components of the tumor microenvironment. Emerging evidence indicates that immunomodulation can participate in the antitumor activity of these agents. Significant ability to enhance the antitumor effects of combination treatments with standard therapies was shown in several tumor models. While the first HS mimetics are undergoing early clinical evaluation, an improved understanding of the molecular contexts favoring the antitumor action in certain malignancies or subgroups is needed to fully exploit their potential.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|