1
|
Rahal Z, El Darzi R, Moghaddam SJ, Cascone T, Kadara H. Tumour and microenvironment crosstalk in NSCLC progression and response to therapy. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01021-1. [PMID: 40379986 DOI: 10.1038/s41571-025-01021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
The treatment landscape of non-small-cell lung cancer (NSCLC) is evolving rapidly, driven by advances in the development of targeted agents and immunotherapies. Despite this progress, some patients have suboptimal responses to treatment, highlighting the need for new therapeutic strategies. In the past decade, the important role of the tumour microenvironment (TME) in NSCLC progression, metastatic dissemination and response to treatment has become increasingly evident. Understanding the complexity of the TME and its interactions with NSCLC can propel efforts to improve current treatment modalities, overcome resistance and develop new treatments, which will ultimately improve the outcomes of patients. In this Review, we provide a comprehensive view of the NSCLC TME, examining its components and highlighting distinct archetypes characterized by spatial niches within and surrounding tumour nests, which form complex neighbourhoods. Next, we explore the interactions within these components, focusing on how inflammation and immunosuppression shape the dynamics of the NSCLC TME. We also address the emerging influences of patient-related factors, such as ageing, sex and health disparities, on the NSCLC-TME crosstalk. Finally, we discuss how various therapeutic strategies interact with and are influenced by the TME in NSCLC. Overall, we emphasize the interconnectedness of these elements and how they influence therapeutic outcomes and tumour progression.
Collapse
Affiliation(s)
- Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Roy El Darzi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences (GSBS), UTHealth Houston, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Graduate School of Biomedical Sciences (GSBS), UTHealth Houston, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences (GSBS), UTHealth Houston, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Huang YE, Zhou S, Chen S, Chen J, Zhou X, Hou F, Liu H, Yuan M, Jiang W. Mutational signature-based biomarker to predict the response of immune checkpoint inhibitors therapy in cancers. Int J Biol Macromol 2025; 308:142585. [PMID: 40154701 DOI: 10.1016/j.ijbiomac.2025.142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Patients have a limited response rate to immune checkpoint inhibitors (ICIs) therapy. Although several biomarkers have been proposed, their ability to accurately predict the response to ICIs therapy remains unsatisfactory. In addition, mutational signatures were validated to be associated with ICIs therapy. Therefore, we developed a mutational signature-based biomarker (MS-bio) to predict the response to ICIs therapy. Based on differentially mutated genes, we extracted six mutational signatures (single-base substitution (SBS)-A, SBS-B, SBS-C, SBS-D, double-base substitution (DBS)-A, and DBS-B) as MS-bio, and constructed a random forest (RF) model to predict the response. Internal and external validations consistently demonstrated the excellent predictive capability of MS-bio, with an accuracy reaching up to 0.82. Moreover, MS-bio exhibited superior performance compared to existing biomarkers. To further validate the accuracy of MS-bio, we explored its performance in The Cancer Genome Atlas (TCGA) cohort and found that the predicted responders were immunologically "hot". Finally, we found that SBS-C had the highest importance in prediction and was related to T cell differentiation. Overall, here we introduced MS-bio as a novel biomarker for accurately predicting the response to ICIs therapy, thereby contributing to the advancement of precision medicine.
Collapse
Affiliation(s)
- Yu-E Huang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- School of Computer Sciences, University of South China, Hengyang 421001, China
| | - Sina Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiahao Chen
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
3
|
Liu X, Harbison RA, Varvares MA, Puram SV, Peng G. Immunotherapeutic strategies in head and neck cancer: challenges and opportunities. J Clin Invest 2025; 135:e188128. [PMID: 40231472 PMCID: PMC11996880 DOI: 10.1172/jci188128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
HNSCC remains a substantial health issue, with treatment options including surgery, radiation, and platinum-based chemotherapy. Unfortunately, despite progress in research, only modest gains have been made in disease control, with existing treatments resulting in significant functional and quality-of-life issues. The introduction of immunotherapy in the treatment of HNSCC has resulted in some improvements in outlook for patients and is now standard of care for populations with both recurrent and metastatic disease. However, despite the early successes, responses to immune checkpoint inhibition (ICI) remain modest to low, approaching 14%-22% objective response rates. Challenges to the effectiveness of ICI and other immunotherapies are complex, including the diverse and dynamic molecular plasticity and heterogeneity of HNSCCs; lack of immunogenic antigens; accumulated suppressive immune populations such as myeloid cells and dysfunctional T cells; nutrient depletion; and metabolic dysregulation in the HNSCC tumor microenvironment. In this Review, we explore the mechanisms responsible for immunotherapy resistance, dissect these challenges, and discuss potential opportunities for overcoming hurdles to the development of successful immunotherapy for HNSCC.
Collapse
Affiliation(s)
- Xia Liu
- Department of Otolaryngology–Head and Neck Surgery
- Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center and
| | - R. Alex Harbison
- Department of Otolaryngology–Head and Neck Surgery
- Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center and
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark A. Varvares
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Sidharth V. Puram
- Department of Otolaryngology–Head and Neck Surgery
- Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center and
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Guangyong Peng
- Department of Otolaryngology–Head and Neck Surgery
- Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center and
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Sousa HSV, Horita VN, Novaes DML, Perin MY, Teixeira DNA, Gruenwaldt J, Pereira EB, Chone CT, Lourenço GJ, Macedo LT, Lima CSP. Definitive treatment in squamous cell carcinoma of head and neck: A retrospective analysis of chemoradiotherapy in a university hospital setting. Braz J Otorhinolaryngol 2025; 91:101576. [PMID: 40179598 PMCID: PMC11999330 DOI: 10.1016/j.bjorl.2025.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 04/05/2025] Open
Abstract
OBJECTIVE To evaluate toxicities, tumor control, Event-Free Survival (EFS) and Overall Survival (OS) of patients with locoregionally advanced Head and Neck Squamous Cell Carcinoma (HNSCC) treated with definitive platinum-based Chemoradiation (CTRT). METHODS A total of 233 patients underwent treatment with RT plus weekly or every three weeks Cisplatin (CDDP) or Carboplatin (Carbo). Toxicity and response to treatment were classified using conventional criteria. Kaplan-Meier, log-rank test, and Cox regression (univariate and multivariate) were used to assess patient survival. RESULTS Half of patients presented toxicities grade 3 or 4, with nausea/vomiting and nephrotoxicity being more common in RT and CDDP group and anemia and neutropenia in RT and Carbo group. Complete or partial response was observed in 75% of patients, and the distinct protocols did not alter the treatment response. Two-year EFS and OS probabilities were 43.3% and 66.0%, respectively. Active smoking, an ECOG score of 2 or higher, stage IV tumor, and treatment with RT and Carbo were independent prognostic factors for poorer outcomes. Patients of these groups had approximately double chance of relapse and progression to death compared to others. CONCLUSION Our data indicate definitive treatment with RT and CDDP as the best treatment for locoregionally advanced HNSCC treated in Brazilian public hospitals. However, prospective randomized studies are required to establish the ideal treatment for those patients. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Hádila Silva Veras Sousa
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Anestesiologia, Oncologia e Radiologia, Serviço de Oncologia Clínica, Campinas, SP, Brazil
| | - Vivian Naomi Horita
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Anestesiologia, Oncologia e Radiologia, Serviço de Oncologia Clínica, Campinas, SP, Brazil
| | - Davi Magalhães Leite Novaes
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Anestesiologia, Oncologia e Radiologia, Serviço de Oncologia Clínica, Campinas, SP, Brazil
| | - Matheus Yung Perin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Anestesiologia, Oncologia e Radiologia, Serviço de Oncologia Clínica, Campinas, SP, Brazil
| | - Daniel Naves Araújo Teixeira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Oftalmologia e Otorrinolaringologia, Campinas, SP, Brazil
| | - Joyce Gruenwaldt
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Anestesiologia, Oncologia e Radiologia, Serviço de Radioterapia, Campinas, SP, Brazil
| | - Eduardo Baldon Pereira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Anestesiologia, Oncologia e Radiologia, Serviço de Radioterapia, Campinas, SP, Brazil
| | - Carlos Takahiro Chone
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Oftalmologia e Otorrinolaringologia, Campinas, SP, Brazil
| | - Gustavo Jacob Lourenço
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Laboratório de Genética do Câncer, Campinas, SP, Brazil
| | - Ligia Traldi Macedo
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Anestesiologia, Oncologia e Radiologia, Serviço de Oncologia Clínica, Campinas, SP, Brazil
| | - Carmen Silvia Passos Lima
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Departamento de Anestesiologia, Oncologia e Radiologia, Serviço de Oncologia Clínica, Campinas, SP, Brazil; Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Laboratório de Genética do Câncer, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Stanton SE, Anderson KG, Bruno TC, Capitini CM, Disis ML, McQuade J, Radvanyi L, Vanpouille-Box C, Wargo J, Baines KJ, Hong MMY, Rajeh A, Kim RH, Awadalla P, Hughes LK, Maleki Vareki S. SITC strategic vision: prevention, premalignant immunity, host and environmental factors. J Immunother Cancer 2025; 13:e010419. [PMID: 40154956 PMCID: PMC11956356 DOI: 10.1136/jitc-2024-010419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Cancer immunotherapy has improved the survival of a subset of patients by harnessing the power of the immune system to find and destroy malignant cells. The immune system also protects the host by destroying developing premalignant and malignant tumors. Advancing our knowledge of premalignant immunity and immune changes seen in lesions that develop into invasive cancer versus those that regress offers an exciting opportunity to leverage the immune system for immune prevention and immune interception of premalignancy. Understanding the immune environment of premalignant lesions and how chronic inflammation plays a central role in the evolution of premalignancy is essential for developing effective immunoprevention and immune interceptions. Factors such as host genomics and environmental factors that affect premalignant immunity and the outcome of advanced cancers are equally important in determining the response to immunotherapy. The broad use of antibiotics and factors such as obesity can disrupt a healthy gut microbiome and drive chronic inflammation that suppresses preventive immunity or the antitumor immune response required for successful immunotherapy in advanced cancers. Modifiable lifestyle factors such as diet, obesity, smoking, and stress should be considered in designing immune prevention and interception studies, as well as for patients who receive immunotherapy for advanced cancer treatment. Other factors, such as the overall immune health of patients and existing comorbidities, affect both premalignant immunity and response to immunotherapy and, therefore, should be considered in managing patients with or without cancer. The Society for Immunotherapy of Cancer previously developed an overarching manuscript regarding the challenges and opportunities that exist in cancer immunotherapy, and this manuscript serves as an in-depth follow-up regarding the topics of premalignant immunity, immune interception, and immunoprevention, and the impact of the host on responding to immunotherapy.
Collapse
Affiliation(s)
- Sasha E Stanton
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Department of Obstetrics and Gynecology, Beirne B. Carter Center for Immunology Research and the University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, UK
| | - Tullia C Bruno
- Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian M Capitini
- Department of Pediatrics and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laszlo Radvanyi
- Ontario Institute for Cancer Research and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, New York, New York, USA
| | - Jennifer Wargo
- Departments of Surgical Oncology and Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly J Baines
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Megan M Y Hong
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Adnan Rajeh
- Department of Oncology, Western University, London, Ontario, Canada
| | - Raymond H Kim
- Ontario Institute for Cancer Research and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Familial Cancer Clinic, Princess Margaret Hospital Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Phillip Awadalla
- Ontario Institute for Cancer Research and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren K Hughes
- Ontario Institute for Cancer Research and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
6
|
Di Federico A, Hong L, Elkrief A, Thummalapalli R, Cooper AJ, Ricciuti B, Digumarthy S, Alessi JV, Gogia P, Pecci F, Makarem M, Gandhi MM, Garbo E, Saini A, De Giglio A, Favorito V, Scalera S, Cipriani L, Marinelli D, Haradon D, Nguyen T, Haradon J, Voligny E, Vaz V, Gelsomino F, Sperandi F, Melotti B, Ladanyi M, Zhang J, Gibbons DL, Heymach JV, Nishino M, Lindsay J, Rodig SJ, Pfaff K, Sholl LM, Wang X, Johnson BE, Jänne PA, Rekhtman N, Maugeri-Saccà M, Heist RS, Ardizzoni A, Awad MM, Arbour KC, Schoenfeld AJ, Vokes NI, Luo J. Lung adenocarcinomas with mucinous histology: clinical, genomic, and immune microenvironment characterization and outcomes to immunotherapy-based treatments and KRAS G12C inhibitors. Ann Oncol 2025; 36:297-308. [PMID: 39637943 PMCID: PMC11845285 DOI: 10.1016/j.annonc.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Approximately 10% of lung adenocarcinomas (LUADs) have mucinous histology (LUADMuc), which is associated with a light/absent smoking history and a high prevalence of KRAS mutations. We sought to characterize LUADMuc by comparing it with LUAD without mucinous histology (LUADnon-muc) and determine the relative benefit of current treatments. PATIENTS AND METHODS Patients with LUAD from five institutions and The Cancer Genome Atlas Pan-Cancer Atlas classified as LUADMuc or LUADnon-muc were included. Clinicopathologic, genomic, immunophenotypic, transcriptional features, and treatment outcomes were compared between LUADMuc and LUADnon-muc. RESULTS Of 4082 patients with LUAD, 9.9% had LUADMuc. Compared with LUADnon-muc, patients with LUADMuc had a lighter smoking history (median 15 versus 20 pack-years; P = 0.008), lower programmed death-ligand 1 (PD-L1) tumor proportion score (median 0% versus 5%, P < 0.0001), and lower tumor mutation burden (median 6.8 versus 8.5 mutations/megabase, P < 0.0001). Mutations in KRAS, NKX2-1 [thyroid transcription factor 1 (TTF-1)], STK11, SMARCA4, GNAS, and ALK rearrangements were enriched in LUADMuc, while TP53, EGFR, BRAF, and MET mutations were enriched in LUADnon-muc. At stage IV diagnosis, LUADMuc was more likely to have contralateral lung metastasis (55.2% versus 36.9%, P < 0.0001) and less likely to have brain metastases (23.3% versus 41.9%, P < 0.0001). Compared with LUADnon-muc, LUADMuc cases showed lower intratumor CD8+, PD-1+, CD8+PD-1+, and FOXP3+ cells. Among metastatic cases receiving immune checkpoint inhibitors, compared with LUADnon-muc (n = 1511), LUADMuc (n = 112) had a lower objective response rate (ORR 8.4% versus 25.9%, P < 0.0001), and shorter median progression-free survival (mPFS 2.6 versus 3.9 months, P < 0.0001) and overall survival (mOS 9.9 versus 17.2 months, P < 0.0001). Similarly, patients with LUADMuc had worse outcomes to chemoimmunotherapy. LUADMuc (n = 18) and LUADnon-muc (n = 150) had similar ORR (16.7% versus 34.9%, P = 0.12) and mPFS (4.6 versus 5.6 months, P = 0.17) to treatment with KRASG12C inhibitors, but LUADMuc had shorter mOS (6.8 versus 10.8 months, P = 0.018). CONCLUSIONS LUADMuc represents a distinct LUAD subpopulation with unique clinicopathologic, genomic, immunophenotypic, and transcriptional features, achieving worse outcomes to standard immunotherapy-based treatments.
Collapse
Affiliation(s)
- A Di Federico
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - L Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - A Elkrief
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - R Thummalapalli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - A J Cooper
- Massachusetts General Hospital, Boston, USA
| | - B Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | | | - J V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - P Gogia
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - F Pecci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - M Makarem
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - M M Gandhi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - E Garbo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - A Saini
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - A De Giglio
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna
| | - V Favorito
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna
| | - S Scalera
- Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, Rome
| | - L Cipriani
- Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, Rome
| | - D Marinelli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - D Haradon
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - T Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - J Haradon
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - E Voligny
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - V Vaz
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston
| | - F Gelsomino
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna
| | - F Sperandi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna
| | - B Melotti
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna
| | - M Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - J Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - D L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - J V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - M Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston; Department of Imaging, Dana-Farber Cancer Institute, Boston
| | - J Lindsay
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston
| | - S J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston
| | - K Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston
| | - L M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston
| | - X Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston
| | - B E Johnson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - P A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - N Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - M Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, Rome
| | - R S Heist
- Massachusetts General Hospital, Boston, USA
| | - A Ardizzoni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna
| | - M M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - K C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - A J Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - N I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - J Luo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
7
|
Fiedler M, Off A, Gärtner A, Brockhoff G, Eichberger J, Gottsauner M, Schuderer JG, Maurer M, Bauer RJ, Gerken M, Reichert TE, Ettl T, Weber F. Increased PD-1/PD-L1 Immune Checkpoint Expression Is Associated With Oral Squamous Cell Carcinoma in Never-Smokers and Never-Drinkers. Head Neck 2025; 47:822-831. [PMID: 39462876 PMCID: PMC11816555 DOI: 10.1002/hed.27981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND This study aimed to explore the disparities in PD-1 and PD-L1 expression among oral squamous cell carcinomas (OSCCs) in individuals categorized as never-smokers/never-drinkers versus smokers/drinkers. METHODS Immunohistochemical staining for PD-1 and PD-L1, along with PDCD1LG2/cen9 dual color probe analysis, was conducted on 130 OSCC specimens from both smoker/drinker and never-smoker/never-drinker cohorts. Associations between smoking/drinking status, clinicopathologic data, immunohistochemical antibody expression, fluorescence in situ hybridization, and survival outcomes were assessed. RESULTS OSCC in never-smokers/never-drinkers exhibited significantly elevated PD-1 expression (p = 0.003), increased PD-L1-TPS expression (p = 0.044), and elevated PD-L1-CPS expression (p < 0.001). High PD-L1-ICS expression was more prevalent in never-smokers (p = 0.042). Moreover, never-smokers and never-drinkers demonstrated augmented PD-L1 gene copy numbers (p = 0.081 and p = 0.054, respectively). Increased PD-L1 gene copy number, particularly amplification, correlated with PD-L1-TPS (p = 0.039 and p < 0.001). Conversely, PD-L1 gene copy loss was associated with negative PD-L1-CPS (p = 0.023). Notably, positive PD-L1-CPS was significantly linked with improved overall survival (p = 0.023). CONCLUSIONS OSCC arising in never-smokers/never-drinkers exhibit heightened PD-1/PD-L1 signaling, suggesting potential efficacy of immune checkpoint therapy in this subgroup of tumors.
Collapse
Affiliation(s)
- Mathias Fiedler
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Alisa Off
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Institute of PathologyUniversity of RegensburgRegensburgGermany
| | - Andreas Gärtner
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Gero Brockhoff
- Clinic of Gynecology and Obstetrics, Caritas Hospital St. JosefUniversity of RegensburgRegensburgGermany
| | - Jonas Eichberger
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Maximilian Gottsauner
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Johannes G. Schuderer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Michael Maurer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
| | - Michael Gerken
- Center of Tumor RegistryUniversity of RegensburgRegensburgGermany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Florian Weber
- Institute of PathologyUniversity of RegensburgRegensburgGermany
| |
Collapse
|
8
|
Alsavaf MB, Issa M, Klamer BG, Husain M, Dibs K, Pan X, Grecula JC, Old MO, Konieczkowski D, Mitchell DL, Baliga S, Carrau RL, Rocco JW, Bonomi M, Blakaj DM, Bhateja P. Impact of Tobacco, Marijuana, and Alcohol Use on Overall Survival in Recurrent Metastatic Head and Neck Cancer Patients Treated With Immune Checkpoint Inhibitors. Asia Pac J Clin Oncol 2024. [PMID: 39704258 DOI: 10.1111/ajco.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/02/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
AIM The response rates to immune checkpoint inhibitors (ICI) remain low (13%-20%) in metastatic head and neck cancer patients, indicating an urgent need to better understand factors predictive of response to these agents. This study explored the impact of smoking status, marijuana use, and alcohol consumption on treatment outcomes in recurrent-metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) patients treated with ICI. METHODS A retrospective analysis was performed on 201 R/M HNSCC patients treated with ICI between January 15th 2016 and April 9th 2020 at a single institution. RESULTS Gender: 154 male (77%), 47 female (23%). Median age 61 (IQR: 55-68). ICI drug: pembrolizumab 100 (50%), nivolumab 91 (45%), nivolumab + ipilimumab 10 (5%). Line of therapy: first: 98 (49%), second and beyond: 103 (51%). Tumor site: oropharynx 84 (42%), oral cavity 45 (22%), larynx 26 (13%), other sites 46 (23%). p16 tumor status: negative 132 (66%), positive 69 (34%). Smoking status: former 111 (55%), never 54 (27%), current 36 (18%), median pack-year 18 (IQR: 0-37). Alcohol use: yes 110 (55%), no 91 (54%). Marijuana use: yes 47 (23%), no 154 (77%). Overall response rate: 36 (18%). Median OS: 12 months (95% CI: 9.4-14.8). Tobacco: former (HR: 0.75, 95% CI: 0.50, 1.11), current (HR: 0.58, 95% CI: 0.33, 1.02). Marijuana: yes (HR: 0.93, 95% CI: 0.58, 1.49). Alcohol: yes (HR: 1.04, 95% CI: 0.72, 1.49). CONCLUSION In our cohort, smoking status, marijuana use, and alcohol consumption did not have a statistically significant impact on OS in patients with R/M HNSCC treated with ICI.
Collapse
Affiliation(s)
- Mohammad Bilal Alsavaf
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Majd Issa
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Brett G Klamer
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Marium Husain
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Khaled Dibs
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xueliang Pan
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - John C Grecula
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Matthew O Old
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - David Konieczkowski
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Darrion L Mitchell
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sujith Baliga
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ricardo L Carrau
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James W Rocco
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Marcelo Bonomi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Priyanka Bhateja
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
9
|
Saad E, Gebrael G, Semaan K, Eid M, Saliby RM, Labaki C, Sayegh N, Wells JC, Takemura K, Ernst MS, Lemelin A, Basappa NS, Wood LA, Powles T, Ernst DS, Lalani AKA, Agarwal N, Xie W, Heng DYC, Choueiri TK. Impact of smoking status on clinical outcomes in patients with metastatic renal cell carcinoma treated with first-line immune checkpoint inhibitor-based regimens. Oncologist 2024; 29:699-706. [PMID: 38630540 PMCID: PMC11299933 DOI: 10.1093/oncolo/oyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Current tobacco smoking is independently associated with decreased overall survival (OS) among patients with metastatic renal cell carcinoma (mRCC) treated with targeted monotherapy (VEGF-TKI). Herein, we assess the influence of smoking status on the outcomes of patients with mRCC treated with the current first-line standard of care of immune checkpoint inhibitor (ICI)-based regimens. MATERIALS AND METHODS Real-world data from the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) were collected retrospectively. Patients with mRCC who received either dual ICI therapy or ICI with VEGF-TKI in the first-line setting were included and were categorized as current, former, or nonsmokers. The primary outcomes were OS, time to treatment failure (TTF), and objective response rate (ORR). OS and TTF were compared between groups using the log-rank test and multivariable Cox regression models. ORR was assessed between the 3 groups using a multivariable logistic regression model. RESULTS A total of 989 eligible patients were included in the analysis, with 438 (44.3%) nonsmokers, 415 (42%) former, and 136 (13.7%) current smokers. Former smokers were older and included more males, while other baseline characteristics were comparable between groups. Median follow-up for OS was 21.2 months. In the univariate analysis, a significant difference between groups was observed for OS (P = .027) but not for TTF (P = .9), with current smokers having the worse 2-year OS rate (62.8% vs 70.8% and 73.1% in never and former smokers, respectively). After adjusting for potential confounders, no significant differences in OS or TTF were observed among the 3 groups. However, former smokers demonstrated a higher ORR compared to never smokers (OR 1.45, P = .02). CONCLUSION Smoking status does not appear to independently influence the clinical outcomes to first-line ICI-based regimens in patients with mRCC. Nonetheless, patient counseling on tobacco cessation remains a crucial aspect of managing patients with mRCC, as it significantly reduces all-cause mortality.
Collapse
Affiliation(s)
- Eddy Saad
- Dana-Farber Cancer Institute, Boston, MA, United States
| | - Georges Gebrael
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Karl Semaan
- Dana-Farber Cancer Institute, Boston, MA, United States
| | - Marc Eid
- Dana-Farber Cancer Institute, Boston, MA, United States
| | | | - Chris Labaki
- Dana-Farber Cancer Institute, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Nicolas Sayegh
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | - Kosuke Takemura
- Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | - Naveen S Basappa
- Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Lori A Wood
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Thomas Powles
- Experimental Cancer Medicine Centre, Barts Cancer Institute, St. Bartholomew’s Hospital, Queen Mary University of London, London, United Kingdom
| | - D Scott Ernst
- Department of Oncology, Western University, London, ON, Canada
| | | | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Wanling Xie
- Dana-Farber Cancer Institute, Boston, MA, United States
| | - Daniel Y C Heng
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
10
|
Annareddy S, Ghewade B, Jadhav U, Wagh P, Sarkar S. Unveiling the Long-Term Lung Consequences of Smoking and Tobacco Consumption: A Narrative Review. Cureus 2024; 16:e66415. [PMID: 39246889 PMCID: PMC11380067 DOI: 10.7759/cureus.66415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Smoking and tobacco use present significant public health challenges due to their association with high morbidity and mortality rates worldwide. Despite reductions in smoking rates in many developed countries, global tobacco consumption remains high, especially in developing regions. This review examines the chronic effects of smoking on the respiratory system, detailing the pathological changes in the lungs and the resultant respiratory illnesses such as chronic obstructive pulmonary disease and lung cancer. Additionally, the review explores the impact of smoking on other body systems, including cardiovascular, immune, gastrointestinal, nervous, and reproductive systems. The extensive health implications of smoking emphasize the need for comprehensive public health interventions to reduce tobacco use and mitigate its adverse effects on health.
Collapse
Affiliation(s)
- Srinivasulareddy Annareddy
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Babaji Ghewade
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ulhas Jadhav
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pankaj Wagh
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Souvik Sarkar
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Chen X, Li R, Yin YH, Liu X, Zhou XJ, Qu YQ. Pan-cancer prognosis, immune infiltration, and drug resistance characterization of lung squamous cell carcinoma tumor microenvironment-related genes. Biochem Biophys Rep 2024; 38:101722. [PMID: 38711549 PMCID: PMC11070325 DOI: 10.1016/j.bbrep.2024.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Background The tumor microenvironment (TME) plays an important role in cancer development; however, its implications in lung squamous cell carcinoma (LUSC) and pan-cancer have been poorly understood. Methods In this study, The Cancer Genome Atlas (TCGA) and Estimation of Stromal and Immune cells in Malignant Tumor tissue using Expression Data (ESTIMATE) datasets were applied to identify differentially expressed genes. Additionally, online public databases were utilized for in-depth bioinformatics analysis of pan-cancer datasets to investigate the prognostic implications of TME-related genes further. Results Our study demonstrated a significant association between stromal scores, immune scores, and specific clinical characteristics in LUSC patients. C3AR1, CSF1R, CCL2, CCR1, and CD14 were identified as prognostic genes related to the TME. All TME-related prognostic genes demonstrated varying degrees of correlation with immune infiltration subtypes and tumor cell stemness. Moreover, our study revealed that TME-related prognostic genes, particularly C3AR1 and CCR1, might contribute to drug resistance in cancer cells. Conclusions The identified TME-related prognostic genes, particularly C3AR1 and CCR1, have potential implications for understanding and targeting drug resistance mechanisms in cancer cells.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Respiratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yun-Hong Yin
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
He Q, Qu M, Xu C, Wu L, Xu Y, Su J, Bao H, Shen T, He Y, Cai J, Xu D, Zeng LH, Wu X. Smoking-induced CCNA2 expression promotes lung adenocarcinoma tumorigenesis by boosting AT2/AT2-like cell differentiation. Cancer Lett 2024; 592:216922. [PMID: 38704137 DOI: 10.1016/j.canlet.2024.216922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Lung adenocarcinoma (LUAD), a type of non-small cell lung cancer (NSCLC), originates from not only bronchial epithelial cells but also alveolar type 2 (AT2) cells, which could differentiate into AT2-like cells. AT2-like cells function as cancer stem cells (CSCs) of LUAD tumorigenesis to give rise to adenocarcinoma. However, the mechanism underlying AT2 cell differentiation into AT2-like cells in LUAD remains unknown. We analyze genes differentially expressed and genes with significantly different survival curves in LUAD, and the combination of these two analyses yields 147 differential genes, in which 14 differentially expressed genes were enriched in cell cycle pathway. We next analyze the protein levels of these genes in LUAD and find that Cyclin-A2 (CCNA2) is closely associated with LUAD tumorigenesis. Unexpectedly, high CCNA2 expression in LUAD is restrictedly associated with smoking and independent of other driver mutations. Single-cell sequencing analyses reveal that CCNA2 is predominantly involved in AT2-like cell differentiation, while inhibition of CCNA2 significantly reverses smoking-induced AT2-like cell differentiation. Mechanistically, CCNA2 binding to CDK2 phosphorylates the AXIN1 complex, which in turn induces ubiquitination-dependent degradation of β-catenin and inhibits the WNT signaling pathway, thereby failing AT2 cell maintenance. These results uncover smoking-induced CCNA2 overexpression and subsequent WNT/β-catenin signaling inactivation as a hitherto uncharacterized mechanism controlling AT2 cell differentiation and LUAD tumorigenesis.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Lichao Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yangxun He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Da Xu
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
13
|
Jiang Y, Li H. The effect of smoking on tumor immunoediting: Friend or foe? Tob Induc Dis 2024; 22:TID-22-108. [PMID: 38887597 PMCID: PMC11181014 DOI: 10.18332/tid/189302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
The recognition of smoking as an independent risk factor for lung cancer has become a widely accepted within the realm of respiratory medicine. The emergence of tumor immunotherapy has notably enhanced the prognosis for numerous late-stage cancer patients. Nevertheless, some studies have noted a tendency for lung cancer patients who smoke to derive greater benefit from immunotherapy. This observation has sparked increased interest in the interaction between smoking and the immune response to tumors in lung cancer. The concept of cancer immunoediting has shed light on the intricate and nuanced relationship between the immune system and tumors. Starting from the perspectives of immune surveillance, immune equilibrium, and immune evasion, this narrative review explores how smoking undermines the immune response against tumor cells and induces the generation of tumor neoantigens, and examines other behaviors that trigger tumor immune evasion. By elucidating these aspects, the review concludes that smoking is not conducive to tumor immunoediting.
Collapse
Affiliation(s)
- Yixia Jiang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Perevalova AM, Kononchuk VV, Kalinina TS, Kozlov VV, Gulyaeva LF, Pustylnyak VO. Smoking-Mediated miR-301a/IRF1 Axis Controlling Immunotherapy Response in Lung Squamous Cell Carcinoma Revealed by Bioinformatic Analysis. Cancers (Basel) 2024; 16:2208. [PMID: 38927914 PMCID: PMC11202148 DOI: 10.3390/cancers16122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Smoking is an established risk factor for a variety of malignant tumors, the most well-known of which is lung cancer. Various molecular interactions are known to link tobacco smoke exposure to lung cancer, but new data are still emerging on the effects of smoking on lung cancer development, progression, and tumor response to therapy. In this study, we reveal in further detail the previously established association between smoking and hsa-mir-301a activity in lung squamous cell carcinoma, LUSC. Using different bioinformatic tools, we identified IRF1 as a key smoking-regulated target of hsa-mir-301a in LUSC. We further confirmed this relationship experimentally using clinical LUSC tissue samples and intact lung tissue samples. Thus, increased hsa-mir-301a levels, decreased IRF1 mRNA levels, and their negative correlation were shown in LUSC tumor samples. Additional bioinformatic investigation for potential pathways impacted by such a mechanism demonstrated IRF1's multifaceted role in controlling the antitumor immune response in LUSC. IRF1 was then shown to affect tumor immune infiltration, the expression of immune checkpoint molecules, and the efficacy of immune checkpoint blockade therapy. As a result, here we suggest a smoking-regulated mir301a/IRF1 molecular axis that could modulate the antitumor immune response and immunotherapy efficacy in LUSC, opening up novel opportunities for future research.
Collapse
Affiliation(s)
- Alina M. Perevalova
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, 630090 Novosibirsk, Russia; (A.M.P.); (L.F.G.)
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| | - Vladislav V. Kononchuk
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| | - Tatiana S. Kalinina
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| | - Vadim V. Kozlov
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
- Novosibirsk Regional Oncology Center, 630108 Novosibirsk, Russia
| | - Lyudmila F. Gulyaeva
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, 630090 Novosibirsk, Russia; (A.M.P.); (L.F.G.)
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| | - Vladimir O. Pustylnyak
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, 630090 Novosibirsk, Russia; (A.M.P.); (L.F.G.)
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| |
Collapse
|
15
|
Theofilou VI, Ghita I, Elnaggar M, Chaisuparat R, Papadimitriou JC, Bentzen SM, Dyalram D, Lubek JE, Ord RA, Younis RH. Histological pattern of tumor inflammation and stromal density correlate with patient demographics and immuno-oncologic transcriptional profile in oral squamous cell carcinoma. FRONTIERS IN ORAL HEALTH 2024; 5:1408072. [PMID: 38903181 PMCID: PMC11187265 DOI: 10.3389/froh.2024.1408072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Oral squamous cell carcinoma (OSCC) is the most prevalent oral malignancy, with emerging interest in the characterization of its tumor microenvironment. Herein, we present a comprehensive histological analysis of OSCC stromal density and inflammation and their relationship with patient demographics, clinicopathologic features and immuno-oncologic signatures. Materials-methods Eighty-seven completely excised OSCC tissues were prospectively collected and scored for histopathologic inflammatory subtypes [HIS]-inflamed (INF), immune-excluded (IE) and immune-desert (ID), peritumoral stromal inflammation (PTSI), and peritumoral stromal fibrosis (PTSF). Scoring of inflammation was complemented by Semaphorin 4D immunohistochemistry. NanoString differential gene expression (DGE) analysis was conducted for eight OSCC cases representative of the inflammatory and stromal subtypes and the demographic groups. Results PTSF correlated with male gender (p = 0.0043), smoking (p = 0.0455), alcohol consumption (p = 0.0044), increased tumor size (p = 0.0054), and advanced stage (p = 0.002). On the contrary, PTSI occurred predominantly in females (p = 0.0105), non-drinkers (p = 0.0329), and small tumors (p = 0.0044). Transcriptionally, decreased cytokine signaling, and oncogenic pathway activation were observed in HIS-IE. Smokers and males displayed decreased global immune-cell levels and myeloid-cell predominance. Conclusion Our work describes OSCC stromal and inflammatory phenotypes in correlation with distinct patient groups and DGE, highlighting the translational potential of characterizing the tumor microenvironment for optimal patient stratification.
Collapse
Affiliation(s)
- Vasileios Ionas Theofilou
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ioana Ghita
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Manar Elnaggar
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Risa Chaisuparat
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - John C. Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Soren M. Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Biostatistics Core, Institute of Clinical and Translational Research, University of Maryland, Baltimore, MD, United States
- Biostatistics Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center,Baltimore, MD, United States
| | - Donita Dyalram
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Joshua E. Lubek
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Robert A. Ord
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rania H. Younis
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Li H, Xu Y, Guo Q, Zhang T, Zhou S, Wang Q, Tian Y, Cheng Y, Guo C. Causality Assessment Between Idiopathic Inflammatory Myopathies and Lung Cancer: A Bidirectional 2-Sample Mendelian Randomization. J Clin Rheumatol 2024; 30:138-144. [PMID: 38351510 PMCID: PMC11913233 DOI: 10.1097/rhu.0000000000002075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
BACKGROUND Although observational studies have revealed associations between idiopathic inflammatory myopathies (IIMs) and lung cancer (LC), they have not established a causal relationship between these 2 conditions. METHODS We used a 2-sample Mendelian randomization approach to examine the bidirectional causal associations between IIMs and LC, using single-nucleotide polymorphisms selected from high-quality genome-wide association studies in the FinnGen database. Sensitivity analyses were conducted to assess potential heterogeneity and pleiotropy impacts on the Mendelian randomization results. RESULTS Our analysis demonstrated a positive causal effect of genetically increased IIM risk on LC (odds ratio, 1.114; 95% confidence interval, 1.057-1.173; p = 5.63 × 10 -5 ), particularly on the lung squamous cell carcinoma subtype (odds ratio, 1.168, 95% confidence interval, 1.049-1.300, p = 0.00451), but not on lung adenocarcinoma or small cell lung cancer. No causal effect of LC on IIMs was identified. Sensitivity analyses indicated that horizontal pleiotropy was unlikely to influence causality, and leave-one-out analysis confirmed that the observed associations were not driven by a single-nucleotide polymorphism. CONCLUSION Our findings offer compelling evidence of a positive causal relationship between IIMs and LC, particularly with regard to lung squamous cell carcinoma, in the European population. Conversely, there is no evidence of LC causing IIMs. We recommend that LC diagnosis consider the specific characteristics of IIMs.
Collapse
Affiliation(s)
| | | | - Qin Guo
- Department of Rheumatology and Immunology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen
| | - Tiantian Zhang
- Department of Rheumatology and Immunology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen
| | - Shufen Zhou
- Department of Rheumatology and Immunology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen
| | - Qianqian Wang
- Department of Rheumatology and Immunology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen
| | - Ye Tian
- Department of Rheumatology and Immunology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chengshan Guo
- Department of Rheumatology and Immunology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen
| |
Collapse
|
17
|
Krishna C, Tervi A, Saffern M, Wilson EA, Yoo SK, Mars N, Roudko V, Cho BA, Jones SE, Vaninov N, Selvan ME, Gümüş ZH, FinnGen, Lenz TL, Merad M, Boffetta P, Martínez-Jiménez F, Ollila HM, Samstein RM, Chowell D. An immunogenetic basis for lung cancer risk. Science 2024; 383:eadi3808. [PMID: 38386728 PMCID: PMC11998992 DOI: 10.1126/science.adi3808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Cancer risk is influenced by inherited mutations, DNA replication errors, and environmental factors. However, the influence of genetic variation in immunosurveillance on cancer risk is not well understood. Leveraging population-level data from the UK Biobank and FinnGen, we show that heterozygosity at the human leukocyte antigen (HLA)-II loci is associated with reduced lung cancer risk in smokers. Fine-mapping implicated amino acid heterozygosity in the HLA-II peptide binding groove in reduced lung cancer risk, and single-cell analyses showed that smoking drives enrichment of proinflammatory lung macrophages and HLA-II+ epithelial cells. In lung cancer, widespread loss of HLA-II heterozygosity (LOH) favored loss of alleles with larger neopeptide repertoires. Thus, our findings nominate genetic variation in immunosurveillance as a critical risk factor for lung cancer.
Collapse
Affiliation(s)
- Chirag Krishna
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Anniina Tervi
- Institute for Molecular Medicine (FIMM), HiLIFE, University of Helsinki; Helsinki, Finland
| | - Miriam Saffern
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Eric A. Wilson
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Seong-Keun Yoo
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Nina Mars
- Institute for Molecular Medicine (FIMM), HiLIFE, University of Helsinki; Helsinki, Finland
| | - Vladimir Roudko
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Byuri Angela Cho
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Samuel Edward Jones
- Institute for Molecular Medicine (FIMM), HiLIFE, University of Helsinki; Helsinki, Finland
| | - Natalie Vaninov
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | | | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, Universität Hamburg; 20146 Hamburg, Germany
| | - Miriam Merad
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna; 40138 Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University; New York, NY 11794, USA
| | - Francisco Martínez-Jiménez
- Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Hanna M. Ollila
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Institute for Molecular Medicine (FIMM), HiLIFE, University of Helsinki; Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School; Boston, MA 02114, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert M. Samstein
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Diego Chowell
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
18
|
Rochefort J, Radoi L, Campana F, Fricain JC, Lescaille G. [Oral cavity cancer: A distinct entity]. Med Sci (Paris) 2024; 40:57-63. [PMID: 38299904 DOI: 10.1051/medsci/2023196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Oral Squamous cell carcinoma represent the 17th most frequent cancer in the world. The main risk factors are alcohol and tobacco consumption but dietary, familial, genetic, or oral diseases may be involved in oral carcinogenesis. Diagnosis is made on biopsy, but detection remains late, leading to a poor prognosis. New technologies could reduce these delays, notably Artificial Intelligence and the quantitative evaluation of salivary biological markers. Currently, management of oral cancer consists in surgery, which can be mutilating despite possible reconstructions. In the future, immunotherapies could become a therapeutic alternative and the immune microenvironment could constitute a source of prognostic markers.
Collapse
Affiliation(s)
- Juliette Rochefort
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Service de médecine bucco-dentaire, Paris, France - Faculté d'odontologie, université Paris Cité, Paris, France - Sorbonne université, Inserm U.1135, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, Paris, France
| | - Lorédana Radoi
- Faculté d'odontologie, université Paris Cité, Paris, France - Centre de recherche en épidémiologie et santé des populations, Inserm U1018, université Paris Saclay
| | - Fabrice Campana
- Aix Marseille Univ, Assistance Publique-Hôpitaux de Marseille (AP-HM), Timone Hospital, Oral Surgery Department, Marseille, France
| | - Jean-Christophe Fricain
- CHU Bordeaux, Dentistry and Oral Health Department, F-33404 Bordeaux, France - Inserm U1026, université de Bordeaux, Tissue Bioengineering (BioTis), F-33076 Bordeaux, France
| | - Géraldine Lescaille
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Service de médecine bucco-dentaire, Paris, France - Faculté d'odontologie, université Paris Cité, Paris, France - Sorbonne université, Inserm U.1135, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, Paris, France
| |
Collapse
|
19
|
Xie M, Chaudhary R, Slebos RJ, Lee K, Song F, Poole MI, Hoening DS, Noel LC, Hernandez-Prera JC, Conejo-Garcia JR, Chung CH, Tan AC. Immune landscape in molecular subtypes of human papillomavirus-negative head and neck cancer. Mol Carcinog 2024; 63:120-135. [PMID: 37750589 PMCID: PMC10841270 DOI: 10.1002/mc.23640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) remain a poorly understood disease clinically and immunologically. HPV is a known risk factor of HNSCC associated with better outcome, whereas HPV-negative HNSCC are more heterogeneous in outcome. Gene expression signatures have been developed to classify HNSCC into four molecular subtypes (classical, basal, mesenchymal, and atypical). However, the molecular underpinnings of treatment response and the immune landscape for these molecular subtypes are largely unknown. Herein, we described a comprehensive immune landscape analysis in three independent HNSCC cohorts (>700 patients) using transcriptomics data. We assigned the HPV- HNSCC patients into these four molecular subtypes and characterized the tumor microenvironment using deconvolution method. We determined that atypical and mesenchymal subtypes have greater immune enrichment and exhibit a T-cell exhaustion phenotype, compared to classical and basal subtypes. Further analyses revealed different B cell maturation and antibody isotypes enrichment patterns, and distinct immune microenvironment crosstalk in the atypical and mesenchymal subtypes. Taken together, our study suggests that treatments that enhances B cell activity may benefit patients with HNSCC of the atypical subtypes. The rationale can be utilized in the design of future precision immunotherapy trials based on the molecular subtypes of HPV- HNSCC.
Collapse
Affiliation(s)
- Mengyu Xie
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Robbert J.C. Slebos
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kyubum Lee
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Feifei Song
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Maria I. Poole
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Dirk S. Hoening
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Leenil C. Noel
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Juan C. Hernandez-Prera
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Huntsman Cancer Institute, Department of Oncological Sciences and Biomedical Informatics, University of Utah, Salt Lake City, UT, 84112 USA
| |
Collapse
|
20
|
Torres-Martínez S, Calabuig-Fariñas S, Gallach S, Mosqueda M, Munera-Maravilla E, Sirera R, Navarro L, Blasco A, Camps C, Jantus-Lewintre E. Circulating Immune Proteins: Improving the Diagnosis and Clinical Outcome in Advanced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:17587. [PMID: 38139416 PMCID: PMC10743468 DOI: 10.3390/ijms242417587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Immunotherapy has been proven a viable treatment option for non-small cell lung cancer (NSCLC) treatment in patients. However, some patients still do not benefit. Finding new predictive biomarkers for immunocheckpoint inhibitor (ICI) response will improve treatment management in the clinical routine. In this regard, liquid biopsy is a useful and noninvasive alternative to surgical biopsies. In the present study, we evaluated the potential diagnostic, prognostic, and predictive value of seven different soluble mediators involved in immunoregulation. Fifty-two plasma samples from advanced NSCLC treated in first-line with pembrolizumab at baseline (PRE) and at first response assessment (FR) were analyzed. In terms of diagnostic value, our results revealed that sFGL1, sGAL-3, and sGAL-1 allowed for optimal diagnostic efficacy for cancer patients. Additionally, the combination of sFGL1 and sGAL-3 significantly improved diagnostic accuracy. Regarding the predictive value to assess patients' immune response, sCD276 levels at PRE were significantly higher in patients without tumor response (p = 0.035). Moreover, we observed that high levels of sMICB at PRE were associated with absence of clinical benefit (pembrolizumab treatment less than 6 months) (p = 0.049), and high levels of sMICB and sGAL-3 at FR are also related to a lack of clinical benefit (p = 0.027 and p = 0.03, respectively). Finally, in relation to prognosis significance, at PRE and FR, sMICB levels above the 75th percentile are related to poor progression-free survival (PFS) (p = 0.013 and p = 0.023, respectively) and overall survival (OS) (p = 0.001 and p = 0.011, respectively). An increase in sGAL3 levels at FR was associated with worse PFS (p = 0.037). Interestingly, high sGAL-3 at PRE was independently associated with PFS and OS with a hazard ratio (HR) of 2.45 (95% CI 1.14-5.25; p = 0.021) and 4.915 (95% CI 1.89-12.73; p = 0.001). In conclusion, plasma levels of sFGL1, sGAL-3, and sGAL-1 could serve as diagnostic indicators and sMICB, sCD276, and sGAL3 were linked to outcomes, suggesting their potential in assessing NSCLC under pembrolizumab treatment. Our results highlight the value of employing soluble immune biomarkers in advanced lung cancer patients treated with pembrolizumab at first-line.
Collapse
Affiliation(s)
- Susana Torres-Martínez
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Sandra Gallach
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Marais Mosqueda
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Ester Munera-Maravilla
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Rafael Sirera
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Lara Navarro
- Department of Pathology, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Ana Blasco
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain;
- Nanomedicine, Centro Investigación Príncipe Felipe—Universitat Politècnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
21
|
Alfaro-Murillo JA, Townsend JP. Pairwise and higher-order epistatic effects among somatic cancer mutations across oncogenesis. Math Biosci 2023; 366:109091. [PMID: 37996064 PMCID: PMC10847963 DOI: 10.1016/j.mbs.2023.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
Cancer occurs as a consequence of multiple somatic mutations that lead to uncontrolled cell growth. Mutual exclusivity and co-occurrence of mutations imply-but do not prove-that mutations exert synergistic or antagonistic epistatic effects on oncogenesis. Knowledge of these interactions, and the consequent trajectories of mutation and selection that lead to cancer has been a longstanding goal within the cancer research community. Recent research has revealed mutation rates and scaled selection coefficients for specific recurrent variants across many cancer types. However, there are no current methods to quantify the strength of selection incorporating pairwise and higher-order epistatic effects on selection within the trajectory of likely cancer genotoypes. Therefore, we have developed a continuous-time Markov chain model that enables the estimation of mutation origination and fixation (flux), dependent on somatic cancer genotype. Coupling this continuous-time Markov chain model with a deconvolution approach provides estimates of underlying mutation rates and selection across the trajectory of oncogenesis. We demonstrate computation of fluxes and selection coefficients in a somatic evolutionary model for the four most frequently variant driver genes (TP53, LRP1B, KRAS and STK11) from 565 cases of lung adenocarcinoma. Our analysis reveals multiple antagonistic epistatic effects that reduce the possible routes of oncogenesis, and inform cancer research regarding viable trajectories of somatic evolution whose progression could be forestalled by precision medicine. Synergistic epistatic effects are also identified, most notably in the somatic genotype TP53 LRP1B for mutations in the KRAS gene, and in somatic genotypes containing KRAS or TP53 mutations for mutations in the STK11 gene. Large positive fluxes of KRAS variants were driven by large selection coefficients, whereas the flux toward LRP1B mutations was substantially aided by a large mutation rate for this gene. The approach enables inference of the most likely routes of site-specific variant evolution and estimation of the strength of selection operating on each step along the route, a key component of what we need to know to develop and implement personalized cancer therapies.
Collapse
Affiliation(s)
- Jorge A Alfaro-Murillo
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States of America
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States of America; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States of America.
| |
Collapse
|
22
|
Valero C, Golkaram M, Vos JL, Xu B, Fitzgerald C, Lee M, Kaplan S, Han CY, Pei X, Sarkar R, Boe LA, Pandey A, Koh ES, Zuur CL, Solit DB, Pawlowski T, Liu L, Ho AL, Chowell D, Riaz N, Chan TA, Morris LG. Clinical-genomic determinants of immune checkpoint blockade response in head and neck squamous cell carcinoma. J Clin Invest 2023; 133:e169823. [PMID: 37561583 PMCID: PMC10541199 DOI: 10.1172/jci169823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUNDRecurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) is generally an incurable disease, with patients experiencing median survival of under 10 months and significant morbidity. While immune checkpoint blockade (ICB) drugs are effective in approximately 20% of patients, the remaining experience limited clinical benefit and are exposed to potential adverse effects and financial costs. Clinically approved biomarkers, such as tumor mutational burden (TMB), have a modest predictive value in HNSCC.METHODSWe analyzed clinical and genomic features, generated using whole-exome sequencing, in 133 ICB-treated patients with R/M HNSCC, of whom 69 had virus-associated and 64 had non-virus-associated tumors.RESULTSHierarchical clustering of genomic data revealed 6 molecular subtypes characterized by a wide range of objective response rates and survival after ICB therapy. The prognostic importance of these 6 subtypes was validated in an external cohort. A random forest-based predictive model, using several clinical and genomic features, predicted progression-free survival (PFS), overall survival (OS), and response with greater accuracy than did a model based on TMB alone. Recursive partitioning analysis identified 3 features (systemic inflammatory response index, TMB, and smoking signature) that classified patients into risk groups with accurate discrimination of PFS and OS.CONCLUSIONThese findings shed light on the immunogenomic characteristics of HNSCC tumors that drive differential responses to ICB and identify a clinical-genomic classifier that outperformed the current clinically approved biomarker of TMB. This validated predictive tool may help with clinical risk stratification in patients with R/M HNSCC for whom ICB is being considered.FUNDINGFundación Alfonso Martín Escudero, NIH R01 DE027738, US Department of Defense CA210784, The Geoffrey Beene Cancer Research Center, The MSKCC Population Science Research Program, the Jayme Flowers Fund, the Sebastian Nativo Fund, and the NIH/NCI Cancer Center Support Grant P30 CA008748.
Collapse
Affiliation(s)
- Cristina Valero
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | | | - Joris L. Vos
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Bin Xu
- Department of Pathology and Laboratory Medicine
| | - Conall Fitzgerald
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Mark Lee
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | | | - Catherine Y. Han
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Xin Pei
- Department of Radiation Oncology, and
| | | | - Lillian A. Boe
- Department of Biostatistics and Epidemiology, MSKCC, New York, New York, USA
| | - Abhinav Pandey
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Elizabeth S. Koh
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Charlotte L. Zuur
- Department of Head and Neck Oncology and Surgery, Antoni van Leeuwenhoek Hospital–Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Li Liu
- Illumina Inc., San Diego, California, USA
| | - Alan L. Ho
- Department of Medicine, MSKCC, New York, New York, USA
| | - Diego Chowell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Timothy A. Chan
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Luc G.T. Morris
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| |
Collapse
|
23
|
Chuang YH, Lin CY, Lee JC, Lee CH, Liu CL, Huang SH, Lee JY, Lai WS, Yang JM. Identification of the HNSC88 Molecular Signature for Predicting Subtypes of Head and Neck Cancer. Int J Mol Sci 2023; 24:13068. [PMID: 37685875 PMCID: PMC10487792 DOI: 10.3390/ijms241713068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) exhibits genetic heterogeneity in etiologies, tumor sites, and biological processes, which significantly impact therapeutic strategies and prognosis. While the influence of human papillomavirus on clinical outcomes is established, the molecular subtypes determining additional treatment options for HNSC remain unclear and inconsistent. This study aims to identify distinct HNSC molecular subtypes to enhance diagnosis and prognosis accuracy. In this study, we collected three HNSC microarrays (n = 306) from the Gene Expression Omnibus (GEO), and HNSC RNA-Seq data (n = 566) from The Cancer Genome Atlas (TCGA) to identify differentially expressed genes (DEGs) and validate our results. Two scoring methods, representative score (RS) and perturbative score (PS), were developed for DEGs to summarize their possible activation functions and influence in tumorigenesis. Based on the RS and PS scoring, we selected candidate genes to cluster TCGA samples for the identification of molecular subtypes in HNSC. We have identified 289 up-regulated DEGs and selected 88 genes (called HNSC88) using the RS and PS scoring methods. Based on HNSC88 and TCGA samples, we determined three HNSC subtypes, including one HPV-associated subtype, and two HPV-negative subtypes. One of the HPV-negative subtypes showed a relationship to smoking behavior, while the other exhibited high expression in tumor immune response. The Kaplan-Meier method was used to compare overall survival among the three subtypes. The HPV-associated subtype showed a better prognosis compared to the other two HPV-negative subtypes (log rank, p = 0.0092 and 0.0001; hazard ratio, 1.36 and 1.39). Additionally, within the HPV-negative group, the smoking-related subgroup exhibited worse prognosis compared to the subgroup with high expression in immune response (log rank, p = 0.039; hazard ratio, 1.53). The HNSC88 not only enables the identification of HPV-associated subtypes, but also proposes two potential HPV-negative subtypes with distinct prognoses and molecular signatures. This study provides valuable strategies for summarizing the roles and influences of genes in tumorigenesis for identifying molecular signatures and subtypes of HNSC.
Collapse
Affiliation(s)
- Yi-Hsuan Chuang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Lin Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Sing-Han Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jung-Yu Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Sen Lai
- Department of Otolaryngology—Head and Neck Surgery, Taichung Armed Forces General Hospital, Taichung 404, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
24
|
Jia X, Zhang D, Zhou C, Yan Z, Jiang Z, Xie L, Jiang J. Eph receptor B6 shapes a cold immune microenvironment, inhibiting anti-cancer immunity and immunotherapy response in bladder cancer. Front Oncol 2023; 13:1175183. [PMID: 37637034 PMCID: PMC10450340 DOI: 10.3389/fonc.2023.1175183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Background The role of Eph receptors and related ephrin (EFN) ligands (as the largest family of transmembrane-bound RTKs) in immunomodulation in many types of cancer, especially bladder cancer (BLCA), is scarcely known. Methods A pan-cancer dataset was retrieved from The Cancer Genome Atlas (TCGA) to explore the relation between Eph receptor/EFN ligand family genes and immunomodulators and tumor-infiltrated immune cells (TIICs). Local BLCA, GSE32894, and GSE31684 cohorts were applied to validate. The IMvigor210 cohort was employed to explore the relationship between EPHB6 and immunotherapy response. Moreover, association between EPHB6 and molecular subtype was investigated to explore potential therapeutic strategies. Immunohistochemical staining of CD8 and CD68 was performed to validate the correlation between EPHB6 and TIICs. Results The pan-cancer analysis revealed variations in the immunological effects of Eph receptor/EFN ligand family genes across different types of cancer. EPHB6 expression negatively correlated with the expression of the majority of immunomodulators (including HLA and immune checkpoints), and CD8 T cells and macrophages in both the TCGA-BLCA and validation BLCA cohorts, shaping a cold immune microenvironment with inhibited immunity. In the IMvigor210 cohort, patients with high-EPHB6 highly correlated with a non-inflamed, low PD-L1 expression immune phenotype, and correspondingly, with less responders to immunotherapy. The high-EPHB6 group, enriched with the basal subtype, presented significantly fewer TP53 and more FGFR3 genomic alterations. Finally, a novel EPHB6-related Genes signature, with reliable and robust ability in prognosis prediction, was constructed. Conclusions This study comprehensively investigated the immunological effects of Eph receptor/EFN ligand family genes pan-cancer, and specially identified the immunosuppressive role of EPHB6 in BLCA. Furthermore, EPHB6 may predict the molecular subtype and prognosis of BLCA, and serve as a novel therapeutic target to improve the sensitivity of immunotherapy.
Collapse
Affiliation(s)
- Xiaolong Jia
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Dongxu Zhang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Cheng Zhou
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Zejun Yan
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Zhaohui Jiang
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junhui Jiang
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| |
Collapse
|
25
|
Liao J, Bai J, Pan T, Zou H, Gao Y, Guo J, Xu Q, Xu J, Li Y, Li X. Clinical and genomic characterization of mutational signatures across human cancers. Int J Cancer 2023; 152:1613-1629. [PMID: 36533638 DOI: 10.1002/ijc.34402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Mutational signatures, the generic patterns of mutations, are the footprints of both endogenous and exogenous factors that have influenced cancer development. To date, dozens of mutational signatures have been discerned through computational methods. However, the etiology, mutational properties, clonality, immunology and prognostic value of mutation signatures across cancer types are poorly understood. To address this, we extensively characterized mutational signatures across 8836 cancer samples spanning 42 cancer types. We confirmed and extended clinical and genomic features associated with mutation signatures. Mutation distribution analysis showed that most mutation processes were depleted in exons and APOBEC signatures (SBS2 and SBS13), the Pol-η related signature (SBS9) and SBS40 tended to contribute clustered mutations. We observed that age-related signatures (SBS1 and SBS5) and SBS40 tended to induce mutations affecting cancer genes and subclonal drivers posted by specific signatures (eg, mismatch repair deficiency-related signature SBS44) were unlikely subjected to positive selection. We also revealed early mutation signatures (eg, UV light exposure-related signature SBS7a) and signatures (eg, reactive oxygen species-related signature SBS18) predominated in the late stage of tumorigenesis. Comprehensive association analysis of mutation processes with microenvironment revealed that APOBEC- and mismatch repair deficiency-related signatures were positively associated with immune parameters, while age-related signatures showed negative correlations. In addition, prognostic association analysis showed that many signatures were favorable (eg, SBS9) or adverse factors (eg, SBS18) of patient survival. Our findings enhance appreciation of the role of mutational signatures in tumor evolution and underline their potential in immunotherapy guidance and prognostic prediction.
Collapse
Affiliation(s)
- Jianlong Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Haozhe Zou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Yueying Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Jing Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Qi Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
26
|
Alisoltani A, Qiu X, Jaroszewski L, Sedova M, Iyer M, Godzik A. Gender differences in smoking-induced changes in the tumor immune microenvironment. Arch Biochem Biophys 2023; 739:109579. [PMID: 36933758 DOI: 10.1016/j.abb.2023.109579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023]
Abstract
Both gender and smoking are correlated with prevalence and outcomes in many types of cancers. Tobacco smoke is a known carcinogen through its genotoxicity but can also affect cancer progression through its effect on the immune system. In this study, we aim to evaluate the hypothesis that the effects of smoking on the tumor immune microenvironment will be influenced differently by gender using large-scale analysis of publicly available cancer datasets. We used The Cancer Genomic Atlas (TCGA) datasets (n = 2724) to analyze effects of smoking on different cancer immune subtypes and the relative abundance of immune cell types between male and female cancer patients. We further validated our results by analyzing additional datasets, including Expression Project for Oncology (expO) bulk RNA-seq dataset (n = 1118) and single-cell RNA-seq dataset (n = 14). Results of our study indicate that in female patients, two immune subtypes, C1 and C2, are respectively over and under abundant in smokers vs. never smokers. In males, the only significant difference is underabundance of the C6 subtype in smokers. We identified gender-specific differences in the population of immune cell types between smokers and never smokers in all TCGA and expO cancer types. Increased plasma cell population was identified as the most consistent feature distinguishing smokers and never smokers, especially in current female smokers based on both TCGA and expO data. Our analysis of existing single-cell RNA-seq data further revealed that smoking differentially affects the gene expression profile of cancer patients based on the immune cell type and gender. In our analysis, female and male smokers show different smoking-induced patterns of immune cells in tumor microenvironment. Besides, our results suggest cancer tissues directly exposed to tobacco smoke undergo the most significant changes, but all other cancer types are affected as well. Findings of current study also indicate that changes in the populations of plasma cells and their correlations to survival outcomes are stronger in female current smokers, with implications for cancer immunotherapy of women smokers. In conclusion, results of this study can be used to develop personalized treatment plans for cancer patients who smoke, particularly women smokers, taking into account the unique immune cell profile of their tumors.
Collapse
Affiliation(s)
- Arghavan Alisoltani
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Xinru Qiu
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Lukasz Jaroszewski
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Mayya Sedova
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Mallika Iyer
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Adam Godzik
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA.
| |
Collapse
|
27
|
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt-Supprian M, Saur D. Context-Specific Determinants of the Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Cancer Discov 2023; 13:278-297. [PMID: 36622087 PMCID: PMC9900325 DOI: 10.1158/2159-8290.cd-22-0876] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/10/2023]
Abstract
Immunotherapies have shown benefits across a range of human cancers, but not pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that the immunosuppressive tumor microenvironment (TME) constitutes an important roadblock to their efficacy. The landscape of the TME differs substantially across PDAC subtypes, indicating context-specific principles of immunosuppression. In this review, we discuss how PDAC cells, the local TME, and systemic host and environmental factors drive immunosuppression in context. We argue that unraveling the mechanistic drivers of the context-specific modes of immunosuppression will open new possibilities to target PDAC more efficiently by using multimodal (immuno)therapeutic interventions. SIGNIFICANCE Immunosuppression is an almost universal hallmark of pancreatic cancer, although this tumor entity is highly heterogeneous across its different subtypes and phenotypes. Here, we provide evidence that the diverse TME of pancreatic cancer is a central executor of various different context-dependent modes of immunosuppression, and discuss key challenges and novel opportunities to uncover, functionalize, and target the central drivers and functional nodes of immunosuppression for therapeutic exploitation.
Collapse
Affiliation(s)
- Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Rochefort J, Karagiannidis I, Baillou C, Belin L, Guillot-Delost M, Macedo R, Le Moignic A, Mateo V, Soussan P, Brocheriou I, Teillaud JL, Dieu-Nosjean MC, Bertolus C, Lemoine FM, Lescaille G. Defining biomarkers in oral cancer according to smoking and drinking status. Front Oncol 2023; 12:1068979. [PMID: 36713516 PMCID: PMC9875375 DOI: 10.3389/fonc.2022.1068979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Oral Squamous Cell Carcinomas (OSCC) are mostly related to tobacco consumption eventually associated to alcohol (Smoker/Drinker patients: SD), but 25-30% of the patients have no identified risk factors (Non-Smoker/Non-Drinker patients: NSND). We hypothesized that these patients have distinguishable immune profiles that could be useful for prognosis. Materials and Methods Cells present in immune tumor microenvironment (TME) and blood from 87 OSCC HPV-negative patients were analyzed using a multiparameter flow cytometry assay, in a prospective case-control study. Cytokine levels in tumor supernatants and blood were determined by a cytometric bead array (CBA) assay. Results Normal gingiva and blood from healthy donors (HD) were used as controls. A significant increase of granulocytes (p<0.05 for blood), of monocytes-macrophages (p<0.01 for blood) and of CD4+ T cells expressing CD45RO and CCR6 (p<0.001 for blood; p<0.0001 for TME) as well as higher levels of IL-6 (p<0.01 for sera, p<0.05 for tumor supernatant) were observed in SD patients as compared to NSND OSCC patients and HD. High percentages of CD4+ T cells expressing CD45RO and CCR6 cells in tumor tissue (p=0.05) and blood (p=0.05) of SD OSCC patients were also associated with a poorer prognosis while a high percentage of regulatory T cells (Treg) in tumor tissue was associated with a more favorable prognostic factor (p=0.05). Also, a higher percentage of blood CD8+ T lymphocytes among CD45+ cells in NSND patients was associated with a better disease-free survival (p=0.004). Conclusion Granulocytes, monocytes-macrophages, and CD4+ T cells expressing CD45RO and CCR6 in blood and TME as well as serum IL-6 can therefore distinguish OSCC SD and NSND patients. Quantifying the proportion of CD4+ T cells expressing CD45RO and CCR6 and of Treg in SD patients and CD8+ T cells in NSND patients could help defining the prognostic of OSCC patients.
Collapse
Affiliation(s)
- Juliette Rochefort
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Department of Odontology, Paris, France,Faculty of Odontology Université Paris Cité, Paris, France,*Correspondence: Juliette Rochefort,
| | - Ioannis Karagiannidis
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Claude Baillou
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Lisa Belin
- Sorbonne Université, Inserm, Institut Pierre Louis d'Épidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Département de Santé Publique, Paris, France
| | - Maude Guillot-Delost
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Rodney Macedo
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Aline Le Moignic
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Véronique Mateo
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | | | - Isabelle Brocheriou
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Pathology, Paris, France
| | - Jean-Luc Teillaud
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France
| | - Chloé Bertolus
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France,AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Maxillo-Facial Surgery, Paris, France
| | - Francois Michel Lemoine
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France,AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Immunology, Paris, France
| | - Géraldine Lescaille
- Sorbonne Université, Inserm U.1135, Center of Immunology and Infectious Diseases (Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris), Paris, France,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Department of Odontology, Paris, France,Faculty of Odontology Université Paris Cité, Paris, France
| |
Collapse
|
29
|
Hathaway CA, Wang T, Townsend MK, Vinci C, Jake-Schoffman DE, Saeed-Vafa D, Segura CM, Nguyen JV, Conejo-Garcia JR, Fridley BL, Tworoger SS. Lifetime Exposure to Cigarette Smoke and Risk of Ovarian Cancer by T-cell Tumor Immune Infiltration. Cancer Epidemiol Biomarkers Prev 2023; 32:66-73. [PMID: 36318652 PMCID: PMC9839509 DOI: 10.1158/1055-9965.epi-22-0877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Exposure to cigarette smoke, particularly in early life, is modestly associated with ovarian cancer risk and may impact systemic immunity and the tumor immune response. However, no studies have evaluated whether cigarette smoke exposure impacts the ovarian tumor immune microenvironment. METHODS Participants in the Nurses' Health Study (NHS) and NHSII reported on early life exposure to cigarette smoke and personal smoking history on questionnaires (n = 165,760). Multiplex immunofluorescence assays were used to measure markers of T cells and immune checkpoints in tumor tissue from 385 incident ovarian cancer cases. We used Cox proportional hazards models to evaluate HRs and 95% confidence intervals (CI) for developing ovarian tumors with a low (<median) or high (≥median) immune cell percentage by cigarette exposure categories. RESULTS Women exposed versus not to cigarette smoke early in life had a higher risk of developing ovarian cancer with low levels of T cells overall (CD3+: HR: 1.54, 95% CI: 1.08-2.20) and recently activated cytotoxic T cells (CD3+CD8+CD69+: HR: 1.45, 95% CI: 1.05-2.00). These findings were not statistically significant at the Bonferroni-corrected P value of 0.0083. Adult smoking was not significantly associated with tumor immune markers after Bonferroni correction. CONCLUSIONS These results suggest early life cigarette smoke exposure may modestly increase risk of developing ovarian tumors with low abundance of total T cells and recently activated cytotoxic T cells. IMPACT Future research should focus on understanding the impact of exposures throughout the life course on the ovarian tumor immune microenvironment.
Collapse
Affiliation(s)
| | - Tianyi Wang
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mary K. Townsend
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Christine Vinci
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Daryoush Saeed-Vafa
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida, USA.,Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Carlos Moran Segura
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jonathan V. Nguyen
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
30
|
Adachi M, Nakayama M, Matsumoto S, Shima Y, Uemaetomari I, Yoshimura T, Onishi K, Senarita M, Tabuchi K. Elevation of C-reactive protein during concurrent chemoradiotherapy is a poor predictive factor for head and neck cancer. Auris Nasus Larynx 2023:S0385-8146(22)00241-3. [PMID: 36604259 DOI: 10.1016/j.anl.2022.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The prognostic role of pretreatment C-reactive protein (CRP) has been reported for head and neck cancer. However, little is known about the relationship between the changes in CRP levels during treatment and prognosis. This study aimed to investigate the correlation between CRP elevation during concurrent chemoradiotherapy (CCRT) and survival outcomes. METHODS The medical records of patients with oropharyngeal, hypopharyngeal, and laryngeal cancer treated with CCRT at the University of Tsukuba Hospital and National Hospital Organization Mito Medical Center from April 2014 to December 2019 were retrospectively reviewed. Patients were divided into normal (<0.3 mg/dl) and elevated (≥0.3 mg/dl) CRP groups according to the CRP level after the first cycle of cisplatin. The primary endpoint was progression-free survival (PFS). RESULTS A total of 74 patients were enrolled, of whom 36 (49%) showed elevated CRP levels after the first cycle of cisplatin. The 3-year PFS was 83.3% and 61.0% in the normal and elevated CRP groups, respectively, showing significant differences between the two groups. CONCLUSION Elevated CRP levels after the first cycle of cisplatin is an objective predictive marker for survival in patient with head and neck squamous cell carcinoma treated with CCRT.
Collapse
Affiliation(s)
- Masahiro Adachi
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Nakayama
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan.
| | - Shin Matsumoto
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yoshihide Shima
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan
| | - Isao Uemaetomari
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan
| | - Tomonori Yoshimura
- Department of Otolaryngology, National Hospital Organization Mito Medical Center, Mito, Japan
| | - Kayoko Onishi
- Department of Radiology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Masamitsu Senarita
- Department of Otolaryngology, National Hospital Organization Mito Medical Center, Mito, Japan
| | - Keiji Tabuchi
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
31
|
Dhara V, Shetty SS, de Arruda JAA, Silva TA, Russo RC, Shetty NJ, Pidaparthi M, Wollenberg B, Rao VUS, Gopinath TPS. Decoding the influence of the immune system and immunotherapy targets on carcinomas: A hidden prism in oral cancer therapy. Dis Mon 2023; 69:101353. [PMID: 35311656 DOI: 10.1016/j.disamonth.2022.101353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent decades, understanding tumorigenesis and the complex interaction between the host and the immune system has been the pillar for significant advances in anticancer therapy. Conventional anticancer therapy (e.g., cut, burn, and cytotoxic drugs) involves multiple targeting of tumor cells. However, the tumor tissue microenvironment can present a dysregulated, stimulating, or subverted immune response which, in turn, reveals pro-tumor activities favoring tumor expansion and progression. Recently, new potential targets have been identified based on immunomodulatory therapies, which are crafted to re-establish the host anti-tumoral immune response. Clinicians should fully understand the intricate interactions between carcinogens, the tumor milieu, the immune system, and traditional anticancer therapies in order to progress and to overcome the refractory/recurrent challenges and morbidity of the disease. Thus, in this article, we highlight the complex milieu of the oral cancer immune response, pointing out potential therapeutic immunotargets for oral squamous cell carcinomas. The impact of traditional anticancer therapy on the immune system is also outlined.
Collapse
Affiliation(s)
- Vasantha Dhara
- Consultant Maxillofacial Surgeon, Hyderabad, Telangana, India
| | - Sameep S Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, A constituent of MAHE, Manipal, Karnataka, India.
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Neetha J Shetty
- Department of Periodontology, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, A constituent of MAHE, Mangalore, Karnataka, India
| | | | - Barbara Wollenberg
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Klinikum rechts der Isar der TU München, Ismaningerstraße 22, 81675 München, Germany
| | - Vishal U S Rao
- Department of Head and Neck Surgical Oncology, HealthCare Global Enterprises Ltd., Bangalore, Karnataka, India
| | - Thilak P S Gopinath
- Nitte (Deemed to be University) , AB Shetty Memorial Institute of Dental Sciences (ABSMIDS) , Department of Oral and Maxillofacial Surgery, Mangalore, India
| |
Collapse
|
32
|
Chellappan S. Smoking Cessation after Cancer Diagnosis and Enhanced Therapy Response: Mechanisms and Significance. Curr Oncol 2022; 29:9956-9969. [PMID: 36547196 PMCID: PMC9776692 DOI: 10.3390/curroncol29120782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The adverse effects of smoking on human health have been recognized for several decades, especially in the context of cancer. The ability of tobacco smoke components, including tobacco-specific carcinogens and additive compounds such as nicotine, to initiate or promote tumor growth have been described in hundreds of studies. These investigations have revealed the tumor-promoting activities of nicotine and other tobacco smoke components and have also recognized the ability of these agents to suppress the efficacy of cancer therapy; it is now clear that smoking can reduce the efficacy of most of the widely used therapeutic modalities, including immunotherapy, radiation therapy, and chemotherapy. Several studies examined if continued smoking after cancer diagnosis affected therapy response; it was found that while never smokers or non-smokers had the best response to therapy, those who quit smoking at the time of diagnosis had higher overall survival and reduced side-effects than those who continued to smoke. These studies also revealed the multiple mechanisms via which smoking enhances the growth and survival of tumors while suppressing therapy-induced cell death. In conclusion, smoking cessation during the course of cancer therapy markedly increases the chances of survival and the quality of life.
Collapse
Affiliation(s)
- Srikumar Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
33
|
Stukan AI, Murashko RA, Tsygan NA, Goryainova AY, Nefedov ON, Porkhanov VA. Adaptive immune response in pathogenesis and treatment of head and neck squamous cell carcinoma: the influence of immunosuppression factors and gender. HEAD AND NECK TUMORS (HNT) 2022. [DOI: 10.17650/2222-1468-2022-12-3-114-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An obvious trend of the last decade in head and neck squamous cell carcinoma pathogenesis evaluation is awareness of the impact of immune response disorders on disease manifestation. The review presents an analysis of the differences in the type and degree of immunosuppression, as well as treatment response in head and neck squamous cell carcinoma patients in accordance with influencing carcinogenic factor, gender, age of the patient and concomitant diseases. An increase in CD8+ T-lymphocytes and a decrease of memory T-cells has been evaluated in smoking and alcohol abusing patients with head and neck squamous cell carcinoma, and a smaller number of CD8+ T-lymphocytes were detected in the tumor microenvironment compared to non-smoking and non-drinking patients. Studies have shown that the improved prognosis of patients with human papillomavirus (Hpv) – associated head and neck squamous cell carcinoma is largely due to the presence of antibodies against Hpv E6 and E7, E7-specific CD8+T lymphocytes in periphe ral blood and a high level of tumor-infiltrating T lymphocytes. The issue of gender differences in the type of immune response is widely discussed. It has been shown that the use of immune response checkpoint inhibitors is more effective in improving survival rates in men, and the use of these drugs in combination with chemotherapy is more effective in women. In addition, in elderly cancer patients, numerous age-associated T-lymphocyte’s function changes were revealed, including a decrease in the number of naive T-lymphocytes due to age-related involution of the thymus and an in crease in the relative number of memory cells and effector cells. Thus, it is clear that immunosuppression type, as well as treatment response, differ depending on the influencing factor, gender, age of the patient, as well as comorbidities.
Collapse
Affiliation(s)
- A. I. Stukan
- Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia
| | - R. A. Murashko
- Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia
| | - N. A. Tsygan
- Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory
| | - A. Yu. Goryainova
- Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia
| | - O. N. Nefedov
- Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia
| | - V. A. Porkhanov
- Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar Territory; Kuban State Medical University, Ministry of Health of Russia; S.V. Ochapovsky Research Institute – Regional Clinical Hospital No. 1, Ministry of Health of Krasnodar Territory
| |
Collapse
|
34
|
Ma SJ, Yu H, Yu B, Waldman O, Khan M, Chatterjee U, Santhosh S, Gill J, Iovoli AJ, Farrugia M, Shevorykin A, Carl E, Wooten K, Gupta V, McSpadden R, Kuriakose MA, Markiewicz MR, Al-Afif A, Hicks WL, Platek ME, Seshadri M, Sheffer C, Warren GW, Singh AK. Association of Pack-Years of Cigarette Smoking With Survival and Tumor Progression Among Patients Treated With Chemoradiation for Head and Neck Cancer. JAMA Netw Open 2022; 5:e2245818. [PMID: 36480200 PMCID: PMC9856262 DOI: 10.1001/jamanetworkopen.2022.45818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/13/2022] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE After 10 pack-years of smoking was initially established as a threshold for risk stratification, subsequent clinical trials incorporated it to identify candidates for treatment deintensification. However, several recent studies were unable to validate this threshold externally, and the threshold for smoking exposure remains unclear. OBJECTIVE To estimate the threshold of pack-years of smoking associated with survival and tumor recurrence among patients with head and neck cancer. DESIGN, SETTING, AND PARTICIPANTS This single-institution, cohort study included patients with nonmetastatic head and neck cancer receiving chemoradiation from January 2005 to April 2021. Data were analyzed from January to April 2022. EXPOSURES Heavy vs light smoking using 22 pack-years as a threshold based on maximizing log-rank test statistic. MAIN OUTCOMES AND MEASURES Overall survival (OS), progression-free survival (PFS), locoregional failure (LRF), and distant failure (DF). RESULTS A total of 518 patients (427 male [82.4%]; median [IQR] age, 61 [55-66] years) were included. Median (IQR) follow-up was 44.1 (22.3-72.8) months. A nonlinear Cox regression model using restricted cubic splines showed continuous worsening of OS and PFS outcomes as pack-years of smoking increased. The threshold of pack-years to estimate OS and PFS was 22. Cox multivariable analysis (MVA) showed that more than 22 pack-years was associated with worse OS (adjusted hazard ratio [aHR] 1.57; 95% CI, 1.11-2.22; P = .01) and PFS (aHR, 1.38; 95% CI, 1.00-1.89; P = .048). On Fine-Gray MVA, heavy smokers were associated with DF (aHR, 1.71; 95% CI, 1.02-2.88; P = .04), but not LRF (aHR, 1.07; 95% CI, 0.61-1.87; P = .82). When 10 pack-years of smoking were used as a threshold, there was no association for OS (aHR, 1.23; 95% CI, 0.83-1.81; P = .30), PFS (aHR, 1.11; 95% CI, 0.78-1.57; P = .56), LRF (aHR, 1.19; 95% CI, 0.64-2.21; P = .58), and DF (aHR, 1.45; 95% CI, 0.82-2.56; P = .20). Current smoking was associated with worse OS and PFS only among human papillomavirus (HPV)-positive tumors (OS: aHR, 2.81; 95% CI, 1.26-6.29; P = .01; PFS: aHR, 2.51; 95% CI, 1.22-5.14; P = .01). CONCLUSIONS AND RELEVANCE In this cohort study of patients treated with definitive chemoradiation, 22 pack-years of smoking was associated with survival and distant metastasis outcomes. Current smoking status was associated with adverse outcomes only among patients with HPV-associated head and neck cancer.
Collapse
Affiliation(s)
- Sung Jun Ma
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Brian Yu
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
| | - Olivia Waldman
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
| | - Michael Khan
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
| | - Udit Chatterjee
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sharon Santhosh
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
| | - Jasmin Gill
- University at Buffalo, The State University of New York, Buffalo
| | - Austin J. Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alina Shevorykin
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ellen Carl
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kimberly Wooten
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Vishal Gupta
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ryan McSpadden
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Moni A. Kuriakose
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Michael R. Markiewicz
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
| | - Ayham Al-Afif
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wesley L. Hicks
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mary E. Platek
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Nutrition and Dietetics, D’Youville University, Buffalo, New York
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Christine Sheffer
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Graham W. Warren
- Hollings Cancer Center, Department of Radiation Oncology, Medical University of South Carolina, Charleston
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
35
|
Galizia D, Minei S, Maldi E, Chilà G, Polidori A, Merlano MC. How Risk Factors Affect Head and Neck Squamous Cell Carcinoma (HNSCC) Tumor Immune Microenvironment (TIME): Their Influence on Immune Escape Mechanisms and Immunotherapy Strategy. Biomedicines 2022; 10:biomedicines10102498. [PMID: 36289760 PMCID: PMC9599463 DOI: 10.3390/biomedicines10102498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
Most head and neck squamous cell carcinomas (HNSCCs) are caused by lifestyle, such as cigarette smoking, or by viruses, such as human papillomavirus (HPV) and Epstein–Barr virus (EBV). HNSCC remains a clinical challenge, notwithstanding the improvements observed in the past years, involving surgery, radiotherapy, and chemotherapy. Recurrent/metastatic (R/M) disease represents an unmet clinical need. Immunotherapy has improved the prognosis of a small proportion of these patients, but most still do not benefit. In the last decade, several preclinical and clinical studies have explored the HNSCC tumor immune microenvironment (TIME), identifying important differences between smoking-associated and virus-associated HNSCCs. This review aims to present how different etiologies affect the HNSCC TIME, affecting immune escape mechanisms and sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Danilo Galizia
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence:
| | - Silvia Minei
- Post-Graduate School of Specialization in Medical Oncology, University of Bari ‘A. Moro’, 70120 Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70120 Bari, Italy
| | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Giovanna Chilà
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | | | | |
Collapse
|
36
|
Kitichotkul K, Lertprasertsuke N, Kintarak S, Pongsiriwet S, Powcharoen W, Iamaroon A. Expression of PD-L1 is HPV/P16-independent in oral squamous cell carcinoma. Heliyon 2022; 8:e10667. [PMID: 36212017 PMCID: PMC9535272 DOI: 10.1016/j.heliyon.2022.e10667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Study design Results Conclusion
Collapse
Affiliation(s)
- Kit Kitichotkul
- Department of Oral and Maxillofacial, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nirush Lertprasertsuke
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sompid Kintarak
- Department of Stomatology, Faculty of Dentistry, Prince of Songkhla University, Songkhla, Thailand
| | - Surawut Pongsiriwet
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Warit Powcharoen
- Department of Oral and Maxillofacial, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anak Iamaroon
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Excellence Center in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai, Thailand
- Corresponding author.
| |
Collapse
|
37
|
Kim YA, Hodzic E, Amgalan B, Saslafsky A, Wojtowicz D, Przytycka TM. Mutational Signatures as Sensors of Environmental Exposures: Analysis of Smoking-Induced Lung Tissue Remodeling. Biomolecules 2022; 12:biom12101384. [PMID: 36291592 PMCID: PMC9599238 DOI: 10.3390/biom12101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Smoking is a widely recognized risk factor in the emergence of cancers and other lung diseases. Studies of non-cancer lung diseases typically investigate the role that smoking has in chronic changes in lungs that might predispose patients to the diseases, whereas most cancer studies focus on the mutagenic properties of smoking. Large-scale cancer analysis efforts have collected expression data from both tumor and control lung tissues, and studies have used control samples to estimate the impact of smoking on gene expression. However, such analyses may be confounded by tumor-related micro-environments as well as patient-specific exposure to smoking. Thus, in this paper, we explore the utilization of mutational signatures to study environment-induced changes of gene expression in control lung tissues from lung adenocarcinoma samples. We show that a joint computational analysis of mutational signatures derived from sequenced tumor samples, and the gene expression obtained from control samples, can shed light on the combined impact that smoking and tumor-related micro-environments have on gene expression and cell-type composition in non-neoplastic (control) lung tissue. The results obtained through such analysis are both supported by experimental studies, including studies utilizing single-cell technology, and also suggest additional novel insights. We argue that the study provides a proof of principle of the utility of mutational signatures to be used as sensors of environmental exposures not only in the context of the mutational landscape of cancer, but also as a reference for changes in non-cancer lung tissues. It also provides an example of how a database collected with the purpose of understanding cancer can provide valuable information for studies not directly related to the disease.
Collapse
|
38
|
Kadono T, Yamamoto S, Kato K. Current perspectives of the Japanese Esophageal Oncology Group on the development of immunotherapy for esophageal cancer. Jpn J Clin Oncol 2022; 52:1089-1096. [PMID: 36047845 PMCID: PMC9538995 DOI: 10.1093/jjco/hyac138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is the seventh most common cancer worldwide and continues to have a poor prognosis. Starting with the development of immune checkpoint inhibitors for patients with metastatic melanoma, many clinical trials have been conducted to evaluate the efficacy and safety of immune checkpoint inhibitors against various malignancies. Although few effective drugs are available for patients with advanced esophageal cancer, two immune checkpoint inhibitors, nivolumab and pembrolizumab, have been approved as second-line treatments for advanced esophageal squamous cell carcinoma. Recently, immune checkpoint inhibitors have shown promising results as post-operative therapies and first-line treatments for advanced esophageal cancer. Nivolumab has been approved as a post-operative therapy based on the CheckMate-577 trial, and nivolumab, ipilimumab and pembrolizumab have been approved as first-line treatments based on the CheckMate-648 trial and the KEYNOTE-590 trial. In addition, many trials of immune checkpoint inhibitors plus pre-operative treatment or definitive chemoradiotherapy are ongoing. The Japan Esophageal Oncology Group was established in 1978 and has conducted numerous clinical trials, most of which have examined multimodality treatments. In the era of immunotherapy, Japan Esophageal Oncology Group is conducting a clinical trial studying multimodality treatment with an immune checkpoint inhibitor. JCOG1804E (FRONTiER) is a phase I trial to evaluate the safety and efficacy of nivolumab plus pre-operative chemotherapy followed by surgery. These results might improve the clinical outcomes of esophageal cancer patients.
Collapse
Affiliation(s)
- Toru Kadono
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.,Department of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shun Yamamoto
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
39
|
Zhao S, An L, Yang X, Wei Z, Zhang H, Wang Y. Identification and validation of the role of c-Myc in head and neck squamous cell carcinoma. Front Oncol 2022; 12:820587. [PMID: 36119473 PMCID: PMC9470836 DOI: 10.3389/fonc.2022.820587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/10/2022] [Indexed: 12/09/2022] Open
Abstract
Background Many studies have shown that c-Myc plays a critical role in tumorigenesis. However, the molecular role of c-Myc in head and neck squamous cell carcinoma (HNSC) remains unclear. Methods Several biological databases, including UALCAN, TIMER2.0, TCGAportal, GEPIA, KM plotter, OncoLnc, LinkedOmics, GSCA, and TCIA, were used to analyze the molecular role of c-Myc in HNSC. The expression levels of c-Myc were validated by real-time PCR (RT–PCR) and Western blot in CAL-27 cells. Results The expression of c-Myc mRNA were significantly increased in HPV-negative HNSC tissues. The expression of c-Myc gene level was correlated with TP53 mutation status. HNSC also showed hypomethylated c-Myc compared with normal tissues. c-Myc was identified as an ominous prognostic factor for HNSC patients and correlated with immune infiltrating levels. Moreover, high c-Myc expression was associated with decreased expression of a series of immune checkpoints, resulting in a dampened immune response. c-Myc potentially mediated IL-17 signaling pathway and Th1 and Th2 cell differentiation. Inhibition of c-Myc expression increased apoptosis of CAL-27 cells. Conclusions These findings suggest a new mechanism of c-Myc in the prognosis of HNSC, implying the potential of c-Myc as a therapeutic target for HNSC patients.
Collapse
Affiliation(s)
- Sufeng Zhao
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sufeng Zhao, ; Xudong Yang,
| | - Li An
- Department of Geriatrics, Zhongda Hospital Southeast University, Nanjing, China
| | - Xudong Yang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sufeng Zhao, ; Xudong Yang,
| | - Zheng Wei
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - He Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yufeng Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Corke LK, Li JJN, Leighl NB, Eng L. Tobacco Use and Response to Immune Checkpoint Inhibitor Therapy in Non-Small Cell Lung Cancer. Curr Oncol 2022; 29:6260-6276. [PMID: 36135061 PMCID: PMC9498279 DOI: 10.3390/curroncol29090492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Tobacco is a known risk factor for lung cancer, and continued tobacco use is associated with poorer outcomes across multiple lung cancer treatment modalities including surgery, chemotherapy and radiation therapy. Less is known about the association of tobacco use and outcomes with immune checkpoint inhibitors (ICIs), which are becoming an important part of the treatment landscape in lung cancer, both in metastatic and curative settings. We reviewed the literature on the association of tobacco and tumor biology as it relates to immunotherapy. We also reviewed the association of tobacco use on outcomes among phase III randomized clinical trials involving ICIs in non-small cell lung cancer (NSCLC). We identified that patients with a smoking history may have a greater benefit with ICI treatment compared to never smokers in both treatment-naïve (HR 0.82, 95% CI 0.69-0.97, vs. HR 1.06, 95% CI 0.81-1.38) and pre-treated (HR 0.79, 95% CI 0.70-0.90 vs. 1.03, 95% CI 0.74-1.43) settings. In trials where smoking status was further defined, ex-smokers appear to demonstrate greater benefit with ICI therapy compared to current smokers (HR 0.78, 95% CI 0.59-1.01 vs. 0.91, 95% CI 0.72-1.14). We conclude by offering our perspective on future directions in this area of research, including implementation of standardized collection and analysis of tobacco use in clinical trials involving ICI therapy in lung cancer and other disease sites, and also evaluating how tobacco may affect toxicities related to ICI therapy. Based on our review, we believe that a patient's history of tobacco smoking does have a role to play in guiding treatment decision making in patients with lung cancer.
Collapse
Affiliation(s)
- Lucy K. Corke
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network Toronto, Toronto, ON M5G 2C1, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Janice J. N. Li
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network Toronto, Toronto, ON M5G 2C1, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Natasha B. Leighl
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network Toronto, Toronto, ON M5G 2C1, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lawson Eng
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network Toronto, Toronto, ON M5G 2C1, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
41
|
de Alencar VTL, Figueiredo AB, Corassa M, Gollob KJ, Cordeiro de Lima VC. Lung cancer in never smokers: Tumor immunology and challenges for immunotherapy. Front Immunol 2022; 13:984349. [PMID: 36091058 PMCID: PMC9448988 DOI: 10.3389/fimmu.2022.984349] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the second most common and the most lethal malignancy worldwide. It is estimated that lung cancer in never smokers (LCINS) accounts for 10-25% of cases, and its incidence is increasing according to recent data, although the reasons remain unclear. If considered alone, LCINS is the 7th most common cause of cancer death. These tumors occur more commonly in younger patients and females. LCINS tend to have a better prognosis, possibly due to a higher chance of bearing an actionable driver mutation, making them amenable to targeted therapy. Notwithstanding, these tumors respond poorly to immune checkpoint inhibitors (ICI). There are several putative explanations for the poor response to immunotherapy: low immunogenicity due to low tumor mutation burden and hence low MANA (mutation-associated neo-antigen) load, constitutive PD-L1 expression in response to driver mutated protein signaling, high expression of immunosuppressive factors by tumors cells (like CD39 and TGF-beta), non-permissive immune TME (tumor microenvironment), abnormal metabolism of amino acids and glucose, and impaired TLS (Tertiary Lymphoid Structures) organization. Finally, there is an increasing concern of offering ICI as first line therapy to these patients owing to several reports of severe toxicity when TKIs (tyrosine kinase inhibitors) are administered sequentially after ICI. Understanding the biology behind the immune response against these tumors is crucial to the development of better therapeutic strategies.
Collapse
Affiliation(s)
- Viviane Teixeira L. de Alencar
- Medical Oncology Department, Grupo Carinho de Clínicas Oncológicas, São José dos Campos, Brazil
- *Correspondence: Viviane Teixeira L. de Alencar,
| | - Amanda B. Figueiredo
- Translational Immuno-oncology Laboratory, Albert Einstein Research and Education Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Center for Research in Immuno-oncology (CRIO), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marcelo Corassa
- Medical Oncology Department, A C Camargo Cancer Center, São Paulo, Brazil
| | - Kenneth J. Gollob
- Translational Immuno-oncology Laboratory, Albert Einstein Research and Education Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Center for Research in Immuno-oncology (CRIO), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | |
Collapse
|
42
|
Zhang M, Zhang J, Liu Y. Comprehensive analysis of molecular features, prognostic values, and immune landscape association of m6A-regulated immune-related lncRNAs in smoking-associated lung squamous cell carcinoma. Front Genet 2022; 13:887477. [PMID: 36035178 PMCID: PMC9399351 DOI: 10.3389/fgene.2022.887477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is the second most common histopathological subtype of lung cancer, and smoking is the leading cause of this type of cancer. However, the critical factors that directly affect the survival rate and sensitivity to immunotherapy of smoking LUSC patients are still unknown. Previous studies have highlighted the role of N6-methyladenosine (m6A) RNA modification, the most common epigenetic modification in eukaryotic species, together with immune-related long non-coding RNAs (lncRNAs) in promoting the development and progression of tumors. Thus, elucidating m6A-modified immune lncRNAs in LUSC patients with smoking history is vital. In this study, we described the expression and mutation features of the 24 m6A-related regulators in the smoking-associated LUSC cohort from The Cancer Genome Atlas (TCGA) database. Then, two distinct subtypes based on the expression levels of the prognostic m6A-regulated immune lncRNAs were defined, and differentially expressed genes (DEGs) between the subtypes were identified. The distributions of clinical characteristics and the tumor microenvironment (TME) between clusters were analyzed. Finally, we established a lncRNA-associated risk model and exhaustively clarified the clinical features, prognosis, immune landscape, and drug sensitivity on the basis of this scoring system. Our findings give insight into potential mechanisms of LUSC tumorigenesis and development and provide new ideas in offering LUSC patients with individual and effective immunotherapies.
Collapse
Affiliation(s)
- Meng Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Thoracic Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jian Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Thoracic Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- School of Medicine, Nankai University, Tianjin, China
- Department of Thoracic Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yang Liu,
| |
Collapse
|
43
|
Perri F, Della Vittoria Scarpati G, Pontone M, Marciano ML, Ottaiano A, Cascella M, Sabbatino F, Guida A, Santorsola M, Maiolino P, Cavalcanti E, Togo G, Ionna F, Caponigro F. Cancer Cell Metabolism Reprogramming and Its Potential Implications on Therapy in Squamous Cell Carcinoma of the Head and Neck: A Review. Cancers (Basel) 2022; 14:3560. [PMID: 35892820 PMCID: PMC9332433 DOI: 10.3390/cancers14153560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Carcinogenesis is a multistep process that consists of the transformation of healthy cells into cancer cells. Such an alteration goes through various stages and is closely linked to random mutations of genes that have a key role in the neoplastic phenotype. During carcinogenesis, cancer cells acquire and exhibit several characteristics including sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, and expressing an immune phenotype, which allow them to evade recognition and destruction through cognate immune cells. In addition, cancer cells may acquire the ability to reprogram their metabolism in order to further promote growth, survival, and energy production. This phenomenon, termed metabolic reprogramming, is typical of all solid tumors, including squamous carcinomas of the head and neck (SCCHN). In this review, we analyze the genetic and biological mechanisms underlying metabolic reprogramming of SCCHN, focusing on potential therapeutic strategies that are able to counteract it.
Collapse
Affiliation(s)
- Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS Foundation G. Pascale, 80131 Naples, Italy; (M.P.); (M.L.M.); (F.C.)
| | | | - Monica Pontone
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS Foundation G. Pascale, 80131 Naples, Italy; (M.P.); (M.L.M.); (F.C.)
| | - Maria Luisa Marciano
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS Foundation G. Pascale, 80131 Naples, Italy; (M.P.); (M.L.M.); (F.C.)
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal metastases, Abdominal Oncology, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy; (A.O.); (M.S.)
| | - Marco Cascella
- Unit of Anestesiology and Pain Therapy, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy;
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081 Salerno, Italy;
| | - Agostino Guida
- U.O.C. Odontostomatologia, AORN A. Cardarelli Hospital, 80131 Naples, Italy;
| | - Mariachiara Santorsola
- SSD Innovative Therapies for Abdominal metastases, Abdominal Oncology, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy; (A.O.); (M.S.)
| | - Piera Maiolino
- Pharmacy Unit, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy;
| | - Ernesta Cavalcanti
- Laboratory Medicine, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy;
| | - Giulia Togo
- Maxillofacial Surgery Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Franco Ionna
- Otolaryngology Unit, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy;
| | - Francesco Caponigro
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS Foundation G. Pascale, 80131 Naples, Italy; (M.P.); (M.L.M.); (F.C.)
| |
Collapse
|
44
|
Ti W, Wei T, Wang J, Cheng Y. Comparative Analysis of Mutation Status and Immune Landscape for Squamous Cell Carcinomas at Different Anatomical sites. Front Immunol 2022; 13:947712. [PMID: 35935970 PMCID: PMC9354879 DOI: 10.3389/fimmu.2022.947712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Objective It has been controversial whether tumor mutation burden (TMB) affects the prognosis and the efficacy of immunotherapy in different tumor types. We provided a comprehensive analysis of mutation status and immune landscape of squamous cell carcinomas (SCCs) from four sites in order to investigate the relationship of TMB with prognosis and immune cell infiltration in different SCCs. Methods The transcriptome profiles and somatic mutation data of SCCs downloaded from the Cancer Genome Atlas (the Cancer Genome Atlas) database were analyzed and visualized. Then, TMB was calculated to analyze its correlations with prognosis and clinical features. Differentially expressed genes (DEGs) between the high and low TMB groups were screened for functional enrichment analysis. CIBERSORT algorithm was used to compare differences of immune cell infiltration between two groups in different SCCs. In addition, immune DEGs associated with prognosis were identified and risk prediction model was constructed via Cox regression analysis. Results Missense mutation was the most dominant mutation type in SCCs. The difference was that the top10 mutated genes varied widely among different SCCs. High TMB group had better prognosis in lung squamous cell carcinoma (LUSC) and cervical squamous cell carcinoma (CESC), while the result was reverse in head and neck squamous cell carcinoma (HNSCC) and esophageal squamous cell carcinoma (ESCC). In addition, patients with older age, smoking history, earlier pathological stage and no lymphatic invasion had higher TMB. The identified DEGs were mainly enriched in the regulation of immune system, muscular system and the activity of epidermal cells. The proportions of CD8+T cells, CD4+ memory T cells, follicular helper T cells, macrophages were distinct between two groups. The prognosis-related hub genes (CHGB, INHBA, LCN1 and VEGFC) screened were associated with poor prognosis. Conclusion This study reveals the mutation status and immune cell infiltration of SCCs at different anatomical sites. TMB is closely related to the prognosis of SCCs, and its effects on prognosis are diverse in different SCCs, which might result from the situation of immune cell infiltration. These findings contribute to the exploration of biomarkers for predicting the efficacy of immunotherapy in SCCs and providing innovative insights for accurate application of immunotherapy.
Collapse
Affiliation(s)
| | | | - Jianbo Wang
- *Correspondence: Yufeng Cheng, ; Jianbo Wang,
| | | |
Collapse
|
45
|
Affolter A, Kern J, Bieback K, Scherl C, Rotter N, Lammert A. Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review). Int J Oncol 2022; 61:88. [PMID: 35642667 PMCID: PMC9183766 DOI: 10.3892/ijo.2022.5378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Immunotherapy has evolved into a powerful tool in the fight against a number of types of cancer, including head and neck squamous cell carcinomas (HNSCC). Although checkpoint inhibition (CPI) has definitely enriched the treatment options for advanced stage HNSCC during the past decade, the percentage of patients responding to treatment is widely varying between 14-32% in second-line setting in recurrent or metastatic HNSCC with a sporadic durability. Clinical response and, consecutively, treatment success remain unpredictable in most of the cases. One potential factor is the expression of target molecules of the tumor allowing cancer cells to acquire therapy resistance mechanisms. Accordingly, analyzing and modeling the complexity of the tumor microenvironment (TME) is key to i) stratify subgroups of patients most likely to respond to CPI and ii) to define new combinatorial treatment regimens. Particularly in a heterogeneous disease such as HNSCC, thoroughly studying the interactions and crosstalking between tumor and TME cells is one of the biggest challenges. Sophisticated 3D models are therefore urgently needed to be able to validate such basic science hypotheses and to test novel immuno-oncologic treatment regimens in consideration of the individual biology of each tumor. The present review will first summarize recent findings on immunotherapy, predictive biomarkers, the role of the TME and signaling cascades eliciting during CPI. Second, it will highlight the significance of current promising approaches to establish HNSCC 3D models for new immunotherapies. The results are encouraging and indicate that data obtained from patient-specific tumors in a dish might be finally translated into personalized immuno-oncology.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden‑Württemberg‑Hessen, D‑68167 Mannheim, Germany
| | - Claudia Scherl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Anne Lammert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| |
Collapse
|
46
|
Wahle BM, Zolkind P, Ramirez RJ, Skidmore ZL, Anderson SR, Mazul A, Hayes DN, Sandulache VC, Thorstad WL, Adkins D, Griffith OL, Griffith M, Zevallos JP. Integrative genomic analysis reveals low T-cell infiltration as the primary feature of tobacco use in HPV-positive oropharyngeal cancer. iScience 2022; 25:104216. [PMID: 35494251 PMCID: PMC9044176 DOI: 10.1016/j.isci.2022.104216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 04/05/2022] [Indexed: 11/15/2022] Open
Abstract
Although tobacco use is an independent adverse prognostic feature in HPV(+) oropharyngeal squamous cell carcinoma (OPSCC), the biologic features associated with tobacco use have not been systematically investigated. We characterized genomic and immunologic features associated with tobacco use through whole exome sequencing, mRNA hybridization, and immunohistochemical staining in 47 HPV(+) OPSCC tumors. Low expression of transcripts in a T cell-inflamed gene expression profile (TGEP) was associated with tobacco use at diagnosis and lower overall and disease-free survival. Tobacco use was associated with an increased proportion of T > C substitutions and a lower proportion of expected mutational signatures, but not with increases in mutational burden or recurrent oncogenic mutations. Our findings suggest that rather than increased mutational burden, tobacco's primary and clinically relevant association in HPV(+) OPSCC is immunosuppression of the tumor immune microenvironment. Quantitative assays of T cell infiltration merit further study as prognostic markers in HPV(+) OPSCC.
Collapse
Affiliation(s)
- Benjamin M. Wahle
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, Campus Box 8115, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Paul Zolkind
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, Campus Box 8115, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Ricardo J. Ramirez
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, Campus Box 8115, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Zachary L. Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Sydney R. Anderson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Angela Mazul
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, Campus Box 8115, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - D. Neil Hayes
- Department of Medicine, Division of Hematology-Oncology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Vlad C. Sandulache
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- ENT Section, Operative Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030
| | - Wade L. Thorstad
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Douglas Adkins
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Obi L. Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Jose P. Zevallos
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, Campus Box 8115, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
47
|
A high homologous recombination deficiency score is associated with poor survival and a non-inflamed tumor microenvironment in head and neck squamous cell carcinoma patients. Oral Oncol 2022; 128:105860. [DOI: 10.1016/j.oraloncology.2022.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022]
|
48
|
Concurrent high PD-L1 expression and CD8+ immune cell infiltration predict PD-1 blockade efficacy in advanced EGFR-mutant NSCLC patients. Clin Lung Cancer 2022; 23:477-486. [DOI: 10.1016/j.cllc.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022]
|
49
|
Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, Toukam DK, Haworth KJ, Pomeranz Krummel D, Sengupta S. Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers (Basel) 2022; 14:1627. [PMID: 35406398 PMCID: PMC8997081 DOI: 10.3390/cancers14071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12-15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood-brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA 02141, USA;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Mona Mirheydari
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| |
Collapse
|
50
|
Sasa GBK, Xuan C, Chen M, Jiang Z, Ding X. Clinicopathological implications of lncRNAs, immunotherapy and DNA methylation in lung squamous cell carcinoma: a narrative review. Transl Cancer Res 2022; 10:5406-5429. [PMID: 35116387 PMCID: PMC8799054 DOI: 10.21037/tcr-21-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 11/06/2022]
Abstract
Objective To explore the clinicopathological impact of lncRNAs, immunotherapy, and DNA methylation in lung squamous cell carcinoma (LUSC), emphasizing their exact roles in carcinogenesis and modes of action. Background LUSC is the second most prevalent form, accounting for around 30% of non-small cell lung cancer (NSCLC). To date, molecular-targeted treatments have significantly improved overall survival in lung adenocarcinoma patients but have had little effect on LUSC therapy. As a result, there is an urgent need to discover new treatments for LUSC that are based on existing genomic methods. Methods In this review, we summarized and analyzed recent research on the biological activities and processes of lncRNA, immunotherapy, and DNA methylation in the formation of LUSC. The relevant studies were retrieved using a thorough search of Pubmed, Web of Science, Science Direct, Google Scholar, and the university's online library, among other sources. Conclusions LncRNAs are the primary components of the mammalian transcriptome and are emerging as master regulators of a number of cellular processes, including the cell cycle, differentiation, apoptosis, and growth, and are implicated in the pathogenesis of a variety of cancers, including LUSC. Understanding their role in LUSC in detail may help develop innovative treatment methods and tactics for LUSC. Meanwhile, immunotherapy has transformed the LUSC treatment and is now considered the new standard of care. To get a better knowledge of LUSC biology, it is critical to develop superior modeling systems. Preclinical models, particularly those that resemble human illness by preserving the tumor immune environment, are essential for studying cancer progression and evaluating novel treatment targets. DNA methylation, similarly, is a component of epigenetic alterations that regulate cellular function and contribute to cancer development. By methylating the promoter regions of tumor suppressor genes, abnormal DNA methylation silences their expression. DNA methylation indicators are critical in the early detection of lung cancer, predicting therapy efficacy, and tracking treatment resistance. As such, this review seeks to explore the clinicopathological impact of lncRNAs, immunotherapy, and DNA methylation in LUSC, emphasizing their exact roles in carcinogenesis and modes of action.
Collapse
Affiliation(s)
- Gabriel B K Sasa
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Xuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meiyue Chen
- The fourth affiliated hospital, Zhejiang University of Medicine, Hangzhou, China
| | - Zhenggang Jiang
- Department of Science Research and Information Management, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|