1
|
Mesny E, Jacob J, Noël G, Bernier MO, Ricard D. Specific radiosensitivity of brain structures (areas or regions) and cognitive impairment after focal or whole brain radiotherapy: A review. Cancer Radiother 2025; 29:104625. [PMID: 40378621 DOI: 10.1016/j.canrad.2025.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/19/2025]
Abstract
Delayed neurocognitive impairment is observed following encephalic radiotherapy, including brain parts (areas), leading to a substantial deterioration of the quality of life. These delayed radiotherapy side effects are variable in terms of intensity of symptoms and time of occurrence, characterized by minor-to-severe cognitive deficits, such as attention or memory disorders and/or dysexecutive syndrome. However, the precise mechanisms leading to these cognitive disorders remain mostly unknown. Various tissue alterations have been reported after brain radiotherapy, in specific brain structures as the hippocampus, the cerebral white matter or the cerebral cortex. Sparing these structures during brain radiotherapy may be a potential approach to limit the development of late cognitive impairment; however, few dose constraints have been published regarding brain areas (regions) involved in cognitive functions. The main purposes of this literature review are to report the pathophysiological process leading to the radiation-induced cognitive impairment, to describe the tolerance and radiological modifications induced by radiation of specific healthy cerebral tissues, to better understand their radiosensitivity and to describe potential improvements.
Collapse
Affiliation(s)
- Emmanuel Mesny
- Université Paris Saclay, université Paris Cité, ENS Paris Saclay, CNRS, SSA, Inserm, centre Borelli, 91190 Gif-sur-Yvette, France; Radiation Oncology department, Hospices civils de Lyon, centre hospitalier Lyon Sud, Oullins-Pierre-Bénite, France.
| | - Julian Jacob
- Sorbonne Université, hôpital de La Pitié-Salpêtrière, Department of Radiation Oncology, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Georges Noël
- Radiotherapy Department, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France; Faculté de médecine, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Europe (ICANS), Radiobiology Laboratory, Unicancer, 67000 Strasbourg, France; Université de Strasbourg, ICube, imagerie multimodale intégrative en santé (Imis), 300, boulevard Sébastien-Brant, 67400 Illkirch-Graffenstaden, France
| | - Marie-Odile Bernier
- Institut de radioprotection et de sûreté nucléaire, Fontenay-aux-Roses, France
| | - Damien Ricard
- Université Paris Saclay, université Paris Cité, ENS Paris Saclay, CNRS, SSA, Inserm, centre Borelli, 91190 Gif-sur-Yvette, France; Service de neurologie, Service de santé des armées, hôpital d'instruction des armées Percy, 92140 Clamart, France; Service de santé des armées, École du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
2
|
Li S, Tang J, Chen R, Li Y, Liu S, Chu X, Li L, Liao W. Immunotherapy may promote the occurrence of radiation-induced brain injury in NSCLC patients with brain metastases undergoing radiotherapy: a retrospective propensity score-matching and inverse probability of treatment weighting study. Clin Transl Oncol 2025:10.1007/s12094-025-03928-8. [PMID: 40287912 DOI: 10.1007/s12094-025-03928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE The combination of radiotherapy (RT) and immunotherapy can significantly improve the prognosis of non-small cell lung cancer (NSCLC) patients. However, concerns about whether the synergistic effect may increase the risk of radiation-induced brain injury (RIBI) remain controversial. This study aims to explore the impact of immune checkpoint inhibitors (ICIs) on the occurrence of RIBI in patients with NSCLC brain metastases (BMs). METHODS This study retrospectively enrolled NSCLC patients with BMs undergoing RT between January 2017 and December 2023. Patients were stratified into groups based on PD-1/PD-L1 checkpoint inhibitors, administration, with confounding factors controlled via propensity score matching (PSM) and inverse probability of treatment weighting (IPTW). Final cohorts included an RT-only group (n = 54) and an RT + ICIs group (n = 28). RIBI incidence and progression-free survival (PFS) were compared between groups. RESULTS After 1:1 PSM analysis, the incidence of RIBI in the RT + ICIs group was significantly higher than that in the RT-only group (17.9% vs 42.9%, P = 0.042). Further IPTW analysis showed that the incidence of RIBI in the RT + ICIs group was significantly higher than that in the RT-only group (24.8% vs 47.8%, P = 0.033). Regarding the impact on PFS, there was no statistical difference between the two groups in both PSM and IPTW (P > 0.05). CONCLUSIONS Immunotherapy combined with RT may increase the occurrence of RIBI in patients with NSCLC BMs. The mechanism underlying this phenomenon requires further investigation.
Collapse
Affiliation(s)
- Sai Li
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - JingYi Tang
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Ruiting Chen
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Yong Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Shulin Liu
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lang Li
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
| |
Collapse
|
3
|
Ding Y, Jiang C, Chen L, Liu X, Shao B. Astragaloside IV confers neuroprotection against radiation-induced neuronal senescence via the ERK pathway. Exp Neurol 2025; 386:115135. [PMID: 39746463 DOI: 10.1016/j.expneurol.2024.115135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Various factors and mechanisms, including radiation, initiate cellular senescence and are concurrent with the progression of various neurodegenerative diseases. Radiation-induced chromosomal aberrations and DNA integrity damage impact the processes of cellular growth, maturation, and aging. Astragaloside IV (AS-IV) has been documented to display significant neuroprotective effects on inflammation, oxidative stress, and cellular apoptosis; however, the precise neuroprotective mechanism of AS-IV against neuronal aging remains unclear. In this study, radiation-induced senescence models in C57BL/6 mice, PC12 cells, and primary neuronal cells were established. SA-β-gal histochemistry, flow cytometric analysis, immunofluorescence technique, and Western blotting analysis were employed to investigate the underlying mechanism of AS-IV in mitigating the aging of the brain cells caused by exposure to radiation. Our findings revealed that radiation exposure may activate the ERK pathway, leading to an increase in SA-β-gal-positive cells, elevated p21 levels, and the arrest of neuronal cells in the G1/S phase. However, AS-IV has been observed to mitigate the radiation-driven proliferation of senescent cells, by downregulating p-ERK and CDK2 expression and upregulating p21 and RB expression in treatment, thereby alleviating the aging and cognitive impairment caused by radiation. Additionally, evidence of U0126 treatment further supports these findings. In summary, our study showed that AS-IV could protect mice from radiation-induced cognitive impairment and reduce cellular senescence by regulating the ERK pathway.
Collapse
Affiliation(s)
- Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lili Chen
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, China
| | - Xin Liu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
4
|
Li M, Tong F, Wu B, Dong X. Radiation-Induced Brain Injury: Mechanistic Insights and the Promise of Gut-Brain Axis Therapies. Brain Sci 2024; 14:1295. [PMID: 39766494 PMCID: PMC11674909 DOI: 10.3390/brainsci14121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Radiation therapy is widely recognized as an efficacious modality for treating neoplasms located within the craniofacial region. Nevertheless, this approach is not devoid of risks, predominantly concerning potential harm to the neural structures. Adverse effects may encompass focal cerebral necrosis, cognitive function compromise, cerebrovascular pathology, spinal cord injury, and detriment to the neural fibers constituting the brachial plexus. With increasing survival rates among oncology patients, evaluating post-treatment quality of life has become crucial in assessing the benefits of radiation therapy. Consequently, it is imperative to investigate therapeutic strategies to mitigate cerebral complications from radiation exposure. Current management of radiation-induced cerebral damage involves corticosteroids and bevacizumab, with preclinical research on antioxidants and thalidomide. Despite these efforts, an optimal treatment remains elusive. Recent studies suggest the gut microbiota's involvement in neurologic pathologies. This review aims to discuss the causes and existing treatments for radiation-induced cerebral injury and explore gut microbiota modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mengting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
5
|
Jin J, Guo SS, Liu LT, Wen DX, Liu RP, Lin JY, Liu SQ, Sun XS, Liang YJ, Tang LQ, Mai HQ, Chen QY. Comparison of long-term quality of life and their predictors in survivors between paediatric and adult nasopharyngeal carcinoma in the intensity-modulated radiotherapy era. BMC Cancer 2024; 24:1223. [PMID: 39358733 PMCID: PMC11447939 DOI: 10.1186/s12885-024-12966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND To compare the differences in long-term quality of life (QoL) between survivors of paediatric and adult patients with nasopharyngeal carcinoma (NPC) and assess the clinical factors that predict long-term QoL. METHODS We enrolled 420 long-term NPC survivors who were alive for at least 8 years after treatment, including 195 paediatric and 225 adult patients diagnosed and treated with intensity-modulated radiotherapy (IMRT) at Sun Yat-sen University Cancer Centre (SYSUCC) between 2011 and 2015. Data on clinical factors and EORTC QLQ-C30 were collected from all participants. The QoL of paediatric and adult NPC survivors was compared. RESULTS The paediatric group had significantly better outcomes in global health status (paediatric: 80.2 ± 12.7; adult: 77.2 ± 11.5; P = 0.027), physical function (paediatric: 98.5 ± 4.6; adult: 95.1 ± 7.0; P < 0.001), role function (paediatric: 97.0 ± 9.2; adult: 90.5 ± 15.2; P < 0.001), social function (paediatric: 96.0 ± 8.9; adult: 93.5 ± 11.8; P = 0.038), insomnia (paediatric: 1.9 ± 7.8; adult: 13.1 ± 22.3; P < 0.001), constipation (paediatric: 1.3 ± 7.5; adult: 8.0 ± 17.4; P < 0.001), diarrhea (paediatric: 0.7 ± 4.6; adult: 2.8 ± 9.3; P = 0.010), and financial difficulties (paediatric: 1.9 ± 7.8; adult: 11.0 ± 19.8; P < 0.001), but poorer cognitive function (paediatric: 88.3 ± 9.9; adult: 93.8 ± 12.6; P < 0.001) than the adult group. Pretreatment clinical factors, including T stage, N stage, and pre-treatment EBV (Epstein-Barr Virus) DNA, showed a strong association with QoL. However, the factors that affected the QoL outcomes differed between the two groups. In survivors of paediatric cancer, global health status/QoL was strongly correlated with T stage (P < 0.001) and clinical stage (P = 0.018), whereas it was strongly correlated with pre-treatment EBV DNA (P = 0.008) in adults. CONCLUSION Paediatric survivors of NPC have a significantly better QoL than adult NPC survivors. Moreover, pre-treatment T stage, N stage, and EBV DNA significantly influenced the overall health status of the survivors. These results highlight the need to tailor care to both age groups to promote better long-term health outcomes.
Collapse
Grants
- 32200651, 82203776, 82203125, 82222050, 82272739, 82272882, 82173287, 82073003, 82003267, 82002852 National Natural Science Foundation of China
- 2018B030306001 Natural Science Foundation of Guangdong Province for Distinguished Young Scholar
- 201806010135 Pearl River S&T Nova Program of Guangzhou
- 2022YFC2705005, 2022YFC2505800 National Key Research and Development Program of China
- HRB103 Guangdong Major Project of Basic and Applied Basic Research
- No. 201315, 2015021, 2017010, 2019023 Sun Yat-sen University Clinical Research 5010 Program
- SSMU-ZLCX20180500 Innovative Research Team of High-level Local University in Shanghai
- 2019B020230002 Planned Science and Technology Project of Guangdong Province
Collapse
Affiliation(s)
- Jing Jin
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Shan-Shan Guo
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Li-Ting Liu
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Dong-Xiang Wen
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Rong-Ping Liu
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Jie-Yi Lin
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Si-Qi Liu
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Xue-Song Sun
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Yu-Jing Liang
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, 510060, P. R. China
| | - Lin-Quan Tang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.
| |
Collapse
|
6
|
Wang L, Qiu T, Zhou J, Zhu Y, Sun B, Yang G, Huang S, Wu L, He X. A pretreatment multiparametric MRI-based radiomics-clinical machine learning model for predicting radiation-induced temporal lobe injury in patients with nasopharyngeal carcinoma. Head Neck 2024; 46:2132-2144. [PMID: 38887926 DOI: 10.1002/hed.27830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND To establish and validate a machine learning model using pretreatment multiparametric magnetic resonance imaging-based radiomics data with clinical data to predict radiation-induced temporal lobe injury (RTLI) in patients with nasopharyngeal carcinoma (NPC) after intensity-modulated radiotherapy (IMRT). METHODS Data from 230 patients with NPC who received IMRT (130 with RTLI and 130 without) were randomly divided into the training (n = 161) and validation cohort (n = 69) with a ratio of 7:3. Radiomics features were extracted from pretreatment apparent diffusion coefficient (ADC) map, T2-weighted imaging (T2WI), and CE-T1-weighted imaging (CE-T1WI). T-test, spearman rank correlation, and least absolute shrinkage and selection operator (LASSO) algorithm were employed to identify significant radiomics features. Clinical features were selected with univariate and multivariate analyses. Radiomics and clinical models were constructed using multiple machine learning classifiers, and a clinical-radiomics nomogram that combined clinical with radiomics features was developed. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were drawn to compare and verify the predictive performances of the clinical model, radiomics model, and clinical-radiomics nomogram. RESULTS A total of 5064 radiomics features were extracted, from which 52 radiomics features were selected to construct the radiomics signature. The AUC of the radiomics signature based on multiparametric MRI was 0.980 in the training cohort and 0.969 in the validation cohort, outperforming the radiomics signature only based on T2WI and CE-T1WI (p < 0.05), which highlighted the significance of the DWI sequence in the prediction of temporal lobe injury. The area under the curve (AUC) of the clinical model was 0.895 in the training cohort and 0.905 in the validation cohort. The nomogram, which integrated radiomics and clinical features, demonstrated an impressive AUC value of 0.984 in the validation set; however, no statistically significant difference was observed compared to the radiomics model. The calibration curve and decision curve analysis of the nomogram demonstrated excellent predictive performance and clinical feasibility. CONCLUSIONS The clinical-radiomics nomogram, integrating clinical features with radiomics features derived from pretreatment multiparametric MRI, exhibits compelling predictive performance for RTLI in patients diagnosed with NPC.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Qiu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawei Zhou
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yinsu Zhu
- Department of Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Baozhou Sun
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Guanyu Yang
- Key Laboratory of Computer Network and Information Integration, Southeast University, Nanjing, China
| | - Shengfu Huang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Xu K, Liu Z, Pan S, Zhang N, Wu S, Yang G, Song X, Teng Y, Tong X. BMSCs attenuate radiation-induced brain injury induced hippocampal neuronal apoptosis through a PI3K/Akt/Bax/Bcl-2 signaling pathway. Brain Res 2024; 1829:148795. [PMID: 38331376 DOI: 10.1016/j.brainres.2024.148795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BMSCs) -based therapies represent a promising treatment for neurological disorders. However, therapeutic effects and mechanisms of BMSCs transplantation for radiation-induced brain injury (RIBI) have not been fully disclosed. In this article, we explored the functions of BMSCs transplantation on RIBI and investigated the protective effects of BMSCS on hippocampal neurons in RIBI as well as the related molecular mechanisms. MATERIALS AND METHODS 6-8 weeks-old rats were used to build a RIBI model. Rats in BMSC group were treated with a 3 × 106 BMSCs injection through the tail vein on the 1st day and 8th day after irradiation; rats in both control and RIBI groups were injected with an equivalent volume of physiological saline for comparisons. The Morris water maze was applied to detect the variations in cognitive function after RIBI. MRS was performed to test changes in NAA/Cr, indicating neuronal apoptosis after RIBI. TUNEL was conducted to detect apoptosis of rat hippocampal neurons, and HE staining was carried out to show pathological variations in the hippocampal region of rats. Protein levels of PI3K, P-PI3K, AKT, P-AKT, Bcl-2, and Bax proteins of rats in the hippocampal area were all determined by Western blot. RESULTS Cognitive function was reduced and hippocampal neurons underwent apoptosis in the rats of the RIBI group, and cognitive abilities, histopathological alterations, and apoptosis of hippocampal neurons were significantly improved after BMSCs treatment; the expression of PI3K, P-PI3K, AKT, P-AKT, and Bcl-2 proteins, in the hippocampal region of the rat, was up-regulated, and Bax proteins were down-regulated. CONCLUSIONS BMCSs can inhibit hippocampal neuronal apoptosis in RIBI, and the mechanism may be associated with the up-regulation of Bcl-2 and down-regulation of Bax by the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Kaina Xu
- College of Medical Technology, Qiqihar Medical University, No.333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| | - Zhanhong Liu
- College of Medical Technology, Qiqihar Medical University, No.333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| | - Shichao Pan
- College of Medical Technology, Qiqihar Medical University, No.333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| | - Na Zhang
- College of Medical Technology, Qiqihar Medical University, No.333 Bukui Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| | - Shuang Wu
- Department of Radiotherapy, The Third Affiliated Hospital of Qiqihar Medical University, No.27, Taishun Street, Tiefeng District, Qiqihar, Heilongjiang 161006, China
| | - Guangrun Yang
- Department of Radiotherapy, The Third Affiliated Hospital of Qiqihar Medical University, No.27, Taishun Street, Tiefeng District, Qiqihar, Heilongjiang 161006, China
| | - Xue Song
- Department of Radiotherapy, The Third Affiliated Hospital of Qiqihar Medical University, No.27, Taishun Street, Tiefeng District, Qiqihar, Heilongjiang 161006, China
| | - Ye Teng
- Department of Radiotherapy, The Third Affiliated Hospital of Qiqihar Medical University, No.27, Taishun Street, Tiefeng District, Qiqihar, Heilongjiang 161006, China
| | - Xu Tong
- Department of Radiotherapy, The Third Affiliated Hospital of Qiqihar Medical University, No.27, Taishun Street, Tiefeng District, Qiqihar, Heilongjiang 161006, China.
| |
Collapse
|
8
|
Lin S, Lv X, Lin X, Chen S, Li Y, Xu M, Qiu Y, Tang L. Modulation Effects of the CEP128 Gene on Radiotherapy-Related Brain Injury: A Longitudinal Structural Study Using Multi-Parametric Brain MR Images. J Magn Reson Imaging 2024; 59:648-658. [PMID: 37249021 DOI: 10.1002/jmri.28824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The promoter variant rs17111237 in the CEP128 closely relates to radiotherapy (RT)-related brain necrosis in nasopharyngeal carcinoma (NPC) patients. PURPOSE To explore RT-related dynamic alterations in brain morphology and their potential genetic mechanism, and to explore the modulatory effects of CEP128 genetic variants on RT-related brain morphological alterations in NPC patients. STUDY TYPE Prospective, longitudinal. POPULATION One hundred one patients with histopathologic ally-proven NPC (age 41.64 ± 9.63, 46 male), analyzed at baseline (pre-RT), 3-months post-RT and 6 months post-RT, and 19 sex-, age- and education-matched healthy controls. FIELD STRENGTH/SEQUENCE 3D gradient echo brain volume (3D-BRAVO) and diffusion-weighted single-shot spin-echo echo-planar sequences at 3.0 T. ASSESSMENT rs17111237 in CEP128 was detected by Sanger sequencing. Structural and diffusion images were processed with FreeSurfer and FSL. Morphometric similarity network (MSN) was constructed with nine cortical indices derived from structural and diffusion images. STATISTICAL TESTS One-way ANOVA, chi-square test. Pearson's correlation analysis was conducted to measure the relationship between CEP128 gene-expression level in human brain and MSN alterations. Repeated analysis of variance performed to assess group differences in MSN and the modulatory effects of the CEP128 gene within patients. Significance level: P < 0.05, false-discovery rate correction. RESULTS RT-related significant widespread MSN alterations were observed in the cortices of NPC patients. Notably, regional MSN alterations had a weak but significant negative correlation with the cortical pattern of CEP128 gene expression (r = -0.152). Furthermore, rs17111237 in the CEP128 had significant modulatory effects on the observed MSN alterations in NPC patients, with the modulatory effects being most obvious at 3 months post-RT. CONCLUSIONS MSN has potential to serve as a sensitive biomarker to detect RT-related brain injury. Inter-brain regional and inter-patient variability of RT-related brain injuries may be attributed to the cortical expression of the CEP128 gene and the modulatory effects of the promoter variant rs17111237 in CEP128. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanqing Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Manxi Xu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Linquan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
9
|
Abdeen N. Editorial for "Modulation Effects of the CEP128 Gene on Radiotherapy-Related Brain Injury: A Longitudinal Structural Study Using Multi-Parametric Brain MR Images". J Magn Reson Imaging 2024; 59:659-660. [PMID: 37306467 DOI: 10.1002/jmri.28825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Nishard Abdeen
- Department of Medical Imaging, Childrens' Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Hou J, He Y, Li H, Ai Z, Lu Q, Zeng B, Xie C, Yu X. Evolution of radiation-induced temporal lobe injury after intensity-modulated radiation therapy in nasopharyngeal carcinoma: a large cohort retrospective study. Radiat Oncol 2024; 19:9. [PMID: 38243277 PMCID: PMC10797916 DOI: 10.1186/s13014-024-02400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated conflicting findings regarding the initial MRI patterns of radiotherapy-induced temporal lobe injury (RTLI) and the evolution of different RTLI patterns. The aim of this study was to evaluate the initial MRI pattern and evolution of RTLI in patients with nasopharyngeal carcinoma (NPC) by means of a large cohort study. METHODS Data of patients with RTLI were retrospectively collected from two hospitals between January 2011 and December 2021. The injured lobes were categorized into three patterns based on initial MRI patterns: isolated white matter lesions (WMLs), isolated contrast-enhanced lesions (CELs), and combined WMLs and CELs. The latency period, MRI appearances, and temporal changes in WMLs and CELs were evaluated. RESULTS A total of 913 RTLI patients with 1092 injured lobes were included in this study. The numbers of isolated WMLs, isolated CELs, and combined WMLs and CELs identified at the first MRI detection were 7 (0.6%), 172 (15.8%), and 913 (83.6%), respectively. The evolution of bilateral RTLI was different in the same patient, and that of unilateral RTLI combined with WMLs and CELs also may occur asynchronously. The time intervals from the initial MRI detection of isolated WMLs, isolated CELs, combined WMLs and CELs to the last negative MRI scan were 8.6, 8.9 and 11.0 months, respectively. A significant difference was observed in the time intervals between the three patterns (H = 14.287, P = 0.001). And the time interval was identified as an independent factor influencing the initial MRI pattern of RTLI after Poisson regression (P = 0.002). CONCLUSION Both WMLs and CELs could be the initial and only MRI abnormalities in patients with RTLI. This study is of great significance in accurately diagnosing RTLI early and providing timely treatment options. Additionally, it provides clinical evidence for guidelines on NPC, emphasizing the importance of regular follow-up of NPC patients.
Collapse
Affiliation(s)
- Jing Hou
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yun He
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Handong Li
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Zhaodong Ai
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Qiang Lu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Biao Zeng
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Chuanmiao Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Xiaoping Yu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
11
|
He YQ, Wang TM, Yang DW, Xue WQ, Deng CM, Li DH, Zhang WL, Liao Y, Xiao RW, Luo LT, Diao H, Tong XT, Wu YX, Chen XY, Zhang JB, Zhou T, Li XZ, Zhang PF, Zheng XH, Zhang SD, Hu YZ, Zhou GQ, Ma J, Sun Y, Jia WH. A comprehensive predictive model for radiation-induced brain injury in risk stratification and personalized radiotherapy of nasopharyngeal carcinoma. Radiother Oncol 2024; 190:109974. [PMID: 37913956 DOI: 10.1016/j.radonc.2023.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE Radiation-induced brain injury (RBI) is a severe radiotoxicity for nasopharyngeal carcinoma (NPC) patients, greatly affecting their long-term life quality and survival. We aim to establish a comprehensive predictive model including clinical factors and newly developed genetic variants to improve the precision of RBI risk stratification. MATERIALS AND METHODS By performing a large registry-based retrospective study with magnetic resonance imaging follow-up on RBI development, we conducted a genome-wide association study and developed a polygenic risk score (PRS) for RBI in 1189 NPC patients who underwent intensity-modulated radiotherapy. We proposed a tolerance dose scheme for temporal lobe radiation based on the risk predicted by PRS. Additionally, we established a nomogram by combining PRS and clinical factors for RBI risk prediction. RESULTS The 38-SNP PRS could effectively identify high-risk individuals of RBI (P = 1.42 × 10-34). Based on genetic risk calculation, the recommended tolerance doses of temporal lobes should be 57.6 Gy for individuals in the top 10 % PRS subgroup and 68.1 Gy for individuals in the bottom 50 % PRS. Notably, individuals with high genetic risk (PRS > P50) and receiving high radiation dose in the temporal lobes (D0.5CC > 65 Gy) had an approximate 50-fold risk over individuals with low PRS and receiving low radiation dose (HR = 50.09, 95 %CI = 24.27-103.35), showing an additive joint effect (Pinteraction < 0.001). By combining PRS with clinical factors including age, tumor stage, and radiation dose of temporal lobes, the predictive accuracy was significantly improved with C-index increased from 0.78 to 0.85 (P = 1.63 × 10-2). CONCLUSIONS The PRS, together with clinical factors, could improve RBI risk stratification and implies personalized radiotherapy.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lu-Ting Luo
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua Diao
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xia-Ting Tong
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xue-Yin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China; School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Lin X, Guo Z, Lin S, Qiu Y. Transcriptional expression of radiation-induced early cortical morphological alterations and its association with radiation necrosis in patients with nasopharyngeal carcinoma. Radiother Oncol 2023; 186:109770. [PMID: 37385380 DOI: 10.1016/j.radonc.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE To explore the effects of standard radiotherapy on cortical morphology and its potential transcriptional expression, and to determine the predictive power of cortical morphological measurement at the early stage for radiation necrosis (RN) occurrence within 3 years post-radiotherapy in patients with nasopharyngeal carcinoma (NPC). METHODS 185 NPC patients participated. Pre-treatment and post-radiotherapy (1-3 months) structural MRI were collected longitudinally and prospectively. Multiple cortical morphological indices were compared between pre-treatment and post-radiotherapy. Brain-wide gene expression was used to assess the transcriptional profiles associated with radiation-induced cortical morphological changes. Machine learning was used to construct predictive models for RN with cortical morphological alterations at the early stage. RESULTS Relative to pre-treatment, NPC patients exhibited a widespread reduction in cortical volume (CV) and cortical thickness (CT) post-radiotherapy (p < 0.001). Partial least squares regression analysis revealed that radiotherapy-related cortical atrophy was closely related to transcriptional profiles (p < 0.001), with the most correlated genes enriched in ATPase Na+/K+ transporting alpha-1 and alpha-3 polypeptide and respiratory electron transport chain. Furthermore, models constructed with cortical morphological features at 1-3 months post-radiotherapy had favorable predictive power for RN occurrence in NPC patients within 3-year follow-up, the area under the curve was 0.854 and 0.843 for CV and CT, respectively. CONCLUSIONS NPC patients exhibited widespread cortical atrophy at 1-3 months post-radiotherapy, which was closely correlated with dysfunction of the ATPase Na+/K+ transporting alpha-1 and alpha-3 polypeptide and respiratory electron transport chain. Cortical morphology at 1-3 months post-radiotherapy may serve as an early biomarker for identifying RN.
Collapse
Affiliation(s)
- Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, 89 Taoyuan road, Nanshan district, Shenzhen 518052, China
| | - Zheng Guo
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, 89 Taoyuan road, Nanshan district, Shenzhen 518052, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, 89 Taoyuan road, Nanshan district, Shenzhen 518052, China.
| |
Collapse
|
13
|
Kerns SL, Hall WA, Marples B, West CML. Normal Tissue Toxicity Prediction: Clinical Translation on the Horizon. Semin Radiat Oncol 2023; 33:307-316. [PMID: 37331785 DOI: 10.1016/j.semradonc.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Improvements in radiotherapy delivery have enabled higher therapeutic doses and improved efficacy, contributing to the growing number of long-term cancer survivors. These survivors are at risk of developing late toxicity from radiotherapy, and the inability to predict who is most susceptible results in substantial impact on quality of life and limits further curative dose escalation. A predictive assay or algorithm for normal tissue radiosensitivity would allow more personalized treatment planning, reducing the burden of late toxicity, and improving the therapeutic index. Progress over the last 10 years has shown that the etiology of late clinical radiotoxicity is multifactorial and informs development of predictive models that combine information on treatment (eg, dose, adjuvant treatment), demographic and health behaviors (eg, smoking, age), co-morbidities (eg, diabetes, collagen vascular disease), and biology (eg, genetics, ex vivo functional assays). AI has emerged as a useful tool and is facilitating extraction of signal from large datasets and development of high-level multivariable models. Some models are progressing to evaluation in clinical trials, and we anticipate adoption of these into the clinical workflow in the coming years. Information on predicted risk of toxicity could prompt modification of radiotherapy delivery (eg, use of protons, altered dose and/or fractionation, reduced volume) or, in rare instances of very high predicted risk, avoidance of radiotherapy. Risk information can also be used to assist treatment decision-making for cancers where efficacy of radiotherapy is equivalent to other treatments (eg, low-risk prostate cancer) and can be used to guide follow-up screening in instances where radiotherapy is still the best choice to maximize tumor control probability. Here, we review promising predictive assays for clinical radiotoxicity and highlight studies that are progressing to develop an evidence base for clinical utility.
Collapse
Affiliation(s)
- Sarah L Kerns
- Department of Radiation Oncology, the Medical College of Wisconsin, Milwaukee, WI.
| | - William A Hall
- Department of Radiation Oncology, the Medical College of Wisconsin, Milwaukee, WI
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY
| | - Catharine M L West
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| |
Collapse
|
14
|
Phuong C, Qiu B, Mueller S, Braunstein SE. Precision based approach to tailoring radiotherapy in the multidisciplinary management of pediatric central nervous system tumors. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:141-149. [PMID: 39035723 PMCID: PMC11256719 DOI: 10.1016/j.jncc.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Modern day survivorship from childhood malignancies is estimated to be over 80%. However, central nervous system tumors remain the leading cause of cancer mortality in children and is the most common solid tumor in this population. Improved survivorship is, in part, a result of improved multidisciplinary care, often with a combination of surgery, radiation therapy, and systemic therapy. With improved survival, long term effects of treatment and quality of life impacts have been recognized and pose a challenge to maximize the therapeutic ratio of treatment. It has been increasingly more apparent that precise risk stratification, such as with the inclusion of molecular classification, is instrumental in efforts to tailor radiotherapy for appropriate treatment, generally towards de-intensification for this vulnerable patient population. In addition, advances in radiotherapy techniques have allowed greater conformality and accuracy of treatment for those who do require radiotherapy for tumor control. Ongoing efforts to tailor radiotherapy, including de-escalation, omission, or intensification of radiotherapy, continue to improve as increasing insight into tumor heterogeneity is recognized, coupled with advances in precision medicine employing novel molecularly-targeted therapeutics.
Collapse
Affiliation(s)
- Christina Phuong
- Department of Radiation Oncology, University of California, San Francisco, United States of America
| | - Bo Qiu
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, United States of America
| | - Sabine Mueller
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, United States of America
- Department of Neurology and Neurosurgery, University of California, San Francisco, United States of America
| | - Steve E. Braunstein
- Department of Radiation Oncology, University of California, San Francisco, United States of America
| |
Collapse
|
15
|
He YQ, Luo LT, Wang TM, Xue WQ, Yang DW, Li DH, Diao H, Xiao RW, Deng CM, Zhang WL, Liao Y, Wu YX, Wang QL, Zhou T, Li XZ, Zheng XH, Zhang PF, Zhang SD, Hu YZ, Sun Y, Jia WH. Clinical and genome-wide association analysis of chemoradiation-induced hearing loss in nasopharyngeal carcinoma. Hum Genet 2023; 142:759-772. [PMID: 37062025 PMCID: PMC10182145 DOI: 10.1007/s00439-023-02554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Chemoradiation-induced hearing loss (CRIHL) is one of the most devasting side effects for nasopharyngeal carcinoma (NPC) patients, which seriously affects survivors' long-term quality of life. However, few studies have comprehensively characterized the risk factors for CRIHL. In this study, we found that age at diagnosis, tumor stage, and concurrent cisplatin dose were positively associated with chemoradiation-induced hearing loss. We performed a genome-wide association study (GWAS) in 777 NPC patients and identified rs1050851 (within the exon 2 of NFKBIA), a variant with a high deleteriousness score, to be significantly associated with hearing loss risk (HR = 5.46, 95% CI 2.93-10.18, P = 9.51 × 10-08). The risk genotype of rs1050851 was associated with higher NFKBIA expression, which was correlated with lower cellular tolerance to cisplatin. According to permutation-based enrichment analysis, the variants mapping to 149 hereditary deafness genes were significantly enriched among GWAS top signals, which indicated the genetic similarity between hereditary deafness and CRIHL. Pathway analysis suggested that synaptic signaling was involved in the development of CRIHL. Additionally, the risk score integrating genetic and clinical factors can predict the risk of hearing loss with a relatively good performance in the test set. Collectively, this study shed new light on the etiology of chemoradiation-induced hearing loss, which facilitates high-risk individuals' identification for personalized prevention and treatment.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Lu-Ting Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Hua Diao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Qiao-Ling Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China.
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
16
|
Yang SS, OuYang PY, Guo JG, Cai JJ, Zhang J, Peng QH, He Y, Zhang BY, Liu ZQ, Hu XF, Chen YF, Chen CY, Xie FY. Dosiomics Risk Model for Predicting Radiation Induced Temporal Lobe Injury and Guiding Individual Intensity-Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 115:1291-1300. [PMID: 36462689 DOI: 10.1016/j.ijrobp.2022.11.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE We aimed to assess the value of dose distribution-based dosiomics and planning computed tomography-based radiomics to predict radiation-induced temporal lobe injury (TLI) and guide individualized intensity modulated radiation therapy. METHODS AND MATERIALS A total of 5599 nasopharyngeal carcinoma patients were enrolled, including 2503, 1072, 988, and 1036 patients in the training, validation, prospective test, and external test cohorts, respectively. The concordance index (C-index) was used to compare the performance of the radiomics and dosiomics models with that of the quantitative analyses of normal tissue effects in the clinic and Wen's models. The predicted TLI-free survival rates of redesigned simulated plans with the same dose-volume histogram but different dose distributions for same patient in a cohort of 30 randomly selected patients were compared by the Wilcoxon matched-pairs signed-rank test. RESULTS The radiomics and dosiomics signatures were constructed based on 30 selected computed tomography features and 10 selected dose distribution features, respectively, which were important predictors of TLI-free survival (all P <.001). However, the radiomics signature had a low C-index. The dosiomics risk model combining the dosiomics signature, D1cc, and age had favorable performance, with C-index values of 0.776, 0.811, 0.805, and 0.794 in the training, validation, prospective test, and external test cohorts, respectively, which were better than those of the quantitative analyses of normal tissue effects in the clinic model and Wen's model (all P <.001). The dosiomics risk model can further distinguish patients in a same risk category divided by other models (all P <.05). Conversely, the other models were unable to separate populations classified by the dosiomics risk model (all P > .05). Two simulated plans with the same dose-volume histogram but different dose distributions had different TLI-free survival rates predicted by dosiomics risk model (all P ≤ .002). CONCLUSIONS The dosiomics risk model was superior to traditional models in predicting the risk of TLI. This is a promising approach to precisely predict radiation-induced toxicities and guide individualized intensity modulated radiation therapy.
Collapse
Affiliation(s)
- Shan-Shan Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou, China; Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Pu-Yun OuYang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou, China
| | - Jian-Gui Guo
- Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, China
| | - Jia-Jun Cai
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jun Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou, China
| | - Qing-He Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou, China
| | - Yun He
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Bao-Yu Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou, China
| | - Zhi-Qiao Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou, China
| | - Xue-Feng Hu
- Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, China
| | - Yan-Feng Chen
- Department of Head and Neck, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Chun-Yan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou, China
| | - Fang-Yun Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou, China.
| |
Collapse
|
17
|
OuYang PY, Zhang BY, Guo JG, Liu JN, Li J, Peng QH, Yang SS, He Y, Liu ZQ, Zhao YN, Li A, Wu YS, Hu XF, Chen C, Han F, You KY, Xie FY. Deep learning-based precise prediction and early detection of radiation-induced temporal lobe injury for nasopharyngeal carcinoma. EClinicalMedicine 2023; 58:101930. [PMID: 37090437 PMCID: PMC10114519 DOI: 10.1016/j.eclinm.2023.101930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Background Radiotherapy is the mainstay of treatment for nasopharyngeal carcinoma. Radiation-induced temporal lobe injury (TLI) can regress or resolve in the early phase, but it is irreversible at a later stage. However, no study has proposed a risk-based follow-up schedule for its early detection. Planning evaluation is difficult when dose-volume histogram (DVH) parameters are similar and optimization is terminated. Methods This multicenter retrospective study included 6065 patients between 2014 and 2018. A 3D ResNet-based deep learning model was developed in training and validation cohorts and independently tested using concordance index in internal and external test cohorts. Accordingly, the patients were stratified into risk groups, and the model-predicted risks were used to develop risk-based follow-up schedules. The schedule was compared with the Radiation Therapy Oncology Group (RTOG) recommendation (every 3 months during the first 2 years and every 6 months in 3-5 years). Additionally, the model was used to evaluate plans with similar DVH parameters. Findings Our model achieved concordance indexes of 0.831, 0.818, and 0.804, respectively, which outperformed conventional prediction models (all P < 0.001). The temporal lobes in all the cohorts were stratified into three groups with discrepant TLI-free survival. Personalized follow-up schedules developed for each risk group could detect TLI 1.9 months earlier than the RTOG recommendation. According to a higher median predicted 3-year TLI-free survival (99.25% vs. 99.15%, P < 0.001), the model identified a better plan than previous models. Interpretation The deep learning model predicted TLI more precisely. The model-determined risk-based follow-up schedule detected the TLI earlier. The planning evaluation was refined because the model identified a better plan with a lower risk of TLI. Funding The Sun Yat-sen University Clinical Research 5010 Program (2015020), Guangdong Basic and Applied Basic Research Foundation (2022A1515110356), Medical Scientific Research Foundation of Guangdong Province (A2022367), and Guangzhou Science and Technology Program (2023A04J1788).
Collapse
Affiliation(s)
- Pu-Yun OuYang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Bao-Yu Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jian-Gui Guo
- Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jia-Ni Liu
- Department of Head and Neck Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiajian Li
- CVTE Research, Guangzhou, Guangdong, China
| | - Qing-He Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Shan-Shan Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yun He
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Zhi-Qiao Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Ya-Nan Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Anwei Li
- CVTE Research, Guangzhou, Guangdong, China
| | - Yi-Shan Wu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xue-Feng Hu
- Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Kai-Yun You
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang-Yun Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
- Corresponding author. Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
18
|
Huang L, Yang Z, Zeng Z, Ren H, Jiang M, Hu Y, Xu Y, Zhang H, Ma K, Long L. MRI-based radiomics models for the early prediction of radiation-induced temporal lobe injury in nasopharyngeal carcinoma. Front Neurol 2023; 14:1135978. [PMID: 37006478 PMCID: PMC10060957 DOI: 10.3389/fneur.2023.1135978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveThis study was conducted to develop and validate a radiomics-clinics combined model-based magnetic resonance imaging (MRI) radiomics and clinical features for the early prediction of radiation-induced temporal lobe injury (RTLI) in patients with nasopharyngeal carcinoma (NPC).MethodsThis retrospective study was conducted using data from 130 patients with NPC (80 patients with and 50 patients without RTLI) who received radiotherapy. Cases were assigned randomly to training (n = 91) and testing (n = 39) datasets. Data on 168 medial temporal lobe texture features were extracted from T1WI, T2WI, and T1WI-CE MRI sequences obtained at the end of radiotherapy courses. Clinics, radiomics, and radiomics–clinics combined models (based on selected radiomics signatures and clinical factors) were constructed using machine learning software. Univariate logistic regression analysis was performed to identify independent clinical factors. The area under the ROC curve (AUC) was performed to evaluate the performance of three models. A nomogram, decision curves, and calibration curves were used to assess the performance of the combined model.ResultsSix texture features and three independent clinical factors associated significantly with RTLI were used to build the combined model. The AUCs for the combined and radiomics models were 0.962 [95% confidence interval (CI), 0.9306–0.9939] and 0.904 (95% CI, 0.8431–0.9651), respectively, for the training cohort and 0.947 (95% CI, 0.8841–1.0000) and 0.891 (95% CI, 0.7903–0.9930), respectively, for the testing cohort. All of these values exceeded those for the clinics model (AUC = 0.809 and 0.713 for the training and testing cohorts, respectively). Decision curve analysis showed that the combined model had a good corrective effect.ConclusionThe radiomics–clinics combined model developed in this study showed good performance for predicting RTLI in patients with NPC.
Collapse
Affiliation(s)
- Lixuan Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zongxiang Yang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Ren
- Department of Radiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Muliang Jiang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yao Hu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yifan Xu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Kun Ma
- CT Imaging Research Center, GE Healthcare China, Guangzhou, China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
- *Correspondence: Liling Long
| |
Collapse
|
19
|
Cheng J, Jiang J, He B, Lin WJ, Li Y, Duan J, Li H, Huang X, Cai J, Xie J, Zhang Z, Yang Y, Xu Y, Hu X, Wu M, Zhuo X, Liu Q, Shi Z, Yu P, Rong X, Ye X, Saw PE, Wu LJ, Simone CB, Chua MLK, Mai HQ, Tang Y. A phase 2 study of thalidomide for the treatment of radiation-induced blood-brain barrier injury. Sci Transl Med 2023; 15:eabm6543. [PMID: 36812346 DOI: 10.1126/scitranslmed.abm6543] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Radiation-induced brain injury (RIBI) is a debilitating sequela after radiotherapy to treat head and neck cancer, and 20 to 30% of patients with RIBI fail to respond to or have contraindications to the first-line treatments of bevacizumab and corticosteroids. Here, we reported a Simon's minmax two-stage, single-arm, phase 2 clinical trial (NCT03208413) to assess the efficacy of thalidomide in patients with RIBI who were unresponsive to or had contraindications to bevacizumab and corticosteroid therapies. The trial met its primary endpoint, with 27 of 58 patients enrolled showing ≥25% reduction in the volume of cerebral edema on fluid-attenuated inversion recovery-magnetic resonance imaging (FLAIR-MRI) after treatment (overall response rate, 46.6%; 95% CI, 33.3 to 60.1%). Twenty-five (43.1%) patients demonstrated a clinical improvement based on the Late Effects Normal Tissues-Subjective, Objective, Management, Analytic (LENT/SOMA) scale, and 36 (62.1%) experienced cognitive improvement based on the Montreal Cognitive Assessment (MoCA) scores. In a mouse model of RIBI, thalidomide restored the blood-brain barrier and cerebral perfusion, which were attributed to the functional rescue of pericytes secondary to elevation of platelet-derived growth factor receptor β (PDGFRβ) expression by thalidomide. Our data thus demonstrate the therapeutic potential of thalidomide for the treatment of radiation-induced cerebral vasculature impairment.
Collapse
Affiliation(s)
- Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baixuan He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaolong Huang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhan Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xia Hu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Minyi Wu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaohuang Zhuo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Pei Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA
| | - Melvin L K Chua
- Department of Head and Neck and Thoracic Cancers, Division of Radiation Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore.,Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| |
Collapse
|
20
|
Aguado-Barrera ME, Sosa-Fajardo P, Gómez-Caamaño A, Taboada-Valladares B, Couñago F, López-Guerra JL, Vega A. Radiogenomics in lung cancer: Where are we? Lung Cancer 2023; 176:56-74. [PMID: 36621035 DOI: 10.1016/j.lungcan.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Huge technological and biomedical advances have improved the survival and quality of life of lung cancer patients treated with radiotherapy. However, during treatment planning, a probability that the patient will experience adverse effects is assumed. Radiotoxicity is a complex entity that is largely dose-dependent but also has important intrinsic factors. One of the most studied is the genetic variants that may be associated with susceptibility to the development of adverse effects of radiotherapy. This review aims to present the current status of radiogenomics in lung cancer, integrating results obtained in association studies of SNPs (single nucleotide polymorphisms) related to radiotherapy toxicities. We conclude that despite numerous publications in this field, methodologies and endpoints vary greatly, making comparisons between studies difficult. Analyzing SNPs from the candidate gene approach, together with the study in cohorts limited by the sample size, has complicated the possibility of having validated results. All this delays the incorporation of genetic biomarkers in predictive models for clinical application. Thus, from all analysed SNPs, only 12 have great potential as esophagitis genetic risk factors and deserve further exploration. This review highlights the efforts that have been made to date in the radiogenomic study of radiotoxicity in lung cancer.
Collapse
Affiliation(s)
- Miguel E Aguado-Barrera
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain
| | - Paloma Sosa-Fajardo
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain
| | - Antonio Gómez-Caamaño
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Begoña Taboada-Valladares
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, C. del Maestro Ángel Llorca 8, 28003, Madrid, Spain
| | - José Luis López-Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), C. Antonio Maura Montaner s/n, 41013, Seville, Spain
| | - Ana Vega
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain; Biomedical Network on Rare Diseases (CIBERER), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
21
|
Yu LL, Hu BW, Huang HX, Yu B, Xiao Q, Lv QL, Luo CH, Guo CX, Li JG, Xie XX, Yin JY. A two-stage genome-wide association study identifies novel germline genetic variations in CACNA2D3 associated with radiotherapy response in nasopharyngeal carcinoma. J Transl Med 2023; 21:11. [PMID: 36624463 PMCID: PMC9830790 DOI: 10.1186/s12967-022-03819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/11/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Radiotherapy (RT) is the standard treatment for nasopharyngeal carcinoma (NPC). However, due to individual differences in radiosensitivity, biomarkers are needed to tailored radiotherapy to cancer patients. However, comprehensive genome-wide radiogenomic studies on them are still lacking. The aim of this study was to identify genetic variants associated with radiotherapy response in patients with NPC. METHODS This was a large‑scale genome-wide association analysis (GWAS) including a total of 981 patients. 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant loci were further genotyped using MassARRAY system and TaqMan SNP assays in the validation stages of 847 patients. This study used logistic regression analysis and multiple bioinformatics tools such as PLINK, LocusZoom, LDBlockShow, GTEx, Pancan-meQTL and FUMA to examine genetic variants associated with radiotherapy efficacy in NPC. RESULTS After genome-wide level analysis, 19 SNPs entered the validation stage (P < 1 × 10- 6), and rs11130424 ultimately showed statistical significance among these SNPs. The efficacy was better in minor allele carriers of rs11130424 than in major allele carriers. Further stratified analysis showed that the association existed in patients in the EBV-positive, smoking, and late-stage (III and IV) subgroups and in patients who underwent both concurrent chemoradiotherapy and induction/adjuvant chemotherapy. CONCLUSION Our study showed that rs11130424 in the CACNA2D3 gene was associated with sensitivity to radiotherapy in NPC patients. TRIAL REGISTRATION NUMBER Effect of genetic polymorphism on nasopharyngeal carcinoma chemoradiotherapy reaction, ChiCTR-OPC-14005257, Registered 18 September 2014, http://www.chictr.org.cn/showproj.aspx?proj=9546 .
Collapse
Affiliation(s)
- Lu-Lu Yu
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078 Changsha, People’s Republic of China ,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078 People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Bi-Wen Hu
- grid.216417.70000 0001 0379 7164Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan People’s Republic of China
| | - Han-Xue Huang
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078 Changsha, People’s Republic of China ,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078 People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Bing Yu
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078 Changsha, People’s Republic of China ,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078 People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Qi Xiao
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078 Changsha, People’s Republic of China ,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078 People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Qiao-Li Lv
- grid.452533.60000 0004 1763 3891Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 People’s Republic of China ,grid.452533.60000 0004 1763 3891National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 People’s Republic of China
| | - Chen-Hui Luo
- grid.216417.70000 0001 0379 7164Scientific Research Office, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Cheng-Xian Guo
- grid.216417.70000 0001 0379 7164Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan People’s Republic of China
| | - Jin-Gao Li
- grid.452533.60000 0004 1763 3891Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 People’s Republic of China ,grid.452533.60000 0004 1763 3891National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 People’s Republic of China
| | - Xiao-Xue Xie
- grid.216417.70000 0001 0379 7164Department of Radiotherapy, Hunan Provincial Tumor Hospital and Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013 People’s Republic of China ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Hunan Cancer Hospital, Affiliated Hospital of Xiangya Medical School, Central South University, Changsha, 410013 People’s Republic of China
| | - Ji-Ye Yin
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078 Changsha, People’s Republic of China ,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078 People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
22
|
Bin X, Zhu C, Tang Y, Li R, Ding Q, Xia W, Tang Y, Tang X, Yao D, Tang A. Nomogram Based on Clinical and Radiomics Data for Predicting Radiation-induced Temporal Lobe Injury in Patients with Non-metastatic Stage T4 Nasopharyngeal Carcinoma. Clin Oncol (R Coll Radiol) 2022; 34:e482-e492. [PMID: 36008245 DOI: 10.1016/j.clon.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 01/31/2023]
Abstract
AIMS To use pre-treatment magnetic resonance imaging-based radiomics data with clinical data to predict radiation-induced temporal lobe injury (RTLI) in nasopharyngeal carcinoma (NPC) patients with stage T4/N0-3/M0 within 5 years after radiotherapy. MATERIALS AND METHODS This study retrospectively examined 98 patients (198 temporal lobes) with stage T4/N0-3/M0 NPC. Participants were enrolled into a training cohort or a validation cohort in a ratio of 7:3. Radiomics features were extracted from pre-treatment magnetic resonance imaging that were T1-and T2-weighted. Spearman rank correlation, the t-test and the least absolute shrinkage and selection operator (LASSO) algorithm were used to select significant radiomics features; machine-learning models were used to generate radiomics signatures (Rad-Scores). Rad-Scores and clinical factors were integrated into a nomogram for prediction of RTLI. Nomogram discrimination was evaluated using receiver operating characteristic analysis and clinical benefits were evaluated using decision curve analysis. RESULTS Participants were enrolled into a training cohort (n = 139) or a validation cohort (n = 59). In total, 3568 radiomics features were initially extracted from T1-and T2-weighted images. Age, Dmax, D1cc and 16 stable radiomics features (six from T1-weighted and 10 from T2-weighted images) were identified as independent predictive factors. A greater Rad-Score was associated with a greater risk of RTLI. The nomogram showed good discrimination, with a C-index of 0.85 (95% confidence interval 0.79-0.92) in the training cohort and 0.82 (95% confidence interval 0.71-0.92) in the validation cohort. CONCLUSION We developed models for the prediction of RTLI in patients with stage T4/N0-3/M0 NPC using pre-treatment radiomics data and clinical data. Nomograms from these pre-treatment data improved the prediction of RTLI. These results may allow the selection of patients for earlier clinical interventions.
Collapse
Affiliation(s)
- X Bin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - C Zhu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Y Tang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - R Li
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University Hangzhou, Zhejiang Province, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Q Ding
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - W Xia
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Y Tang
- Department of Radiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - X Tang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - D Yao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - A Tang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
23
|
Wu MY, Zou WJ, Yu P, Yang Y, Li SJ, Liu Q, Xie J, Chen SQ, Lin WJ, Tang Y. Cranial irradiation impairs intrinsic excitability and synaptic plasticity of hippocampal CA1 pyramidal neurons with implications for cognitive function. Neural Regen Res 2022; 17:2253-2259. [PMID: 35259846 PMCID: PMC9083168 DOI: 10.4103/1673-5374.336875] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Radiation therapy is a standard treatment for head and neck tumors. However, patients often exhibit cognitive impairments following radiation therapy. Previous studies have revealed that hippocampal dysfunction, specifically abnormal hippocampal neurogenesis or neuroinflammation, plays a key role in radiation-induced cognitive impairment. However, the long-term effects of radiation with respect to the electrophysiological adaptation of hippocampal neurons remain poorly characterized. We found that mice exhibited cognitive impairment 3 months after undergoing 10 minutes of cranial irradiation at a dose rate of 3 Gy/min. Furthermore, we observed a remarkable reduction in spike firing and excitatory synaptic input, as well as greatly enhanced inhibitory inputs, in hippocampal CA1 pyramidal neurons. Corresponding to the electrophysiological adaptation, we found reduced expression of synaptic plasticity marker VGLUT1 and increased expression of VGAT. Furthermore, in irradiated mice, long-term potentiation in the hippocampus was weakened and GluR1 expression was inhibited. These findings suggest that radiation can impair intrinsic excitability and synaptic plasticity in hippocampal CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Min-Yi Wu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen-Jun Zou
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Pei Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shao-Jian Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si-Qi Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine; Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
24
|
Vasilyev SA, Savchenko RR, Belenko AA, Skryabin NA, Sleptsov AA, Fishman VS, Murashkina AA, Gribova OV, Startseva ZA, Sukhikh ES, Vertinskiy AV, Sukhikh LG, Serov OL, Lebedev IN. ADAMTS1 Is Differentially Expressed in Human Lymphocytes with Various Frequencies of Endogenous γH2AX Foci and Radiation-Induced Micronuclei. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542210012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Wang Y, Xiao F, Zhao Y, Mao CX, Yu LL, Wang LY, Xiao Q, Liu R, Li X, McLeod HL, Hu BW, Huang YL, Lv QL, Xie XX, Huang WH, Zhang W, Guo CX, Li JG, Yin JY. A two-stage genome-wide association study to identify novel genetic loci associated with acute radiotherapy toxicity in nasopharyngeal carcinoma. Mol Cancer 2022; 21:169. [PMID: 35999636 PMCID: PMC9400233 DOI: 10.1186/s12943-022-01631-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Genetic variants associated with acute side effects of radiotherapy in nasopharyngeal carcinoma (NPC) remain largely unknown. Methods We performed a two-stage genome-wide association analysis including a total of 1084 patients, where 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant variants were then validated in an independent cohort of 765 patients using the MassARRAY system. Gene mapping, linkage disequilibrium, genome-wide association analysis, and polygenic risk score were conducted or calculated using FUMA, LDBlockShow, PLINK, and PRSice software programs, respectively. Results Five SNPs (rs6711678, rs4848597, rs4848598, rs2091255, and rs584547) showed statistical significance after validation. Radiotherapy toxicity was more serious in mutant minor allele carriers of all five SNPs. Stratified analysis further indicated that rs6711678, rs4848597, rs4848598, and rs2091255 correlated with skin toxicity in patients of EBV positive, late stage (III and IV), receiving both concurrent chemoradiotherapy and induction/adjuvant chemotherapy, and with OR values ranging from 1.92 to 2.66. For rs584547, high occurrence of dysphagia was found in A allele carriers in both the discovery (P = 1.27 × 10− 6, OR = 1.55) and validation (P = 0.002, OR = 4.20) cohorts. Furthermore, prediction models integrating both genetic and clinical factors for skin reaction and dysphagia were established. The area under curve (AUC) value of receiver operating characteristic (ROC) curves were 0.657 (skin reaction) and 0.788 (dysphagia). Conclusions Rs6711678, rs4848597, rs4848598, and rs2091255 on chromosome 2q14.2 and rs584547 were found to be novel risk loci for skin toxicity and dysphagia in NPC patients receiving radiotherapy. Trial registration Chinese Clinical Trial Register (registration number: ChiCTR-OPC-14005257 and CTXY-140007-2). Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01631-8.
Collapse
Affiliation(s)
- Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Fan Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Yi Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.,Department of General Practice, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P.R. China
| | - Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Lu-Lu Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.,Geriatric Oncology Consortium, Tampa, FL, 33612, USA.,USF Taneja College of Pharmacy, Tampa, FL, 33612, USA
| | - Bi-Wen Hu
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, P. R. China
| | - Yu-Ling Huang
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, P.R. China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, 330029, P.R. China
| | - Qiao-Li Lv
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, P.R. China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, 330029, P.R. China
| | - Xiao-Xue Xie
- Departent of Radiotherapy, Hunan Provincial Tumor Hospital and Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, P.R. China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, P. R. China.
| | - Jin-Gao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, P.R. China. .,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, 330029, P.R. China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, P. R. China.
| |
Collapse
|
26
|
Reyes-González J, Barajas-Olmos F, García-Ortiz H, Magraner-Pardo L, Pons T, Moreno S, Aguirre-Cruz L, Reyes-Abrahantes A, Martínez-Hernández A, Contreras-Cubas C, Barrios-Payan J, Ruiz-Garcia H, Hernandez-Pando R, Quiñones-Hinojosa A, Orozco L, Abrahantes-Pérez MDC. Brain radiotoxicity-related 15CAcBRT gene expression signature predicts survival prognosis of glioblastoma patients. Neuro Oncol 2022; 25:303-314. [PMID: 35802478 PMCID: PMC9925695 DOI: 10.1093/neuonc/noac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common and devastating primary brain cancer. Radiotherapy is standard of care; however, it is associated with brain radiation toxicity (BRT). This study used a multi-omics approach to determine whether BRT-related genes (RGs) harbor survival prognostic value and whether their encoded proteins represent novel therapeutic targets for glioblastoma. METHODS RGs were identified through analysis of single-nucleotide variants associated with BRT (R-SNVs). Functional relationships between RGs were established using Protein-Protein Interaction networks. The influence of RGs and their functional groups on glioblastoma prognosis was evaluated using clinical samples from the Glioblastoma Bio-Discovery Portal database and validated using the Chinese Glioma Genome Atlas dataset. The identification of clusters of radiotoxic and putative pathogenic variants in proteins encoded by RGs was achieved by computational 3D structural analysis. RESULTS We identified the BRT-related 15CAcBRT molecular signature with prognostic value in glioblastoma, by analysis of the COMT and APOE protein functional groups. Its external validation confirmed clinical relevance independent of age, MGMT promoter methylation status, and IDH mutation status. Interestingly, the genes IL6, APOE, and MAOB documented significant gene expression levels alteration, useful for drug repositioning. Biological networks associated with 15CAcBRT signature involved pathways relevant to cancer and neurodegenerative diseases. Analysis of 3D clusters of radiotoxic and putative pathogenic variants in proteins coded by RGs unveiled potential novel therapeutic targets in neuro-oncology. CONCLUSIONS 15CAcBRT is a BRT-related molecular signature with prognostic significance for glioblastoma patients and represents a hub for drug repositioning and development of novel therapies.
Collapse
Affiliation(s)
| | | | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | | | - Tirso Pons
- Department of Immunology and Oncology, National Center for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Sergio Moreno
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery;Mexico City, Mexico
| | - Lucinda Aguirre-Cruz
- Neuroendocrinology Laboratory, National Institute of Neurology and Neurosurgery; Mexico City, Mexico
| | - Andy Reyes-Abrahantes
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Henry Ruiz-Garcia
- Department of Neurosurgery and Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, Florida,USA
| | - Rogelio Hernandez-Pando
- Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery and Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, Florida,USA
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - María del Carmen Abrahantes-Pérez
- Corresponding Author: María del Carmen Abrahantes-Pérez, PhD, Precision Translational Oncology Laboratory, National Institute of Genomic Medicine, Periférico Sur 4809, Tlalpan, Mexico City C.P. 14610, Mexico ()
| |
Collapse
|
27
|
Lin X, Li Z, Chen S, Yang Y, He H, Lv X, Qiu Y. Divergent white matter changes in patients with nasopharyngeal carcinoma post-radiotherapy with different outcomes: a potential biomarker for prediction of radiation necrosis. Eur Radiol 2022; 32:7036-7047. [PMID: 35687134 DOI: 10.1007/s00330-022-08907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the effects of standard radiotherapy on temporal white matter (WM) and its relationship with radiation necrosis (RN) in patients with nasopharyngeal carcinoma (NPC), and to determine the predictive value of WM volume alterations at the early stage for RN occurrence at the late-delay stage. METHODS Seventy-four treatment-naive NPC patients treated with standard radiotherapy were longitudinally followed up for 36 months. Structural MRIs were collected at multiple time points during the first year post-radiotherapy. Longitudinal structural images were processed using FreeSurfer. Linear mixed models were used to delineate divergent trajectories of temporal WM changes between patients who developed RN and who did not. Four machine learning methods were used to construct predictive models for RN with temporal WM volume alterations at early-stage. RESULTS The superior temporal gyrus (STG) had divergent atrophy trajectories in NPC patients with different outcomes (RN vs. NRN) post-radiotherapy. Patients with RN showed more rapid atrophy than those with NRN. A predictive model constructed with temporal WM volume alterations at early-stage post-radiotherapy had good performance for RN; the areas under the curve (AUC) were 0.879 and 0.806 at 1-3 months and 6 months post-radiotherapy, respectively. Moreover, the predictive model constructed with absolute temporal volume at 1-3 months post-radiotherapy also presented good performance; the AUC was 0.842, which was verified by another independent dataset (AUC = 0.773). CONCLUSIONS NPC patients with RN had more sharp atrophy in the STG than those with NRN. Temporal WM volume at early-stage post-radiotherapy may serve as an in vivo biomarker to identify and predict RN occurrence. KEY POINTS • The STG had divergent atrophy trajectories in NPC patients with different outcomes (RN vs. NRN) post-radiotherapy. • Although both groups exhibited time-dependent atrophy in the STG, the patients with RN showed a more rapid volume decrease than those with NRN. • Temporal WM volume alteration (or absolute volume) at the early stage could predict RN occurrence at the late-delay stage after radiotherapy.
Collapse
Affiliation(s)
- Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Zhipeng Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Yadi Yang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Haoqiang He
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
28
|
[Expert Consensus on the Treatment of Antiangiogenic Agents for Radiation Brain Necrosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:291-294. [PMID: 35570144 PMCID: PMC9127755 DOI: 10.3779/j.issn.1009-3419.2022.101.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vascular damage is followed by vascular endothelial growth factor (VEGF) expression at high levels, which is an important mechanism for cerebral radiation necrosis (CRN) development. Antiangiogenic agents (Bevacizumab) alleviates brain edema symptoms caused by CRN through inhibiting VEGF and acting on vascular tissue around the brain necrosis area. Many studies have confirmed that Bevacizumab effectively relieves symptoms caused by brain necrosis, improves patients' performance status and brain necrosis imaging. Considering that the efficacy of antiangiogenic therapy is mainly related to the duration of drug action, low-dose antiangiogenic agents can achieve favorable efficacy. Prevention is the best treatment. The occurrence of CRN is associated with tumor-related factors and treatment-related factors. By controlling these factors, CRN can be effectively prevented.
.
Collapse
|
29
|
Pan T, Li X, Zhao B, Zhang C, Rong X, Qin C, Wen G, Wu W, Wang H, Lu K, Zhou H, Peng Y. Radiotherapy-Related Neurologic Complications in Patients with Nasopharyngeal Carcinoma: A Multicenter Epidemiologic Study in Southern China. Cancer Epidemiol Biomarkers Prev 2022; 31:1119-1129. [PMID: 35391491 DOI: 10.1158/1055-9965.epi-21-0953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/16/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We aim at describing the incidence, potential predisposing factors, and progression of major radiotherapy-related neurologic complications (RRNC) in nasopharyngeal carcinoma (NPC)-endemic regions, especially southern China. METHODS We performed a multicenter longitudinal retrospective study with clinical follow-ups in 22,302 patients with post-radiotherapy NPC between January 2003 and June 2017 covering three major residential areas. Epidemiology, potential predisposing/protective factors, clinicopathologic progression, and survival conditions of each RRNC were separately recorded and analyzed on the basis of their related clinical, radiologic, and laboratory parameters. RESULTS 949 new cases of RRNCs occurred among the 22,302 patients with post-radiotherapy NPC during 101,714 person years' follow-up, which is equal to an incidence density rate of 9.3 new cases per 1000 person year. Radiation-induced cranial nerve palsy showed the highest incidence (2.68%, 597/22,302) with the earliest onset (median latency, 4.45 years) as well. Patients benefited from intensity-modulated radiotherapy (IMRT) over conventional radiotherapy (CRT) in both overall survival (median survival 13.2 years for IMRT vs. 8.3 years for CRT) and RRNC-free survival (except for epilepsy and cranial nerve palsy). Causes of death varied substantially between patients with or without RRNCs. CONCLUSIONS Our study indicates a non-negligible incidence of RRNC spectrum in southern China in the past ten years. IMRT is one of the most significant protectors against development and progression of RRNCs. IMPACT Our findings support the hypothesis that patients with NPC with preexisting predispositions would receive long-term benefits from IMRT and other dose-related modulations (like hyperfractionation and dose conformation).
Collapse
Affiliation(s)
- Tong Pan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiangping Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Zhao
- Department of Neurology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Chengguo Zhang
- Department of Neurology, First People's Hospital of Foshan City, Foshan, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Qin
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Guoqiang Wen
- Department of Neurology, Hainan General Hospital, Hainan, China
| | - Wenjun Wu
- Department of Neurology, the People's Hospital of Zhongshan City, Shanghai, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kui Lu
- Department of Neurology, the People's Hospital of Zhongshan City, Shanghai, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
30
|
Griko YV, Loftus DJ, Stolc V, Peletskaya E. Private Spaceflight: A New Landscape for Dealing with Medical Risk. LIFE SCIENCES IN SPACE RESEARCH 2022; 33:41-47. [PMID: 35491028 DOI: 10.1016/j.lssr.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
As NASA and other space agencies make plans to proceed with human exploration missions beyond low earth orbit (LEO), the private sector, including Space X, Virgin Galactic, Blue Origin, Space Adventures and others, echo these plans with initiatives of their own to send humans further into space. Development of more sub-orbital flight opportunities, orbital flight opportunities to LEO and even higher risk endeavors will certainly result in exposure to medical risks for an expanding and heterogeneous population of civilians. To date, a handful of "space tourists" have flown to the International Space Station (ISS), at their own expense, ushering in a new era in which anyone with reasonably good health and even those with physical disability may consider becoming space travelers. Indeed, medical and behavioral issues of healthy, professional astronauts, have not been problematic on short orbital flights. However, recent attempts to test the potential limitations in astronauts on extended duration orbital flights in preparation for future missions beyond LEO raise concern about individual differences in ability to tolerate the hazardous spaceflight environment. Given the rapid development of opportunities for non-professionals and the employees of private companies to travel into space, this is an appropriate time to consider the development of selection strategies for non-government space travelers, including the development of genomic and other modern tools to assess susceptibility to spaceflight risk.
Collapse
Affiliation(s)
- Yuri V Griko
- Division of Space Biosciences, NASA Ames Research Center, Moffett Field, CA, 94035.
| | - David J Loftus
- Division of Space Biosciences, NASA Ames Research Center, Moffett Field, CA, 94035
| | - Viktor Stolc
- Division of Space Biosciences, NASA Ames Research Center, Moffett Field, CA, 94035
| | - Elena Peletskaya
- Analytical Development Department, Bristol-Myers Squibb, Seattle, WA
| |
Collapse
|
31
|
Schack LMH, Naderi E, Fachal L, Dorling L, Luccarini C, Dunning AM, Ong EHW, Chua MLK, Langendijk JA, Alizadeh BZ, Overgaard J, Eriksen JG, Andreassen CN, Alsner J. A genome-wide association study of radiotherapy induced toxicity in head and neck cancer patients identifies a susceptibility locus associated with mucositis. Br J Cancer 2022; 126:1082-1090. [PMID: 35039627 PMCID: PMC8980077 DOI: 10.1038/s41416-021-01670-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE A two-stage genome-wide association study was carried out in head and neck cancer (HNC) patients aiming to identify genetic variants associated with either specific radiotherapy-induced (RT) toxicity endpoints or a general proneness to develop toxicity after RT. MATERIALS AND METHODS The analysis included 1780 HNC patients treated with primary RT for laryngeal or oro/hypopharyngeal cancers. In a non-hypothesis-driven explorative discovery study, associations were tested in 1183 patients treated within The Danish Head and Neck Cancer Group. Significant associations were later tested in an independent Dutch cohort of 597 HNC patients and if replicated, summary data obtained from discovery and replication studies were meta-analysed. Further validation of significantly replicated findings was pursued in an Asian cohort of 235 HNC patients with nasopharynx as the primary tumour site. RESULTS We found and replicated a significant association between a locus on chromosome 5 and mucositis with a pooled OR for rs1131769*C in meta-analysis = 1.95 (95% CI 1.48-2.41; ppooled = 4.34 × 10-16). CONCLUSION This first exploratory GWAS in European cohorts of HNC patients identified and replicated a risk locus for mucositis. A larger Meta-GWAS to identify further risk variants for RT-induced toxicity in HNC patients is warranted.
Collapse
Affiliation(s)
- Line M H Schack
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Elnaz Naderi
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Enya H W Ong
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Melvin L K Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Johannes A Langendijk
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
| | - Behrooz Z Alizadeh
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Grau Eriksen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Nicolaj Andreassen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
He YQ, Zhou T, Yang DW, Jia YJ, Yuan LL, Zhang WL, Wang TM, Liao Y, Xue WQ, Zhang JB, Zheng XH, Li XZ, Zhang PF, Zhang SD, Hu YZ, Wang F, Cho WC, Ma J, Sun Y, Jia WH. Prognostic Value of Oral Epstein-Barr Virus DNA Load in Locoregionally Advanced Nasopharyngeal Carcinoma. Front Mol Biosci 2022; 8:757644. [PMID: 35096963 PMCID: PMC8793774 DOI: 10.3389/fmolb.2021.757644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Plasma Epstein-Barr virus (EBV) DNA load has been widely used for nasopharyngeal carcinoma (NPC) prognostic risk stratification. However, oral EBV DNA load, a non-invasive biomarker that reflects the EBV lytic replication activity, has not been evaluated for its prognostic value in NPC yet. Methods: A total number of 1,194 locoregionally advanced NPC (LA-NPC) patients from south China were included from a prospective observational cohort (GARTC) with a median follow-up of 107.3 months. Pretreatment or mid-treatment mouthwashes were collected for EBV DNA detection by quantitative polymerase chain reaction (qPCR). The difference of pre- and mid-treatment oral EBV DNA load was tested by the Wilcoxon signed-rank test. The associations of oral EBV DNA load with overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRFS) were assessed using the log-rank test and multivariate Cox regression. Results: The high level of the oral EBV DNA load (>2,100 copies/mL) was independently associated with worse OS (HR = 1.45, 95% CI: 1.20-1.74, p < 0.001), PFS (HR = 1.38, 95% CI: 1.16-1.65, p < 0.001), DMFS (HR = 1.66, 95% CI: 1.25-2.21, p = 0.001), and LRFS (HR = 1.43, 95% CI: 1.05-1.96, p = 0.023). Similar and robust associations between oral EBV DNA load and prognosis were observed for patients in both the pretreatment and mid-treatment stages. The detection rate (71.7 vs. 48.6%, p < 0.001) and the median load of oral EBV DNA (13,368 vs. 382 copies/mL, p < 0.001) for patients in the pretreatment stage were significantly higher than those in the mid-treatment stage. The combination of the oral EBV DNA load and TNM staging provided a more precise risk stratification for the LA-NPC patients. Conclusion: Oral EBV DNA load was an alternative non-invasive predictor of prognosis and may facilitate risk stratification for the LA-NPC patients.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yi-Jing Jia
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lei-Lei Yuan
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Treatment of Radiation-Induced Brain Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4793517. [PMID: 34976300 PMCID: PMC8720020 DOI: 10.1155/2021/4793517] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Radiation-induced brain necrosis (RBN) is a serious complication of intracranial as well as skull base tumors after radiotherapy. In the past, due to the lack of effective treatment, radiation brain necrosis was considered to be progressive and irreversible. With better understanding in histopathology and neuroimaging, the occurrence and development of RBN have been gradually clarified, and new treatment methods are constantly emerging. In recent years, some scholars have tried to treat RBN with bevacizumab, nerve growth factor, and gangliosides and have achieved similar results. Some cases of brain necrosis can be repairable and reversible. We aimed to summarize the incidence, pathogenesis, and treatment of RBN.
Collapse
|
34
|
Xu F, Wang Y, Gao H, Zhang X, Hu Y, Han T, Shen B, Zhang L, Wu Q. X-Ray Causes mRNA Transcripts Change to Enhance Orai2-Mediated Ca 2+ Influx in Rat Brain Microvascular Endothelial Cells. Front Mol Biosci 2021; 8:646730. [PMID: 34595206 PMCID: PMC8477418 DOI: 10.3389/fmolb.2021.646730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Radiation-induced brain injury is a serious and treatment-limiting complication of brain radiation therapy. Although endothelial cell dysfunction plays a critical role in the development of this pathogenesis, the underlying molecular mechanisms remain elusive. Methods: Primary cultured rat brain microvascular endothelial cells (BMECs) were divided into five groups without or with exposure of x-rays delivered at 5 Gy or 20 Gy. For the irradiated groups, cells were continued to cultivate for 12 or 24 h after being irradiated. Then the mRNA libraries of each group were established and applied for next-generation sequencing. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to analyze the sequencing results. Quantitative polymerase chain reaction, western blotting, cck8 assay and intracellular calcium concentration assays were conducted to analyze the role of Orai2-associated SOCE in x-ray induced cellular injury. Results: In total, 3,005 transcripts in all the four x-ray-exposed groups of BMECs showed expression level changes compared with controls. With the dose of x-ray augment and the following cultured time extension, the numbers of differentially expressed genes (DEGs) increased significantly in BMECs. Venn diagrams identified 40 DEGs common to all four exposure groups. Functional pathway enrichment analyses indicated that those 40 DEGs were enriched in the calcium signaling pathway. Among those 40 DEGs, mRNA and protein expression levels of Orai2 were significantly upregulated for 24 h. Similarly, calcium influx via store-operated calcium entry, which is modulated by Orai2, was also significantly increased for 24 h in x-ray-exposed BMECs. Moreover, the change in SOCE was suppressed by btp-2, which is a non-selective inhibitor of Orai. Additionally, x-ray exposure induced a significant decrease of proliferation in BMECs in the dose- and time-dependent manner. Conclusion: These findings provide evidence for molecular mechanisms underlying BMECs dysfunction in development of radiation-induced brain injury and suggest new approaches for therapeutic targets.
Collapse
Affiliation(s)
- Fangfang Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yang Wang
- Department of Otolaryngology-Head and Neck Surgery, Lu'an People's Hospital, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Huiwen Gao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinchen Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Hu
- Department of Otolaryngology-Head and Neck Surgery, Lu'an People's Hospital, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, China
| | - Tingting Han
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lesha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qibing Wu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Zheng Z, Wang B, Zhao Q, Zhang Y, Wei J, Meng L, Xin Y, Jiang X. Research progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer. Eur Radiol 2021; 32:319-330. [PMID: 34327577 DOI: 10.1007/s00330-021-08164-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Radiotherapy (RT) is an effective treatment for head and neck cancer (HNC). Radiation-induced temporal lobe injury (TLI) is a serious complication of RT. Late symptoms of radiation-induced TLI are irreversible and manifest as memory loss, cognitive impairment, and even temporal lobe necrosis (TLN). It is currently believed that the mechanism of radiation-induced TLI involves microvascular injury, neuron and neural stem cell injury, glial cell damage, inflammation, and the production of free radicals. Significant RT-related structural changes and dose-dependent changes in gray matter (GM) and white matter (WM) volume and morphology were observed through computed tomography (CT) and magnetic resonance imaging (MRI) which were common imaging assessment tools. Diffusion tensor imaging (DTI), dispersion kurtosis imaging (DKI), susceptibility-weighted imaging (SWI), resting-state functional magnetic resonance (rs-fMRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) can be used for early diagnosis and prognosis evaluation according to functional, molecular, and cellular processes of TLI. Early diagnosis of TLI is helpful to reduce the incidence of TLN and its related complications. This review summarizes the clinical features, mechanisms, and imaging of radiation-induced TLI in HNC patients. KEY POINTS: • Radiation-induced temporal lobe injury (TLI) is a clinical complication and its symptoms mainly include memory impairment, headache, and cognitive impairment. • The mechanisms of TLI include microvascular injury, cell injury, and inflammatory and free radical injury. Significant RT-related structural changes and dose-dependent changes in TL volume and morphology were observed through CT and MRI. • SWI, MRS, DTI, and DKI and other imaging examinations can detect anatomical and functional, molecular, and cellular changes of TLI.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China. .,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
36
|
Zhang YM, Kang YF, Zeng JJ, Li L, Gao JM, Liu LZ, Shi LR, Liao WH. Surface-Based Falff: A Potential Novel Biomarker for Prediction of Radiation Encephalopathy in Patients With Nasopharyngeal Carcinoma. Front Neurosci 2021; 15:692575. [PMID: 34349618 PMCID: PMC8326829 DOI: 10.3389/fnins.2021.692575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Radiation encephalopathy (RE) is an important potential complication in patients with nasopharyngeal carcinoma (NPC) who undergo radiotherapy (RT) that can affect the quality of life. However, a functional imaging biomarker of pre-symptomatic RE has not yet been established. This study aimed to assess radiation-induced gray matter functional alterations and explore fractional amplitude of low-frequency fluctuation (fALFF) as an imaging biomarker for predicting or diagnosing RE in patients with NPC. A total of 60 patients with NPC were examined, 21 in the pre-RT cohort and 39 in the post-RT cohort. Patients in the post-RT cohort were further divided into two subgroups according to the occurrence of RE in follow-up: post-RT non-RE (n = 21) and post-RT REproved infollow-up (n = 18). Surface-based and volume-based fALFF were used to detect radiation-induced functional alterations. Functional derived features were then adopted to construct a predictive model for the diagnosis of RE. We observed that surface-based fALFF could sensitively detect radiation-induced functional alterations in the intratemporal brain regions (such as the hippocampus and superior temporal gyrus), as well as the extratemporal regions (such as the insula and prefrontal lobe); however, no significant intergroup differences were observed using volume-based fALFF. No significant correlation between fALFF and radiation dose to the ipsilateral temporal lobe was observed. Support vector machine (SVM) analysis revealed that surface-based fALFF in the bilateral superior temporal gyri and left insula exhibited impressive performance (accuracy = 80.49%) in identifying patients likely to develop RE. We conclude that surface-based fALFF may serve as a sensitive imaging biomarker in the prediction of RE.
Collapse
Affiliation(s)
- You-Ming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Fei Kang
- School of Psychology, Shaanxi Normal University, Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | - Jun-Jie Zeng
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Li Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian-Ming Gao
- Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Zhi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liang-Rong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Hua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Chen Q, Lv X, Zhang S, Lin J, Song J, Cao B, Weng Y, Li L, Huang R. Altered properties of brain white matter structural networks in patients with nasopharyngeal carcinoma after radiotherapy. Brain Imaging Behav 2021; 14:2745-2761. [PMID: 31900892 DOI: 10.1007/s11682-019-00224-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous neuroimaging studies revealed radiation-induced brain injury in patients with nasopharyngeal carcinoma (NPC) in the years after radiotherapy (RT). These injuries may be associated with structural and functional alterations. However, differences in the brain structural connectivity of NPC patients at different times after RT, especially in the early-delayed period, remain unclear. We acquired diffusion tensor imaging (DTI) data from three groups of NPC patients, 25 in the pre-RT (before RT) group, 22 in the early-delayed (1-6 months) period (post-RT-ED) group, and 33 in the late-delayed (>6 months) period (post-RT-LD) group. Then, we constructed brain white matter (WM) structural networks and used graph theory to compare their between-group differences. The NPC patients in the post-RT-ED group showed decreased global properties when compared with the pre-RT group. We also detected the nodes with between-group differences in nodal parameters. The nodes that differed between the post-RT-ED and pre-RT groups were mainly located in the default mode (DMN) and central executive networks (CEN); those that differed between the post-RT-LD and pre-RT groups were located in the limbic system; and those that differed between the post-RT-LD and post-RT-ED groups were mainly in the DMN. These findings may indicate that radiation-induced brain injury begins in the early-delayed period and that a reorganization strategy begins in the late-delayed period. Our findings may provide new insight into the pathogenesis of radiation-induced brain injury in normal-appearing brain tissue from the network perspective.
Collapse
Affiliation(s)
- Qinyuan Chen
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xiaofei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shufei Zhang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jiabao Lin
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jie Song
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Bolin Cao
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yihe Weng
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Ruiwang Huang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
38
|
Wen DW, Lin L, Mao YP, Chen CY, Chen FP, Wu CF, Huang XD, Li ZX, Xu SS, Kou J, Yang XL, Ma J, Sun Y, Zhou GQ. Normal tissue complication probability (NTCP) models for predicting temporal lobe injury after intensity-modulated radiotherapy in nasopharyngeal carcinoma: A large registry-based retrospective study from China. Radiother Oncol 2021; 157:99-105. [PMID: 33484752 DOI: 10.1016/j.radonc.2021.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To develop predictive models with dosimetric and clinical variables for temporal lobe injury (TLI) in nasopharyngeal carcinoma (NPC) after intensity-modulated radiotherapy (IMRT). MATERIALS AND METHODS Data of 8194 NPC patients who received IMRT-based treatment were retrospectively reviewed. TLI was diagnosed by magnetic resonance imaging. Dosimetric factors were selected by penalized regression and machine learning, with area under the receiver operating curve (AUC) calculated. Cox proportional hazards models containing the most predictive dosimetric factor with/without clinical variables were performed. A nomogram was generated as a visualization of Cox regression for predicting TLI-free survival. RESULTS During median follow-up of 66.8 months (interquartile range [IQR] 54.2-82.2 months), 12.1% of patients (989/8194) developed TLI. Median latency from IMRT to TLI was 36 months (IQR 28-47 months). D0.5cc (dose delivered to 0.5-cm3 temporal-lobe volume) was the most predictive dosimetric factor (AUC: 0.799). Tolerance dose for 5% and 50% probabilities to develop TLI in 5 years were 65.06 Gy (95% confidence interval [CI]: 64.19-65.92) and 89.75 Gy (95% CI: 87.39-92.11), respectively. A nomogram comprising age, T stage, and D0.5cc significantly outperformed the model with only D0.5cc in predicting TLI (C-index: 0.78 vs. 0.737 in train set; 0.775 vs. 0.73 in test set; both P < 0.001). The nomogram-defined high-risk group had worse 5-year TLI-free survival. CONCLUSIONS D0.5cc of 65.06 Gy was the tolerance dose of the temporal lobe. Reducing D0.5cc decreased risk of TLI, especially in older patients with advanced T stage. The nomogram could predict TLI precisely and allow individualized follow-up management.
Collapse
Affiliation(s)
- Dan-Wan Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Li Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yan-Ping Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Chun-Yan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Fo-Ping Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Chen-Fei Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Dan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Si-Si Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia Kou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xing-Li Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
39
|
Patrizz A, Dono A, Zhu P, Tandon N, Ballester LY, Esquenazi Y. Tumor recurrence or treatment-related changes following chemoradiation in patients with glioblastoma: does pathology predict outcomes? J Neurooncol 2021; 152:163-172. [PMID: 33481149 DOI: 10.1007/s11060-020-03690-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Despite surgical resection and chemoradiation, all patients with GBM invariably recur. Radiological imaging is limited in differentiating tumor recurrence (TR) from treatment-related changes (TRC); therefore, re-resection is often needed. Few studies have assessed the relationship between re-resection histopathology and overall survival (OS). We performed a large retrospective study to analyze the clinical significance of histopathology following re-resection and its influence on genomic sequencing results. METHODS Clinical, radiographic, and histological information was compiled from 675 patients with GBM (2005-2017). 137-patients met the inclusion criteria. IDH1 p.R132H immunohistochemistry was performed in all patients. Next-generation sequencing interrogating 205 tumor-related genes was performed in 68-patients. Molecular alterations from initial and subsequent resections were compared in a subset of cases. RESULTS There were no differences in OS (17.3-months TRC vs. 21-months TR, p = 0.881) and survival from progression (9.0 vs. 11.7-months, p = 0.778) between patients with TR and TRC on re-resection. TR patients were more likely to receive salvage radiotherapy (26% vs. 0%) and tumor-treating fields (25% vs. 5%,) after the 2nd surgery than the TRC group (p = < 0.045). There was no correlation between mutations and TRC. IDH status was not predictive of TRC. Fifteen-patients had sequencing results from multiple surgeries without evident differences in genomic alterations. CONCLUSIONS Histopathologic findings following chemoradiation do not correlate with clinical outcomes. Such findings should be considered during patient management and clinical trial enrollment. Standardization of tissue sampling and interpretation following reoperation is urgently needed. Future work is required to understand the relationship between the mutation profile following TRC and outcomes.
Collapse
Affiliation(s)
- Anthony Patrizz
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | - Antonio Dono
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Ping Zhu
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA.,Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA. .,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA. .,Memorial Hermann Hospital-TMC, Houston, TX, USA. .,Department of Pathology & Laboratory Medicine and Department of Neurosurgery, The University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin Street, MSB 2.136, Houston, TX, 77030, USA.
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA. .,Center for Precision Health, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Memorial Hermann Hospital-TMC, Houston, TX, USA.
| |
Collapse
|
40
|
Zhou X, Liu P, Wang X. Temporal Lobe Necrosis Following Radiotherapy in Nasopharyngeal Carcinoma: New Insight Into the Management. Front Oncol 2021; 10:593487. [PMID: 33552967 PMCID: PMC7859432 DOI: 10.3389/fonc.2020.593487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral radiation necrosis (CRN) is one of the most prominent sequelae following radiation therapy for nasopharyngeal carcinoma (NPC), which might have devastating effects on patients' quality of life (QOL). Advances in histopathology and neuro-radiology have shed light on the management of CRN more comprehensively, yet effective therapeutic interventions are still lacking. CRN was once regarded as progressive and irreversible, however, in the past 20 years, with the application of intensity-modulated radiation therapy (IMRT), both the incidence and severity of CRN have declined. In addition, newly developed medical agents including bevacizumab-a humanized monoclonal antibody against vascular endothelial growth factor (VEGF), nerve growth factor (NGF), monosialotetrahexosylganglioside (GM1), etc., have shown great potency in successfully reversing radiation-induced CRN. As temporal lobes are most frequently compromised in NPC patients, this review will summarize the state-of-the-art progress regarding the incidence, pathophysiology, prevention, treatment, and prognosis of temporal lobe necrosis (TLN) after IMRT in NPC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiyao Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Benitez CM, Knox SJ. Harnessing genome-wide association studies to minimize adverse radiation-induced side effects. Radiat Oncol J 2020; 38:226-235. [PMID: 33233031 PMCID: PMC7785837 DOI: 10.3857/roj.2020.00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is used as definitive treatment in approximately two-thirds of all cancers. However, like any treatment, radiation has significant acute and long-term side effects including secondary malignancies. Even when similar radiation parameters are used, 5%–10% of patients will experience adverse radiation side effects. Genomic susceptibility is thought to be responsible for approximately 40% of the clinical variability observed. In the era of precision medicine, the link between genetic susceptibility and radiation-induced side effects is further strengthening. Genome-wide association studies (GWAS) have begun to identify single-nucleotide polymorphisms (SNPs) attributed to overall and tissue-specific toxicity following radiation for treatment of breast cancer, prostate cancer, and other cancers. Here, we review the use of GWAS in identifying polymorphisms that are predictive of acute and long-term radiation-induced side effects with a focus on chest, pelvic, and head-and-neck irradiation. Integration of GWAS with “omic” data, patient characteristics, and clinical correlates into predictive models could decrease radiation-induced side effects while increasing therapeutic efficacy.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
42
|
Chargari C, Supiot S, Hennequin C, Chapel A, Simon JM. [Treatment of radiation-induced late effects: What's new?]. Cancer Radiother 2020; 24:602-611. [PMID: 32855027 DOI: 10.1016/j.canrad.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Mechanisms of late radio-induced lesions are the result of multiple and complex phenomena, with many entangled cellular and tissue factors. The biological continuum between acute and late radio-induced effects will be described, with firstly a break in homeostasis that leads to cellular redistributions. New insights into late toxicity will finally be addressed. Individual radiosensitivity is a primary factor for the development of late toxicity, and clinicians urgently need predictive tests to offer truly personalized radiation therapy. An update will be made on the various functional and genetic tests currently being validated. The management of radio-induced side effects remains a frequent issue for radiation oncologists, and an update will be made for certain specific clinical situations. Finally, an innovative management for patients with significant side effects after pelvic radiotherapy will be developed, involved mesenchymal stem cell transplantation, with the presentation of the "PRISME" protocol currently open to patients recruitment.
Collapse
Affiliation(s)
- C Chargari
- Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif France
| | - S Supiot
- Département d'oncologie radiothérapie, institut de cancérologie de l'ouest - centre René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain cedex, France; Institut de recherche en santé de l'université de Nantes, université de Nantes, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; Inserm, U1232 Centre de recherche en cancérologie et immunologie de Nantes - Angers (CRCINA), 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; CNRS, ERL 6001, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France
| | - C Hennequin
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefeaux, 75475 Paris, France
| | - A Chapel
- Service de recherche en radiobiologie et en médecine régénérative, laboratoire de radiobiologie des expositions médicales, Institut de radioprotection et de sûreté nucléaire (IRSN), 31, avenue de la Division-Leclerc, 92260 Fontenay-aux-Roses, France
| | - J-M Simon
- Sorbonne université, 21, rue de l'École-de-Médecine, 75006 Paris, France; Service d'oncologie radiothérapie, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| |
Collapse
|
43
|
Zhang B, Lian Z, Zhong L, Zhang X, Dong Y, Chen Q, Zhang L, Mo X, Huang W, Yang W, Zhang S. Machine-learning based MRI radiomics models for early detection of radiation-induced brain injury in nasopharyngeal carcinoma. BMC Cancer 2020; 20:502. [PMID: 32487085 PMCID: PMC7268644 DOI: 10.1186/s12885-020-06957-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Background Early radiation-induced temporal lobe injury (RTLI) diagnosis in nasopharyngeal carcinoma (NPC) is clinically challenging, and prediction models of RTLI are lacking. Hence, we aimed to develop radiomic models for early detection of RTLI. Methods We retrospectively included a total of 242 NPC patients who underwent regular follow-up magnetic resonance imaging (MRI) examinations, including contrast-enhanced T1-weighted and T2-weighted imaging. For each MRI sequence, four non-texture and 10,320 texture features were extracted from medial temporal lobe, gray matter, and white matter, respectively. The relief and 0.632 + bootstrap algorithms were applied for initial and subsequent feature selection, respectively. Random forest method was used to construct the prediction model. Three models, 1, 2 and 3, were developed for predicting the results of the last three follow-up MRI scans at different times before RTLI onset, respectively. The area under the curve (AUC) was used to evaluate the performance of models. Results Of the 242 patients, 171 (70.7%) were men, and the mean age of all the patients was 48.5 ± 10.4 years. The median follow-up and latency from radiotherapy until RTLI were 46 and 41 months, respectively. In the testing cohort, models 1, 2, and 3, with 20 texture features derived from the medial temporal lobe, yielded mean AUCs of 0.830 (95% CI: 0.823–0.837), 0.773 (95% CI: 0.763–0.782), and 0.716 (95% CI: 0.699–0.733), respectively. Conclusion The three developed radiomic models can dynamically predict RTLI in advance, enabling early detection and allowing clinicians to take preventive measures to stop or slow down the deterioration of RTLI.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.,Jinan University, Guangzhou, Guangdong, China
| | - Zhouyang Lian
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Liming Zhong
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xiao Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Yuhao Dong
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital /Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.,Jinan University, Guangzhou, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.,Jinan University, Guangzhou, Guangdong, China
| | - Xiaokai Mo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wenhui Huang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Zhang J, Li J, Zhu Y, Miao Z, Tian Y. Forced running exercise mitigates radiation-induced cognitive deficits via regulated DNA hydroxymethylation. Epigenomics 2020; 12:385-396. [PMID: 32041423 DOI: 10.2217/epi-2019-0370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Roles of forced running exercise (FE) in remediation of neurogenesis inhibition and radiation-induced cognitive dysfunction were investigated in a whole-brain irradiation mice model via the regulation of DNA 5-hydroxymethylation modification (5 hmC) and its catalytic enzymes ten-eleven translocation (Tet) proteins. Materials & methods: Hippocampal neurogenesis and cognitive function, DNA 5 hmC level and Tet expression were determined in mice. Results: The expression of DNA 5 hmC and Tet2, brain-derived neurotrophic factor significantly decreased in hippocampus postradiation. FE mitigated radiation-induced neurogenesis deficits and cognitive dysfunction. Furthermore, FE increased 5 hmC and brain-derived neurotrophic factor expression. SC1, a Tet inhibitor, reversed partly such changes. Conclusion: Tet-mediated 5 hmC modification represents a kind of diagnostic biomarkers of radiation-induced cognitive dysfunction. Targeting Tet-related epigenetic modification may be a novel therapeutic strategy for radiation-induced brain injury.
Collapse
Affiliation(s)
- Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| | - Junyan Li
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| | - Yiwen Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, 215000, PR China
| | - Ye Tian
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| |
Collapse
|
45
|
Dean B, Parkin GM, Gibbons AS. Associations between catechol-O-methyltransferase (COMT) genotypes at rs4818 and rs4680 and gene expression in human dorsolateral prefrontal cortex. Exp Brain Res 2020; 238:477-486. [DOI: 10.1007/s00221-020-05730-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/28/2022]
|
46
|
Terrazzino S, Cargnin S, Deantonio L, Pisani C, Masini L, Canonico PL, Genazzani AA, Krengli M. Impact of ATM rs1801516 on late skin reactions of radiotherapy for breast cancer: Evidences from a cohort study and a trial sequential meta-analysis. PLoS One 2019; 14:e0225685. [PMID: 31756226 PMCID: PMC6874351 DOI: 10.1371/journal.pone.0225685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
The relationship between the ataxia-telangiectasia mutated (ATM) rs1801516 gene polymorphism and risk of radiation-induced late skin side effects remains a highly debated issue. In the present study, we assessed the role of ATM rs1801516 as risk factor for radiation-induced fibrosis and telangiectasia, using the LENT-SOMA scoring scale in 285 breast cancer patients who received radiotherapy after breast conserving surgery. A systematic review with meta-analysis and trial sequential analysis (TSA) was then conducted to assess reliability of the accumulated evidence in breast cancer patients. In our cohort study, no association was found between ATM rs1801516 and grade ≥ 2 telangiectasia (GA+AA vs GG, HRadjusted: 0.699; 95%CI: 0.273–1.792, P = 0.459) or grade ≥ 2 fibrosis (GA+AA vs GG, HRadjusted: 1.175; 95%CI: 0.641–2.154, P = 0.604). Twelve independent cohorts of breast cancer patients were identified through the systematic review, of which 11 and 9 cohorts focused respectively on the association with radiation-induced fibrosis and radiation-induced telangiectasia. Pooled analyses of 10 (n = 2928 patients) and 12 (n = 2783) cohorts revealed, respectively, no association of ATM rs1801516 with radiation-induced telangiectasia (OR: 1.14; 95%CI: 0.88–1.48, P = 0.316) and a significant correlation with radiation-induced fibrosis (OR: 1.23; 95%CI: 1.00–1.51, P = 0.049), which however did not remain significant after TSA adjustment (TSA-adjusted 95%CI: 0.85–1.78). These results do not support an impact of ATM rs1801516 on late skin reactions of radiotherapy for breast cancer, nevertheless further large studies are still required for conclusive evidences.
Collapse
Affiliation(s)
- Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Centro di Ricerca Interdipartimentale di Farmacogenetica e Farmacogenomica (CRIFF), University of Piemonte Orientale, Novara, Italy
- * E-mail:
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Centro di Ricerca Interdipartimentale di Farmacogenetica e Farmacogenomica (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Letizia Deantonio
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona-Lugano, Bellinzona, Switzerland
| | - Carla Pisani
- Radiotherapy, University Hospital Maggiore della Carità, Novara, Italy
| | - Laura Masini
- Radiotherapy, University Hospital Maggiore della Carità, Novara, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences and Centro di Ricerca Interdipartimentale di Farmacogenetica e Farmacogenomica (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences and Centro di Ricerca Interdipartimentale di Farmacogenetica e Farmacogenomica (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Marco Krengli
- Radiotherapy, University Hospital Maggiore della Carità, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
47
|
Cerebral Radiation Necrosis: Incidence, Pathogenesis, Diagnostic Challenges, and Future Opportunities. Curr Oncol Rep 2019; 21:66. [PMID: 31218455 DOI: 10.1007/s11912-019-0818-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Cerebral radiation necrosis (CRN) is a major dose-limiting adverse event of radiotherapy. The incidence rate of RN varies with the radiotherapy modality, total dose, dose fractionation, and the nature of the lesion being targeted. In addition to these known and controllable features, there is a stochastic component to the occurrence of CRN-the genetic profile of the host or the lesion and their role in the development of CRN. RECENT FINDINGS Recent studies provide some insight into the genetic mechanisms underlying radiation-induced brain injury. In addition to these incompletely understood host factors, the diagnostic criteria for CRN using structural and functional imaging are also not clear, though multiple structural and functional imaging modalities exist, a combination of which may prove to be the ideal diagnostic imaging approach. As the utilization of novel molecular therapies and immunotherapy increases, the incidence of CNR is expected to increase and its diagnosis will become more challenging. Tissue biopsies can be insensitive and suffer from sampling biases and procedural risks. Liquid biopsies represent a promising, accurate, and non-invasive diagnostic strategy, though this modality is currently in its infancy. A better understanding of the pathogenesis of CRN will expand and optimize the diagnosis and management of CRN by better utilizing existing treatment options including bevacizumab, pentoxifylline, hyperbaric oxygen therapy, and laser interstitial thermal therapy.
Collapse
|