1
|
Kumari M, Sharma P, Singh A. Pipecolic acid: A positive regulator of systemic acquired resistance and plant immunity. Biochim Biophys Acta Gen Subj 2025; 1869:130808. [PMID: 40252741 DOI: 10.1016/j.bbagen.2025.130808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Pipecolic acid (Pip) is a naturally occurring non-protein amino acid, that builds up in plants in response to pathogen infection. Pip is upregulated in autophagy mutants, indicating its role as a crucial regulator of plant immunity by upregulating systemic acquired resistance (SAR). This broad-spectrum defense mechanism protects uninfected parts of the plant during subsequent pathogen attacks. Pip has been identified as a SAR chemical signal and acts before the NO-ROS-AzA-G3P. The biosynthesis of Pip begins with lysine by the activity of ALD1 and SARD4 in a sequential manner; ALD1, a lysine aminotransferase, catabolizes lysine to Δ 1-piperidine-2-carboxylic acid, which is further modified to Pip by the activity of ornithine cyclodeaminase activity of SARD4. Additionally, FMO 1, a flavin monooxygenase, catalyzes the synthesis of N-hydroxy-pipecolic acid (NHP, the final, SAR-inducing defense hormone) from Pip. Pip and its active form accumulate at the infection site in the phloem and are transported to distal parts of the plant via symplast to trigger SAR. This review focuses on the roles of Pip and NHP in regulating SAR and how they interact with other defense signals like salicylic acid (SA) to modulate plant immunity.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Prashansa Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Mathieu L, Ballini E, Morel JB. A Simplified and Integrated View of Disease Control in Varietal Mixtures Using the Phytobiome Framework. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40200643 DOI: 10.1111/pce.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Increasing intraspecific diversity within crop systems is a promising strategy to manage aerial diseases, particularly those caused by fungal aerial pathogens. This review examines how cultivar mixtures reduce disease incidence and severity using the phytobiome framework, identifying three major types of processes: (1) physical ones, which alter disease dynamics through dilution effects, barrier effects, and microclimate modifications; (2) processes that are mediated by microbial interactions, which influence disease severity via induced resistance and indirect plant-plant interactions mediated by the microbiome; and (3) processes involving direct plant-plant interactions, where danger signaling and signaling from healthy neighbors modulate plant physiology and immunity through resource management and molecular cues. This review provides a comprehensive understanding of how cultivar mixtures enhance disease resistance and emphasizes that direct plant-plant interactions are likely stronger contributors than so far considered. It highlights the need for further research into the roles of microbiomes and direct plant-plant interactions to optimize mixtures' performance.
Collapse
Affiliation(s)
- Laura Mathieu
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Elsa Ballini
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, Institut Agro, INRAE, IRD, Montpellier, France
| | - Jean-Benoit Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
3
|
Mahadevan N, Fernanda R, Kouzai Y, Kohno N, Nagao R, Nyein KT, Watanabe M, Sakata N, Matsui H, Toyoda K, Ichinose Y, Mochida K, Hisano H, Noutoshi Y. Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley. Life (Basel) 2025; 15:235. [PMID: 40003643 PMCID: PMC11856681 DOI: 10.3390/life15020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Rhizoctonia solani is a basidiomycete phytopathogenic fungus that causes rapid necrosis in a wide range of crop species, leading to substantial agricultural losses worldwide. The species complex is divided into 13 anastomosis groups (AGs) based on hyphal fusion compatibility and further subdivided by culture morphology. While R. solani classifications were shown to be independent of host specificity, it remains unclear whether different R. solani isolates share similar virulence mechanisms. Here, we investigated the infectivity of Japanese R. solani isolates on Brachypodium distachyon and barley. Two isolates, AG-1 IA (from rice) and AG-4 HG-I+II (from cauliflower), infected leaves of both plants, but only AG-4 HG-I+II infected roots. B. distachyon accessions Bd3-1 and Gaz-4 and barley cultivar 'Morex' exhibited enhanced resistance to both isolates compared to B. distachyon Bd21 and barley cultivars 'Haruna Nijo' and 'Golden Promise'. During AG-1 IA infection, but not AG-4 HG-I+II infection, resistant Bd3-1 and Morex induced genes for salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis. Pretreatment with SA or NHP conferred resistance to AG-1 IA, but not AG-4 HG-I+II, in susceptible B. distachyon Bd21 and barley Haruna Nijo. On the leaves of susceptible Bd21 and Haruna Nijo, AG-1 IA developed extensive mycelial networks with numerous infection cushions, which are specialized infection structures well-characterized in rice sheath blight. In contrast, AG-4 HG-I+II formed dispersed mycelial masses associated with underlying necrosis. We propose that the R. solani species complex encompasses at least two distinct infection strategies: AG-1 IA exhibits a hemibiotrophic lifestyle, while AG-4 HG-I+II follows a predominantly necrotrophic strategy.
Collapse
Affiliation(s)
- Niranjan Mahadevan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Tea Research Institute of Sri Lanka, St. Coombs, Talawakelle 22100, Sri Lanka
| | - Rozi Fernanda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
| | - Yusuke Kouzai
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| | - Natsuka Kohno
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Reiko Nagao
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Khin Thida Nyein
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
| | - Megumi Watanabe
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
| | - Nanami Sakata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Hidenori Matsui
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan;
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| | - Yoshiteru Noutoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (N.M.); (R.F.); (N.S.); (H.M.); (K.T.); (Y.I.)
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412223. [PMID: 39691979 PMCID: PMC11792000 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | | | - Faisal Islam
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Sulaiman Ahmed
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Tengfang Ling
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeon34141Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jian Chen
- International Genome CenterJiangsu UniversityZhenjiang212013China
| |
Collapse
|
5
|
Zhang J, Chen A, Liu Z, Pan L, Gao H. Phosphoproteomic analysis uncovers phosphorylated proteins in response to salicylic acid and N-hydroxypipecolic acid in Arabidopsis. Mol Biol Rep 2024; 52:61. [PMID: 39692907 DOI: 10.1007/s11033-024-10145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The phytohormone salicylic acid (SA) serves as a crucial signaling molecule within the realm of plant immunity, playing an indispensable role in both local and systemic acquired resistance (SAR). N-hydroxypipecolic acid (NHP), a derivative of L-lysine, is integral to the induction of SAR. Recent investigations have illuminated the intricate manner in which NHP orchestrates the establishment of SAR in conjunction with the immune signal SA. METHODS AND RESULTS To further explore the mechanisms governing the synergistic regulation of SAR by SA and NHP, we conducted an extensive phosphoproteomic analysis aimed at identifying the phosphoproteins modulated either commonly or uniquely by SA and NHP, employing a phosphoproteomics platform built upon high-resolution mass spectrometry. Our study revealed a total of 133 phosphopeptides, derived from 115 distinct proteins, exhibiting exclusive responsiveness to NHP treatment. In contrast, 229 phosphopeptides sourced from 204 proteins demonstrated exclusive sensitivity to SA treatment. Additionally, the phosphorylation status of 215 proteins, including numerous kinases, phosphatases, transcription factors, and proteins implicated in membrane trafficking, was commonly modulated by both SA and NHP. CONCLUSION This investigation offers detailed insights into the key phosphoproteins influenced either collectively or specifically by SA and NHP, thereby enabling further exploration of the mechanisms underlying the synergistic regulation of immune responses orchestrated by these two potent molecules.
Collapse
Affiliation(s)
- Junsong Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ao Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zijia Liu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Hang Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
6
|
Sato Y, Weng Y, Shimazaki T, Yoshida K, Nihei KI, Okamoto M. Temporal dynamics of N-hydroxypipecolic acid and salicylic acid pathways in the disease response to powdery mildew in wheat. Biochem Biophys Res Commun 2024; 734:150624. [PMID: 39226738 DOI: 10.1016/j.bbrc.2024.150624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Wheat (Triticum aestivum) is a major staple crop worldwide, and its yields are significantly threatened by wheat powdery mildew (Blumeria graminis f. sp. tritici). Enhancing disease resistance in wheat is crucial for meeting global food demand. This study investigated the disease response in wheat, focusing on the bioactive small molecules salicylic acid (SA), pipecolic acid (Pip), and N-hydroxypipecolic acid (NHP), to provide new insights for molecular breeding. We found that endogenous levels of SA, Pip, and NHP significantly increased in infected plants, with Pip and NHP levels rising earlier than those of SA. Notably, the rate of increase of NHP was substantially higher than that of SA. The gene expression levels of SARD1 and CBP60g, which are transcription factors for SA, Pip, and NHP biosynthesis, increased significantly during the early stages of infection. We also found that during the later stages of infection, the expression of ALD1, SARD4, and FMO1, which encode enzymes for Pip and NHP biosynthesis, dramatically increased. Additionally, ICS1, which encodes a key enzyme involved in SA biosynthesis, also showed increased expression during the later stages of infection. The temporal changes in ICS1 transcription closely mirrored the behavior of endogenous SA levels, suggesting that the ICS pathway is the primary route for SA biosynthesis in wheat. In conclusion, our results suggest that the early accumulation of Pip and NHP cooperates with SA in the disease response against wheat powdery mildew infection.
Collapse
Affiliation(s)
- Yuki Sato
- Center for Sustainable Resource Science (CSRS), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi. 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Yuanjie Weng
- Center for Sustainable Resource Science (CSRS), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Taichi Shimazaki
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi. 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Kentaro Yoshida
- Graduate School of Agriculture, Kyoto University (Yoshida North Campus), Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ken-Ichi Nihei
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi. 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Masanori Okamoto
- Center for Sustainable Resource Science (CSRS), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.
| |
Collapse
|
7
|
Gula E, Dziurka M, Hordyńska N, Libik-Konieczny M. Regulatory effect of pipecolic acid (Pip) on the antioxidant system activity of Mesembryanthemum crystallinum plants exposed to bacterial treatment. PHYSIOLOGIA PLANTARUM 2024; 176:e14583. [PMID: 39469748 DOI: 10.1111/ppl.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
The presented study aims to elucidate the regulatory role of Pipecolic acid (Pip) in modulating the antioxidant system activity of Mesembryanthemum crystallinum plants exposed to Pseudomonas syringae infestation. M. crystallinum, known for its semi-halophytic nature, can transition its metabolism from C3 to CAM under salt stress conditions. The research encompasses the antioxidant system of the plants, covering both enzymatic and low molecular weight components. The findings indicate that Pip supplementation confers a beneficial effect on certain elements of the antioxidant system when the plants are subjected to stress induced by bacteria. Notably, during critical periods, particularly in the initial days post-bacterial treatment, M. crystallinum plants supplemented with Pip and exhibiting C3 metabolism display heightened total antioxidant capacity. This enhancement includes increased superoxide dismutase activity and elevated levels of glutathione and proline. However, in plants with salinity-induced CAM, where these parameters are naturally higher, the supplementation of Pip does not yield significant effects. These results validate the hypothesis that the regulatory influence of Pip on defence mechanisms against biotic stress is contingent upon the metabolic state of the plant. Furthermore, this regulatory effect is more pronounced in C3 plants of M. crystallinum than those undergoing CAM metabolism induced by salinity stress.
Collapse
Affiliation(s)
- Emilia Gula
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Natalia Hordyńska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Marta Libik-Konieczny
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| |
Collapse
|
8
|
Tian L, Hossbach BM, Feussner I. Small size, big impact: Small molecules in plant systemic immune signaling. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102618. [PMID: 39153327 DOI: 10.1016/j.pbi.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Plants produce diverse small molecules rapidly in response to localized pathogenic attack. Some of the molecules are able to migrate systemically as mobile signals, leading to the immune priming that protects the distal tissues against future infections by a broad-spectrum of invaders. Such form of defense is unique in plants and is known as systemic acquired resistance (SAR). There are many small molecules identified so far with important roles in the systemic immune signaling, some may have the potential to act as the mobile systemic signal in SAR establishment. Here, we summarize the recent advances in SAR research, with a focus on the role and mechanisms of different small molecules in systemic immune signaling.
Collapse
Affiliation(s)
- Lei Tian
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Ben Moritz Hossbach
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany; Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, D-37077, Germany.
| |
Collapse
|
9
|
Cai J, Panda S, Kazachkova Y, Amzallag E, Li Z, Meir S, Rogachev I, Aharoni A. A NAC triad modulates plant immunity by negatively regulating N-hydroxy pipecolic acid biosynthesis. Nat Commun 2024; 15:7212. [PMID: 39174537 PMCID: PMC11341717 DOI: 10.1038/s41467-024-51515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
N-hydroxy pipecolic acid (NHP) plays an important role in plant immunity. In contrast to its biosynthesis, our current knowledge with respect to the transcriptional regulation of the NHP pathway is limited. This study commences with the engineering of Arabidopsis plants that constitutively produce high NHP levels and display enhanced immunity. Label-free proteomics reveals a NAC-type transcription factor (NAC90) that is strongly induced in these plants. We find that NAC90 is a target gene of SAR DEFICIENT 1 (SARD1) and induced by pathogen, salicylic acid (SA), and NHP. NAC90 knockout mutants exhibit constitutive immune activation, earlier senescence, higher levels of NHP and SA, as well as increased expression of NHP and SA biosynthetic genes. In contrast, NAC90 overexpression lines are compromised in disease resistance and accumulated reduced levels of NHP and SA. NAC90 could interact with NAC61 and NAC36 which are also induced by pathogen, SA, and NHP. We next discover that this protein triad directly represses expression of the NHP and SA biosynthetic genes AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1), FLAVIN MONOOXYGENASE 1 (FMO1), and ISOCHORISMATE SYNTHASE 1 (ICS1). Constitutive immune response in nac90 is abolished once blocking NHP biosynthesis in the fmo1 background, signifying that NAC90 negative regulation of immunity is mediated via NHP biosynthesis. Our findings expand the currently documented NHP regulatory network suggesting a model that together with NHP glycosylation, NAC repressors take part in a 'gas-and-brake' transcriptional mechanism to control NHP production and the plant growth and defense trade-off.
Collapse
Affiliation(s)
- Jianghua Cai
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Key Laboratory of Plant Hormone Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eden Amzallag
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zhengguo Li
- Key Laboratory of Plant Hormone Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Sun S, Bakkeren G. A bird's-eye view: exploration of the flavin-containing monooxygenase superfamily in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1369299. [PMID: 38681221 PMCID: PMC11046709 DOI: 10.3389/fpls.2024.1369299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
The Flavin Monooxygenase (FMO) gene superfamily in plants is involved in various processes most widely documented for its involvement in auxin biosynthesis, specialized metabolite biosynthesis, and plant microbial defense signaling. The roles of FMOs in defense signaling and disease resistance have recently come into focus as they may present opportunities to increase immune responses in plants including leading to systemic acquired resistance, but are not well characterized. We present a comprehensive catalogue of FMOs found in genomes across vascular plants and explore, in depth, 170 wheat TaFMO genes for sequence architecture, cis-acting regulatory elements, and changes due to Transposable Element insertions. A molecular phylogeny separates TaFMOs into three clades (A, B, and C) for which we further report gene duplication patterns, and differential rates of homoeologue expansion and retention among TaFMO subclades. We discuss Clade B TaFMOs where gene expansion is similarly seen in other cereal genomes. Transcriptome data from various studies point towards involvement of subclade B2 TaFMOs in disease responses against both biotrophic and necrotrophic pathogens, substantiated by promoter element analysis. We hypothesize that certain TaFMOs are responsive to both abiotic and biotic stresses, providing potential targets for enhancing disease resistance, plant yield and other important agronomic traits. Altogether, FMOs in wheat and other crop plants present an untapped resource to be exploited for improving the quality of crops.
Collapse
Affiliation(s)
- Sherry Sun
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Center, Summerland, BC, Canada
| |
Collapse
|
11
|
Jiang S, Pan L, Zhou Q, Xu W, He F, Zhang L, Gao H. Analysis of the apoplast fluid proteome during the induction of systemic acquired resistance in Arabidopsis thaliana. PeerJ 2023; 11:e16324. [PMID: 37876907 PMCID: PMC10592298 DOI: 10.7717/peerj.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023] Open
Abstract
Background Plant-pathogen interactions occur in the apoplast comprising the cell wall matrix and the fluid in the extracellular space outside the plasma membrane. However, little is known regarding the contribution of the apoplastic proteome to systemic acquired resistance (SAR). Methods Specifically, SAR was induced by inoculating plants with Pst DC3000 avrRps4. The apoplast washing fluid (AWF) was collected from the systemic leaves of the SAR-induced or mock-treated plants. A label free quantitative proteomic analysis was performed to identified the proteins related to SAR in AWF. Results A total of 117 proteins were designated as differentially accumulated proteins (DAPs), including numerous pathogenesis-related proteins, kinases, glycosyl hydrolases, and redox-related proteins. Functional enrichment analyses shown that these DAPs were mainly enriched in carbohydrate metabolic process, cell wall organization, hydrogen peroxide catabolic process, and positive regulation of catalytic activity. Comparative analysis of proteome data indicated that these DAPs were selectively enriched in the apoplast during the induction of SAR. Conclusions The findings of this study indicate the apoplastic proteome is involved in SAR. The data presented herein may be useful for future investigations on the molecular mechanism mediating the establishment of SAR.
Collapse
Affiliation(s)
- Shuna Jiang
- College of Survey and Planning, Shangqiu Normal University, Shangqiu, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Wenjie Xu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Fuge He
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Lei Zhang
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
12
|
Fan Y, He X, Dai J, Yang N, Jiang Q, Xu Z, Tang X, Yu Y, Xiao M. Induced Resistance Mechanism of Bacillus velezensis S3-1 Against Pepper Wilt. Curr Microbiol 2023; 80:367. [PMID: 37819393 DOI: 10.1007/s00284-023-03470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
In recent years, pepper wilt has emerged as a pivotal constraint on pepper yield augmentation. Bacillus velezensis S3-1, with a wide array of hosts, can be used as both a biocontrol agent and biofertilizer. Nonetheless, the precise mechanisms underpinning its employment in combating pepper wilt remain cloaked in ambiguity. In our study, we found that B. velezensis S3-1 could significantly inhibit Fusarium sp. F1T that caused pepper wilt. S3-1 could effectively inhibit both the growth and germination of F1T conidia, leading to a reduction in the spore germination percentage from 83.2 to 37.1% in vitro experiments. Additionally, leaf detachment experiments revealed that the volatile compounds produced by S3-1 could inhibit the spread of pepper leaf spot area. Moreover, we observed a significant decrease in the content of malondialdehyde (MDA) in pepper treated with S3-1, along with a significant increase in the content of soluble protein, polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) in pepper. Furthermore, RT-PCR analysis showed that the expression of the defense genes CaPR 1 and CaPIN II in pepper after treatment with S3-1 was significantly upregulated, suggesting that S3-1 had the potential to induce systemic resistance in pepper, thereby enhancing its disease resistance. Hence, our findings suggest that S3-1 can be a promising biocontrol agent for managing pepper wilt in modern agriculture.
Collapse
Affiliation(s)
- Yongjie Fan
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Xingjie He
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Jiawei Dai
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ning Yang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Qiuyan Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Zhaofeng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Xiaorong Tang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Yating Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ming Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| |
Collapse
|
13
|
Löwe M, Jürgens K, Zeier T, Hartmann M, Gruner K, Müller S, Yildiz I, Perrar M, Zeier J. N-hydroxypipecolic acid primes plants for enhanced microbial pattern-induced responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1217771. [PMID: 37645466 PMCID: PMC10461098 DOI: 10.3389/fpls.2023.1217771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
The bacterial elicitor flagellin induces a battery of immune responses in plants. However, the rates and intensities by which metabolically-related defenses develop upon flagellin-sensing are comparatively moderate. We report here that the systemic acquired resistance (SAR) inducer N-hydroxypipecolic acid (NHP) primes Arabidopsis thaliana plants for strongly enhanced metabolic and transcriptional responses to treatment by flg22, an elicitor-active peptide fragment of flagellin. While NHP powerfully activated priming of the flg22-induced accumulation of the phytoalexin camalexin, biosynthesis of the stress hormone salicylic acid (SA), generation of the NHP biosynthetic precursor pipecolic acid (Pip), and accumulation of the stress-inducible lipids γ-tocopherol and stigmasterol, it more modestly primed for the flg22-triggered generation of aromatic and branched-chain amino acids, and expression of FLG22-INDUCED RECEPTOR-KINASE1. The characterization of the biochemical and immune phenotypes of a set of different Arabidopsis single and double mutants impaired in NHP and/or SA biosynthesis indicates that, during earlier phases of the basal immune response of naïve plants to Pseudomonas syringae infection, NHP and SA mutually promote their biosynthesis and additively enhance camalexin formation, while SA prevents extraordinarily high NHP levels in later interaction periods. Moreover, SA and NHP additively contribute to Arabidopsis basal immunity to bacterial and oomycete infection, as well as to the flagellin-induced acquired resistance response that is locally observed in plant tissue exposed to exogenous flg22. Our data reveal mechanistic similarities and differences between the activation modes of flagellin-triggered acquired resistance in local tissue and the SAR state that is systemically induced in plants upon pathogen attack. They also corroborate that the NHP precursor Pip has no independent immune-related activity.
Collapse
Affiliation(s)
- Marie Löwe
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Katharina Jürgens
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Sylvia Müller
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Ipek Yildiz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Mona Perrar
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
14
|
Yildiz I, Gross M, Moser D, Petzsch P, Köhrer K, Zeier J. N-hydroxypipecolic acid induces systemic acquired resistance and transcriptional reprogramming via TGA transcription factors. PLANT, CELL & ENVIRONMENT 2023; 46:1900-1920. [PMID: 36790086 DOI: 10.1111/pce.14572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/12/2023] [Indexed: 05/04/2023]
Abstract
N-hydroxypipecolic acid (NHP) accumulates in pathogen-inoculated and distant leaves of the Arabidopsis shoot and induces systemic acquired resistance (SAR) in dependence of the salicylic acid (SA) receptor NPR1. We report here that SAR triggered by exogenous NHP treatment requires the function of the transcription factors TGA2/5/6 in addition to NPR1, and is further positively affected by TGA1/4. Consistently, a tga2/5/6 triple knockout mutant is fully impaired in NHP-induced SAR gene expression, while a tga1/4 double mutant shows an attenuated, partial transcriptional response to NHP. Moreover, tga2/5/6 and tga1/4 exhibited fully and strongly impaired pathogen-triggered SAR, respectively, while SA-induced resistance was more moderately compromised in both lines. At the same time, tga2/5/6 was not and tga1/4 only partially impaired in the accumulation of NHP and SA at sites of bacterial attack. Strikingly, SAR gene expression in the systemic tissue induced by local bacterial inoculation or locally applied NHP fully required functional TGA2/5/6 and largely depended on TGA1/4 factors. The systemic accumulation of NHP and SA was attenuated but not abolished in the SAR-compromised and transcriptionally blocked tga mutants, suggesting their transport from inoculated to systemic tissue. Our results indicate the existence of a critical TGA- and NPR1-dependent transcriptional module that mediates the induction of SAR and systemic defence gene expression by NHP.
Collapse
Affiliation(s)
- Ipek Yildiz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Marlene Gross
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Denise Moser
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
15
|
Hönig M, Roeber VM, Schmülling T, Cortleven A. Chemical priming of plant defense responses to pathogen attacks. FRONTIERS IN PLANT SCIENCE 2023; 14:1146577. [PMID: 37223806 PMCID: PMC10200928 DOI: 10.3389/fpls.2023.1146577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Plants can acquire an improved resistance against pathogen attacks by exogenous application of natural or artificial compounds. In a process called chemical priming, application of these compounds causes earlier, faster and/or stronger responses to pathogen attacks. The primed defense may persist over a stress-free time (lag phase) and may be expressed also in plant organs that have not been directly treated with the compound. This review summarizes the current knowledge on the signaling pathways involved in chemical priming of plant defense responses to pathogen attacks. Chemical priming in induced systemic resistance (ISR) and systemic acquired resistance (SAR) is highlighted. The roles of the transcriptional coactivator NONEXPRESSOR OF PR1 (NPR1), a key regulator of plant immunity, induced resistance (IR) and salicylic acid signaling during chemical priming are underlined. Finally, we consider the potential usage of chemical priming to enhance plant resistance to pathogens in agriculture.
Collapse
Affiliation(s)
- Martin Hönig
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Venja M. Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Lim GH. Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic Acquired Resistance. THE PLANT PATHOLOGY JOURNAL 2023; 39:21-27. [PMID: 36760046 PMCID: PMC9929166 DOI: 10.5423/ppj.rw.10.2022.0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
In plants, salicylic acid (SA) is a central immune signal that is involved in both local and systemic acquired resistance (SAR). In addition to SA, several other chemical signals are also involved in SAR and these include N-hydroxy-pipecolic acid (NHP), a newly discovered plant metabolite that plays a crucial role in SAR. Recent discoveries have led to a better understanding of the biosynthesis of SA and NHP and their signaling during plant defense responses. Here, I review the recent progress in role of SA and NHP in SAR. In addition, I discuss how these signals cooperate with other SAR-inducing chemicals to regulate SAR.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Biological Sciences, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
17
|
Mohnike L, Huang W, Worbs B, Feussner K, Zhang Y, Feussner I. N-Hydroxy pipecolic acid methyl ester is involved in Arabidopsis immunity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:458-471. [PMID: 36260503 PMCID: PMC9786843 DOI: 10.1093/jxb/erac422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 05/31/2023]
Abstract
The biosynthesis of N-hydroxy pipecolic acid (NHP) has been intensively studied, though knowledge on its metabolic turnover is still scarce. To close this gap, we discovered three novel metabolites via metabolite fingerprinting in Arabidopsis thaliana leaves after Pseudomonas infection and UV-C treatment. Exact mass information and fragmentation by tandem mass spectrometry (MS/MS) suggest a methylated derivative of NHP (MeNHP), an NHP-OGlc-hexosyl conjugate (NHP-OGlc-Hex), and an additional NHP-OGlc-derivative. All three compounds were formed in wild-type leaves but were not present in the NHP-deficient mutant fmo1-1. The identification of these novel NHP-based molecules was possible by a dual-infiltration experiment using a mixture of authentic NHP and D9-NHP standards for leaf infiltration followed by UV-C treatment. Interestingly, the signal intensity of MeNHP and other NHP-derived metabolites increased in ugt76b1-1 mutant plants. For MeNHP, we unequivocally determined the site of methylation at the carboxylic acid moiety. MeNHP application by leaf infiltration leads to the detection of a MeNHP-OGlc as well as NHP, suggesting MeNHP hydrolysis to NHP. This is in line with the observation that MeNHP infiltration is able to rescue the fmo1-1 susceptible phenotype against Hyaloperonospora arabidopsidis Noco 2. Together, these data suggest MeNHP as an additional storage or transport form of NHP.
Collapse
Affiliation(s)
- Lennart Mohnike
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Weijie Huang
- University of British Columbia, Department of Botany, V6T 1Z4 Vancouver (BC), Canada
| | - Brigitte Worbs
- University of Goettingen, Institute for Organic and Biomolecular Chemistry, Department of Organic Chemistry, D-37077 Goettingen, Germany
| | - Kirstin Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, D-37077 Goettingen, Germany
| | - Yuelin Zhang
- University of British Columbia, Department of Botany, V6T 1Z4 Vancouver (BC), Canada
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, D-37077 Goettingen, Germany
| |
Collapse
|
18
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
19
|
Al-Rooqi MM, Ullah Mughal E, Raja QA, Obaid RJ, Sadiq A, Naeem N, Qurban J, Asghar BH, Moussa Z, Ahmed SA. Recent advancements on the synthesis and biological significance of pipecolic acid and its derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
21
|
Cai J, Aharoni A. Amino acids and their derivatives mediating defense priming and growth tradeoff. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102288. [PMID: 35987012 DOI: 10.1016/j.pbi.2022.102288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant response to pathogens attacks generally comes at the expense of growth. Defense priming is widely accepted as an efficient strategy used for augmenting resistance with reduced fitness in terms of growth and yield. Plant-derived small molecules, both primary as well as secondary metabolites, can function as activators to prime plant defense. Amino acids and their derivatives regulate numerous aspects of plant growth and development, and biotic and abiotic stress responses. In this review, we discuss the recent progress in understanding the roles of amino acids and related molecules in defense priming and their link with plant growth. We also highlight some of the outstanding questions and provide an outlook on the prospects of 'engineering' the tradeoff between defense and growth in plants.
Collapse
Affiliation(s)
- Jianghua Cai
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
22
|
Moormann J, Heinemann B, Hildebrandt TM. News about amino acid metabolism in plant-microbe interactions. Trends Biochem Sci 2022; 47:839-850. [PMID: 35927139 DOI: 10.1016/j.tibs.2022.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023]
Abstract
Plants constantly come into contact with a diverse mix of pathogenic and beneficial microbes. The ability to distinguish between them and to respond appropriately is essential for plant health. Here we review recent progress in understanding the role of amino acid sensing, signaling, transport, and metabolism during plant-microbe interactions. Biochemical pathways converting individual amino acids into active compounds have recently been elucidated, and comprehensive large-scale approaches have brought amino acid sensors and transporters into focus. These findings show that plant central amino acid metabolism is closely interwoven with stress signaling and defense responses at various levels. The individual biochemical mechanisms and the interconnections between the different processes are just beginning to emerge and might serve as a foundation for new plant protection strategies.
Collapse
Affiliation(s)
- Jannis Moormann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Björn Heinemann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany.
| |
Collapse
|
23
|
New molecules in plant defence against pathogens. Essays Biochem 2022; 66:683-693. [PMID: 35642866 DOI: 10.1042/ebc20210076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Plants host a multipart immune signalling network to ward off pathogens. Pathogen attack upon plant tissues can often lead to an amplified state of (induced) defence against subsequent infections in distal tissues; this is known as systemic acquired resistance (SAR). The interaction of plants with beneficial microbes of the rhizosphere microbiome can also lead to an induced resistance in above-ground plant tissues, known as induced systemic resistance. Second messengers such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO) are necessary for cell-to-cell signal propagation during SAR and show emergent roles in the mediation of other SAR metabolites. These include the lysine-derived signals pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP), which are key signalling metabolites in SAR. Emerging evidence additionally pinpoints plant volatiles as modulators of defence signalling within and between plants. Plant volatile organic compounds (VOCs) such as monoterpenes can promote SAR by functioning through ROS. Furthermore, plant-derived and additionally also microbial VOCs can target both salicylic acid and jasmonic acid signalling pathways in plants and modulate defence against pathogens. In this review, an overview of recent findings in induced defence signalling, with a particular focus on newer signalling molecules and how they integrate into these networks is discussed.
Collapse
|
24
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
25
|
Xu X, Chen Y, Li B, Zhang Z, Qin G, Chen T, Tian S. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. HORTICULTURE RESEARCH 2022; 9:uhac066. [PMID: 35591926 PMCID: PMC9113409 DOI: 10.1093/hr/uhac066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 05/21/2023]
Abstract
The horticultural industry helps to enrich and improve the human diet while contributing to growth of the agricultural economy. However, fungal diseases of horticultural crops frequently occur during pre- and postharvest periods, reducing yields and crop quality and causing huge economic losses and wasted food. Outcomes of fungal diseases depend on both horticultural plant defense responses and fungal pathogenicity. Plant defense responses are highly sophisticated and are generally divided into preformed and induced defense responses. Preformed defense responses include both physical barriers and phytochemicals, which are the first line of protection. Induced defense responses, which include innate immunity (pattern-triggered immunity and effector-triggered immunity), local defense responses, and systemic defense signaling, are triggered to counterstrike fungal pathogens. Therefore, to develop regulatory strategies for horticultural plant resistance, a comprehensive understanding of defense responses and their underlying mechanisms is critical. Recently, integrated multi-omics analyses, CRISPR-Cas9-based gene editing, high-throughput sequencing, and data mining have greatly contributed to identification and functional determination of novel phytochemicals, regulatory factors, and signaling molecules and their signaling pathways in plant resistance. In this review, research progress on defense responses of horticultural crops to fungal pathogens and novel regulatory strategies to regulate induction of plant resistance are summarized, and then the problems, challenges, and future research directions are examined.
Collapse
Affiliation(s)
- Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Shields A, Shivnauth V, Castroverde CDM. Salicylic Acid and N-Hydroxypipecolic Acid at the Fulcrum of the Plant Immunity-Growth Equilibrium. FRONTIERS IN PLANT SCIENCE 2022; 13:841688. [PMID: 35360332 PMCID: PMC8960316 DOI: 10.3389/fpls.2022.841688] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 05/31/2023]
Abstract
Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We will emphasize how these two signals are mutually potentiated and are convergent on multiple aspects-from biosynthesis to homeostasis, and from signaling to gene expression and phenotypic responses. We will then highlight how SA and NHP are emerging to be crucial regulators of the growth-defense balance, showcasing recent multi-faceted studies on their metabolism, receptor signaling and direct growth/development-related host targets. Overall, this article reflects current advances and provides future outlooks on SA/NHP biology and their functional significance as central signals for plant immunity and growth. Because global climate change will increasingly influence plant health and resilience, it is paramount to fundamentally understand how these two tightly linked plant signals are at the nexus of the growth-defense balance.
Collapse
|
27
|
Luo Z, Wang Z, Wang B, Lu Y, Yan L, Zhao Z, Bai T, Zhang J, Li H, Wang W, Cheng J. An Artificial Pathway for N-Hydroxy-Pipecolic Acid Production From L-Lysine in Escherichia coli. Front Microbiol 2022; 13:842804. [PMID: 35350620 PMCID: PMC8957990 DOI: 10.3389/fmicb.2022.842804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
N-hydroxy-pipecolic acid (NHP) is a hydroxylated product of pipecolic acid and an important systemic acquired resistance signal molecule. However, the biosynthesis of NHP does not have a natural metabolic pathway in microorganisms. Here, we designed and constructed a promising artificial pathway in Escherichia coli for the first time to produce NHP from biomass-derived lysine. This biosynthesis route expands the lysine catabolism pathway and employs six enzymes to sequentially convert lysine into NHP. This artificial route involves six functional enzyme coexpression: lysine α-oxidase from Scomber japonicus (RaiP), glucose dehydrogenase from Bacillus subtilis (GDH), Δ1-piperideine-2-carboxylase reductase from Pseudomonas putida (DpkA), lysine permease from E. coli (LysP), flavin-dependent monooxygenase (FMO1), and catalase from E. coli (KatE). Moreover, different FMO1s are used to evaluate the performance of the produce NHP. A titer of 111.06 mg/L of NHP was yielded in shake flasks with minimal medium containing 4 g/L of lysine. By this approach, NHP has so far been produced at final titers reaching 326.42 mg/L by 48 h in a 5-L bioreactor. To the best of our knowledge, this is the first NHP process using E. coli and the first process to directly synthesize NHP by microorganisms. This study lays the foundation for the development and utilization of renewable resources to produce NHP in microorganisms.
Collapse
Affiliation(s)
- Zhou Luo
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yao Lu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanmei Li
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
28
|
M VNUM, Faidh MA, Chadha A. The ornithine cyclodeaminase/µ-crystallin superfamily of proteins: A novel family of oxidoreductases for the biocatalytic synthesis of chiral amines. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
29
|
Rodriguez MC, Sautua F, Scandiani M, Carmona M, Asurmendi S. Current recommendations and novel strategies for sustainable management of soybean sudden death syndrome. PEST MANAGEMENT SCIENCE 2021; 77:4238-4248. [PMID: 33942966 DOI: 10.1002/ps.6458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
The increase in food production requires reduction of the damage caused by plant pathogens, minimizing the environmental impact of management practices. Soil-borne pathogens are among the most relevant pathogens that affect soybean crop yield. Soybean sudden death syndrome (SDS), caused by several distinct species of Fusarium, produces significant yield losses in the leading soybean-producing countries in North and South America. Current management strategies for SDS are scarce since there are no highly resistant cultivars and only a few fungicide seed treatments are available. Because of this, innovative approaches for SDS management need to be developed. Here, we summarize recently explored strategies based on plant nutrition, biological control, priming of plant defenses, host-induced gene silencing, and the development of new SDS-resistance cultivars using precision breeding techniques. Finally, sustainable management of SDS should also consider cultural control practices with minimal environmental impact. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria C Rodriguez
- Instituto de Agrobiotecnología y Biología Molecular, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Sautua
- Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Scandiani
- Centro de Referencia de Micología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo Carmona
- Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
30
|
Zeier J. Metabolic regulation of systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102050. [PMID: 34058598 DOI: 10.1016/j.pbi.2021.102050] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 05/03/2023]
Abstract
Plants achieve an optimal balance between growth and defense by a fine-tuned biosynthesis and metabolic inactivation of immune-stimulating small molecules. Recent research illustrates that three common hubs are involved in the cooperative regulation of systemic acquired resistance (SAR) by the defense hormones N-hydroxypipecolic acid (NHP) and salicylic acid (SA). First, a common set of regulatory proteins is involved in their biosynthesis. Second, NHP and SA are glucosylated by the same glycosyltransferase, UGT76B1, and thereby inactivated in concert. And third, NHP confers immunity via the SA receptor NPR1 to reprogram plants at the level of transcription and primes plants for an enhanced defense capacity. An overview of SA and NHP metabolism is provided, and their contribution to long-distance signaling in SAR is discussed.
Collapse
Affiliation(s)
- Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
31
|
Yildiz I, Mantz M, Hartmann M, Zeier T, Kessel J, Thurow C, Gatz C, Petzsch P, Köhrer K, Zeier J. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. PLANT PHYSIOLOGY 2021; 186:1679-1705. [PMID: 33871649 PMCID: PMC8260123 DOI: 10.1093/plphys/kiab166] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
N-hydroxypipecolic acid (NHP) accumulates in the plant foliage in response to a localized microbial attack and induces systemic acquired resistance (SAR) in distant leaf tissue. Previous studies indicated that pathogen inoculation of Arabidopsis (Arabidopsis thaliana) systemically activates SAR-related transcriptional reprogramming and a primed immune status in strict dependence of FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), which mediates the endogenous biosynthesis of NHP. Here, we show that elevations of NHP by exogenous treatment are sufficient to induce a SAR-reminiscent transcriptional response that mobilizes key components of immune surveillance and signal transduction. Exogenous NHP primes Arabidopsis wild-type and NHP-deficient fmo1 plants for a boosted induction of pathogen-triggered defenses, such as the biosynthesis of the stress hormone salicylic acid (SA), accumulation of the phytoalexin camalexin and branched-chain amino acids, as well as expression of defense-related genes. NHP also sensitizes the foliage systemically for enhanced SA-inducible gene expression. NHP-triggered SAR, transcriptional reprogramming, and defense priming are fortified by SA accumulation, and require the function of the transcriptional coregulator NON-EXPRESSOR OF PR GENES1 (NPR1). Our results suggest that NPR1 transduces NHP-activated immune signaling modes with predominantly SA-dependent and minor SA-independent features. They further support the notion that NHP functions as a mobile immune regulator capable of moving independently of active SA signaling between leaves to systemically activate immune responses.
Collapse
Affiliation(s)
- Ipek Yildiz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Melissa Mantz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Tatyana Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Jana Kessel
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Corinna Thurow
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen D-37077, Germany
| | - Christiane Gatz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen D-37077, Germany
| | - Patrick Petzsch
- Medical Faculty, Biological and Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Karl Köhrer
- Medical Faculty, Biological and Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf D-40225, Germany
- Author for communication:
| |
Collapse
|
32
|
Bauer S, Mekonnen DW, Hartmann M, Yildiz I, Janowski R, Lange B, Geist B, Zeier J, Schäffner AR. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. THE PLANT CELL 2021; 33:714-734. [PMID: 33955482 PMCID: PMC8136890 DOI: 10.1093/plcell/koaa044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/04/2020] [Indexed: 05/13/2023]
Abstract
Glucosylation modulates the biological activity of small molecules and frequently leads to their inactivation. The Arabidopsis thaliana glucosyltransferase UGT76B1 is involved in conjugating the stress hormone salicylic acid (SA) as well as isoleucic acid (ILA). Here, we show that UGT76B1 also glucosylates N-hydroxypipecolic acid (NHP), which is synthesized by FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) and activates systemic acquired resistance (SAR). Upon pathogen attack, Arabidopsis leaves generate two distinct NHP hexose conjugates, NHP-O-β-glucoside and NHP glucose ester, whereupon only NHP-O-β-glucoside formation requires a functional SA pathway. The ugt76b1 mutants specifically fail to generate the NHP-O-β-glucoside, and recombinant UGT76B1 synthesizes NHP-O-β-glucoside in vitro in competition with SA and ILA. The loss of UGT76B1 elevates the endogenous levels of NHP, SA, and ILA and establishes a constitutive SAR-like immune status. Introgression of the fmo1 mutant lacking NHP biosynthesis into the ugt76b1 background abolishes this SAR-like resistance. Moreover, overexpression of UGT76B1 in Arabidopsis shifts the NHP and SA pools toward O-β-glucoside formation and abrogates pathogen-induced SAR. Our results further indicate that NHP-triggered immunity is SA-dependent and relies on UGT76B1 as a common metabolic hub. Thereby, UGT76B1-mediated glucosylation controls the levels of active NHP, SA, and ILA in concert to balance the plant immune status.
Collapse
Affiliation(s)
- Sibylle Bauer
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dereje W Mekonnen
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Michael Hartmann
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ipek Yildiz
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert Janowski
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, München, Germany
| | - Birgit Lange
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Birgit Geist
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anton R Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| |
Collapse
|
33
|
Bauer S, Mekonnen DW, Hartmann M, Yildiz I, Janowski R, Lange B, Geist B, Zeier J, Schäffner AR. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. THE PLANT CELL 2021. [PMID: 33955482 DOI: 10.1101/2020.07.12.199356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Glucosylation modulates the biological activity of small molecules and frequently leads to their inactivation. The Arabidopsis thaliana glucosyltransferase UGT76B1 is involved in conjugating the stress hormone salicylic acid (SA) as well as isoleucic acid (ILA). Here, we show that UGT76B1 also glucosylates N-hydroxypipecolic acid (NHP), which is synthesized by FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) and activates systemic acquired resistance (SAR). Upon pathogen attack, Arabidopsis leaves generate two distinct NHP hexose conjugates, NHP-O-β-glucoside and NHP glucose ester, whereupon only NHP-O-β-glucoside formation requires a functional SA pathway. The ugt76b1 mutants specifically fail to generate the NHP-O-β-glucoside, and recombinant UGT76B1 synthesizes NHP-O-β-glucoside in vitro in competition with SA and ILA. The loss of UGT76B1 elevates the endogenous levels of NHP, SA, and ILA and establishes a constitutive SAR-like immune status. Introgression of the fmo1 mutant lacking NHP biosynthesis into the ugt76b1 background abolishes this SAR-like resistance. Moreover, overexpression of UGT76B1 in Arabidopsis shifts the NHP and SA pools toward O-β-glucoside formation and abrogates pathogen-induced SAR. Our results further indicate that NHP-triggered immunity is SA-dependent and relies on UGT76B1 as a common metabolic hub. Thereby, UGT76B1-mediated glucosylation controls the levels of active NHP, SA, and ILA in concert to balance the plant immune status.
Collapse
Affiliation(s)
- Sibylle Bauer
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dereje W Mekonnen
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Michael Hartmann
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ipek Yildiz
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert Janowski
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, München, Germany
| | - Birgit Lange
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Birgit Geist
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anton R Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| |
Collapse
|
34
|
Pazarlar S, Sanver U, Cetinkaya N. Exogenous pipecolic acid modulates plant defence responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:473-484. [PMID: 33547740 DOI: 10.1111/plb.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Systemic acquired resistance (SAR) is a long-lasting and broad-based resistance that can be activated following infection with (a)virulent pathogens and treatment with exogenous elicitors. Pipecolic acid (Pip), a Lys-derived non-protein amino acid, naturally occurs in many different plant species, and its N-hydroxylated derivative, N-hydroxypipecolic acid (NHP), acts as a crucial regulator of SAR. In the present study, we conducted a systemic analysis of the defence responses of a series of D,L-Pip-pretreated Cucumis sativus L. against Podosphaera xanthii (P. xanthii) and Pseudomonas syringae pv. lachrymans (Psl). The effects of D,L-Pip on ROS metabolism, defence-related gene expression, SA accumulation and activity of defence-related enzymes were evaluated. We show that exogenously applied D,L-Pip successfully induces SAR in cucumber against P. xanthii and Psl, but not Fusarium oxysporum f. sp. cucumerinum (Foc). Exogenous application of D,L-Pip via the root system is sufficient to activate the accumulation of free and conjugated salicylic acid (SA), and earlier and stronger upregulation of SAR-associated gene transcription upon P. xanthii infection. Furthermore, D,L-Pip treatment and subsequent pathogen inoculation promote hydrogen peroxide and superoxide accumulation, as well as Rboh transcription activation in cucumber plants, suggesting that D,L-Pip-triggered ROS production might be involved in enhanced defence reactions against P. xanthii. We also demonstrate that D,L-Pip pretreatment increases the activity of defence-associated enzymes, including peroxidase, chitinase and β-1,3-glucanase. The results presented in this report provide promising features of Pip as an elicitor in cucumber and call for further studies that may uncover its potential in production areas against different phytopathogens.
Collapse
Affiliation(s)
- S Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - U Sanver
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - N Cetinkaya
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
35
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
36
|
Cai J, Jozwiak A, Holoidovsky L, Meijler MM, Meir S, Rogachev I, Aharoni A. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. MOLECULAR PLANT 2021; 14:440-455. [PMID: 33387676 DOI: 10.1016/j.molp.2020.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/08/2020] [Accepted: 12/28/2020] [Indexed: 05/20/2023]
Abstract
N-hydroxy-pipecolic acid (NHP) activates plant systemic acquired resistance (SAR). Enhanced defense responses are typically accompanied by deficiency in plant development and reproduction. Despite of extensive studies on SAR induction, the effects of NHP metabolism on plant growth remain largely unclear. In this study, we discovered that NHP glycosylation is a critical factor that fine-tunes the tradeoff between SAR defense and plant growth. We demonstrated that a UDP-glycosyltransferase (UGT76B1) forming NHP glycoside (NHPG) controls the NHP to NHPG ratio. Consistently, the ugt76b1 mutant exhibits enhanced SAR response and an inhibitory effect on plant growth, while UGT76B1 overexpression attenuates SAR response, promotes growth, and delays senescence, indicating that NHP levels are dependent on UGT76B1 function in the course of SAR. Furthermore, our results suggested that, upon pathogen attack, UGT76B1-mediated NHP glycosylation forms a "hand brake" on NHP accumulation by attenuating the positive regulation of NHP biosynthetic pathway genes, highlighting the complexity of SAR-associated networks. In addition, we showed that UGT76B1-mediated NHP glycosylation in the local site is important for fine-tuning SAR response. Our results implicate that engineering plant immunity through manipulating the NHP/NHPG ratio is a promising method to balance growth and defense response in crops.
Collapse
Affiliation(s)
- Jianghua Cai
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Lara Holoidovsky
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel
| | - Michael M Meijler
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel.
| |
Collapse
|
37
|
Zhang ET, Zhang H, Tang W. Transcriptomic Analysis of Wheat Seedling Responses to the Systemic Acquired Resistance Inducer N-Hydroxypipecolic Acid. Front Microbiol 2021; 12:621336. [PMID: 33643249 PMCID: PMC7905219 DOI: 10.3389/fmicb.2021.621336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 11/15/2022] Open
Abstract
The fungal pathogen Fusarium graminearum can cause destructive diseases on wheat, such as Fusarium head blight and Fusarium crown rot. However, a solution is still unavailable. Recently, N-hydroxypipecolic acid (NHP) was identified as a potent signaling molecule that is capable of inducing systemic acquired resistance to bacterial, oomycete, and fungal infection in several plant species. However, it is not clear whether NHP works in wheat to resist F. graminearum infection or how NHP affects wheat gene expression. In this report, we showed that pretreatment with NHP moderately increased wheat seedling resistance to F. graminearum. Using RNA sequencing, we found that 17% of wheat-expressed genes were significantly affected by NHP treatment. The genes encoding nucleotide-binding leucine-rich repeat immune receptors were significantly overrepresented in the group of genes upregulated by NHP treatment, while the genes encoding receptor-like kinases were not. Our results suggested that NHP treatment sensitizes a subset of the immune surveillance system in wheat seedlings, thereby facilitating wheat defense against F. graminearum infection.
Collapse
Affiliation(s)
- Eric T. Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai High School International Division, Shanghai, China
| | - Hao Zhang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Weihua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Sun T, Zhang Y. Short- and long-distance signaling in plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:505-517. [PMID: 33145833 DOI: 10.1111/tpj.15068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
When encountering microbial pathogens, plant cells can recognize danger signals derived from pathogens, activate plant immune responses and generate cell-autonomous as well as non-cell-autonomous defense signaling molecules, which promotes defense responses at the infection site and in the neighboring cells. Meanwhile, local damages can result in the release of immunogenic signals including damage-associated molecule patterns and phytocytokines, which also serve as danger signals to potentiate immune responses in cells surrounding the infection site. Activation of local defense responses further induces the production of long-distance defense signals, which can move to distal tissue to activate systemic acquired resistance. In this review, we summarize current knowledge on various signaling molecules involved in short- and long-distance defense signaling, and emphasize the roles of regulatory proteins involved in the processes.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
39
|
Eichstädt B, Lederer S, Trempel F, Jiang X, Guerra T, Waadt R, Lee J, Liese A, Romeis T. Plant Immune Memory in Systemic Tissue Does Not Involve Changes in Rapid Calcium Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:798230. [PMID: 34970294 PMCID: PMC8712724 DOI: 10.3389/fpls.2021.798230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 05/09/2023]
Abstract
Upon pathogen recognition, a transient rise in cytoplasmic calcium levels is one of the earliest events in plants and a prerequisite for defense initiation and signal propagation from a local site to systemic plant tissues. However, it is unclear if calcium signaling differs in the context of priming: Do plants exposed to a first pathogen stimulus and have consequently established systemic acquired resistance (SAR) display altered calcium responses to a second pathogen stimulus? Several calcium indicator systems including aequorin, YC3.6 or R-GECO1 have been used to document local calcium responses to the bacterial flg22 peptide but systemic calcium imaging within a single plant remains a technical challenge. Here, we report on an experimental approach to monitor flg22-induced calcium responses in systemic leaves of primed plants. The calcium-dependent protein kinase CPK5 is a key calcium sensor and regulator of the NADPH oxidase RBOHD and plays a role in the systemic calcium-ROS signal propagation. We therefore compared flg22-induced cytoplasmic calcium changes in Arabidopsis wild-type, cpk5 mutant and CPK5-overexpressing plants (exhibiting constitutive priming) by introgressing the calcium indicator R-GECO1-mTurquoise that allows internal normalization through mTurquoise fluorescence. Aequorin-based analyses were included for comparison. Based on the R-GECO1-mTurquoise data, CPK5-OE appears to reinforce an "oscillatory-like" Ca2+ signature in flg22-treated local tissues. However, no change was observed in the flg22-induced calcium response in the systemic tissues of plants that had been pre-challenged by a priming stimulus - neither in wild-type nor in cpk5 or CPK5-OE-lines. These data indicate that the mechanistic manifestation of a plant immune memory in distal plant parts required for enhanced pathogen resistance does not include changes in rapid calcium signaling upstream of CPK5 but rather relies on downstream defense responses.
Collapse
Affiliation(s)
| | - Sarah Lederer
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Fabian Trempel
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Xiyuan Jiang
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Tiziana Guerra
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Rainer Waadt
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Justin Lee
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Anja Liese
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Tina Romeis
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- *Correspondence: Tina Romeis,
| |
Collapse
|
40
|
Zhou Q, Meng Q, Tan X, Ding W, Ma K, Xu Z, Huang X, Gao H. Protein Phosphorylation Changes During Systemic Acquired Resistance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:748287. [PMID: 34858456 PMCID: PMC8632492 DOI: 10.3389/fpls.2021.748287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/08/2021] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) in plants is a defense response that provides resistance against a wide range of pathogens at the whole-plant level following primary infection. Although the molecular mechanisms of SAR have been extensively studied in recent years, the role of phosphorylation that occurs in systemic leaves of SAR-induced plants is poorly understood. We used a data-independent acquisition (DIA) phosphoproteomics platform based on high-resolution mass spectrometry in an Arabidopsis thaliana model to identify phosphoproteins related to SAR establishment. A total of 8011 phosphorylation sites from 3234 proteins were identified in systemic leaves of Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) and mock locally inoculated plants. A total of 859 significantly changed phosphoproteins from 1119 significantly changed phosphopeptides were detected in systemic leaves of Psm ES4326 locally inoculated plants, including numerous transcription factors and kinases. A variety of defense response-related proteins were found to be differentially phosphorylated in systemic leaves of Psm ES4326 locally inoculated leaves, suggesting that these proteins may be functionally involved in SAR through phosphorylation or dephosphorylation. Significantly changed phosphoproteins were enriched mainly in categories related to response to abscisic acid, regulation of stomatal movement, plant-pathogen interaction, MAPK signaling pathway, purine metabolism, photosynthesis-antenna proteins, and flavonoid biosynthesis. A total of 28 proteins were regulated at both protein and phosphorylation levels during SAR. RT-qPCR analysis revealed that changes in phosphorylation levels of proteins during SAR did not result from changes in transcript abundance. This study provides comprehensive details of key phosphoproteins associated with SAR, which will facilitate further research on the molecular mechanisms of SAR.
Collapse
Affiliation(s)
- Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiaomin Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
| | - Wei Ding
- Shanghai Omicsspace Biotechnology Co., Ltd., Shanghai, China
| | - Kang Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Ziqin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Xuan Huang,
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Hang Gao,
| |
Collapse
|
41
|
Guerra T, Romeis T. N-hydroxypipecolic acid: a general and conserved activator of systemic plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6193-6196. [PMID: 33104213 PMCID: PMC7586740 DOI: 10.1093/jxb/eraa345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This article comments on: Schnake A, Hartmann M, Schreiber S, Malik J, Brahmann L, Yildiz I, von Dahlen J, Rose LE, Schaffrath U, Zeier J. 2020. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. Journal of Experimental Botany 71, 6444–6459.
Collapse
Affiliation(s)
- Tiziana Guerra
- Leibniz Institute of Vegetables and Ornamental Crops, Großbeeren, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| |
Collapse
|