1
|
Ding H, Xia Q, Shen J, Zhu C, Zhang Y, Feng N. Advances and prospects of tumor immunotherapy mediated by immune cell-derived biomimetic metal-organic frameworks. Colloids Surf B Biointerfaces 2023; 232:113607. [PMID: 39491916 DOI: 10.1016/j.colsurfb.2023.113607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The clinical translational success of nanomedicine and immunotherapy has already proved the immense potential in the field of nanotechnology and immunization. However, the development of nanomedicine is confronted with challenges such as potential toxicity and unclear nano-bio interactions. The efficacy of immunotherapy is limited to only a few groups. Combining immunotherapy with nanomedicine for multi-modal treatment effectively compensates for the limitations of the above single therapy. Immune cell membrane camouflaged metal-organic frameworks (ICM-MOFs) have emerged as a simple yet promising multimodal treatment strategy that possess multifunctional nanoscale properties and exhibit immune cell-like behaviors of stealth, targeting and immunomodulation. Here, we comprehensively discuss the latest advancements in ICM-MOFs, with a focus on the challenges of mono-immunotherapy, the superiority of biomimetic coating for MOF functionalization, preparation methods, related action mechanisms and biomedical applications. Finally, we address the challenges and prospects for clinical translation.
Collapse
Affiliation(s)
- Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Younis A, Hardowar L, Barker S, Hulse RP. The consequence of endothelial remodelling on the blood spinal cord barrier and nociception. Curr Res Physiol 2022; 5:184-192. [PMID: 35434652 PMCID: PMC9010889 DOI: 10.1016/j.crphys.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Nociception is a fundamental acute protective mechanism that prevents harm to an organism. Understanding the integral processes that control nociceptive processing are fundamental to our appreciation of which cellular and molecular features underlie this process. There is an extensive understanding of how sensory neurons interpret differing sensory modalities and intensities. However, it is widely appreciated that the sensory neurons do not act alone. These work in harmony with inflammatory and vascular systems to modulate pain perception. The spinal cord has an extensive interaction with the capillary network in the form of a blood spinal cord barrier to ensure homeostatic control of the spinal cord neuron milieu. However, there is an extensive appreciation that disturbances in the blood spinal cord barrier contribute to the onset of chronic pain. Enhanced vascular permeability and impaired blood perfusion have both been highlighted as contributors to chronic pain manifestation. Here, we discuss the evidence that demonstrates alterations in the blood spinal cord barrier influences nociceptive processing and perception of pain.
Collapse
Affiliation(s)
- Awais Younis
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Sarah Barker
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
3
|
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NEUROSCI 2022; 3:1-27. [PMID: 39484675 PMCID: PMC11523733 DOI: 10.3390/neurosci3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2024] Open
Abstract
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Spiro Menounos
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
| | - Jaesung P Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
4
|
Abadi B, Yazdanpanah N, Nokhodchi A, Rezaei N. Smart biomaterials to enhance the efficiency of immunotherapy in glioblastoma: State of the art and future perspectives. Adv Drug Deliv Rev 2021; 179:114035. [PMID: 34740765 DOI: 10.1016/j.addr.2021.114035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiform (GBM) is considered as the most lethal tumor among CNS malignancies. Although immunotherapy has achieved remarkable advances in cancer treatment, it has not shown satisfactory results in GBM patients. Biomaterial science, along with nanobiotechnology, is able to optimize the efficiency of immunotherapy in these patients. They can be employed to provide the specific activation of immune cells in tumor tissue and combinational therapy as well as preventing systemic adverse effects resulting from hyperactivation of immune responses and off-targeting effect. Advance biomaterials in this field are classified into targeting nanocarriers and localized delivery systems. This review will offer an overview of immunotherapy strategies for glioblastoma and advance delivery systems for immunotherapeutics that may have a high potential in glioblastoma treatment.
Collapse
|
5
|
Gong P, Wang Y, Zhang P, Yang Z, Deng W, Sun Z, Yang M, Li X, Ma G, Deng G, Dong S, Cai L, Jiang W. Immunocyte Membrane-Coated Nanoparticles for Cancer Immunotherapy. Cancers (Basel) 2020; 13:E77. [PMID: 33396603 PMCID: PMC7794746 DOI: 10.3390/cancers13010077] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the advances in surface bioconjugation of synthetic nanoparticles for targeted drug delivery, simple biological functionalization is still insufficient to replicate complex intercellular interactions naturally. Therefore, these foreign nanoparticles are inevitably exposed to the immune system, which results in phagocytosis by the reticuloendothelial system and thus, loss of their biological significance. Immunocyte membranes play a key role in intercellular interactions, and can protect foreign nanomaterials as a natural barrier. Therefore, biomimetic nanotechnology based on cell membranes has developed rapidly in recent years. This paper summarizes the development of immunocyte membrane-coated nanoparticles in the immunotherapy of tumors. We will introduce several immunocyte membrane-coated nanocarriers and review the challenges to their large-scale preparation and application.
Collapse
Affiliation(s)
- Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Yifan Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Weiye Deng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Zhihong Sun
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
- Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Mingming Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Xuefeng Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Guanjun Deng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Shiyan Dong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| |
Collapse
|
6
|
Deshpande K, Buchanan I, Martirosian V, Neman J. Clinical Perspectives in Brain Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037051. [PMID: 31615863 DOI: 10.1101/cshperspect.a037051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Brain metastases (BMs) are responsible for decline in neurological function, reduction in overall quality of life, and mortality from recurrent or untreatable lesions. Advances in diagnostics and imaging have led to increased detection of central nervous system (CNS) metastases in patients with progressive cancers. Improved control of extracranial systemic disease, and the limited ability of current therapeutics to cross the blood-brain barrier (BBB) also contribute to the increase in incidence of brain metastases, as tumor cells seek refuge in the brain. Surgery, chemotherapy, and/or radiation (whole-brain radiation therapy and stereotactic radiation surgery [WBRT/SRS]) are a clinically established treatment paradigm for patients with brain metastases. With the advent of genetic and molecular characterization of tumors and their immune microenvironment, clinical trials seek to include targeted drugs into the therapeutic regimen for eligible patients. Several challenges, like treatment of multiple CNS lesions, superior uptake of chemotherapy into the brain, and trials with multidisciplinary approaches, are now being clinically addressed.
Collapse
Affiliation(s)
- Krutika Deshpande
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Ian Buchanan
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Vahan Martirosian
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Josh Neman
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
7
|
Khalifa J, Fléchon A, Chevreau C. Brain metastases from germ cell tumor: time to reconsider radiotherapy? Crit Rev Oncol Hematol 2020; 150:102946. [PMID: 32353705 DOI: 10.1016/j.critrevonc.2020.102946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 11/16/2022] Open
Abstract
The presence of brain metastases (BMs) from germ cell tumor (GCT) remains a rare situation. BMs predominantly occur among patients with testis primary tumor site, and are almost exclusively associated with non-seminomatous (NS) histologies. Two situations must be distinguished, which differ in terms of clinical presentation, overall prognostic and management. At diagnosis, BMs are almost systematically associated with extra-cerebral metastases and the cornerstone of treatment is chemotherapy, while the role of local treatment remains controversial. In the metachronous setting, BMs more frequently constitute an isolated site of relapse, the outcome is poorer, and the role of local treatment is more consensual. However, all these data widely come from old reports, with outdated radiation techniques. The recent advances in radiation oncology, especially the rising use of stereotactic radiotherapy, could lead to the reconsideration of ancient dogmas regarding the "radiosensitivity" of (NS)GCT and the role of radiotherapy among patients with BMs.
Collapse
Affiliation(s)
- Jonathan Khalifa
- Department of Radiation Oncology, Institut Claudius Regaud / Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31000, Toulouse, France.
| | - Aude Fléchon
- Department of Medical Oncology, Centre Léon-Bérard, 28 rue Laennec, 69008, Lyon, France.
| | - Christine Chevreau
- Department of Medical Oncology, Institut Claudius Regaud / Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31000, Toulouse, France.
| |
Collapse
|
8
|
Abdel-Magied N, Shedid SM, Ahmed AG. Mitigating effect of biotin against irradiation-induced cerebral cortical and hippocampal damage in the rat brain tissue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13441-13452. [PMID: 30911963 DOI: 10.1007/s11356-019-04806-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors. The brain is oversensitive to oxidant injury induced by radiation. Biotin is a member of the vitamin B complex family and its deficiency has been associated with neurogenesis impairment in animals and humans. The present study was undertaken to investigate the mitigating effect of biotin on the cerebral cortical and hippocampal damage induced by radiation exposure. Animals were exposed to radiation in the presence or absence of biotin and sacrificed on day 10. The results demonstrated that the administration of biotin 2 mg to irradiated rats had no significant effect on the radiation-induced damage of the cerebral cortex and the hippocampus, while the administration of biotin 6 mg has significantly attenuated oxidative stress in the hippocampus, manifested by a reduction of 4-hydroxynonenal (4HNE), total nitrate/nitrite (NOx), and xanthine oxidase (XO) levels associated with an elevation of glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities. In addition, biotin decreased the pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrotic factor alpha (TNF-α)), caspase-3, poly(ADP-ribose) polymerase 1 (PARP1) level, and PARP1 gene expression. Moreover, biotin 6 mg treatment diminished serum S100 protein (S100B) and neuron-specific enolase (NSE) levels. In conclusion, biotin treatment at high dose post-irradiation has efficiently neutralized the effect of free radicals in the hippocampal region of rats. Thus, it could be applicable as a radio-mitigator for reducing or delayed radiation-induced brain injury in patients post-radiotherapy.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), 3 street (3st) Ahmed Elzomer, P.O. Box 29, Nasr City, Cairo, Egypt.
| | - Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), 3 street (3st) Ahmed Elzomer, P.O. Box 29, Nasr City, Cairo, Egypt
| | - Amal G Ahmed
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), 3 street (3st) Ahmed Elzomer, P.O. Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
9
|
Vellayappan B, Tan CL, Yong C, Khor LK, Koh WY, Yeo TT, Detsky J, Lo S, Sahgal A. Diagnosis and Management of Radiation Necrosis in Patients With Brain Metastases. Front Oncol 2018; 8:395. [PMID: 30324090 PMCID: PMC6172328 DOI: 10.3389/fonc.2018.00395] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
The use of radiotherapy, either in the form of stereotactic radiosurgery (SRS) or whole-brain radiotherapy (WBRT), remains the cornerstone for the treatment of brain metastases (BM). As the survival of patients with BM is being prolonged, due to improved systemic therapy (i.e., for better extra-cranial control) and increased use of SRS (i.e., for improved intra-cranial control), patients are clinically manifesting late effects of radiotherapy. One of these late effects is radiation necrosis (RN). Unfortunately, symptomatic RN is notoriously hard to diagnose and manage. The features of RN overlap considerably with tumor recurrence, and misdiagnosing RN as tumor recurrence may lead to deleterious treatment which may cause detrimental effects to the patient. In this review, we will explore the pathophysiology of RN, risk factors for its development, and the strategies to evaluate and manage RN.
Collapse
Affiliation(s)
- Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Char Loo Tan
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Clement Yong
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
| | - Lih Kin Khor
- Nuclear Medicine, Advanced Medicine Imaging, Singapore Institute of Advanced Medicine Holdings, Singapore, Singapore
| | - Wee Yao Koh
- Department of Radiation Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Tseng Tsai Yeo
- Department of Neurosurgery, National University Hospital, Singapore, Singapore
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| | - Simon Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Najafi M, Motevaseli E, Shirazi A, Geraily G, Rezaeyan A, Norouzi F, Rezapoor S, Abdollahi H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 2018; 94:335-356. [PMID: 29504497 DOI: 10.1080/09553002.2018.1440092] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Cancer treatment is one of the most challenging diseases in the present era. Among a few modalities for cancer therapy, radiotherapy plays a pivotal role in more than half of all treatments alone or combined with other cancer treatment modalities. Management of normal tissue toxicity induced by radiation is one of the most important limiting factors for an appropriate radiation treatment course. The evaluation of mechanisms of normal tissue toxicity has shown that immune responses especially inflammatory responses play a key role in both early and late side effects of exposure to ionizing radiation (IR). DNA damage and cell death, as well as damage to some organelles such as mitochondria initiate several signaling pathways that result in the response of immune cells. Massive cell damage which is a common phenomenon following exposure to a high dose of IR cause secretion of a lot of inflammatory mediators including cytokines and chemokines. These mediators initiate different changes in normal tissues that may continue for a long time after irradiation. In this study, we reviewed the mechanisms of inflammatory responses to IR that are involved in normal tissue toxicity and considered as the most important limiting factors in radiotherapy. Also, we introduced some agents that have been proposed for management of these responses. CONCLUSIONS The early inflammation during the radiation treatment is often a limiting factor in radiotherapy. In addition to the limiting factors, chronic inflammatory responses may increase the risk of second primary cancers through continuous free radical production, attenuation of tumor suppressor genes, and activation of oncogenes. Moreover, these effects may influence non-irradiated tissues through a mechanism named bystander effect.
Collapse
Affiliation(s)
- Masoud Najafi
- a Radiology and Nuclear Medicine Department, School of Paramedical Sciences , Kermanshah University of Medical Science , Kermanshah , Iran
| | - Elahe Motevaseli
- b Department of Molecular Medicine, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Shirazi
- c Department of Medical Physics and Biomedical Engineering, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Ghazale Geraily
- c Department of Medical Physics and Biomedical Engineering, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Abolhasan Rezaeyan
- d Department of Medical Physics, School of Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - Farzad Norouzi
- e Science and Research Branch , Azad University , Tehran , Iran
| | - Saeed Rezapoor
- f Department of Radiology, Faculty of Paramedical Sciences , Tehran University of Medical Sciences , Tehran , Iran
| | - Hamid Abdollahi
- d Department of Medical Physics, School of Medicine , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
11
|
Demyelination Occurred as the Secondary Damage Following Diffuse Axonal Loss in a Rat Model of Radiation Myelopathy. Neurochem Res 2016; 42:953-962. [DOI: 10.1007/s11064-016-2128-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/21/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
|
12
|
Hu J, Yu Q, Xie L, Zhu H. Targeting the blood-spinal cord barrier: A therapeutic approach to spinal cord protection against ischemia-reperfusion injury. Life Sci 2016; 158:1-6. [PMID: 27329433 DOI: 10.1016/j.lfs.2016.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
One of the principal functions of physical barriers between the blood and central nervous system protects system (i.e., blood brain barrier and blood-spinal cord barrier) is the protection from toxic and pathogenic agents in the blood. Disruption of blood-spinal cord barrier (BSCB) plays a key role in spinal cord ischemia-reperfusion injury (SCIRI). Following SCIRI, the permeability of the BSCB increases. Maintaining the integrity of the BSCB alleviates the spinal cord injury after spinal cord ischemia. This review summarizes current knowledge of the structure and function of the BSCB and its changes following SCIRI, as well as the prevention and cure of SCIRI and the role of the BSCB.
Collapse
Affiliation(s)
- Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei Province, China.
| | - Qijing Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Lijie Xie
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei Province, China
| | - Hongfei Zhu
- Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China
| |
Collapse
|
13
|
Vascular Endothelial Growth Factor Enhanced the Angiogenesis Response of Human Umbilical Cord-Derived Mesenchymal Stromal Cells in a Rat Model of Radiation Myelopathy. Neurochem Res 2015; 40:1892-903. [DOI: 10.1007/s11064-015-1684-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/07/2015] [Accepted: 07/24/2015] [Indexed: 12/25/2022]
|
14
|
Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord 2015; 53:574-80. [DOI: 10.1038/sc.2015.43] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/09/2015] [Accepted: 02/04/2015] [Indexed: 01/25/2023]
|
15
|
Miyatake SI, Nonoguchi N, Furuse M, Yoritsune E, Miyata T, Kawabata S, Kuroiwa T. Pathophysiology, diagnosis, and treatment of radiation necrosis in the brain. Neurol Med Chir (Tokyo) 2014; 55:50-9. [PMID: 25744350 PMCID: PMC4533398 DOI: 10.2176/nmc.ra.2014-0188] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
New radiation modalities have made it possible to prolong the survival of individuals with malignant brain tumors, but symptomatic radiation necrosis becomes a serious problem that can negatively affect a patient’s quality of life through severe and lifelong effects. Here we review the relevant literature and introduce our original concept of the pathophysiology of brain radiation necrosis following the treatment of brain, head, and neck tumors. Regarding the pathophysiology of radiation necrosis, we introduce two major hypotheses: glial cell damage or vascular damage. For the differential diagnosis of radiation necrosis and tumor recurrence, we focus on the role of positron emission tomography. Finally, in accord with our hypothesis regarding the pathophysiology, we describe the promising effects of the anti-vascular endothelial growth factor antibody bevacizumab on symptomatic radiation necrosis in the brain.
Collapse
|
16
|
Liu X, Zhou X, Yuan W. The angiopoietin1–Akt pathway regulates barrier function of the cultured spinal cord microvascular endothelial cells through Eps8. Exp Cell Res 2014; 328:118-131. [DOI: 10.1016/j.yexcr.2014.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/19/2022]
|
17
|
Multiple injections of human umbilical cord-derived mesenchymal stromal cells through the tail vein improve microcirculation and the microenvironment in a rat model of radiation myelopathy. J Transl Med 2014; 12:246. [PMID: 25196350 PMCID: PMC4174271 DOI: 10.1186/s12967-014-0246-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/28/2014] [Indexed: 01/26/2023] Open
Abstract
Background At present, no effective clinical treatment is available for the late effects of radiation myelopathy. The aim of the present study was to assess the therapeutic effects of human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) in a rat model of radiation myelopathy. Methods An irradiated cervical spinal cord rat model was generated. UC-MSCs were injected through the tail vein at 90, 97, 104 and 111 days post-irradiation. Behavioral tests were performed using the forelimb paralysis scoring system, and histological damage was examined using Nissl staining. The microcirculation in the spinal cord was assessed using von Willebrand factor (vWF) immunohistochemical analysis and laser-Doppler flowmetry. The microenvironment in the spinal cord was determined by measuring the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the serum and the anti-inflammatory cytokines brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) in the spinal cord. Results Multiple injections of UC-MSCs through the tail veil decreased the forelimb paralysis, decreased spinal cord histological damage, increased the number of neurons in the anterior horn of the spinal cord, increased the endothelial cell density and the microvessel density in the white matter and gray matter of the spinal cord, increased the relative magnitude of spinal cord blood flow, down-regulated pro-inflammatory cytokine expression in the serum, and increased anti-inflammatory cytokine expression in the spinal cord. Conclusion Multiple injections of UC-MSCs via the tail vein in a rat model of radiation myelopathy significantly improved the microcirculation and microenvironment through therapeutic paracrine effects.
Collapse
|
18
|
Zhang J, Wei L, Sun WL, Wang L, Zhang WJ, You H. Radiation-induced endothelial cell loss and reduction of the relative magnitude of the blood flow in the rat spinal cord. Brain Res 2014; 1583:193-200. [PMID: 24953932 DOI: 10.1016/j.brainres.2014.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/20/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
The main purpose of the present study was to examine the time-dependent alterations in the endothelial cell density that occur in the first 180 days after irradiation of the spinal cord and the functional role of these alterations in the spinal cord blood flow. An irradiated cervical spinal cord rat model (C2-T2 segment) was generated using a (60)Co irradiator to deliver 30 Gy. A significant loss of forelimb motor function was observed 180 days post-irradiation. The number of neurons in the anterior horn of the spinal cord began to decrease significantly 3 days post-irradiation compared with normal controls, reaching the lowest number at 90 days post-irradiation. A significant reduction in the endothelial cell density was observed from 14 days post-irradiation in the white matter and from 3 days post-irradiation in the gray matter. The lowest endothelial cell density was reached at 30 days post-irradiation in the white matter and at 60 days post-irradiation in the gray matter. A significant reduction in the microvessel density was observed from 3 days post-irradiation in both the white matter and the gray matter. The lowest microvessel density was reached at 90 days post-irradiation in both the white matter and the gray matter. A significant reduction in the relative magnitude of spinal cord blood flow was observed from 21 days post-irradiation. The lowest relative magnitude of spinal cord blood flow was reached at 90 days post-irradiation. We did not find any evidence of demyelination. The results revealed that a single 30-Gy irradiation dose resulted in impaired forelimb motor function, a decreased number of neurons, and reduced endothelial cell density, microvessel density and relative magnitude of spinal cord blood flow. However, a 30-Gy single-dose irradiation was not sufficient to induce demyelination in the rat spinal cord.
Collapse
Affiliation(s)
- Jing Zhang
- Affiliated Hospital of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Li Wei
- Chongqing Population and the Family Planning Science and Technology Research Institute, Chongqing 400020, China.
| | - Wan-Liang Sun
- Affiliated Hospital of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Wang
- Department of Cardiology & Institute of Clinical Medicine, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Wei-Jing Zhang
- Affiliated Hospital of the Academy of Military Medical Sciences, Beijing 100071, China.
| | - Hua You
- Affiliated Hospital of the Academy of Military Medical Sciences, Beijing 100071, China.
| |
Collapse
|
19
|
Affiliation(s)
- Yasuteru Sano
- Department of Neurology and Clinical Neuroscience; Yamaguchi University Graduate School of Medicine; Ube; Yamaguchi; Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience; Yamaguchi University Graduate School of Medicine; Ube; Yamaguchi; Japan
| |
Collapse
|
20
|
Rahmathulla G, Marko NF, Weil RJ. Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci 2013; 20:485-502. [PMID: 23416129 DOI: 10.1016/j.jocn.2012.09.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
Radiation therapy forms one of the building blocks of the multi-disciplinary management of patients with brain tumors. Improved survival following radiation therapy may come with a cost, including the potential complication of radiation necrosis. Radiation necrosis impacts the quality of life in cancer survivors, and it is essential to detect and effectively treat this entity as early as possible. Significant progress in neuro-radiology and molecular pathology facilitate more straightforward diagnosis and characterization of cerebral radiation necrosis. Several therapeutic interventions, both medical and surgical, may halt the progression of radiation necrosis and diminish or abrogate its clinical manifestations, but there are still no definitive guidelines to follow explicitly that guide treatment of radiation necrosis. We discuss the pathobiology, clinical features, diagnosis, available treatment modalities, and outcomes in the management of patients with intracranial radiation necrosis that follows radiation used to treat brain tumors.
Collapse
Affiliation(s)
- Gazanfar Rahmathulla
- The Burkhardt Brain Tumor & Neuro-Oncology Center, Desk S-7, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
21
|
Zhu Y, Ling Y, Zhong J, Liu X, Wei K, Huang S. Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide. Acta Radiol 2012; 53:812-9. [PMID: 22798291 DOI: 10.1258/ar.2012.120040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Radiation-induced brain injury (RBI) is the most serious complication of primary and metastatic brain and neck malignant tumors following radiation therapy. However, at present, RBI is difficult to diagnose in the early period. Recently, studies have demonstrated that the early stage of RBI is characterized by an inflammatory reaction, and that intercellular adhesion molecule-1 (ICAM-1) is significantly up-regulated in the irradiated brain tissues. PURPOSE To provide an early diagnosis of RBI using molecular magnetic resonance imaging (MRI) with microparticles of iron oxide (MPIO) targeted to ICAM-1 in the vascular endothelium of brains. MATERIAL AND METHODS A monoclonal antibody against ICAM-1 was conjugated to MPIO to form the targeted MRI contrast agent ICAM-MPIO. The adhesion of ICAM-MPIO to endothelial cells was quantified by optical imaging and MRI. Sprague-Dawley rats were irradiated to establish an animal model of the early period of RBI. ICAM-MPIO and free-MPIO were injected via tail vein, respectively. T(2) signal intensity and T(2) values of the irradiated brains and normal brains were subsequently evaluated by MRI. RESULTS In vitro, the adhesion of ICAM-MPIO to the activated endothelial cells was 5 ± 0.5-fold greater than to the non-stimulated cells, which could be detected by optical imaging and MRI (R(2) = 1.0, P < 0.01). In vivo, ICAM-MPIO caused a marked negative MRI contrast effect in irradiated brains. As compared with brains without irradiation, the specific contrast effect increased more than seven-fold after administration of ICAM-MPIO (F = 751.495, P < 0.05). CONCLUSION MPIO coated with monoclonal antibody of ICAM-1 could be used for detecting the early period of RBI by optical imaging and MRI.
Collapse
Affiliation(s)
- Yeqing Zhu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - You Ling
- China and College of Materials Science and Engineering, South China University of Technology, Guangzhou
| | - Jinglian Zhong
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Xueguo Liu
- Department of Radiology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Kun Wei
- China and College of Materials Science and Engineering, South China University of Technology, Guangzhou
| | - Suiqiao Huang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| |
Collapse
|
22
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 853] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
23
|
Siu A, Wind JJ, Iorgulescu JB, Chan TA, Yamada Y, Sherman JH. Radiation necrosis following treatment of high grade glioma--a review of the literature and current understanding. Acta Neurochir (Wien) 2012; 154:191-201; discussion 201. [PMID: 22130634 DOI: 10.1007/s00701-011-1228-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
Abstract
Radiation therapy is an integral part of the standard treatment paradigm for malignant gliomas, with proven efficacy in randomized control trials. Radiation treatment is not without risk however, and radiation injury occurs in a certain proportion of patients. Difficulties in differentiating recurrence from radiation injury complicate the treatment course and can compromise care. These complexities are compounded by the recent distinction of two types of radiation injury: pseudoprogression and radiation necrosis, which are likely the result of radiation injury to the tumor and normal tissue, respectively. A thorough understanding of radiation-induced injury offers insights to guide further therapies. We detail the current knowledge of the mechanisms of radiation injury, along with potential targets for therapeutic intervention. Various diagnostic modalities are also described, in addition to the multiple options for treatment within the context of their pathophysiology and clinical efficacy. Radiation therapy is an integral part of the multidisciplinary management of gliomas, and the optimal diagnosis and management of radiation injury is paramount to improving patient outcomes.
Collapse
|
24
|
Freeman LR, Haley-Zitlin V, Stevens C, Granholm AC. Diet-induced effects on neuronal and glial elements in the middle-aged rat hippocampus. Nutr Neurosci 2011; 14:32-44. [PMID: 21535919 DOI: 10.1179/174313211x12966635733358] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Consumption of a high-fat and/or high-cholesterol diet can have detrimental effects on the brain. In the present study, dietary treatment with saturated fats, trans fats, or cholesterol to middle-aged Fischer 344 rats resulted in alterations to serum triglyceride and cholesterol levels, organ weights, and hippocampal morphology. Previously, we demonstrated that a 10% hydrogenated coconut oil and 2% cholesterol diet resulted in worse performance on the 12-day water radial arm maze, increased cholesterol and triglyceride levels, and decreased dendritic microtubule associated protein 2 (MAP2) staining in the hippocampus. The diets administered herein were used to examine components from the previous diet and further examine their effects on hippocampal morphology. Specifically, neuronal morphology, dendritic integrity, fatty acid metabolism, microgliosis, and blood vessel structure in the hippocampus and/or adjacent structures were explored. Our results indicate alterations to peripheral and neural systems following each of the diets.
Collapse
Affiliation(s)
- Linnea R Freeman
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
25
|
Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 2011; 70:194-206. [PMID: 21674586 DOI: 10.1002/ana.22421] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 12/11/2022]
Abstract
The blood-spinal cord barrier (BSCB) is the functional equivalent of the blood-brain barrier (BBB) in the sense of providing a specialized microenvironment for the cellular constituents of the spinal cord. Even if intuitively the BSCB could be considered as the morphological extension of the BBB into the spinal cord, evidence suggests that this is not so. The BSCB shares the same principal building blocks with the BBB; nevertheless, it seems that morphological and functional differences may exist between them. Dysfunction of the BSCB plays a fundamental role in the etiology or progression of several pathological conditions of the spinal cord, such as spinal cord injury, amyotrophic lateral sclerosis, and radiation-induced myelopathy. This review summarizes current knowledge of the morphology of the BSCB, the methodology of studying the BSCB, and the potential role of BSCB dysfunction in selected disorders of the spinal cord, and finally summarizes therapeutic approaches to the BSCB.
Collapse
Affiliation(s)
- Viktor Bartanusz
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
26
|
Wu KL, Tu B, Li YQ, Wong CS. Role of intercellular adhesion molecule-1 in radiation-induced brain injury. Int J Radiat Oncol Biol Phys 2010; 76:220-228. [PMID: 20005455 DOI: 10.1016/j.ijrobp.2009.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/10/2009] [Accepted: 08/13/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of brain injury after irradiation (IR). METHODS AND MATERIALS We assessed the expression of ICAM-1 in mouse brain after cranial IR and determined the histopathologic and behavioral changes in mice that were either wildtype (+/+) or knockout (-/-) of the ICAM-1 gene after IR. RESULTS There was an early dose-dependent increase in ICAM-1 mRNA and protein expression after IR. Increased ICAM-1 immunoreactivity was observed in endothelia and glia of ICAM-1+/+ mice up to 8 months after IR. ICAM-1-/- mice showed no expression. ICAM-1+/+ and ICAM-1-/- mice showed similar vascular abnormalities at 2 months after 10-17 Gy, and there was evidence for demyelination and inhibition of hippocampal neurogenesis at 8 months after 10 Gy. After 10 Gy, irradiated ICAM-1+/+ and ICAM-1-/- mice showed similar behavioral changes at 2-6 months in open field, light-dark chamber, and T-maze compared with age-matched genotype controls. CONCLUSION There is early and late upregulation of ICAM-1 in the vasculature and glia of mouse brain after IR. ICAM-1, however, does not have a causative role in the histopathologic injury and behavioral dysfunction after moderate single doses of cranial IR.
Collapse
Affiliation(s)
- Kai-Liang Wu
- Discipline of Molecular and Cell Biology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Abstract
Treatment-induced CNS toxicity remains a major cause of morbidity in patients with cancer. Advances in the design of safe radiation procedures have been counterbalanced by widespread use of combined radiotherapy and chemotherapy, development of radiosurgery, and the increasing number of long-term survivors. Although classic radionecrosis and chemonecrosis have become less common, subtle changes such as progressive cognitive dysfunction are increasingly reported after radiotherapy (radiation-induced leukoencephalopathy) or chemotherapy (given alone or in combination). We review the most important and controversial complications of radiotherapy, chemotherapy, and combined treatments in the CNS, and discuss new diagnostic tools, practical management, prevention, and pathophysiological data that will affect future management of patients with cancer.
Collapse
|
28
|
Abstract
INTRODUCTION An expanding understanding of the importance of angiogenesis in oncology and the development of numerous angiogenesis inhibitors are driving the search for biomarkers of angiogenesis. We review currently available candidate biomarkers and surrogate markers of anti-angiogenic agent effect. DISCUSSION A number of invasive, minimally invasive, and non-invasive tools are described with their potential benefits and limitations. Diverse markers can evaluate tumor tissue or biological fluids, or specialized imaging modalities. CONCLUSIONS The inclusion of these markers into clinical trials may provide insight into appropriate dosing for desired biological effects, appropriate timing of additional therapy, prediction of individual response to an agent, insight into the interaction of chemotherapy and radiation following exposure to these agents, and perhaps most importantly, a better understanding of the complex nature of angiogenesis in human tumors. While many markers have potential for clinical use, it is not yet clear which marker or combination of markers will prove most useful.
Collapse
Affiliation(s)
- Aaron P Brown
- National Institutes of Health, Building 10/3B42, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
29
|
Ahn M, Kim H, Kim JT, Lee J, Hyun JW, Park JW, Shin T. Gamma-ray irradiation stimulates the expression of caveolin-1 and GFAP in rat spinal cord: a study of immunoblot and immunohistochemistry. J Vet Sci 2007; 7:309-14. [PMID: 17106219 PMCID: PMC3242136 DOI: 10.4142/jvs.2006.7.4.309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We studied the expression of caveolin-1 in the spinal cords of rats using 60Co gamma-ray irradiation (single dose of 8 Gray (Gy)) in order to determine the possible involvement of caveolin-1 in the tissues of the central nervous system after irradiation. Spinal cords sampled at days 1, 4, and 9 post-irradiation (PI) (n = 5 per each time point) were analyzed by Western blot and immunohistochemistry. Western blot analysis showed that the expression of caveolin-1 was significantly increased at day 1 PI (p < 0.05), and returned to the level of normal control rats on days 4 and 9 PI. Immunohistochemistry showed that caveolin-1 immunoreactivity was enhanced in some glial cells, vascular endothelial cells, and neurons in the spinal cords. The increased expression of glial fibrillary acidic protein (GFAP), a marker for an astroglial reaction, was consistent with that of caveolin-1. In addition, caveolin-1 was co-localized in hypertrophied GFAP-positive astrocytes. Taking all these facts into consideration, we postulate that irradiation induces the increased expression of caveolin-1 in cells of the central nervous system, and that its increased expression in astrocytes may contribute to hypertrophy of astrocytes in the spinal cord after irradiation. The precise role of caveolin-1 in the spinal cords should be studied further.
Collapse
Affiliation(s)
- Meejung Ahn
- Department of Veterinary Medicine, College of Applied Life Sciences, Cheju National University, Jeju 690-756, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Miguel-Hidalgo JJ, Nithuairisg S, Stockmeier C, Rajkowska G. Distribution of ICAM-1 immunoreactivity during aging in the human orbitofrontal cortex. Brain Behav Immun 2007; 21:100-11. [PMID: 16824729 PMCID: PMC2921168 DOI: 10.1016/j.bbi.2006.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/19/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022] Open
Abstract
Neurological and psychiatric alterations during aging are associated with increased cerebrovascular disturbances and inflammatory markers such as Intercellular Adhesion Molecule-1 (ICAM-1). We investigated whether the distribution of ICAM-1 immunoreactivity (ICAM-1-I) in histological sections from the left orbitofrontal cortex (ORB) was altered during normal aging. Postmortem tissue from the ORB of nine younger (27-54 years old) and 10 older (60-86) human subjects was collected. Cryostat sections were immunostained only with antibodies to ICAM-1 or together with an antibody to glial fibrillary acidic protein (GFAP). The total area fraction of ICAM-1-I, and the fraction of vascular and extravascular ICAM-1-I were quantified in the gray matter. Furthermore, we examined the association of extravascular ICAM-1-I to GFAP immunoreactive (GFAP-IR) astrocytes. In all subjects, brain blood vessels were similarly ICAM-1 immunoreactive, and in some subjects there was a variable number of extravascular patches of ICAM-1-I. The area fraction of ICAM-1-I was 120% higher (p<.0001) in the old subjects than in the young subjects. This increase localized mostly to the extravascular ICAM-1-I in register with GFAP-IR astrocytes. A much smaller, also age-dependent increase occurred in vascular ICAM-1-I. Our results indicate a dramatic increase in extravascular ICAM-1-I associated to GFAP-IR astrocytes in the ORB in normal aging. This increase may contribute to an enhanced risk for brain inflammatory processes during aging, although a role of extravascular ICAM-1 as a barrier to further inflammation cannot be ruled out.
Collapse
Affiliation(s)
- Jose Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
31
|
Ge S, Pachter JS. Isolation and culture of microvascular endothelial cells from murine spinal cord. J Neuroimmunol 2006; 177:209-14. [PMID: 16806499 DOI: 10.1016/j.jneuroim.2006.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 04/27/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
The isolation and culture of spinal cord microvascular endothelial cells (SCMEC), which form the blood-spinal cord barrier (BSCB), is described. Though morphologically similar to brain microvascular endothelial cells (BMEC) that form the blood-brain barrier (BBB), SCMEC express reduced amounts of several prominent BBB proteins, including tight junction-associated proteins ZO-1 and occludin, adherens junction-associated proteins beta-catenin and VE-cadherin, and the efflux transporter P-glycoprotein. These distinguishing features may reflect more widespread differences between the BBB and BSCB that impact physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Shujun Ge
- Blood-Brain Barrier Laboratory, Department of Pharmacology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA.
| | | |
Collapse
|
32
|
Citrin D, Ménard C, Camphausen K. Combining radiotherapy and angiogenesis inhibitors: clinical trial design. Int J Radiat Oncol Biol Phys 2006; 64:15-25. [PMID: 16377411 DOI: 10.1016/j.ijrobp.2005.03.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 01/12/2023]
Abstract
Radiotherapy (RT) plays a vital role in the multimodality treatment of cancer. Recent advances in RT have primarily involved improvements in dose delivery. Future improvements in tumor control and disease outcomes will likely involve the combination of RT with targeted therapies. Preclinical evaluations of angiogenesis inhibitors in combination with RT have yielded promising results with increased tumor "cure." It remains to be seen whether these improvements in tumor control in the laboratory will translate into improved outcomes in the clinic. Multiple differences between these agents and cytotoxic chemotherapy must be taken into account when designing clinical trials evaluating their effectiveness in combination with RT. We discuss important considerations for designing clinical trials of angiogenesis inhibitors with RT.
Collapse
Affiliation(s)
- Deborah Citrin
- Radiation Oncology Branch, NCI, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The neurocognitive sequelae of anticancer treatment have received increasing attention especially among individuals with low-grade gliomas, primary central nervous system lymphoma and those undergoing prophylactic cranial irradiation for systemic malignancies. These groups are especially vulnerable because they often experience extended survival during which neurocognitive complications of therapy may cause more impairment than the tumor itself. The purpose of this review is to highlight recent clinical reports of neurocognitive sequelae among patients without significant central nervous system tumor burden and to describe the experimental studies which may explain the pathogenesis of the disorder. RECENT FINDINGS The neurocognitive deficits among survivors of primary central nervous system lymphoma without residual tumor and pituitary tumors were reported recently. Both provide an opportunity to distinguish the effects of treatment from the effects of tumor. Moreover, animal studies demonstrate the negative consequences of radiation on hippocampal neurogenesis, learning and memory. The mechanism of impaired neurogenesis may be due to inflammation, which can be aborted with restoration of neurogenesis through the administration of non-steroidal anti-inflammatory agents. SUMMARY If inhibition of neurogenesis is the basis of neurocognitive sequelae from irradiation and non-steroidal anti-inflammatory agents can restore neurogenesis then a clinical trial may be worthwhile to confirm this benefit in humans.
Collapse
Affiliation(s)
- Thomas N Byrne
- Department of Neurology and Health Sciences Technology, Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
34
|
Yuan H, Goetz DJ, Gaber MW, Issekutz AC, Merchant TE, Kiani MF. Radiation-induced up-regulation of adhesion molecules in brain microvasculature and their modulation by dexamethasone. Radiat Res 2005; 163:544-51. [PMID: 15850416 DOI: 10.1667/rr3361] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Little is known about the time course and magnitude of the up-regulation of endothelial cell adhesion molecules (ECAMs) in irradiated brain vasculature and the mechanisms by which dexamethasone modulates this up-regulation. We used antibody-conjugated microspheres and a rat closed cranial window model to determine the time course of functional up-regulation of radiation (20 Gy)-induced ICAM1, E-selectin and P-selectin in the pial vasculature of the rat brain and to determine the relationship between suppression of inflammation by dexamethasone and the expression of these ECAMs. The results indicate that ICAM1, E-selectin and P-selectin were up-regulated to a functional level in the microvasculature with distinct time-course patterns. The number of adherent anti-E-selectin and anti-P-selectin microspheres was 5- 12 times greater than that of IgG microspheres 3-6 h postirradiation, and their expression returned to normal at 48 h. The number of adherent anti-ICAM1 microspheres was five and nine times greater than that of IgG at 24 and 48 h, respectively, and returned to baseline by 7 days. Dexamethasone significantly reduced the number of adhering leukocytes and the number of adhering anti-ICAM1, anti-E-selectin and anti-P-selectin microspheres to background levels. Our findings partially identify a key sequence in radiation-induced inflammatory response and provide a potential means to limit radiation-induced inflammatory responses and their potential side effects in the brain.
Collapse
Affiliation(s)
- Hong Yuan
- Department of Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
35
|
Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys 2005; 62:279-87. [PMID: 15850934 DOI: 10.1016/j.ijrobp.2005.01.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 01/25/2005] [Accepted: 01/25/2005] [Indexed: 11/20/2022]
Abstract
Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection.
Collapse
Affiliation(s)
- Robert A Nordal
- Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario Canada
| | | |
Collapse
|
36
|
Sarkissian V. The sequelae of cranial irradiation on human cognition. Neurosci Lett 2005; 382:118-23. [PMID: 15911133 DOI: 10.1016/j.neulet.2005.02.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Revised: 02/19/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Cranial irradiation (CI) confers remediation of many CNS anomalies. CI, however, carries risks to cognitive performance. A wealth of data describes such deficits specifically in humans. Risk factors that promote increased susceptibility to cognitive decline have also been identified. This paper discusses and grades these risk factors, including age, gender, and the inclusion of chemotherapy, that increase the likelihood of pathologic cognitive development in the human population.
Collapse
Affiliation(s)
- Vahé Sarkissian
- Department of Neurological Surgery, University of California at San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA.
| |
Collapse
|