1
|
Kim YJ, Park GM, Cho WK, Woo DH. L-DOPA Promotes Functional Proliferation Through GPR143, Specific L-DOPA Receptor of Astrocytes. ACS Chem Neurosci 2024; 15:4132-4142. [PMID: 39509688 DOI: 10.1021/acschemneuro.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
l-3,4-Dihydroxyphenylalanine (levodopa and L-DOPA in this text), alongside dopamine, boasts high biocompatibility, prompting industrial demand for its use as a coating material. Indeed, the effectiveness of L-DOPA is steadily rising as it serves as an oral therapeutic agent for neurodegenerative brain diseases, particularly Parkinson's disease (PD). However, the effects of L-DOPA on the growth and function of astrocytes, the main glial cells, and the most numerous glial cells in the brain, are unknown. Here, we investigated whether L-DOPA is possible as a coating material on cover glass and polystyrene for rat primary astrocytes. The coating state of L-DOPA on the cover glass and polystyrene was characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). Interestingly, L-DOPA coated on the cover glass promoted the proliferation of astrocytes but not neurons. Furthermore, L-DOPA coated on the cover glass, as opposed to polystyrene, facilitated the proliferation of the astrocytes. The astrocytes grown on L-DOPA-coated cover glasses exhibited functional receptor-activated Ca2+ transients through the activation of protease-activated receptor subtype 1 (PAR-1), recognized as an astrocytic functional marker. However, cover glass coated with 0, 500, 1000, 2000, and 4000 μg/mL L-DOPA maintained astrocyte viability, while supplementation with 500 and 1000 μM L-DOPA significantly decreased astrocyte viability. This suggests that treatments with free 500 and 1000 μM L-DOPA significantly reduced the number of astrocytes. Both Pimozide, an inhibitor of G protein-coupled receptor 143 (GPR143), also known as Ocular albinism type 1 (OA1), and CCG2046, an inhibitor of regulator of G protein signaling 4 (RGS4), reduced the viability of astrocytes on cover glass coated with L-DOPA compared to astrocytes on cover glass coated with poly-d-lysine (PDL). This suggests that L-DOPA promotes astrocyte proliferation through activation of the GPR143 signaling pathway. These findings imply that L-DOPA proliferates functional astrocytes through the activation of GPR143. These results are the first report that L-DOPA coating cover glass proliferates rat primary astrocytes with the activation of GPR143. The discovery that levodopa enhances cell adhesion can significantly influence research in multiple ways. It provides insights into cell behavior, disease mechanisms, and potential therapeutic applications in tissue engineering and regenerative medicine. Additionally, it offers opportunities to explore novel approaches for improving cell-based therapies and tissue regeneration. Overall, this finding opens up new avenues for research, with broad implications across various scientific fields.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Daejeon 34114, South Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea
| | - Gyeong Min Park
- Department of Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Dong Ho Woo
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Daejeon 34114, South Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea
| |
Collapse
|
2
|
Li L, Xu Q, Tang C. RGS proteins and their roles in cancer: friend or foe? Cancer Cell Int 2023; 23:81. [PMID: 37118788 PMCID: PMC10148553 DOI: 10.1186/s12935-023-02932-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
As negative modulators of G-protein-coupled receptors (GPCRs) signaling, regulators of G protein signaling (RGS) proteins facilitate various downstream cellular signalings through regulating kinds of heterotrimeric G proteins by stimulating the guanosine triphosphatase (GTPase) activity of G-protein α (Gα) subunits. The expression of RGS proteins is dynamically and precisely mediated by several different mechanisms including epigenetic regulation, transcriptional regulation -and post-translational regulation. Emerging evidence has shown that RGS proteins act as important mediators in controlling essential cellular processes including cell proliferation, survival -and death via regulating downstream cellular signaling activities, indicating that RGS proteins are fundamentally involved in sustaining normal physiological functions and dysregulation of RGS proteins (such as aberrant expression of RGS proteins) is closely associated with pathologies of many diseases such as cancer. In this review, we summarize the molecular mechanisms governing the expression of RGS proteins, and further discuss the relationship of RGS proteins and cancer.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
3
|
Montañez-Miranda C, Perszyk RE, Harbin NH, Okalova J, Ramineni S, Traynelis SF, Hepler JR. Functional Assessment of Cancer-Linked Mutations in Sensitive Regions of Regulators of G Protein Signaling Predicted by Three-Dimensional Missense Tolerance Ratio Analysis. Mol Pharmacol 2023; 103:21-37. [PMID: 36384958 PMCID: PMC10955721 DOI: 10.1124/molpharm.122.000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling by acting as negative regulators of G proteins. Genetic variants in RGS proteins are associated with many diseases, including cancers, although the impact of these mutations on protein function is uncertain. Here we analyze the RGS domains of 15 RGS protein family members using a novel bioinformatic tool that measures the missense tolerance ratio (MTR) using a three-dimensional (3D) structure (3DMTR). Subsequent permutation analysis can define the protein regions that are most significantly intolerant (P < 0.05) in each dataset. We further focused on RGS14, RGS10, and RGS4. RGS14 exhibited seven significantly tolerant and seven significantly intolerant residues, RGS10 had six intolerant residues, and RGS4 had eight tolerant and six intolerant residues. Intolerant and tolerant-control residues that overlap with pathogenic cancer mutations reported in the COSMIC cancer database were selected to define the functional phenotype. Using complimentary cellular and biochemical approaches, proteins were tested for effects on GPCR-Gα activation, Gα binding properties, and downstream cAMP levels. Identified intolerant residues with reported cancer-linked mutations RGS14-R173C/H and RGS4-K125Q/E126K, and tolerant RGS14-S127P and RGS10-S64T resulted in a loss-of-function phenotype in GPCR-G protein signaling activity. In downstream cAMP measurement, tolerant RGS14-D137Y and RGS10-S64T and intolerant RGS10-K89M resulted in change of function phenotypes. These findings show that 3DMTR identified intolerant residues that overlap with cancer-linked mutations cause phenotypic changes that negatively impact GPCR-G protein signaling and suggests that 3DMTR is a potentially useful bioinformatics tool for predicting functionally important protein residues. SIGNIFICANCE STATEMENT: Human genetic variant/mutation information has expanded rapidly in recent years, including cancer-linked mutations in regulator of G protein signaling (RGS) proteins. However, experimental testing of the impact of this vast catalogue of mutations on protein function is not feasible. We used the novel bioinformatics tool three-dimensional missense tolerance ratio (3DMTR) to define regions of genetic intolerance in RGS proteins and prioritize which cancer-linked mutants to test. We found that 3DMTR more accurately classifies loss-of-function mutations in RGS proteins than other databases thereby offering a valuable new research tool.
Collapse
Affiliation(s)
- Carolina Montañez-Miranda
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer Okalova
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - John R Hepler
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Dong Y, Liu X, Jiang B, Wei S, Xiang B, Liao R, Wang Q, He X. A Genome-Wide Investigation of Effects of Aberrant DNA Methylation on the Usage of Alternative Promoters in Hepatocellular Carcinoma. Front Oncol 2022; 11:780266. [PMID: 35111672 PMCID: PMC8803206 DOI: 10.3389/fonc.2021.780266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The alternative usage of promoters provides a way to regulate gene expression, has a significant influence on the transcriptome, and contributes to the cellular transformation of cancer. However, the function of alternative promoters (APs) in hepatocellular carcinoma (HCC) has not been systematically studied yet. In addition, the potential mechanism of regulation to the usage of APs remains unclear. DNA methylation, one of the most aberrant epigenetic modifications in cancers, is known to regulate transcriptional activity. Whether DNA methylation regulates the usage of APs needs to be explored. Here, we aim to investigate the effects of DNA methylation on usage of APs in HCC. METHODS Promoter activities were calculated based on RNA-seq data. Functional enrichment analysis was implemented to conduct GO terms. Correlation tests were used to detect the correlation between promoter activity and methylation status. The LASSO regression model was used to generate a diagnostic model. Kaplan-Meier analysis was used to compare the overall survival between high and low methylation groups. RNA-seq and whole-genome bisulfite sequencing (WGBS) in HCC samples were performed to validate the correlation of promoter activity and methylation. RESULTS We identified 855 APs in total, which could be well used to distinguish cancer from normal samples. The correlation of promoter activity and DNA methylation in APs was observed, and the APs with negative correlation were defined as methylation-regulated APs (mrAPs). Six mrAPs were identified to generate a diagnostic model with good performance (AUC = 0.97). Notably, the majority of mrAPs had CpG sites that could be used to predict clinical outcomes by methylation status. Finally, we verified 85.6% of promoter activity variation and 92.3% of methylation changes in our paired RNA-seq and WGBS samples, respectively. The negative correlation between promoter activity and methylation status was further confirmed in our HCC samples. CONCLUSION The aberrant methylation status plays a critical role in the precision usage of APs in HCC, which sheds light on the mechanism of cancer development and provides a new insight into cancer screening and treatment.
Collapse
Affiliation(s)
- Yuting Dong
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bijun Jiang
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Siting Wei
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ruichu Liao
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Ximiao He
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Liu J, Zhang J, Hu Y, Zou H, Zhang X, Hu X. Inhibition of lncRNA DCST1-AS1 suppresses proliferation, migration and invasion of cervical cancer cells by increasing miR-874-3p expression. J Gene Med 2020; 23:e3281. [PMID: 33025624 DOI: 10.1002/jgm.3281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cervical cancer seriously threatens both the health and life of women. We aimed to investigate whether RNA interference of long non-coding RNA (lncRNA) DCST1-AS1 could promote miR-874-3p expression to affect the proliferation, migration and invasion of cervical cancer cells. METHODS DCST1-AS1 expression levels in cervical cancer cells and transfection effects were detected by quantitative reverse transcriptase-polymerase chain reaction analysis. Proliferation, invasion and migration of cells were separately shown by cell-counting kit-8, wound healing and transwell assays, and relative protein expression was determined by western blot analysis. Dual-luciferase reporter and RNA immunoprecipitation assays verified the interaction of DCST1-AS1 and miR-874-3p. RESULTS DCST1-AS1 expression was increased in cervical cancer tissues and cells. The DCST1-AS1 expression in Hela and SiHa cells was the highest, and so the cells were selected for the next experiment. Inhibition of DCST1-AS1 suppressed the proliferation, invasion and migration of cervical cancer cells and decreased the expression of KI67, proliferating cell nuclear antigen, matrix metalloproteinase (MMP)-2 and MMP-9. miR-874-3p expression was increased when cells were transfected with miR-874-3p mimic or shRNA-DCST1-AS1-1, and DCST1-AS1 expression was down-regulated when cells were transfected with miR-874-3p mimic. DCST1-AS1 can directly target miR-874-3p. Furthermore, inhibition of miR-874-3p could effectively alleviate the effect of inhibition of DCST1-AS1 with respect to the proliferation, invasion and migration of cervical cancer cells. CONCLUSIONS Inhibition of DCST1-AS1 suppressed the proliferation, migration and invasion of cervical cancer cells by increasing miR-874-3p expression, which could be alleviated by the inhibition of miR-874-3p.
Collapse
Affiliation(s)
- Junli Liu
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Jun Zhang
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Yan Hu
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Hongyan Zou
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Xiuzhen Zhang
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| | - Xiaojun Hu
- Department of Gynecological Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, China
| |
Collapse
|
6
|
He Z, Yu L, Luo S, Li Q, Huang S, An Y. RGS4 Regulates Proliferation And Apoptosis Of NSCLC Cells Via microRNA-16 And Brain-Derived Neurotrophic Factor. Onco Targets Ther 2019; 12:8701-8714. [PMID: 31695428 PMCID: PMC6821062 DOI: 10.2147/ott.s221657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Regulator of G-protein signaling (RGS) proteins are GTPase-activating proteins that target the α-subunit of heterotrimeric G proteins. Many studies have shown that RGS proteins contribute to tumorigenesis and metastasis. However, the mechanism in which RGS proteins, especially RGS4, affect the development of non-small cell lung cancer (NSCLC) remains unclear. The aim of this study was to characterize the role of RGS4 in NSCLC. METHODS RGS4 expression in NSCLC tissues was assessed using an immunohistochemistry tissue microarray. Additionally, RGS4 was knocked down using short-hairpin RNA to assess the regulatory function of RGS4 in the biological behaviors of human NSCLC cell lines. A xenograft lung cancer model in nude BALB/c mice was established to study whether RGS4 knockdown inhibits cancer cell proliferation in vivo. RESULTS We observed an increase in RGS4 protein levels in NSCLC samples. RGS4 knockdown inhibited cell proliferation and induced apoptosis in H1299 and PC9 cell lines, but did not affect cell migration. Moreover, we found that RGS4 negatively regulated the expression of microRNA-16 (miR-16), a tumor suppressor. The inhibition of miR-16 resulted in upregulated RGS4 expression. We also found that RGS4 regulated the expression of brain-derived neurotrophic factor (BDNF) and activated the BDNF-tropomyosin receptor kinase B signaling pathway. CONCLUSION This study revealed that RGS4 overexpression positively correlated with the development of NSCLC. TDownstream RGS4 targets (eg, miR-16 and BDNF) might be involved in the development of NSCLC and may serve as potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Zheng He
- Biotechnology Department, Beijing Center for Physical and Chemical Analysis, Beijing100094, People’s Republic of China
- Department of Clinical Laboratory, Chinese People’s Liberation Army General Hospital, Beijing100853, People’s Republic of China
| | - Lianhua Yu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou318000, People’s Republic of China
| | - Shiyi Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong250062, People’s Republic of China
| | - Yunhe An
- Biotechnology Department, Beijing Center for Physical and Chemical Analysis, Beijing100094, People’s Republic of China
| |
Collapse
|
7
|
Bao MH, Lv QL, Szeto V, Wong R, Zhu SZ, Zhang YY, Feng ZP, Sun HS. TRPM2-AS inhibits the growth, migration, and invasion of gliomas through JNK, c-Jun, and RGS4. J Cell Physiol 2019; 235:4594-4604. [PMID: 31637708 DOI: 10.1002/jcp.29336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
Abstract
Gliomas are a group of brain cancers with high mortality and morbidity. Understanding the molecular mechanisms is important for the prevention or treatment of gliomas. The present study was to investigate the effects and mechanisms of long noncoding RNA TRPM2-AS in gliomas proliferation, migration, and invasion. We first compared the levels of TRPM2-AS in 111 patients with glioma to that of the normal control group by a quantitative polymerase chain reaction. The results indicated a significant increase of TRPM2-AS in patients with glioma (2.43 folds of control, p = .0135). MTT methods, wound healing assays, transwell analysis, and clone formation analysis indicated the overexpression of TRPM2-AS promoted the proliferation, migration, and invasion of U251 and U87 cells, while downregulation of TRPM2-AS inhibited the cell proliferation, migration, and invasion significantly (p < .05). To further uncover the mechanisms, bioinformatics analysis was conducted on the expression profiles, GSE40687 and GSE4290, from the Gene Expression Omnibus database. One hundred fifty-six genes were differentially expressed in both datasets (FC > 2.0; p = .05). Among these differentially expressed genes, the level of RGS4 messenger RNA was drastically regulated by TRPM2-AS. Further western-blot analysis indicated the increase of RGS4 protein expression and decrease of p-JNK/JNK and p-c-Jun/c-Jun ratio after TRPM2-AS overexpression. On the other hand, inhibition of TRPM2-AS by small interfering RNA suppressed the expression of RGS4 and promoted the ratios of p-JNK/JNK and p-c-Jun/c-Jun. The present work indicated the mechanisms of the participation of TRPM2-AS in the progression of gliomas might, at least partly, be related to JNK, c-Jun, and RGS4. Our work provided new insights into the underlying mechanisms of glioma cellular functions.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Department of Physiology, Pathophysiology, and Pharmacology, Science Research Center, Changsha Medical University, Changsha, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Vivian Szeto
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raymond Wong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Su-Zhen Zhu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ying-Ying Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Jiang M, Li X, Quan X, Li X, Zhou B. MiR-92a Family: A Novel Diagnostic Biomarker and Potential Therapeutic Target in Human Cancers. Front Mol Biosci 2019; 6:98. [PMID: 31632984 PMCID: PMC6779690 DOI: 10.3389/fmolb.2019.00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: This study tried to explore whether members of miR-92a family contribute to early diagnosis and prognosis for human cancers and how they work. Methods: Integrated meta-analysis retrieved from public repositories was employed to assess the clinical roles of the miR-92a family for cancer diagnosis and prognosis. Expression level of miR-92a was detected by the TCGA database and was confirmed by non-small-cell lung cancer (NSCLC) tissues. Targets of miR-92a were predicted using starbase, and validated by dual luciferase assay. Correlation between miR-92a and the target gene was assessed by linkedOmics while expression of the target gene and its role in cancer prognosis were analyzed with UALCAN and Gepia. Results: We recognized the miR-92a family could serve as a potential diagnostic biomarker with a pooled sensitivity of 0.85 [0.81–0.88] and specificity of 0.86 [0.83–0.90]. The overall hazard ratio (HR) was 2.26 [95% CI: 1.70–3.00] for high expression groups compared to low expression groups. Expression of miR-92a was identified to be upregulated in NSCLC, especially in lung squamous cell carcinoma (LUSC). Results from starbase and dual luciferase assay indicated the regulator of G-protein signaling 3 (RGS3) was a direct target of miR-92a. Statistical negative correlation was found for the expression of miR-92a and RGS3. In addition, expression of RGS3 was downregulated in NSCLC and patients with the high expression had a poor prognosis (HR = 1.3) for LUSC patients. However, results were to the contrary for lung adenocarcinoma (HR = 0.7). Conclusion: This study revealed that miR-92a family could be ideal biomarkers for cancer diagnosis and prognosis, which might function through targeting RGS3.
Collapse
Affiliation(s)
- Min Jiang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaoying Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Mohammadi M, Mohammadiarani H, Shaw VS, Neubig RR, Vashisth H. Interplay of cysteine exposure and global protein dynamics in small-molecule recognition by a regulator of G-protein signaling protein. Proteins 2018; 87:146-156. [PMID: 30521141 DOI: 10.1002/prot.25642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/07/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Regulator of G protein signaling (RGS) proteins play a pivotal role in regulation of G protein-coupled receptor (GPCR) signaling and are therefore becoming an increasingly important therapeutic target. Recently discovered thiadiazolidinone (TDZD) compounds that target cysteine residues have shown different levels of specificities and potencies for the RGS4 protein, thereby suggesting intrinsic differences in dynamics of this protein upon binding of these compounds. In this work, we investigated using atomistic molecular dynamics (MD) simulations the effect of binding of several small-molecule inhibitors on perturbations and dynamical motions in RGS4. Specifically, we studied two conformational models of RGS4 in which a buried cysteine residue is solvent-exposed due to side-chain motions or due to flexibility in neighboring helices. We found that TDZD compounds with aromatic functional groups perturb the RGS4 structure more than compounds with aliphatic functional groups. Moreover, small-molecules with aromatic functional groups but lacking sulfur atoms only transiently reside within the protein and spontaneously dissociate to the solvent. We further measured inhibitory effects of TDZD compounds using a protein-protein interaction assay on a single-cysteine RGS4 protein showing trends in potencies of compounds consistent with our simulation studies. Thermodynamic analyses of RGS4 conformations in the apo-state and on binding to TDZD compounds revealed links between both conformational models of RGS4. The exposure of cysteine side-chains appears to facilitate initial binding of TDZD compounds followed by migration of the compound into a bundle of four helices, thereby causing allosteric perturbations in the RGS/Gα protein-protein interface.
Collapse
Affiliation(s)
| | | | - Vincent S Shaw
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
10
|
Vastrad C, Vastrad B. Bioinformatics analysis of gene expression profiles to diagnose crucial and novel genes in glioblastoma multiform. Pathol Res Pract 2018; 214:1395-1461. [PMID: 30097214 DOI: 10.1016/j.prp.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Therefore, the current study aimed to diagnose the genes associated in the pathogenesis of GBM. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppFun was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs carried out. A total of 701 DEGs, including 413 upregulated and 288 downregulated genes, were diagnosed between U1118MG cell line (PK 11195 treated with 1 h exposure) and U1118MG cell line (PK 11195 treated with 24 h exposure). The up-regulated genes were enriched in superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis, cell cycle, cell cycle process and chromosome. The down-regulated genes were enriched in folate transformations I, biosynthesis of amino acids, cellular amino acid metabolic process and vacuolar membrane. The current study screened the genes in PPI network, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network with higher degrees as hub genes, which included MYC, TERF2IP, CDK1, EEF1G, TXNIP, SLC1A5, RGS4 and IER5L Survival suggested that low expressed NR4A2, SLC7 A5, CYR61 and ID1 in patients with GBM was linked with a positive prognosis for overall survival. In conclusion, the current study could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new molecular markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karanataka, India.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka, 580002, India
| |
Collapse
|
11
|
Dai W, Li Q, Liu BY, Li YX, Li YY. Differential networking meta-analysis of gastric cancer across Asian and American racial groups. BMC SYSTEMS BIOLOGY 2018; 12:51. [PMID: 29745833 PMCID: PMC5998874 DOI: 10.1186/s12918-018-0564-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Gastric Carcinoma is one of the most lethal cancer around the world, and is also the most common cancers in Eastern Asia. A lot of differentially expressed genes have been detected as being associated with Gastric Carcinoma (GC) progression, however, little is known about the underlying dysfunctional regulation mechanisms. To address this problem, we previously developed a differential networking approach that is characterized by involving differential coexpression analysis (DCEA), stage-specific gene regulatory network (GRN) modelling and differential regulation networking (DRN) analysis. Result In order to implement differential networking meta-analysis, we developed a novel framework which integrated the following steps. Considering the complexity and diversity of gastric carcinogenesis, we first collected three datasets (GSE54129, GSE24375 and TCGA-STAD) for Chinese, Korean and American, and aimed to investigate the common dysregulation mechanisms of gastric carcinogenesis across racial groups. Then, we constructed conditional GRNs for gastric cancer corresponding to normal and carcinoma, and prioritized differentially regulated genes (DRGs) and gene links (DRLs) from three datasets separately by using our previously developed differential networking method. Based on our integrated differential regulation information from three datasets and prior knowledge (e.g., transcription factor (TF)-target regulatory relationships and known signaling pathways), we eventually generated testable hypotheses on the regulation mechanisms of two genes, XBP1 and GIF, out of 16 common cross-racial DRGs in gastric carcinogenesis. Conclusion The current cross-racial integrative study from the viewpoint of differential regulation networking provided useful clues for understanding the common dysfunctional regulation mechanisms of gastric cancer progression and discovering new universal drug targets or biomarkers for gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12918-018-0564-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wentao Dai
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China.,Shanghai Engineering Research Center of Pharmaceutical Translation & Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China
| | - Quanxue Li
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China.,School of biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bing-Ya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yi-Xue Li
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China. .,School of biotechnology, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Pharmaceutical Translation & Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China. .,Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yuan-Yuan Li
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China. .,School of biotechnology, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Pharmaceutical Translation & Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China. .,Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Yang SH, Li CF, Chu PY, Ko HH, Chen LT, Chen WW, Han CH, Lung JH, Shih NY. Overexpression of regulator of G protein signaling 11 promotes cell migration and associates with advanced stages and aggressiveness of lung adenocarcinoma. Oncotarget 2016; 7:31122-31136. [PMID: 27105500 PMCID: PMC5058744 DOI: 10.18632/oncotarget.8860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 04/01/2016] [Indexed: 11/25/2022] Open
Abstract
Regulator of G protein signaling 11 (RGS11), a member of the R7 subfamily of RGS proteins, is a well-characterized GTPase-accelerating protein that is involved in the heterotrimeric G protein regulation of the amplitude and kinetics of receptor-promoted signaling in retinal bipolar and nerve cells. However, the role of RGS11 in cancer is completely unclear. Using subtractive hybridization analysis, we found that RGS11 was highly expressed in the lymph-node metastatic tissues and bone-metastatic tumors obtained from patients with lung adenocarcinoma. Characterization of the clinicopathological features of 91 patients showed that around 57.1% of the tumor samples displayed RGS11 overexpression that was associated with primary tumor status, nodal metastasis and increased disease stages. Its high expression was an independent predictive factor for poor prognosis of these patients. Cotransfection of guanine nucleotide-binding protein beta-5 (GNB5) markedly increased RGS11 expression. Enhancement or attenuation of RGS11 expression pinpointed its specific role in cell migration, but not in cell invasion and proliferation. Signaling events initiated by the RGS11-GNB5 coexpression activated the c-Raf/ERK/FAK-mediated pathway through upregulation of the Rac1 activity. Consistently, increasing the cell invasiveness of the transfectants by additional cotransfection of the exogenous urokinase-plasminogen activator gene caused a significant promotion in cell invasion in vitro and in vivo, confirming that RGS11 functions in cell migration, but requires additional proteolytic activity for cell and tissue invasion. Collectively, overexpression of RGS11 promotes cell migration, participates in tumor metastasis, and correlates the clinicopathological conditions of patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Pei-Yi Chu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Hsiu-Hsing Ko
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Wan-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chia-Hung Han
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Jr-Hau Lung
- Division of Pulmonary and Critical care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Neng-Yao Shih
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaoshiung Medical University, Kaoshiung, Taiwan
| |
Collapse
|
13
|
Chen Z, Wu Y, Meng Q, Xia Z. Elevated microRNA-25 inhibits cell apoptosis in lung cancer by targeting RGS3. In Vitro Cell Dev Biol Anim 2015; 52:62-7. [PMID: 26416661 DOI: 10.1007/s11626-015-9947-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/27/2015] [Indexed: 01/12/2023]
Abstract
The non-small-cell lung cancer (NSCLC) is the most common type of lung cancer that affects the human health. But, the underlying mechanisms and effective therapy are still absent. MicroRNAs (miRNAs) are small RNAs that specifically bind to the 3' untranslated region (3'UTR) of its target and regulate the protein level of the target at post-transcriptional level. A lot of miRNAs had been found abnormally regulated in the NSCLC patients, and understanding their specific roles in the pathogenesis of NSCLC will help us to develop novel therapeutic approaches. Here, we reported that miR-25 is dramatically upregulated in NSCLC tissues and negatively correlated with RGS3 protein. A conserved binding sequence in the 3'UTR of RGS3 gene to miR-25 was identified, and overexpression of miR-25 induces the RGS3 inhibition. Importantly, suppression of miR-25 facilitates the cell apoptosis and retards the cell proliferation in A549 and H520 cell lines. Our data provide a novel miR-25/RGS3 signal in the development of lung cancer.
Collapse
Affiliation(s)
- Zhize Chen
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| |
Collapse
|
14
|
Cao Y, Liu Y, Yang X, Liu X, Han N, Zhang K, Lin D. Estimation of the Survival of Patients With Lung Squamous Cell Carcinoma Using Genomic Copy Number Aberrations. Clin Lung Cancer 2015; 17:68-74.e5. [PMID: 26427646 DOI: 10.1016/j.cllc.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Estimation of the survival of patients with lung squamous cell carcinoma (SCC) on the basis of histopathology is inadequate. The aim of this study was to identify genomic regions with potential value for estimating the prognosis of these patients. PATIENTS AND METHODS Depending on their survival time, 100 patients with primary lung SCC were separated into high- or low-risk prognostic groups, and their copy number aberrations (CNAs) were analyzed using array-comparative genomic hybridization (array-CGH). RESULTS We identified 123 CNA regions that were significantly associated with survival. Among these regions, some have been reported previously (eg, amplifications of 8p12, 3q27.1, and loss of 9p21.3 and 13q34) but others have never been reported. For example, gains of 3q27.1, 5p13.2, and 5p13.3 were found to be associated with a favorable prognosis, but patients harboring gains of 11q23.3, 11q13.1, and 14q32.3, and deletions of 3p21.3 and 9p21.3 tended to have poor survival. Among the 123 CNA regions, 41 were further selected to construct a survival estimation model that could effectively separate SCC patients into high- or low-risk groups with an accuracy of 92%, sensitivity of 90%, and specificity of 94%. The results of the array-CGH were further validated in an independent cohort of 45 formalin-fixed, paraffin-embedded specimens using real-time polymerase chain reaction. CONCLUSION A number of CNA regions were found to be associated with the survival of SCC patients, and we were able to construct a model to estimate prognosis on the basis of these regions. Assessment of these CNAs could potentially assist in clinical decision-making regarding adjuvant therapy after surgery.
Collapse
Affiliation(s)
- Yan Cao
- Department of Pathology, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yu Liu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xin Yang
- Department of Pathology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - XiangYang Liu
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Naijun Han
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Dongmei Lin
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| |
Collapse
|
15
|
Eusemann TN, Willmroth F, Fiebich B, Biber K, van Calker D. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS) 2, 3 and 4 in Astrocyte-Like Cells. PLoS One 2015; 10:e0134934. [PMID: 26263491 PMCID: PMC4532427 DOI: 10.1371/journal.pone.0134934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
The “regulators of g-protein signalling” (RGS) comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells) and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.
Collapse
Affiliation(s)
- Till Nicolas Eusemann
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Frank Willmroth
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Bernd Fiebich
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
| | - Dietrich van Calker
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Freiburg, Germany
- * E-mail:
| |
Collapse
|
16
|
ALTOBELLI EMMA, MARZIONI DANIELA, LATTANZI AMEDEO, ANGELETTI PAOLOMATTEO. HtrA1: Its future potential as a novel biomarker for cancer. Oncol Rep 2015; 34:555-66. [PMID: 26035313 PMCID: PMC4487665 DOI: 10.3892/or.2015.4016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022] Open
Abstract
HtrA1 appears to be involved in several physiological processes as well as in the pathogenesis of conditions such as Alzheimer's disease and osteoarthritis. It has also been hypothesized to play a role as a tumor suppressor. This manuscript reviews the current cancer-related HtrA1 research from the methodological and clinical standpoints including studies regarding its potential role as a tumor marker and/or prognostic factor. PRISMA method was used for study selection. The articles thus collected were examined and selected by two independent reviewers; any disagreement was resolved by a methodologist. A laboratory researcher reviewed the methods and laboratory techniques. Fifteen studies met the inclusion criteria and concerned the following cancer sites: the nervous system, bladder, breast, esophagus, stomach, liver, endometrium, thyroid, ovaries, pleura, lung and skin. Most articles described in vivo studies using a morphological approach and immunohistochemistry, whereas protein expression was quantified as staining intensity scored by two raters. Often the results were not comparable due to the different rating scales and study design. Current research on HtrA1 does not conclusively support its role as a tumor suppressor.
Collapse
Affiliation(s)
- EMMA ALTOBELLI
- Department of Life, Health and Environmental Sciences, Epidemiology and Biostatistics Unit, AUSL Teramo, University of L’Aquila, L’Aquila, Italy
| | - DANIELA MARZIONI
- Department of Experimental and Clinical Medicine, University of Ancona, Ancona, Italy
| | - AMEDEO LATTANZI
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - PAOLO MATTEO ANGELETTI
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
17
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
18
|
Azevedo H, Fujita A, Bando SY, Iamashita P, Moreira-Filho CA. Transcriptional network analysis reveals that AT1 and AT2 angiotensin II receptors are both involved in the regulation of genes essential for glioma progression. PLoS One 2014; 9:e110934. [PMID: 25365520 PMCID: PMC4217762 DOI: 10.1371/journal.pone.0110934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/26/2014] [Indexed: 01/25/2023] Open
Abstract
Gliomas are aggressive primary brain tumors with high infiltrative potential. The expression of Angiotensin II (Ang II) receptors has been associated with poor prognosis in human astrocytomas, the most common type of glioma. In this study, we investigated the role of Angiotensin II in glioma malignancy through transcriptional profiling and network analysis of cultured C6 rat glioma cells exposed to Ang II and to inhibitors of its membrane receptor subtypes. C6 cells were treated with Ang II and specific antagonists of AT1 and AT2 receptors. Total RNA was isolated after three and six hours of Ang II treatment and analyzed by oligonucleotide microarray technology. Gene expression data was evaluated through transcriptional network modeling to identify how differentially expressed (DE) genes are connected to each other. Moreover, other genes co-expressing with the DE genes were considered in these analyses in order to support the identification of enriched functions and pathways. A hub-based network analysis showed that the most connected nodes in Ang II-related networks exert functions associated with cell proliferation, migration and invasion, key aspects for glioma progression. The subsequent functional enrichment analysis of these central genes highlighted their participation in signaling pathways that are frequently deregulated in gliomas such as ErbB, MAPK and p53. Noteworthy, either AT1 or AT2 inhibitions were able to down-regulate different sets of hub genes involved in protumoral functions, suggesting that both Ang II receptors could be therapeutic targets for intervention in glioma. Taken together, our results point out multiple actions of Ang II in glioma pathogenesis and reveal the participation of both Ang II receptors in the regulation of genes relevant for glioma progression. This study is the first one to provide systems-level molecular data for better understanding the protumoral effects of Ang II in the proliferative and infiltrative behavior of gliomas.
Collapse
Affiliation(s)
- Hátylas Azevedo
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
19
|
Motwani M, Li DQ, Horvath A, Kumar R. Identification of novel gene targets and functions of p21-activated kinase 1 during DNA damage by gene expression profiling. PLoS One 2013; 8:e66585. [PMID: 23950862 PMCID: PMC3741304 DOI: 10.1371/journal.pone.0066585] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022] Open
Abstract
P21-activated kinase 1 (PAK1), a serine/threonine protein kinase, modulates many cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, PAK1 also affects gene transcription due to its nuclear localization and association with chromatin. It is now recognized that PAK1 kinase activity and its nuclear translocation are rapidly stimulated by ionizing radiation (IR), and that PAK1 activation is a component of the DNA damage response. Owing to the role of PAK1 in the cell survival, its association with the chromatin, and now, stimulation by ionizing radiation, we hypothesize that PAK1 may be contributing to modulation of genes with roles in cellular processes that might be important in the DNA damage response. The purpose of this study was to identify new PAK1 targets in response to ionizing radiation with putative role in the DNA damage response. We examined the effect of IR on the gene expression patterns in the murine embryonic fibroblasts with or without Pak1 using microarray technology. Differentially expressed transcripts were identified using Gene Spring GX 10.0.2. Pathway, network, functional analyses and gene family classification were carried out using Kyoto Encyclopedia of Genes and Genomes (KEGG), Ingenuity Pathway, Gene Ontology and PANTHER respectively. Selective targets of PAK1 were validated by RT-qPCR. For the first time, we provide a genome-wide analysis of PAK1 and identify its targets with potential roles in the DNA damage response. Gene Ontology analysis identified genes in the IR-stimulated cells that were involved in cell cycle arrest and cell death. Pathway analysis revealed p53 pathway being most influenced by IR responsive, PAK1 targets. Gene family of transcription factors was over represented and gene networks involved in DNA replication, repair and cellular signaling were identified. In brief, this study identifies novel PAK1 dependent IR responsive genes which reveal new aspects of PAK1 biology.
Collapse
Affiliation(s)
- Mona Motwani
- McCormick Genomic and Proteomics Center, The George Washington University, Washington, District of Columbia, United States of America
| | - Da-Qiang Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
| | - Anelia Horvath
- McCormick Genomic and Proteomics Center, The George Washington University, Washington, District of Columbia, United States of America
| | - Rakesh Kumar
- McCormick Genomic and Proteomics Center, The George Washington University, Washington, District of Columbia, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Vehlow A, Cordes N. Invasion as target for therapy of glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2013; 1836:236-44. [PMID: 23891970 DOI: 10.1016/j.bbcan.2013.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022]
Abstract
The survival of cancer patients suffering from glioblastoma multiforme is limited to just a few months even after treatment with the most advanced techniques. The indefinable borders of glioblastoma cell infiltration into the surrounding healthy tissue prevent complete surgical removal. In addition, genetic mutations, epigenetic modifications and microenvironmental heterogeneity cause resistance to radio- and chemotherapy altogether resulting in a hardly to overcome therapeutic scenario. Therefore, the development of efficient therapeutic strategies to combat these tumors requires a better knowledge of genetic and proteomic alterations as well as the infiltrative behavior of glioblastoma cells and how this can be targeted. Among many cell surface receptors, members of the integrin family are known to regulate glioblastoma cell invasion in concert with extracellular matrix degrading proteases. While preclinical and early clinical trials suggested specific integrin targeting as a promising therapeutic approach, clinical trials failed to deliver improved cure rates up to now. Little is known about glioblastoma cell motility, but switches in invasion modes and adaption to specific microenvironmental cues as a consequence of treatment may maintain tumor cell resistance to therapy. Thus, understanding the molecular basis of integrin and protease function for glioblastoma cell invasion in the context of radiochemotherapy is a pressing issue and may be beneficial for the design of efficient therapeutic approaches. This review article summarizes the latest findings on integrins and extracellular matrix in glioblastoma and adds some perspective thoughts on how this knowledge might be exploited for optimized multimodal therapy approaches.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| | | |
Collapse
|
21
|
Bastin G, Heximer SP. Rab family proteins regulate the endosomal trafficking and function of RGS4. J Biol Chem 2013; 288:21836-49. [PMID: 23733193 DOI: 10.1074/jbc.m113.466888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
22
|
Knaup J, Verwanger T, Gruber C, Ziegler V, Bauer JW, Krammer B. Epidermolysis bullosa - a group of skin diseases with different causes but commonalities in gene expression. Exp Dermatol 2012; 21:526-30. [PMID: 22716248 DOI: 10.1111/j.1600-0625.2012.01519.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epidermolysis bullosa (EB) is a group of hereditary skin disorders. Although each subtype is caused by mutations in genes encoding differentially located components of the skin, the resulting phenotype is similar. In this study, we investigated similarities in the gene expression profiles of each subtype on mRNA level. Type XVI collagen (COL16A1), G0/G1 switch 2 (G0S2), fibronectin (FN1), ribosomal protein S27A (RPS27A) and low density lipoprotein receptor (LDLR) were shown to exhibit corresponding changes in gene expression in all three EB subtypes. While COL16A1, G0S2 and FN1 are up-regulated, LDLR and RPS27A mRNA levels are decreased. These data indicate that EB cells seem to take measures increasing their mechanical stability. Apoptosis is likely to be exacerbated, and migratory potential appears to be elevated. Protein degradation is hampered, and the release of fatty acids and glycerol is restricted, probably to save energy. These commonalities might benefit existing EB treatment strategies or could help to reveal new starting points for the treatment of EB in the future.
Collapse
Affiliation(s)
- Julia Knaup
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
An essential mode of acquired resistance to radiotherapy (RT) appears to be promotion of tumor cell motility and invasiveness in various cancer types, including glioblastoma, a process resembling 'evasive resistance'. Hence, a logical advancement of RT would be to identify suitable complementary treatment strategies, ideally targeting cell motility. Here we report that the combination of focal RT and mammalian target of rapamycin (mTOR) inhibition using clinically relevant concentrations of temsirolimus (CCI-779) prolongs survival in a syngeneic mouse glioma model through additive cytostatic effects. In vitro, the mTOR inhibitor CCI-779 exerted marked anti-invasive effects, irrespective of the phosphatase and tensin homolog deleted on chromosome 10 status and counteracted the proinvasive effect of sublethal irradiation. Mechanistically, we identified regulator of G-protein signaling 4 (RGS4) as a novel target of mTOR inhibition and a key driver of glioblastoma invasiveness, sensitive to the anti-invasive properties of CCI-779. Notably, suppression of RGS4-dependent glioma cell invasion was signaled through both mTOR complexes, mTORC1 and mTORC2, in a concentration-dependent manner, indicating that high doses of CCI-779 may overcome tumor-cell resistance associated with the sole inhibition of mTORC1. We conclude that combined RT and mTOR inhibition is a promising therapeutic option that warrants further clinical investigation in upfront glioblastoma therapy.
Collapse
|
24
|
Delic S, Lottmann N, Jetschke K, Reifenberger G, Riemenschneider MJ. Identification and functional validation of CDH11, PCSK6 and SH3GL3 as novel glioma invasion-associated candidate genes. Neuropathol Appl Neurobiol 2012; 38:201-12. [DOI: 10.1111/j.1365-2990.2011.01207.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin Sci (Lond) 2011; 121:437-47. [PMID: 21658006 DOI: 10.1042/cs20110207] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miR-31 (microRNA-31) is frequently altered in numerous cancers. The aim of the present study was to investigate the role of miR-31 in ESCC (oesophageal squamous cell carcinoma). We measured miR-31 in 45 paired ESCC tissues and 523 serum samples using real-time RT (reverse transcription)-PCR. The serum samples were divided into a discovery group (120 ESCCs and 121 normal controls), a validation group (81 ESCCs and 81 controls), and a final group comprising six other common tumours (colorectal, liver, cervical, breast, gastric and lung cancers; total n=120). A Mann-Whitney U test and Wilcoxon matched-pairs test were used for the statistics. miR-31 was up-regulated in 77.8% of the ESCC tissues. Serum miR-31 levels in ESCC patients were significantly higher than in normal controls (P<0.001). It yielded an ROC (receiver operating characteristic) AUC (area under the curve) of 0.902 [95% CI (confidence interval), 0.857-0.936] in the discovery group and a similar result in the validation group [ROC AUC, 0.888 (95% CI, 0.819-0.939)]. Patients with high-levels of serum miR-31 also had a poorer prognosis in relapse-free survival (P=0.001) and tumour-specific survival (P=0.005). In vitro studies showed that miR-31 promoted ESCC colony formation, migration and invasion. Luciferase reporter and Western blot assays confirmed that three tumour suppressor genes, namely EMP1 (epithelial membrane protein 1), KSR2 (kinase suppressor of ras 2) and RGS4 (regulator of G-protein signalling 4), were targeted by miR-31. We conclude that miR-31 plays oncogenetic functions and can serve as a potential diagnostic and prognostic biomarker for ESCC.
Collapse
|
26
|
Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M. Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System. Clin Med Insights Oncol 2011; 5:265-314. [PMID: 22084619 PMCID: PMC3201112 DOI: 10.4137/cmo.s7685] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radiation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells.The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our laboratory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors do not affect neurons or fibroblasts up to concentrations of 4 μM or higher.At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neovascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step.
Collapse
Affiliation(s)
- Manuel Nieto-Sampedro
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Beatriz Valle-Argos
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Diego Gómez-Nicola
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | | |
Collapse
|
27
|
Santra M, Santra S, Buller B, Santra K, Nallani A, Chopp M. Effect of doublecortin on self-renewal and differentiation in brain tumor stem cells. Cancer Sci 2011; 102:1350-7. [PMID: 21477071 PMCID: PMC3116092 DOI: 10.1111/j.1349-7006.2011.01952.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Analysis of microarray probe data from glioma patient samples, in conjunction with patient Kaplan-Meier survival plots, indicates that expression of a glioma suppressor gene doublecortin (DCX) favors glioma patient survival. From neurosphere formation in culture, time-lapse microscopic video recording, and tumor xenograft, we show that DCX synthesis significantly reduces self-renewal of brain tumor stem cells (BTSC) in human primary glioma (YU-PG, HF66) cells from surgically removed human glioma specimens and U87 cells in vitro and in vivo. Time-lapse microscopic video recording revealed that double transfection of YU-PG, HF66, and U87 cells with DCX and neurabin II caused incomplete cell cycle with failure of cytokinesis, that is, endomitosis by dividing into three daughter cells from one mother BTSC. Activation of c-jun NH2-terminal kinase 1 (JNK1) after simvastatin (10 nM) treatment of DCX(+) neurabin II(+) BTSC from YU-PG, HF66, and U87 cells induced terminal differentiation into neuron-like cells. dUTP nick end labeling data indicated that JNK1 activation also induced apoptosis only in double transfected BTSC with DCX and neurabin II, but not in single transfected BTSC from YU-PG, HF66, and U87 cells. Western blot analysis showed that procaspase-3 was induced after DCX transfection and activated after simvastatin treatment in YU-PG, HF66, and U87 BTSC. Sequential immunoprecipitation and Western blot data revealed that DCX synthesis blocked protein phosphatase-1 (PP1)/caspase-3 protein-protein interaction and increased PP1-DCX interaction. These data show that DCX synthesis induces apoptosis in BTSC through a novel JNK1/neurabin II/DCX/PP1/caspase-3 pathway.
Collapse
Affiliation(s)
- Manoranjan Santra
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Sutapa Santra
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Ben Buller
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Kastuv Santra
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Ankita Nallani
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
28
|
Dai J, Gu J, Lu C, Lin J, Stewart D, Chang D, Roth JA, Wu X. Genetic variations in the regulator of G-protein signaling genes are associated with survival in late-stage non-small cell lung cancer. PLoS One 2011; 6:e21120. [PMID: 21698121 PMCID: PMC3117866 DOI: 10.1371/journal.pone.0021120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 01/08/2023] Open
Abstract
The regulator of G-protein signaling (RGS) pathway plays an important role in signaling transduction, cellular activities, and carcinogenesis. We hypothesized that genetic variations in RGS gene family may be associated with the response of late-stage non-small cell lung cancer (NSCLC) patients to chemotherapy or chemoradiotherapy. We selected 95 tagging single nucleotide polymorphisms (SNPs) in 17 RGS genes and genotyped them in 598 late-stage NSCLC patients. Thirteen SNPs were significantly associated with overall survival. Among them, rs2749786 of RGS12 was most significant. Stratified analysis by chemotherapy or chemoradiation further identified SNPs that were associated with overall survival in subgroups. Rs2816312 of RGS1 and rs6689169 of RGS7 were most significant in chemotherapy group and chemoradiotherapy group, respectively. A significant cumulative effect was observed when these SNPs were combined. Survival tree analyses identified potential interactions between rs944343, rs2816312, and rs1122794 in affecting survival time in patients treated with chemotherapy, while the genotype of rs6429264 affected survival in chemoradiation-treated patients. To our knowledge, this is the first study to reveal the importance of RGS gene family in the survival of late-stage NSCLC patients.
Collapse
Affiliation(s)
- Jingyao Dai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Charles Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jie Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David Stewart
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
We propose a computationally intensive method, the random lasso method, for variable selection in linear models. The method consists of two major steps. In step 1, the lasso method is applied to many bootstrap samples, each using a set of randomly selected covariates. A measure of importance is yielded from this step for each covariate. In step 2, a similar procedure to the first step is implemented with the exception that for each bootstrap sample, a subset of covariates is randomly selected with unequal selection probabilities determined by the covariates' importance. Adaptive lasso may be used in the second step with weights determined by the importance measures. The final set of covariates and their coefficients are determined by averaging bootstrap results obtained from step 2. The proposed method alleviates some of the limitations of lasso, elastic-net and related methods noted especially in the context of microarray data analysis: it tends to remove highly correlated variables altogether or select them all, and maintains maximal flexibility in estimating their coefficients, particularly with different signs; the number of selected variables is no longer limited by the sample size; and the resulting prediction accuracy is competitive or superior compared to the alternatives. We illustrate the proposed method by extensive simulation studies. The proposed method is also applied to a Glioblastoma microarray data analysis.
Collapse
Affiliation(s)
- Sijian Wang
- Department of Biostatistics, University of Wisconsin, Madison, Wisconsin, 53792, USA
| | | | | | | |
Collapse
|
30
|
Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 2011; 12:675-84. [PMID: 20824044 DOI: 10.1593/neo.10688] [Citation(s) in RCA: 320] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 01/27/2023] Open
Abstract
Aberrant epidermal growth factor receptor (EGFR) signaling is common in cancer. Increased expression of wild type and mutant EGFR is a widespread feature of diverse types of cancer. EGFR signaling in cancer has been the focus of intense investigation for decades primarily for two reasons. First, aberrant EGFR signaling is likely to play an important role in the pathogenesis of cancer, and therefore, the mechanisms of EGFR-mediated oncogenic signaling are of interest. Second, the EGFR signaling system is an attractive target for therapeutic intervention. EGFR gene amplification and overexpression are a particularly striking feature of glioblastoma (GBM), observed in approximately 40% of tumors. GBM is the most common primary malignant tumor of the central nervous system in adults. In approximately 50% of tumors with EGFR amplification, a specific EGFR mutant (EGFRvIII, also known as EGFR type III, de2-7, Delta EGFR) can be detected. This mutant is highly oncogenic and is generated from a deletion of exons 2 to 7 of the EGFR gene, which results in an in-frame deletion of 267 amino acids from the extracellular domain of the receptor. EGFRvIII is unable to bind ligand, and it signals constitutively. Although EGFRvIII has the same signaling domain as the wild type receptor, it seems to generate a distinct set of downstream signals that may contribute to an increased tumorigenicity. In this review, we discuss recent progress in key aspects of EGFR signaling in GBM, focusing on neuropathology, signal transduction, imaging of the EGFR, and the role of the EGFR in mediating resistance to radiation therapy in GBM.
Collapse
|
31
|
Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res 2010; 12:R85. [PMID: 20946665 PMCID: PMC3096978 DOI: 10.1186/bcr2753] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/14/2010] [Indexed: 12/31/2022] Open
Abstract
Introduction Various multigene predictors of breast cancer clinical outcome have been commercialized, but proved to be prognostic only for hormone receptor (HR) subsets overexpressing estrogen or progesterone receptors. Hormone receptor negative (HRneg) breast cancers, particularly those lacking HER2/ErbB2 overexpression and known as triple-negative (Tneg) cases, are heterogeneous and generally aggressive breast cancer subsets in need of prognostic subclassification, since most early stage HRneg and Tneg breast cancer patients are cured with conservative treatment yet invariably receive aggressive adjuvant chemotherapy. Methods An unbiased search for genes predictive of distant metastatic relapse was undertaken using a training cohort of 199 node-negative, adjuvant treatment naïve HRneg (including 154 Tneg) breast cancer cases curated from three public microarray datasets. Prognostic gene candidates were subsequently validated using a different cohort of 75 node-negative, adjuvant naïve HRneg cases curated from three additional datasets. The HRneg/Tneg gene signature was prognostically compared with eight other previously reported gene signatures, and evaluated for cancer network associations by two commercial pathway analysis programs. Results A novel set of 14 prognostic gene candidates was identified as outcome predictors: CXCL13, CLIC5, RGS4, RPS28, RFX7, EXOC7, HAPLN1, ZNF3, SSX3, HRBL, PRRG3, ABO, PRTN3, MATN1. A composite HRneg/Tneg gene signature index proved more accurate than any individual candidate gene or other reported multigene predictors in identifying cases likely to remain free of metastatic relapse. Significant positive correlations between the HRneg/Tneg index and three independent immune-related signatures (STAT1, IFN, and IR) were observed, as were consistent negative associations between the three immune-related signatures and five other proliferation module-containing signatures (MS-14, ONCO-RS, GGI, CSR/wound and NKI-70). Network analysis identified 8 genes within the HRneg/Tneg signature as being functionally linked to immune/inflammatory chemokine regulation. Conclusions A multigene HRneg/Tneg signature linked to immune/inflammatory cytokine regulation was identified from pooled expression microarray data and shown to be superior to other reported gene signatures in predicting the metastatic outcome of early stage and conservatively managed HRneg and Tneg breast cancer. Further validation of this prognostic signature may lead to new therapeutic insights and spare many newly diagnosed breast cancer patients the need for aggressive adjuvant chemotherapy.
Collapse
Affiliation(s)
- Christina Yau
- Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | | | | | | |
Collapse
|
32
|
Wang J, Lippman SM, Lee JJ, Yang H, Khuri FR, Kim E, Lin J, Chang DW, Lotan R, Hong WK, Wu X. Genetic variations in regulator of G-protein signaling genes as susceptibility loci for second primary tumor/recurrence in head and neck squamous cell carcinoma. Carcinogenesis 2010; 31:1755-61. [PMID: 20627871 DOI: 10.1093/carcin/bgq138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Curatively treated patients with early-stage head and neck squamous cell carcinoma (HNSCC) are at high risks for second primary tumor (SPT) and recurrence. The regulator of G-protein signaling (RGS) is important in essential signaling transduction and cellular activities. We hypothesize that genetic variations of RGS may modulate the risk of SPT/recurrence in patients with early-stage HNSCC. In a nested case-control study, we evaluated 98 single-nucleotide polymorphisms (SNPs) in 17 RGS genes for the risk of SPT/recurrence among 450 HNSCC patients. Eight SNPs showed significant associations with the risk of SPT/recurrence, with the most significant one of rs2179653, which is located in the 5'-flanking region of RGS2 gene. Under a recessive genetic model, the homozygous variant genotype of this SNP was associated with 2.95-fold [95% confidence interval (CI): 1.52-5.74] increased risk of SPT/recurrence. This association remained significant after the adjustment for multiple comparisons. Cumulative effects analysis revealed that the risk increased significantly with the increasing numbers of unfavorable genotypes. Compared with subjects carrying 0-2 unfavorable genotypes, the hazard ratios (95% CIs) for those carrying 3 or 4+ were 1.73 (1.10-2.70) and 3.05 (1.92-4.83), respectively. Furthermore, survival tree analysis revealed potential higher order gene-gene interactions and indicated different outcomes based on distinct genotype profiles. Genetic variations of RGS genes may modulate the susceptibility to SPT/recurrence in early-stage HNSCC patients individually and cumulatively. Our results stressed the importance of taking a polygenic approach to evaluate the cumulative and interaction effects of genetic variations in the prediction of cancer risk and prognosis.
Collapse
Affiliation(s)
- Jianming Wang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Paoloni M, Davis S, Lana S, Withrow S, Sangiorgi L, Picci P, Hewitt S, Triche T, Meltzer P, Khanna C. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics 2009; 10:625. [PMID: 20028558 PMCID: PMC2803201 DOI: 10.1186/1471-2164-10-625] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 12/23/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. RESULTS Using parallel oligonucleotide array platforms, shared orthologues between species were identified and normalized. The osteosarcoma expression signatures could not distinguish the canine and human diseases by hierarchical clustering. Cross-species target mining identified two genes, interleukin-8 (IL-8) and solute carrier family 1 (glial high affinity glutamate transporter), member 3 (SLC1A3), which were uniformly expressed in dog but not in all pediatric osteosarcoma patient samples. Expression of these genes in an independent population of pediatric osteosarcoma patients was associated with poor outcome (p = 0.020 and p = 0.026, respectively). Validation of IL-8 and SLC1A3 protein expression in pediatric osteosarcoma tissues further supported the potential value of these novel targets. Ongoing evaluation will validate the biological significance of these targets and their associated pathways. CONCLUSIONS Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapies.
Collapse
Affiliation(s)
- Melissa Paoloni
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mertsch S, Schurgers LJ, Weber K, Paulus W, Senner V. Matrix gla protein (MGP): an overexpressed and migration-promoting mesenchymal component in glioblastoma. BMC Cancer 2009; 9:302. [PMID: 19712474 PMCID: PMC2739228 DOI: 10.1186/1471-2407-9-302] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 08/27/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that a molecular subtype of glioblastoma is characterized by overexpression of extracellular matrix (ECM)/mesenchymal components and shorter survival. Specifically, gene expression profiling studies revealed that matrix gla protein (MGP), whose function has traditionally been linked to inhibition of calcification of arteries and cartilage, is overexpressed in glioblastomas and associated with worse outcome. METHODS In order to analyze the role of MGP in glioblastomas, we performed expression, migration and proliferation studies. RESULTS Real-time PCR and ELISA assays confirmed overexpression of MGP in glioblastoma biopsy specimens and cell lines at mRNA and protein levels as compared to normal brain tissue. Immunohistochemistry verified positivity of glial tumor cells for MGP. RNAi-mediated knockdown of MGP in three glioma cell lines (U343MG, U373MG, H4) led to marked reduction of migration, as demonstrated by wound healing and transwell assays, while no effect on proliferation was seen. CONCLUSION Our data suggest that upregulation of MGP (and possibly other ECM-related components as well) results in unfavorable prognosis via increased migration.
Collapse
Affiliation(s)
- Sonja Mertsch
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Leon J Schurgers
- VitaK Inc. and Cardiovascular Research Institute CARIM, Maastricht, the Netherlands
| | - Kathrin Weber
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
35
|
Mertsch S, Becker M, Lichota A, Paulus W, Senner V. Vesicle amine transport protein-1 (VAT-1) is upregulated in glioblastomas and promotes migration. Neuropathol Appl Neurobiol 2009. [DOI: 10.1111/j.1365-2990.2008.00993.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 2009; 21:1045-53. [DOI: 10.1016/j.cellsig.2009.02.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
|
37
|
Hurst JH, Hooks SB. Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem Pharmacol 2009; 78:1289-97. [PMID: 19559677 DOI: 10.1016/j.bcp.2009.06.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 01/09/2023]
Abstract
The regulator of G-protein signaling (RGS) family is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). In recent years, GPCRs have been linked to the initiation and progression of multiple cancers; thus, regulators of GPCR signaling are also likely to be important to the pathophysiology of cancer. This review highlights recent studies detailing changes in RGS transcript expression during oncogenesis, single nucleotide polymorphisms in RGS proteins linked to lung and bladder cancers, and specific roles for RGS proteins in multiple cancer types.
Collapse
Affiliation(s)
- Jillian H Hurst
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
38
|
Xie Y, Wolff DW, Wei T, Wang B, Deng C, Kirui JK, Jiang H, Qin J, Abel PW, Tu Y. Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4. Cancer Res 2009; 69:5743-51. [PMID: 19549919 DOI: 10.1158/0008-5472.can-08-3564] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant signaling through G-protein coupled receptors promotes metastasis, the major cause of breast cancer death. We identified regulator of G-protein signaling 4 (RGS4) as a novel suppressor of breast cancer migration and invasion, important steps of metastatic cascades. By blocking signals initiated through G(i)-coupled receptors, such as protease-activated receptor 1 and CXC chemokine receptor 4, RGS4 disrupted Rac1-dependent lamellipodia formation, a key step involved in cancer migration and invasion. RGS4 has GTPase-activating protein (GAP) activity, which inhibits G-protein coupled receptor signaling by deactivating G-proteins. An RGS4 GAP-deficient mutant failed to inhibit migration and invasion of breast cancer cells in both in vitro assays and a mouse xenograft model. Interestingly, both established breast cancer cell lines and human breast cancer specimens showed that the highest levels of RGS4 protein were expressed in normal breast epithelia and that RGS4 down-regulation by proteasome degradation is an index of breast cancer invasiveness. Proteasome blockade increased endogenous RGS4 protein to levels that markedly inhibit breast cancer cell migration and invasion, which was reversed by an RGS4-targeted short hairpin RNA. Our findings point to the existence of a mechanism for posttranslational regulation of RGS4 function, which may have important implications for the acquisition of a metastatic phenotype by breast cancer cells. Preventing degradation of RGS4 protein should attenuate aberrant signal inputs from multiple G(i)-coupled receptors, thereby retarding the spread of breast cancer cells and making them targets for surgery, radiation, and immune treatment.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Obayashi S, Tabunoki H, Kim SU, Satoh JI. Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation. Cell Mol Neurobiol 2009; 29:423-38. [PMID: 19130216 PMCID: PMC11506025 DOI: 10.1007/s10571-008-9338-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 12/10/2008] [Indexed: 12/17/2022]
Abstract
Neural stem cells (NSC) with self-renewal and multipotent properties could provide an ideal cell source for transplantation to treat spinal cord injury, stroke, and neurodegenerative diseases. However, the majority of transplanted NSC and neural progenitor cells (NPC) differentiate into astrocytes in vivo under pathological environments in the central nervous system, which potentially cause reactive gliosis. Because the serum is a potent inducer of astrocyte differentiation of rodent NPC in culture, we studied the effect of the serum on gene expression profile of cultured human NPC to identify the gene signature of astrocyte differentiation of human NPC. Human NPC spheres maintained in the serum-free culture medium were exposed to 10% fetal bovine serum (FBS) for 72 h, and processed for analyzing on a Whole Human Genome Microarray of 41,000 genes, and the microarray data were validated by real-time RT-PCR. The serum elevated the levels of expression of 45 genes, including ID1, ID2, ID3, CTGF, TGFA, METRN, GFAP, CRYAB and CSPG3, whereas it reduced the expression of 23 genes, such as DLL1, DLL3, PDGFRA, SOX4, CSPG4, GAS1 and HES5. Thus, the serum-induced astrocyte differentiation of human NPC is characterized by a counteraction of ID family genes on Delta family genes. Coimmunoprecipitation analysis identified ID1 as a direct binding partner of a proneural basic helix-loop-helix (bHLH) transcription factor MASH1. Luciferase assay indicated that activation of the DLL1 promoter by MASH1 was counteracted by ID1. Bone morphogenetic protein 4 (BMP4) elevated the levels of ID1 and GFAP expression in NPC under the serum-free culture conditions. Because the serum contains BMP4, these results suggest that the serum factor(s), most probably BMP4, induces astrocyte differentiation by upregulating the expression of ID family genes that repress the proneural bHLH protein-mediated Delta expression in human NPC.
Collapse
Affiliation(s)
- Shinya Obayashi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| | - Hiroko Tabunoki
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| |
Collapse
|
40
|
Rubin JB. Chemokine signaling in cancer: one hump or two? Semin Cancer Biol 2009; 19:116-22. [PMID: 18992347 PMCID: PMC2694237 DOI: 10.1016/j.semcancer.2008.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Chemokines and their receptors play essential roles in the development and function of multiple tissues. Chemokine expression, particularly CXCL12 and its receptor CXCR4, has prognostic significance in several cancers apparently due to chemokine mediated growth and metastatic spread. These observations provide the rationale for pursuing CXCR4 inhibition for cancer chemotherapy. However, the multiple homeostatic functions of CXCR4 may preclude global inhibition as a therapeutic strategy. Here I review CXCR4 signaling and how it might differ in normal and transformed cells with special emphasis on the role that altered CXCR4 counter-regulation might play in tumor biology. I propose that CXCR4 mediates unique signals in cancer cells as a consequence of abnormal counter-regulation and that this results in novel biological responses. The importance of testing this hypothesis lies in the possibility that targeting abnormal CXCR4 signaling might provide an anti-tumor effect without disturbing normal CXCR4 functions.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics/Division of Pediatric Hematology and Oncology, Campus Box 8208, 660 South Euclid Avenue, Washington University School of Medicine, St Louis, MO 63110, USA. rubin
| |
Collapse
|
41
|
Broët P, Camilleri-Broët S, Zhang S, Alifano M, Bangarusamy D, Battistella M, Wu Y, Tuefferd M, Régnard JF, Lim E, Tan P, Miller LD. Prediction of clinical outcome in multiple lung cancer cohorts by integrative genomics: implications for chemotherapy selection. Cancer Res 2009; 69:1055-62. [PMID: 19176396 DOI: 10.1158/0008-5472.can-08-1116] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of adjuvant chemotherapy in patients with stage IB non-small-cell lung cancer (NSCLC) is controversial. Identifying patient subgroups with the greatest risk of relapse and, consequently, most likely to benefit from adjuvant treatment thus remains an important clinical challenge. Here, we hypothesized that recurrent patterns of genomic amplifications and deletions in lung tumors could be integrated with gene expression information to establish a robust predictor of clinical outcome in stage IB NSCLC. Using high-resolution microarrays, we generated tandem DNA copy number and gene expression profiles for 85 stage IB lung adenocarcinomas/large cell carcinomas. We identified specific copy number alterations linked to relapse-free survival and selected genes within these regions exhibiting copy number-driven expression to construct a novel integrated signature (IS) capable of predicting clinical outcome in this series (P = 0.02). Importantly, the IS also significantly predicted clinical outcome in two other independent stage I NSCLC cohorts (P = 0.003 and P = 0.025), showing its robustness. In contrast, a more conventional molecular predictor based solely on gene expression, while capable of predicting outcome in the initial series, failed to significantly predict outcome in the two independent data sets. Our results suggest that recurrent copy number alterations, when combined with gene expression information, can be successfully used to create robust predictors of clinical outcome in early-stage NSCLC. The utility of the IS in identifying early-stage NSCLC patients as candidates for adjuvant treatment should be further evaluated in a clinical trial.
Collapse
|
42
|
Li W, Li JF, Qu Y, Chen XH, Qin JM, Gu QL, Yan M, Zhu ZG, Liu BY. Comparative proteomics analysis of human gastric cancer. World J Gastroenterol 2008; 14:5657-64. [PMID: 18837081 PMCID: PMC2748199 DOI: 10.3748/wjg.14.5657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To isolate and identify differentially expressed proteins between cancer and normal tissues of gastric cancer by two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).
METHODS: Soluble fraction proteins of gastric cancer tissues and paired normal tissues were separated by 2-DE. The differentially expressed proteins were selected and identified by MALDI-TOF-MS and database search.
RESULTS: 2-DE profiles with high resolution and reproducibility were obtained. Twenty-three protein spots were excised from sliver staining gel and digested in gel by trypsin, in which fifteen protein spots were identified successfully. Among the identified proteins, there were ten over-expressed and five under-expressed proteins in stomach cancer tissues compared with normal tissues.
CONCLUSION: In this study, the well-resolved, reproducible 2-DE patterns of human gastric cancer tissue and paired normal tissue were established and optimized and certain differentially-expressed proteins were identified. The combined use of 2-DE and MS provides an effective approach to screen for potential tumor markers.
Collapse
|
43
|
Senner V, Ratzinger S, Mertsch S, Grässel S, Paulus W. Collagen XVI expression is upregulated in glioblastomas and promotes tumor cell adhesion. FEBS Lett 2008; 582:3293-300. [PMID: 18804107 DOI: 10.1016/j.febslet.2008.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/30/2022]
Abstract
The poor prognosis of glioblastoma patients is related to diffuse brain invasion and interaction of tumor cells with extracellular matrices (ECM). We describe expression and function of the FACIT-collagen XVI in glioblastomas. We found upregulation of collagen XVI mRNA as well as protein in glioblastomas as compared to normal cortex. SiRNA knockdown resulted in decreased cell adhesion whereas increased adhesion was observed on surfaces coated with collagen XVI. The migration of glioblastoma cells on this substrate remained unchanged. Our results demonstrate de-novo expression of collagen XVI in glioblastomas as part of the tumor specific remodeling of the ECM.
Collapse
Affiliation(s)
- Volker Senner
- Institute of Neuropathology, University Hospital Muenster, Domagkstrasse 19, D-48149 Muenster, Germany.
| | | | | | | | | |
Collapse
|
44
|
Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2008; 21:2683-710. [PMID: 17974913 DOI: 10.1101/gad.1596707] [Citation(s) in RCA: 1722] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant astrocytic gliomas such as glioblastoma are the most common and lethal intracranial tumors. These cancers exhibit a relentless malignant progression characterized by widespread invasion throughout the brain, resistance to traditional and newer targeted therapeutic approaches, destruction of normal brain tissue, and certain death. The recent confluence of advances in stem cell biology, cell signaling, genome and computational science and genetic model systems have revolutionized our understanding of the mechanisms underlying the genetics, biology and clinical behavior of glioblastoma. This progress is fueling new opportunities for understanding the fundamental basis for development of this devastating disease and also novel therapies that, for the first time, portend meaningful clinical responses.
Collapse
Affiliation(s)
- Frank B Furnari
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cytokines and Extracellular Matrix Remodeling in the Central Nervous System. CYTOKINES AND THE BRAIN 2008. [DOI: 10.1016/s1567-7443(07)10009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia 2007; 9:820-9. [PMID: 17971902 DOI: 10.1593/neo.07472] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 11/18/2022] Open
Abstract
At least one third of all cases of epithelial ovarian cancer are associated with the production of ascites, although its effect on tumor cell microenvironment remains poorly understood. This study addresses the effect of the heterologous acellular fraction of ovarian cancer-derived ascites on a cell line (OV-90) derived from the chemotherapy-naïve ovarian cancer patient. Ascites were assayed for their effect on cell invasion, growth, and spheroid formation. When compared to either no serum or 5% serum, ascites fell into one of two categories: stimulatory or inhibitory. RNA from OV-90 cells exposed to selected ascites were arrayed on an Affymetrix HG-U133A GeneChip. A supervised analysis identified a number of differentially expressed genes and quantitative polymerase chain reaction validation based on OV-90 cells exposed to 54 independent ascites demonstrated that stimulatory ascites affected the expression of ISGF3G, TRIB1, MKP1, RGS4, PLEC1, and MOSPD1 genes. In addition, TRIB1 expression was shown to independently correlate with prognosis when its expression was ascertained in an independent set of primary cultures established from ovarian ascites. The data support the validity of the strategy to uncover molecular events that are associated with tumor cell behavior and highlight the impact of ascites on the cellular and molecular parameters of ovarian cancer.
Collapse
|
47
|
MacDonald TJ, Pollack IF, Okada H, Bhattacharya S, Lyons-Weiler J. Progression-associated genes in astrocytoma identified by novel microarray gene expression data reanalysis. Methods Mol Biol 2007; 377:203-22. [PMID: 17634619 DOI: 10.1007/978-1-59745-390-5_13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Astrocytoma is graded as pilocytic (WHO grade I), diffuse (WHO grade II), anaplastic (WHO grade III), and glioblastoma multiforme (WHO grade IV). The progression from low- to high-grade astrocytoma is associated with distinct molecular changes that vary with patient age, yet the prognosis of high-grade tumors in children and adults is equally dismal. Whether specific gene expression changes are consistently associated with all high-grade astrocytomas, independent of patient age, is not known. To address this question, we reanalyzed the microarray datasets comprising astrocytomas from children and adults, respectively. We identified nine genes consistently dysregulated in high-grade tumors, using four novel tests for identifying differentially expressed genes. Four genes encoding ribosomal proteins (RPS2, RPS8, RPS18, RPL37A) were upregulated, and five genes (APOD, SORL1, SPOCK2, PRSS11, ID3) were downregulated in high-grade by all tests. Expression results were validated using a third astrocytoma dataset. APOD, the most differentially expressed gene, has been shown to inhibit tumor cell and vascular smooth muscle cell proliferation. This suggests that dysregulation of APOD may be critical for malignant astrocytoma formation, and thus a possible novel universal target for therapeutic intervention. Further investigation is needed to evaluate the role of APOD, as well as the other genes identified, in malignant astrocytoma development.
Collapse
Affiliation(s)
- Tobey J MacDonald
- Center for Cancer and Immunology Research, Children's Research Institute, Department of Hematology-Oncology, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|
48
|
Takahashi H, Nemoto T, Yoshida T, Honda H, Hasegawa T. Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory (PART) filtering method. BMC Bioinformatics 2006; 7:399. [PMID: 16948864 PMCID: PMC1569882 DOI: 10.1186/1471-2105-7-399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 09/04/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis and selection of treatment. To accomplish this objective, it is important to establish a sophisticated algorithm that can deal with large quantities of data such as gene expression profiles obtained by DNA microarray analysis. RESULTS Previously, we developed the projective adaptive resonance theory (PART) filtering method as a gene filtering method. This is one of the clustering methods that can select specific genes for each subtype. In this study, we applied the PART filtering method to analyze microarray data that were obtained from soft tissue sarcoma (STS) patients for the extraction of subtype-specific genes. The performance of the filtering method was evaluated by comparison with other widely used methods, such as signal-to-noise, significance analysis of microarrays, and nearest shrunken centroids. In addition, various combinations of filtering and modeling methods were used to extract essential subtype-specific genes. The combination of the PART filtering method and boosting--the PART-BFCS method--showed the highest accuracy. Seven genes among the 15 genes that are frequently selected by this method--MIF, CYFIP2, HSPCB, TIMP3, LDHA, ABR, and RGS3--are known prognostic marker genes for other tumors. These genes are candidate marker genes for the diagnosis of STS. Correlation analysis was performed to extract marker genes that were not selected by PART-BFCS. Sixteen genes among those extracted are also known prognostic marker genes for other tumors, and they could be candidate marker genes for the diagnosis of STS. CONCLUSION The procedure that consisted of two steps, such as the PART-BFCS and the correlation analysis, was proposed. The results suggest that novel diagnostic and therapeutic targets for STS can be extracted by a procedure that includes the PART filtering method.
Collapse
Affiliation(s)
- Hiro Takahashi
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Research Fellow of the Japanese Society for the Promotion of Science (JSPS), Japan
- Genetics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takeshi Nemoto
- Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Teruhiko Yoshida
- Genetics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tadashi Hasegawa
- Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo 060-8543, Japan
| |
Collapse
|
49
|
Tatenhorst L, Rescher U, Gerke V, Paulus W. Knockdown of annexin 2 decreases migration of human glioma cells in vitro. Neuropathol Appl Neurobiol 2006; 32:271-7. [PMID: 16640645 DOI: 10.1111/j.1365-2990.2006.00720.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diffuse invasion of brain tissue is a major reason for the poor prognosis of patients with glioblastoma. Annexin 2, a member of the large annexin family of Ca2+ and membrane-binding proteins, is expressed at high protein levels in human gliomas and has been proposed as a marker of glioma malignancy, while its functional role in these tumours is unknown so far. The ability of annexin 2 to interact with the actin cytoskeleton, as well as its potential to bind invasion-associated proteases, suggests that it could participate in invasion-associated processes in human gliomas. Therefore, we analysed here functional consequences of RNA interference-mediated silencing of annexin 2 in U87MG and U373MG human glioma cell lines. While no impact of annexin 2 downregulation on proliferation and adhesion was observed, our analyses revealed that migration of U87MG and U373MG cells was significantly inhibited following annexin 2 depletion. This effect was not related to a compensatory increase of the related annexins 1 or 6. Our findings identify annexin 2 as a potential candidate involved in glioma invasion and support the potential of RNA interference as powerful tool in the decryption of glioma invasion mechanisms.
Collapse
Affiliation(s)
- L Tatenhorst
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | | | | | | |
Collapse
|
50
|
Ooe A, Kato K, Noguchi S. Possible involvement of CCT5, RGS3, and YKT6 genes up-regulated in p53-mutated tumors in resistance to docetaxel in human breast cancers. Breast Cancer Res Treat 2006; 101:305-15. [PMID: 16821082 DOI: 10.1007/s10549-006-9293-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Present study was aimed to investigate the relationship of p53 mutation status with response to docetaxel in breast cancers. In addition, attempts were made to identify the genes differentially expressed between p53-wild and p53-mutated breast tumors and to study their relationship with response to docetaxel. METHODS Mutational analysis of p53 was done in 50 breast tumor samples obtained from primary breast cancer patients (n = 33) and locally recurrent breast cancer patients (n = 17) before docetaxel therapy. Response to docetaxel was evaluated clinically. Gene expression profiling (n = 2,412) was conducted by adapter-tagged competitive-PCR in 186 tumor samples, which were also analyzed in their p53 mutational status in order to identify the differentially expressed genes according to p53 mutation status and their relationship with response to docetaxel. RESULTS Response rate of p53-mutated tumors (44%) was lower than that of p53-wild tumors (62%) though there was no statistical significance (P = 0.23). Of 2412 genes, mRNA expression of 13 genes was significantly different between p53-wild and p53-mutated tumors. Of these 13 genes, mRNA expression of CCT5, RGS3, and YKT6 was significantly up-regulated in p53-mutated tumors and associated with a low response rate to docetaxel. Treatment of MCF-7 cells with siRNA specific for CCT5, RGS3, or YKT6 resulted in a significant enhancement of docetaxel-induced apoptosis. CONCLUSIONS CCT5, RGS3, and YKT6 mRNA expressions, which are up-regulated in p53-mutated breast tumors, might be implicated in resistance to docetaxel and clinically useful in identifying the subset of breast cancer patients who may or may not benefit from docetaxel treatment.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Cell Line
- Chaperonin Containing TCP-1
- Chaperonins
- Chemotherapy, Adjuvant
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Docetaxel
- Drug Resistance, Neoplasm/genetics
- Female
- GTP-Binding Proteins/metabolism
- GTPase-Activating Proteins/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/genetics
- Gene Silencing/drug effects
- Genes, p53/genetics
- Humans
- Molecular Chaperones/metabolism
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- R-SNARE Proteins/metabolism
- RGS Proteins
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- Taxoids/therapeutic use
- Treatment Outcome
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Asako Ooe
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|