1
|
Jiang M, Zhan Z, Li X, Piao Z. Construction and evaluation of Brassica rapa orphan genes overexpression library. FRONTIERS IN PLANT SCIENCE 2025; 16:1532449. [PMID: 39912098 PMCID: PMC11794797 DOI: 10.3389/fpls.2025.1532449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
Orphan genes (OGs) are crucial for species-specific characteristics and stress responses and are restricted to a specific taxon. However, their functions within particular species are poorly understood. Previous research identified OGs in Brassica rapa (BrOGs). In this study, the BrOGs overexpression (BrOGsOE) library in Arabidopsis thaliana was constructed. Approximately 128 unknown functional BrOGs were selected from Chinese cabbage and were overexpressed. The analysis focused on the phenotypes of leaf morphology and flowering time against phenotypic differences between Chinese cabbage and Arabidopsis. Interestingly, 72.66% of the transgenic lines showed distinctive phenotypic changes. Chinese cabbage-specific features, including curved, hairy, upward or downward-curving leaves, serrated margins, and multiple leaves, were observed in the BrOGsOE lines. The BrOGs overexpression library was associated with numerous variations in flowering time, particularly delayed flowering. This suggested that the delayed flowering time caused by BrOGs may be associated with resistance to bolting seem in Chinese cabbage. Furthermore, the results of stress treatment of 24 BrOGsOE lines with no apparent significant phenotypes suggested that a number of BrOGs have both general and specific functions against environmental and pathogenic stress. The findings of this study provide a comprehensive overview of the roles of BrOGs, emphasizing their significance as a resource for identifying positive genes associated with species-specific characteristics and stress responses and offering a solid foundation for the functional analysis of BrOGs.
Collapse
Affiliation(s)
- Mingliang Jiang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Yang X, Guo Q, Liu S, Wang D, Zuo D, Niu T, Wei D, Guo L, Hou X. Genome-wide characterization of the MADS-box gene family in Paeonia ostii and expression analysis of genes related to floral organ development. BMC Genomics 2025; 26:49. [PMID: 39833668 PMCID: PMC11744994 DOI: 10.1186/s12864-024-11197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation. The release of the whole-genome data from Paeonia ostii now allows us to conduct a thorough investigation of the tree peony MADS-box gene family. RESULTS In this study, we identified 110 MADS-box genes in Paeonia ostii that were classified into 5 subgroups. Gene structure, domain and motif analyses revealed the conservation of the structure of these subgroups. Analysis of the cis-acting elements revealed that the 110 PoMADS genes contained different kinds of hormones and stress-related cis-acting elements in their promoter regions. Quantitative real-time PCR analysis was employed to validate the expression patterns of some PoMADS genes related to floral organ development. Genome collinearity analysis with Arabidopsis and grape revealed the conservation of PoMADS genes during evolution. A total of 857 SSRs were identified by analysing the genome sequences of identified genes. We additionally created protein‒protein interaction networks for PoMADS proteins and analysed proteins that could interact among PoMADSs in Arabidopsis thaliana and grape. CONCLUSION These findings offer fundamental insights for understanding the function of the MADS-box gene family, which can aid in the selection and breeding of tree peony varieties with high ornamental value in addition to supporting the understanding of the process of tree peony floral organogenesis.
Collapse
Affiliation(s)
- Xueting Yang
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Qi Guo
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Shaodan Liu
- Luoyang International Peony Garden, Luoyang, 471011, China
| | - Duoduo Wang
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Dingding Zuo
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Tongfei Niu
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Dongfeng Wei
- Luoyang Vocational and Technical College, Luoyang, 471000, China
| | - Lili Guo
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Xiaogai Hou
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China.
| |
Collapse
|
3
|
Zu Y, Jiang M, Zhan Z, Li X, Piao Z. Orphan gene BR2 positively regulates bolting resistance through the vernalization pathway in Chinese cabbage. HORTICULTURE RESEARCH 2024; 11:uhae216. [PMID: 39398948 PMCID: PMC11469923 DOI: 10.1093/hr/uhae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/21/2024] [Indexed: 10/15/2024]
Abstract
Orphan genes (OGs) are unique to the specific species or lineage, and whose homologous sequences cannot be found in other species or lineages. Furthermore, these genes lack recognizable domains or functional motifs, which make their characterization difficult. Here, we identified a Brassica rapa OG named BOLTING RESISTANCE 2 (BR2) that could positively modulate bolting resistance. The expression of BR2 was developmentally regulated and the BR2 protein was localized to the cell membrane. BR2 overexpression not only markedly delayed flowering time in Arabidopsis transgenic plants, but substantially affected the development of leaves and flower organs. Flowering repressor AtFLC gene was significantly up-regulated transcribed in Arabidopsis BR2 overexpression lines, while AtFT and AtSOC1 expression was decreased. In addition, the BR2 expression was enhanced in bolting-resistant type Chinese cabbage and was reduced in non-resistant type. Moreover, chilling stress inhibited the BR2 expression levels. Overexpression of BR2 also delayed flowering time in Chinese cabbage. In vernalized Chinese cabbage BR2 overexpression plants, BrVIN3.b and BrFRI were significantly down-regulated, while BrFLC5 was substantially up-regulated. Key floral factors, including three BrSOC1s, two BrLFYs, and four BrFTs were down-regulated. The expression changes of these key genes were consistent with the delayed flowering phenotype of Chinese cabbage BR2 overexpressing plants. Thus, we predicted that BR2 may predominantly function via the vernalization pathway. Our findings propose that the OG BR2 acts as a novel modulator of flowering time in Chinese cabbage, which provides a new insight on the breeding of varieties that are resistant to bolting.
Collapse
Affiliation(s)
- Ye Zu
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Wang T, van Dijk ADJ, Zhao R, Bonnema G, Wang X. Contribution of homoeologous exchange to domestication of polyploid Brassica. Genome Biol 2024; 25:231. [PMID: 39192349 DOI: 10.1186/s13059-024-03370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Polyploidy is widely recognized as a significant evolutionary force in the plant kingdom, contributing to the diversification of plants. One of the notable features of allopolyploidy is the occurrence of homoeologous exchange (HE) events between the subgenomes, causing changes in genomic composition, gene expression, and phenotypic variations. However, the role of HE in plant adaptation and domestication remains unclear. RESULTS Here we analyze the whole-genome resequencing data from Brassica napus accessions representing the different morphotypes and ecotypes, to investigate the role of HE in domestication. Our findings demonstrate frequent occurrence of HEs in Brassica napus, with substantial HE patterns shared across populations, indicating their potential role in promoting crop domestication. HE events are asymmetric, with the A genome more frequently replacing C genome segments. These events show a preference for specific genomic regions and vary among populations. We also identify candidate genes in HE regions specific to certain populations, which likely contribute to flowering-time diversification across diverse morphotypes and ecotypes. In addition, we assemble a new genome of a swede accession, confirming the HE signals on the genome and their potential involvement in root tuber development. By analyzing HE in another allopolyploid species, Brassica juncea, we characterize a potential broader role of HE in allopolyploid crop domestication. CONCLUSIONS Our results provide novel insights into the domestication of polyploid Brassica species and highlight homoeologous exchange as a crucial mechanism for generating variations that are selected for crop improvement in polyploid species.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Ranze Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Jin Y, Luo X, Li Y, Peng X, Wu L, Yang G, Xu X, Pei Y, Li W, Zhang W. Fine mapping and analysis of candidate genes for qBT2 and qBT7.2 locus controlling bolting time in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:4. [PMID: 38085292 DOI: 10.1007/s00122-023-04503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE Two major QTLs for bolting time in radish were mapped to chromosome 02 and 07 in a 0.37 Mb and 0. 52 Mb interval, RsFLC1 and RsFLC2 is the critical genes. Radish (Raphanus sativus L.) is an important vegetable crop of Cruciferae. The premature bolting and flowering reduces the yield and quality of the fleshy root of radish. However, the molecular mechanism underlying bolting and flowering in radish remains unknown. In YZH (early bolting) × XHT (late bolting) F2 population, a high-density genetic linkage map was constructed with genetic distance of 2497.74 cM and an average interval of 2.31 cM. A total of nine QTLs for bolting time and two QTLs for flowering time were detected. Three QTLs associated with bolting time in radish were identified by QTL-seq using radish GDE (early bolting) × GDL (late bolting) F2 population. Fine mapping narrowed down qBT2 and qBT7.2 to an 0.37 Mb and 0.52 Mb region on chromosome 02 and 07, respectively. RNA-seq and qRT-PCR analysis showed that RsFLC1 and RsFLC2 were the candidate gene for qBT7.2 and qBT2 locus, respectively. Subcellular localization exhibited that RsFLC1 and RsFLC2 were mainly expressed in the nucleus. A 1856-bp insertion in the first intron of RsFLC1 was responsible for bolting time. Overexpression of RsFLC2 in Arabidopsis was significantly delayed flowering. These findings will provide new insights into the exploring the molecular mechanism of late bolting and promote the marker-assisted selection for breeding late-bolting varieties in radish.
Collapse
Affiliation(s)
- Yueyue Jin
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550003, Guizhou, China
| | - Yadong Li
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Xiao Peng
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Linjun Wu
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Guangqian Yang
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Xiuhong Xu
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Yun Pei
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Wei Li
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Guizhou Higher Education Facility Vegetable Engineering Reseach Centre, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Wanping Zhang
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China.
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China.
| |
Collapse
|
6
|
Akter A, Kakizaki T, Itabashi E, Kunita K, Shimizu M, Akter MA, Mehraj H, Okazaki K, Dennis ES, Fujimoto R. Characterization of FLOWERING LOCUS C 5 in Brassica rapa L. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:58. [PMID: 37484542 PMCID: PMC10356691 DOI: 10.1007/s11032-023-01405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
Brassica rapa L., which includes Chinese cabbage, turnip, and pak choi, has more complex flowering time regulation than does Arabidopsis thaliana due to the presence of multiple paralogous flowering time genes. FLOWERING LOCUS C (FLC) is one of the key genes regulating the flowering time, and B. rapa has four FLC paralogs. BrFLC5 on the reference genome is deemed a pseudogene because of a mutation (from G to A) in the splice site of the third intron, but there are some accessions with a G nucleotide in the splice site. In this study, we genotyped 310 B. rapa accessions and found that 19 had homozygous and 81 had heterozygous putative functional BrFLC5 alleles. Accessions of turnip showed the highest proportion with a functional BrFLC5 allele. BrFLC5 acts as a floral repressor when overexpressed in A. thaliana. The BrFLC5 expression level varied in pre-vernalized plants, and this transcriptional variation was not associated with the G/A polymorphism in the third intron. Three accessions having a higher BrFLC5 expression in pre-vernalized plants had a 584-bp insertion in the promoter region. Many regions homologous to this 584-bp sequence are present in the B. rapa genome, and this 584-bp inserted region has tandem duplications of an AT-rich sequence in its central region. The possibility that a high expression of a functional BrFLC5 could contribute to producing premature bolting-resistant lines in B. rapa vegetables is discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01405-0.
Collapse
Affiliation(s)
- Ayasha Akter
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Tomohiro Kakizaki
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie 514-2392 Japan
| | - Etsuko Itabashi
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie 514-2392 Japan
| | - Kohei Kunita
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Narita, Kitakami, Iwate, 024-0003 Japan
| | - Mst. Arjina Akter
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Hasan Mehraj
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181 Japan
| | - Elizabeth S. Dennis
- CSIRO Agriculture and Food, ACT, Canberra, 2601 Australia
- Faculty of Science, School of Life Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| |
Collapse
|
7
|
Nishikawa M, Tamiru-Oli M, Hara M, Segawa T, Saiga S, Makita N, Itoh N, Imamura T, Sekine M, Takagi H. Non-vernalization requirement for flowering in Brassica rapa conferred by a dominant allele of FLOWERING LOCUS T. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:132. [PMID: 37199824 DOI: 10.1007/s00122-023-04378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE We identified and characterized a dominant FT allele for flowering without vernalization in Brassica rapa, while demonstrating its potential for deployment in breeding to accelerate flowering in various Brassicaceae crops. Controlling the timing of flowering is key to improving yield and quality of several agricultural crops including the Brassicas. Many Brassicaceae crops possess a conserved flowering mechanism in which FLOWERING LOCUS C (FLC) represses the transcription of flowering activators such as FLOWERING LOCUS T (FT) during vernalization. Here, we employed genetic analysis based on next-generation sequencing to identify a dominant FT allele, BraA.FT.2-C, for flowering in the absence of vernalization in the Brassica rapa cultivar 'CHOY SUM EX CHINA 3'. BraA.FT.2-C harbors two large insertions upstream of its coding region and is expressed without vernalization, despite FLC expression. We show that BraA.FT.2-C offers an opportunity to introduce flowering without vernalization requirement into winter-type brassica crops, including B. napus, which have many functional FLC paralogs. Furthermore, we demonstrated the feasibility of using B. rapa harboring BraA.FT.2-C as rootstock for grafting to induce flowering in radish (Raphanus sativus), which requires vernalization for flowering. We believe that the ability of BraA.FT.2-C to overcome repression by FLC can have significant applications in brassica crops breeding to increase yields by accelerating or delaying flowering.
Collapse
Affiliation(s)
- Minami Nishikawa
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Muluneh Tamiru-Oli
- Department of Animal, Plant and Soil Sciences, AgriBio Building, La Trobe University, 5 Ring Road, Bundoora, VIC, 3086, Australia
| | - Makishi Hara
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Tenta Segawa
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Sorachi Saiga
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Natsu Makita
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Noriaki Itoh
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Tomohiro Imamura
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Masami Sekine
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Hiroki Takagi
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
8
|
Zhang K, Yang Y, Zhang X, Zhang L, Fu Y, Guo Z, Chen S, Wu J, Schnable JC, Yi K, Wang X, Cheng F. The genome of Orychophragmus violaceus provides genomic insights into the evolution of Brassicaceae polyploidization and its distinct traits. PLANT COMMUNICATIONS 2023; 4:100431. [PMID: 36071668 PMCID: PMC10030322 DOI: 10.1016/j.xplc.2022.100431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 05/04/2023]
Abstract
Orychophragmus violaceus, referred to as "eryuelan" (February orchid) in China, is an early-flowering ornamental plant. The high oil content and abundance of unsaturated fatty acids in O. violaceus seeds make it a potential high-quality oilseed crop. Here, we generated a whole-genome assembly for O. violaceus using Nanopore and Hi-C sequencing technologies. The assembled genome of O. violaceus was ∼1.3 Gb in size, with 12 pairs of chromosomes. Through investigation of ancestral genome evolution, we determined that the genome of O. violaceus experienced a tetraploidization event from a diploid progenitor with the translocated proto-Calepineae karyotype. Comparisons between the reconstructed subgenomes of O. violaceus identified indicators of subgenome dominance, indicating that subgenomes likely originated via allotetraploidy. O. violaceus was phylogenetically close to the Brassica genus, and tetraploidy in O. violaceus occurred approximately 8.57 million years ago, close in time to the whole-genome triplication of Brassica that likely arose via an intermediate tetraploid lineage. However, the tetraploidization in Orychophragmus was independent of the hexaploidization in Brassica, as evidenced by the results from detailed phylogenetic analyses and comparisons of the break and fusion points of ancestral genomic blocks. Moreover, identification of multi-copy genes regulating the production of high-quality oil highlighted the contributions of both tetraploidization and tandem duplication to functional innovation in O. violaceus. These findings provide novel insights into the polyploidization evolution of plant species and will promote both functional genomic studies and domestication/breeding efforts in O. violaceus.
Collapse
Affiliation(s)
- Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Xin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Lingkui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Yu Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Zhongwei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Shumin Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China.
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China.
| |
Collapse
|
9
|
Jiang M, Zhang Y, Yang X, Li X, Lang H. Brassica rapa orphan gene BR1 delays flowering time in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1135684. [PMID: 36909380 PMCID: PMC9998908 DOI: 10.3389/fpls.2023.1135684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Orphan genes are essential to the emergence of species-specific traits and the process of evolution, lacking sequence similarity to any other identified genes. As they lack recognizable domains or functional motifs, however, efforts to characterize these orphan genes are often difficult. Flowering is a key trait in Brassica rapa, as premature bolting can have a pronounced adverse impact on plant quality and yield. Bolting resistance-related orphan genes, however, have yet to be characterized. In this study, an orphan gene designated BOLTING RESISTANCE 1 (BR1) was identified and found through gene structural variation analyses to be more highly conserved in Chinese cabbage than in other available accessions. The expression of BR1 was increased in bolting resistant Chinese cabbage and decreased in bolting non-resistant type, and the expression of some mark genes were consist with bolting resistance phenotype. BR1 is primarily expressed in leaves at the vegetative growth stage, and the highest BR1 expression levels during the flowering stage were observed in the flower buds and silique as compared to other tissue types. The overexpression of BR1 in Arabidopsis was associated with enhanced bolting resistance under long day (LD) conditions, with these transgenic plants exhibiting significant decreases in stem height, rosette radius, and chlorophyll content. Transcriptomic sequencing of WT and BR1OE plants showed the association of BR1 with other bolting resistance genes. Transcriptomic sequencing and qPCR revealed that six flowering integrator genes and one chlorophyll biosynthesis-related gene were downregulated following BR1 overexpression. Six key genes in photoperiodic flowering pathway exhibited downward expression trends in BR1OE plants, while the expression of floral repressor AtFLC gene was upregulated. The transcripts of these key genes were consistent with observed phenotypes in BR1OE plants, and the results indicated that BR1 may function through vernalization and photoperiodic pathway. Instead, the protein encoded by BR1 gene was subsequently found to localize to the nucleus. Taken together, we first propose that orphan gene BR1 functions as a novel regulator of flowering time, and these results suggested that BR1 may represent a promising candidate gene to support the selective breeding of Chinese cabbage cultivars with enhanced bolting resistance.
Collapse
Affiliation(s)
- Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| | - Yuting Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
10
|
Mitsui Y, Yokoyama H, Nakaegawa W, Tanaka K, Komatsu K, Koizuka N, Okuzaki A, Matsumoto T, Takahara M, Tabei Y. Epistatic interactions among multiple copies of FLC genes with naturally occurring insertions correlate with flowering time variation in radish. AOB PLANTS 2023; 15:plac066. [PMID: 36751367 PMCID: PMC9893874 DOI: 10.1093/aobpla/plac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Brassicaceae crops, which underwent whole-genome triplication during their evolution, have multiple copies of flowering-related genes. Interactions among multiple gene copies may be involved in flowering time regulation; however, this mechanism is poorly understood. In this study, we performed comprehensive, high-throughput RNA sequencing analysis to identify candidate genes involved in the extremely late-bolting (LB) trait in radish. Then, we examined the regulatory roles and interactions of radish FLOWERING LOCUS C (RsFLC) paralogs, the main flowering repressor candidates. Seven flowering integrator genes, five vernalization genes, nine photoperiodic/circadian clock genes and eight genes from other flowering pathways were differentially expressed in the early-bolting (EB) cultivar 'Aokubinagafuto' and LB radish cultivar 'Tokinashi' under different vernalization conditions. In the LB cultivar, RsFLC1 and RsFLC2 expression levels were maintained after 40 days of cold exposure. Bolting time was significantly correlated with the expression rates of RsFLC1 and RsFLC2. Using the EB × LB F2 population, we performed association analyses of genotypes with or without 1910- and 1627-bp insertions in the first introns of RsFLC1 and RsFLC2, respectively. The insertion alleles prevented the repression of their respective FLC genes under cold conditions. Interestingly, genotypes homozygous for RsFLC2 insertion alleles maintained high RsFLC1 and RsFLC3 expression levels under cold conditions, and two-way analysis of variance revealed that RsFLC1 and RsFLC3 expression was influenced by the RsFLC2 genotype. Our results indicate that insertions in the first introns of RsFLC1 and RsFLC2 contribute to the late-flowering trait in radish via different mechanisms. The RsFLC2 insertion allele conferred a strong delay in bolting by inhibiting the repression of all three RsFLC genes, suggesting that radish flowering time is determined by epistatic interactions among multiple FLC gene copies.
Collapse
Affiliation(s)
| | - Hinano Yokoyama
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Wataru Nakaegawa
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kenji Komatsu
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Nobuya Koizuka
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Ayako Okuzaki
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Takashi Matsumoto
- Faculty of Applied Biology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Manabu Takahara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yutaka Tabei
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
11
|
Lee A, Jung H, Park HJ, Jo SH, Jung M, Kim YS, Cho HS. Their C-termini divide Brassica rapa FT-like proteins into FD-interacting and FD-independent proteins that have different effects on the floral transition. FRONTIERS IN PLANT SCIENCE 2023; 13:1091563. [PMID: 36714709 PMCID: PMC9878124 DOI: 10.3389/fpls.2022.1091563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Members of the FLOWERING LOCUS T (FT)-like clade of phosphatidylethanolamine-binding proteins (PEBPs) induce flowering by associating with the basic leucine zipper (bZIP) transcription factor FD and forming regulatory complexes in angiosperm species. However, the molecular mechanism of the FT-FD heterocomplex in Chinese cabbage (Brassica rapa ssp. pekinensis) is unknown. In this study, we identified 12 BrPEBP genes and focused our functional analysis on four BrFT-like genes by overexpressing them individually in an FT loss-of-function mutant in Arabidopsis thaliana. We determined that BrFT1 and BrFT2 promote flowering by upregulating the expression of floral meristem identity genes, whereas BrTSF and BrBFT, although close in sequence to their Arabidopsis counterparts, had no clear effect on flowering in either long- or short-day photoperiods. We also simultaneously genetically inactivated BrFT1 and BrFT2 in Chinese cabbage using CRISPR/Cas9-mediated genome editing, which revealed that BrFT1 and BrFT2 may play key roles in inflorescence organogenesis as well as in the transition to flowering. We show that BrFT-like proteins, except for BrTSF, are functionally divided into FD interactors and non-interactors based on the presence of three specific amino acids in their C termini, as evidenced by the observed interconversion when these amino acids are mutated. Overall, this study reveals that although BrFT-like homologs are conserved, they may have evolved to exert functionally diverse functions in flowering via their potential to be associated with FD or independently from FD in Brassica rapa.
Collapse
Affiliation(s)
- Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Min Jung
- Department of Biotechnology, NongWoo Bio, Anseong, Republic of Korea
| | - Youn-Sung Kim
- Department of Biotechnology, Jenong S&T, Anseong, Republic of Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
12
|
Wu J, Liang J, Lin R, Cai X, Zhang L, Guo X, Wang T, Chen H, Wang X. Investigation of Brassica and its relative genomes in the post-genomics era. HORTICULTURE RESEARCH 2022; 9:uhac182. [PMID: 36338847 PMCID: PMC9627752 DOI: 10.1093/hr/uhac182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/07/2022] [Indexed: 06/16/2023]
Abstract
The Brassicaceae family includes many economically important crop species, as well as cosmopolitan agricultural weed species. In addition, Arabidopsis thaliana, a member of this family, is used as a molecular model plant species. The genus Brassica is mesopolyploid, and the genus comprises comparatively recently originated tetrapolyploid species. With these characteristics, Brassicas have achieved the commonly accepted status of model organisms for genomic studies. This paper reviews the rapid research progress in the Brassicaceae family from diverse omics studies, including genomics, transcriptomics, epigenomics, and three-dimensional (3D) genomics, with a focus on cultivated crops. The morphological plasticity of Brassicaceae crops is largely due to their highly variable genomes. The origin of several important Brassicaceae crops has been established. Genes or loci domesticated or contributing to important traits are summarized. Epigenetic alterations and 3D structures have been found to play roles in subgenome dominance, either in tetraploid Brassica species or their diploid ancestors. Based on this progress, we propose future directions and prospects for the genomic investigation of Brassicaceae crops.
Collapse
Affiliation(s)
| | | | | | - Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xinlei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Tianpeng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Haixu Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | | |
Collapse
|
13
|
Qu G, Gao Y, Wang X, Fu W, Sun Y, Gao X, Wang W, Hao C, Feng H, Wang Y. Fine mapping and analysis of candidate genes for qFT7.1, a major quantitative trait locus controlling flowering time in Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2233-2246. [PMID: 35532733 DOI: 10.1007/s00122-022-04108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
qFT7.1, a major QTL for flowering time in Brassica rapa was fine-mapped to chromosome A07 in a 56.4-kb interval, in which the most likely candidate gene is BraA07g018240.3C. In Brassica rapa, flowering time (FT) is an important agronomic trait that affects the yield, quality, and adaption. FT is a complicated trait that is regulated by many genes and is affected greatly by the environment. In this study, a chromosome segment substitution line (CSSL), CSSL16, was selected that showed later flowering than the recurrent parent, a rapid-cycling inbred line of B. rapa (RcBr). Using Bulked Segregant RNA sequencing, we identified a late flowering quantitative trait locus (QTL), designated as qFT7.1, on chromosome A07, based on a secondary-F2 population derived from the cross between CSSL16 and RcBr. qFT7.1 was further validated by conventional QTL mapping. This QTL explained 39.9% (logarithm of odds = 32.2) of the phenotypic variations and was fine mapped to a 56.4-kb interval using recombinant analysis. Expression analysis suggested that BraA07g018240.3C, which is homologous to ATC (encoding Arabidopsis thaliana CENTRORADIALIS homologue), a gene for delayed flowering in Arabidopsis, as the most promising candidate gene. Sequence analysis demonstrated that two synonymous mutations existed in the coding region and numerous bases replacements existed in promoter region between BraA07g018240.3C from CSSL16 and RcBr. The results will increase our knowledge related to the molecular mechanism of late flowering in B. rapa and lays a solid foundation for the breeding of late bolting B. rapa.
Collapse
Affiliation(s)
- Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yue Gao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xian Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wei Fu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yunxia Sun
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xu Gao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wei Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chunming Hao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yugang Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
14
|
Poza-Viejo L, Payá-Milans M, San Martín-Uriz P, Castro-Labrador L, Lara-Astiaso D, Wilkinson MD, Piñeiro M, Jarillo JA, Crevillén P. Conserved and distinct roles of H3K27me3 demethylases regulating flowering time in Brassica rapa. PLANT, CELL & ENVIRONMENT 2022; 45:1428-1441. [PMID: 35037269 DOI: 10.1111/pce.14258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/08/2021] [Indexed: 05/28/2023]
Abstract
Epigenetic regulation is necessary for optimal organism development and preservation of gene expression profiles in the cell. In plants, the trimethylation of histone H3 lysine 27 (H3K27me3) is a silencing epigenetic mark relevant for developmental transitions like flowering. The floral transition is a key agronomic trait; however, the epigenetic mechanisms of flowering time regulation in crops remain poorly understood. Here we study the Jumonji H3K27me3 demethylases BraA.REF6 and BraA.ELF6 in Brassica rapa. Phenotypic characterization of novel mutant lines and genome-wide H3K27me3 chromatin immunoprecipitation and transcriptomic analyses indicated that BraA.REF6 plays a greater role than BraA.ELF6 in fine-tuning H3K27me3 levels. In addition, we found that braA.elf6 mutants were early flowering due to high H3K27me3 levels at B. rapa homologs of the floral repressor FLC. Unlike mutations in Arabidopsis thaliana, braA.ref6 mutants were late flowering without altering the expression of B. rapa FLC genes. Remarkably, we found that BraA.REF6 regulated a number of gibberellic acid (GA) biosynthetic genes, including a homolog of GA1, and that GA-treatment complemented the late flowering mutant phenotype. This study increases our understanding of the epigenetic regulation of flowering time in B. rapa, highlighting conserved and distinct regulatory mechanisms between model and crop species.
Collapse
Affiliation(s)
- Laura Poza-Viejo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Miriam Payá-Milans
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Patxi San Martín-Uriz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Navarra, Spain
| | - Laura Castro-Labrador
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Navarra, Spain
| | - David Lara-Astiaso
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Navarra, Spain
| | - Mark D Wilkinson
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
15
|
Fang C, Wang Z, Wang P, Song Y, Ahmad A, Dong F, Hong D, Yang G. Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 12:798371. [PMID: 35251061 PMCID: PMC8893081 DOI: 10.3389/fpls.2021.798371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/22/2021] [Indexed: 05/31/2023]
Abstract
Early flowering facilitates crops to adapt multiple cropping systems or growing regions with a short frost-free season; however, it usually brings an obvious yield loss. In this study, we identified that the three genes, namely, BnFLC.A2, BnFLC.C2, and BnFLC.A3b, are the major determinants for the flowering time (FT) variation of two elite rapeseed (Brassica napus L.) accessions, i.e., 616A and R11. The early-flowering alleles (i.e., Bnflc.a2 and Bnflc.c2) and late-flowering allele (i.e., BnFLC.A3b) from R11 were introgressed into the recipient parent 616A through a breeding strategy of marker-assisted backcross, giving rise to eight homozygous near-isogenic lines (NILs) associated with these three loci and 19 NIL hybrids produced by the mutual crossing of these NILs. Phenotypic investigations showed that NILs displayed significant variations in both FT and plant yield (PY). Notably, genetic analysis indicated that BnFLC.A2, BnFLC.C2, and BnFLC.A3b have additive effects of 1.446, 1.365, and 1.361 g on PY, respectively, while their dominant effects reached 3.504, 2.991, and 3.284 g, respectively, indicating that the yield loss caused by early flowering can be successfully compensated by exploring the heterosis of FT genes in the hybrid NILs. Moreover, we further validated that the heterosis of FT genes in PY was also effective in non-NIL hybrids. The results demonstrate that the exploration of the potential heterosis underlying the FT genes can coordinate early flowering (maturation) and high yield in rapeseed (B. napus L.), providing an effective strategy for early flowering breeding in crops.
Collapse
Affiliation(s)
- Caochuang Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yixian Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ali Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
16
|
Kim S, Kim JA, Kang H, Kim DH. A premature stop codon in BrFLC2 transcript results in early flowering in oilseed-type Brassica rapa plants. PLANT MOLECULAR BIOLOGY 2022; 108:241-255. [PMID: 35064421 DOI: 10.1007/s11103-021-01231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nonsense-mediated mRNA decay (NMD)-mediated degradation of BrFLC2 transcripts is the main cause of rapid flowering of oilseed-type B. rapa 'LP08' plants. Many Brassica species require vernalization (long-term winter-like cooling) for transition to the reproductive stage. In the past several decades, scientific efforts have been made to discern the molecular mechanisms underlying vernalization in many species. Thus, to identify the key regulators required for vernalization in Brassica rapa L., we constructed a linkage map composed of 7833 single nucleotide polymorphism markers using the late-flowering Chinese cabbage (B. rapa L. ssp. pekinensis) inbred line 'Chiifu' and the early-flowering yellow sarson (B. rapa L. ssp. trilocularis) line 'LP08' and identified a single major QTL on the upper-arm of the chromosome A02. In addition, we compared the transcriptomes of the lines 'Chiifu' and 'LP08' at five vernalization time points, including both non-vernalized and post-vernalization conditions. We observed that BrFLC2 was significantly downregulated in the early flowering 'LP08' and had two deletion sites (one at 4th exon and the other at 3' downstream region) around the BrFLC2 genomic region compared with the BrFLC2 genomic region in 'Chiifu'. Large deletion at 3' downstream region did not significantly affect transcription of both sense BrFLC2 transcript and antisense transcript, BrFLC2as along vernalization time course. However, the other deletion at 4th exon of BrFLC2 resulted in the generation of premature stop codon in BrFLC2 transcript in LP08 line. Cycloheximide treatment of LP08 line showed the de-repressed level of BrFLC2 in LP08, suggesting that low transcript level of BrFLC2 in LP08 might be caused by nonsense-mediated mRNA decay removing the nonsense transcript of BrFLC2. Collectively, this study provides a better understanding of the molecular mechanisms underlying floral transition in B. rapa.
Collapse
Affiliation(s)
- Sujeong Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Hajeong Kang
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea.
| |
Collapse
|
17
|
Tang Q, Kuang H, Yu C, An G, Tao R, Zhang W, Jia Y. Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:473-483. [PMID: 34716468 PMCID: PMC8866342 DOI: 10.1007/s00122-021-03977-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/13/2021] [Indexed: 05/03/2023]
Abstract
We identified the loss of BoFLC gene as the cause of non-vernalization requirement in B. oleracea. Our developed codominant marker of BoFLC gene can be used for breeding program of B. oleracea crops. Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale (Brassica oleracea var. chinensis Lei), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F2 population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing FLC homolog (BoFLC). In addition to the BoFLC gene, there are four other FLC homologs in the genome of B. oleracea, including Bo3g005470, Bo3g024250, Bo9g173370, and Bo9g173400. The qPCR analysis showed that the BoFLC had the highest expression among the five members of the FLC family. Considering the low expression levels of the four paralogs of BoFLC, we speculate that its paralogs cannot compensate the function of the lost BoFLC, therefore the presence/absence (PA) polymorphism of BoFLC determines the vernalization variation. Based on the PA polymorphism of BoFLC, we designed a codominant marker for the vernalization trait, which can be used for breeding programs of B. oleracea crops.
Collapse
Affiliation(s)
- Qiwei Tang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changchun Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanghui An
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Tao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Jia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Tan C, Ren J, Wang L, Ye X, Fu W, Zhang J, Qi M, Feng H, Liu Z. A single amino acid residue substitution in BraA04g017190.3C, a histone methyltransferase, results in premature bolting in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). BMC PLANT BIOLOGY 2021; 21:373. [PMID: 34388969 PMCID: PMC8361648 DOI: 10.1186/s12870-021-03153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flowering is an important inflection point in the transformation from vegetative to reproductive growth, and premature bolting severely decreases crop yield and quality. RESULTS In this study, a stable early-bolting mutant, ebm3, was identified in an ethyl methanesulfonate (EMS)-mutagenized population of a Chinese cabbage doubled haploid (DH) line 'FT'. Compared with 'FT', ebm3 showed early bolting under natural cultivation in autumn, and curled leaves. Genetic analysis showed that the early-bolting phenotype was controlled by a single recessive nuclear gene. Modified MutMap sequencing, genotyping analyses and allelism test provide strong evidence that BrEBM3 (BraA04g017190.3 C), encoding the histone methyltransferase CURLY LEAF (CLF), was the strongly candidate gene of the emb3. A C to T base substitution in the 14th exon of BrEBM3 resulted in an amino acid change (S to F) and the early-bolting phenotype of emb3. The mutation occurred in the SET domain (Suppressor of protein-effect variegation 3-9, Enhancer-of-zeste, Trithorax), which catalyzes site- and state-specific lysine methylation in histones. Tissue-specific expression analysis showed that BrEBM3 was highly expressed in the flower and bud. Promoter activity assay confirmed that BrEBM3 promoter was active in inflorescences. Subcellular localization analysis revealed that BrEBM3 localized in the nucleus. Transcriptomic studies supported that BrEBM3 mutation might repress H3K27me3 deposition and activate expression of the AGAMOUS (AG) and AGAMOUS-like (AGL) loci, resulting in early flowering. CONCLUSIONS Our study revealed that an EMS-induced early-bolting mutant ebm3 in Chinese cabbage was caused by a nonsynonymous mutation in BraA04g017190.3 C, encoding the histone methyltransferase CLF. These results improve our knowledge of the genetic and genomic resources of bolting and flowering, and may be beneficial to the genetic improvement of Chinese cabbage.
Collapse
Affiliation(s)
- Chong Tan
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Jie Ren
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Lin Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Xueling Ye
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Wei Fu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Jiamei Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Meng Qi
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Hui Feng
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China
| | - Zhiyong Liu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Department of Horticulture, Shenyang Agricultural University, 110866, Shenyang, People's Republic of China.
| |
Collapse
|
19
|
Calderwood A, Hepworth J, Woodhouse S, Bilham L, Jones DM, Tudor E, Ali M, Dean C, Wells R, Irwin JA, Morris RJ. Comparative transcriptomics reveals desynchronisation of gene expression during the floral transition between Arabidopsis and Brassica rapa cultivars. QUANTITATIVE PLANT BIOLOGY 2021; 2:e4. [PMID: 37077206 PMCID: PMC10095958 DOI: 10.1017/qpb.2021.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 05/03/2023]
Abstract
Comparative transcriptomics can be used to translate an understanding of gene regulatory networks from model systems to less studied species. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. We find that different curve registration functions are required for different genes, indicating that there is no single common 'developmental time' between Arabidopsis and B. rapa. A detailed comparison between Arabidopsis and B. rapa and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa and highlights the importance of registration methods for the comparison of developmental gene expression data.
Collapse
Affiliation(s)
- Alexander Calderwood
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Jo Hepworth
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Shannon Woodhouse
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Lorelei Bilham
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - D. Marc Jones
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
- VIB-UGent Centre for Plant Systems Biology, Gent, Belgium
| | - Eleri Tudor
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Mubarak Ali
- Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Rachel Wells
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Judith A. Irwin
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
20
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
21
|
Wei X, Rahim MA, Zhao Y, Yang S, Wang Z, Su H, Li L, Niu L, Harun-Ur-Rashid M, Yuan Y, Zhang X. Comparative Transcriptome Analysis of Early- and Late-Bolting Traits in Chinese Cabbage ( Brassica rapa). Front Genet 2021; 12:590830. [PMID: 33747036 PMCID: PMC7969806 DOI: 10.3389/fgene.2021.590830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Chinese cabbage is one of the most important and widely consumed vegetables in China. The developmental transition from the vegetative to reproductive phase is a crucial process in the life cycle of flowering plants. In spring-sown Chinese cabbage, late bolting is desirable over early bolting. In this study, we analyzed double haploid (DH) lines of late bolting (“Y410-1” and “SY2004”) heading Chinese cabbage (Brassica rapa var. pekinensis) and early-bolting Chinese cabbage (“CX14-1”) (B. rapa ssp. chinensis var. parachinensis) by comparative transcriptome profiling using the Illumina RNA-seq platform. We assembled 721.49 million clean high-quality paired-end reads into 47,363 transcripts and 47,363 genes, including 3,144 novel unigenes. There were 12,932, 4,732, and 4,732 differentially expressed genes (DEGs) in pairwise comparisons of Y410-1 vs. CX14-1, SY2004 vs. CX14-1, and Y410-1 vs. SY2004, respectively. The RNA-seq results were confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs revealed significant enrichment for plant hormone and signal transduction as well as starch and sucrose metabolism pathways. Among DEGs related to plant hormone and signal transduction, six unigenes encoding the indole-3-acetic acid-induced protein ARG7 (BraA02g009130), auxin-responsive protein SAUR41 (BraA09g058230), serine/threonine-protein kinase BSK11 (BraA07g032960), auxin-induced protein 15A (BraA10g019860), and abscisic acid receptor PYR1 (BraA08g012630 and BraA01g009450), were upregulated in both late bolting Chinese cabbage lines (Y410-1 and SY2004) and were identified as putative candidates for the trait. These results improve our understanding of the molecular mechanisms underlying flowering in Chinese cabbage and provide a foundation for studies of this key trait in related species.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Md Abdur Rahim
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Liujing Niu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Md Harun-Ur-Rashid
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
22
|
Tudor EH, Jones DM, He Z, Bancroft I, Trick M, Wells R, Irwin JA, Dean C. QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2466-2481. [PMID: 32452611 PMCID: PMC7680531 DOI: 10.1111/pbi.13421] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 05/05/2023]
Abstract
Winter, spring and biennial varieties of Brassica napus that vary in vernalization requirement are grown for vegetable and oil production. Here, we show that the obligate or facultative nature of the vernalization requirement in European winter oilseed rape is determined by allelic variation at a 10 Mbp region on chromosome A02. This region includes orthologues of the key floral regulators FLOWERING LOCUS C (BnaFLC.A02) and FLOWERING LOCUS T (BnaFT.A02). Polymorphism at BnaFLC.A02 and BnaFT.A02, mostly in cis-regulatory regions, results in distinct gene expression dynamics in response to vernalization treatment. Our data suggest allelic variation at BnaFT.A02 is associated with flowering time in the absence of vernalization, while variation at BnaFLC.A02 is associated with flowering time under vernalizing conditions. We hypothesize selection for BnaFLC.A02 and BnaFT.A02 gene expression variation has facilitated the generation of European winter oilseed rape varieties that are adapted to different winter climates. This knowledge will allow for the selection of alleles of flowering time regulators that alter the vernalization requirement of oilseed rape, informing the generation of new varieties with adapted flowering times and improved yields.
Collapse
Affiliation(s)
| | | | - Zhesi He
- Department of BiologyUniversity of YorkYorkUK
| | | | | | | | | | | |
Collapse
|
23
|
Alternative splicing of flowering time gene FT is associated with halving of time to flowering in coconut. Sci Rep 2020; 10:11640. [PMID: 32669611 PMCID: PMC7363896 DOI: 10.1038/s41598-020-68431-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/24/2020] [Indexed: 11/08/2022] Open
Abstract
Coconut palm has two distinct types-"tall" and "dwarf"-which differ morphologically. Tall coconut varieties need 8-10 years to start flowering, while dwarf coconut varieties only require 3-5 years. We compared seedling and reproductive stage transcriptomes for both coconut types to determine potential molecular mechanisms underlying control of flowering time in coconut. Several key genes in the photoperiod pathway were differentially expressed between seedling and reproductive leaf samples in both tall and dwarf coconut. These genes included suppressor of overexpression of constans (SOC1), flowering locus T (FT), and Apetala 1 (AP1). Alternative splicing analysis of genes in the photoperiod pathway further revealed that the FT gene produces different transcripts in tall compared to dwarf coconut. The shorter alternative splice variant of FT [which included a 6 bp deletion, alternative 3' splicing sites (A3SS)] was found to be exclusively present in dwarf coconut varieties but absent in most tall coconut varieties. Our results provide a valuable information resource as well as suggesting a probable mechanism for differentiation of flowering time onset in coconut, providing a target for future breeding work in accelerating time to flowering in this crop species.
Collapse
|
24
|
Yu E, Yamaji N, Ma JF. Altered Root Structure Affects Both Expression and Cellular Localization of Transporters for Mineral Element Uptake in Rice. PLANT & CELL PHYSIOLOGY 2020; 61:481-491. [PMID: 31747007 DOI: 10.1093/pcp/pcz213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
One of the most important roles of plant roots is to take up mineral elements for their growth. Although several genes involved in root growth have been identified, the association between root structure and mineral element uptake is less investigated. In this study, we isolated a rice mutant (dice1, defective in cell elongation 1) with short-root phenotype. This mutant was characterized by partial defect in the formation of root outer cell layers. Mapping of the responsible gene revealed that the short-root phenotype in the mutant was caused by a single-nucleotide substitution of a gene encoding a membrane-anchored endo-1,4-beta-glucanase (OsGlu3). The growth of both the roots and shoots was partially recovered with increasing strength of nutrient solution and glucose in the mutant. The mutant showed a decreased uptake (normalized by root dry weight) for Mg, Mn, Fe, Cu, Zn, Cd, As and Ge but increased uptake for K and Ca. The expression level of some transporter genes including OsLsi1 and OsLsi2 for Si uptake and OsNramp5 for Mn uptake was significantly decreased in the mutant compared with the wild-type (WT) rice. Furthermore, the cellular localization of OsLsi1 was altered; OsLsi1 localized at the root exodermis of the WT rice was changed to be localized to other cell layers of the mutant roots. However, this localization became normal in the presence of exogenous glucose in the mutant. Our results indicate that a normal root structure is required for maintaining the expression and localization of transporters involved in the mineral element uptake.
Collapse
Affiliation(s)
- En Yu
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| |
Collapse
|
25
|
The vernalisation regulator FLOWERING LOCUS C is differentially expressed in biennial and annual Brassica napus. Sci Rep 2019; 9:14911. [PMID: 31624282 PMCID: PMC6797750 DOI: 10.1038/s41598-019-51212-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/26/2019] [Indexed: 11/11/2022] Open
Abstract
Plants in temperate areas evolved vernalisation requirement to avoid pre-winter flowering. In Brassicaceae, a period of extended cold reduces the expression of the flowering inhibitor FLOWERING LOCUS C (FLC) and paves the way for the expression of downstream flowering regulators. As with all polyploid species of the Brassicaceae, the model allotetraploid Brassica napus (rapeseed, canola) is highly duplicated and carries 9 annotated copies of Bna.FLC. To investigate whether these multiple homeologs and paralogs have retained their original function in vernalisation or undergone subfunctionalisation, we compared the expression patterns of all 9 copies between vernalisation-dependent (biennial, winter type) and vernalisation-independent (annual, spring type) accessions, using RT-qPCR with copy-specific primers and RNAseq data from a diversity set. Our results show that only 3 copies – Bna.FLC.A03b, Bna.FLC.A10 and to some extent Bna.FLC.C02 – are differentially expressed between the two growth types, showing that expression of the other 6 copies does not correlate with growth type. One of those 6 copies, Bna.FLC.C03b, was not expressed at all, indicating a pseudogene, while three further copies, Bna.FLC.C03a and Bna.FLC.C09ab, did not respond to cold treatment. Sequence variation at the COOLAIR binding site of Bna.FLC.A10 was found to explain most of the variation in gene expression. However, we also found that Bna.FLC.A10 expression is not fully predictive of growth type.
Collapse
|
26
|
Bai G, Yang DH, Cao P, Yao H, Zhang Y, Chen X, Xiao B, Li F, Wang ZY, Yang J, Xie H. Genome-Wide Identification, Gene Structure and Expression Analysis of the MADS-Box Gene Family Indicate Their Function in the Development of Tobacco ( Nicotiana tabacum L.). Int J Mol Sci 2019; 20:E5043. [PMID: 31614589 PMCID: PMC6829366 DOI: 10.3390/ijms20205043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
MADS-box genes play a pivotal role in various processes, including floral and seed development, controlling flowering time, regulation of fruits ripening, and respond to abiotic and biotic stressors in planta. Tobacco (Nicotiana tabacum) has been widely used as a model plant for analyzing the gene function, however, there has been less information on the regulation of flowering, and the associated genes. In the present study, a total of 168 NtMADS-box genes were identified from tobacco, and their phylogenetic relationship, chromosome locations, and gene structures were further analyzed. NtMADS-box genes can be clustered into four sub-families of Mα, Mγ, MIKC*, and MIKCC. A total of 111 NtMADS-box genes were distributed on 20 chromosomes, and 57 NtMADS-box genes were located on the unanchored scaffolds due to the complex and incomplete assembly of the tobacco genome. Expression profiles of NtMADS-box genes by microarray from 23 different tissues indicated that members in different NtMADS-box gene subfamilies might play specific roles in the growth and flower development, and the transcript levels of 24 NtMADS-box genes were confirmed by quantitative real-time PCR. Importantly, overexpressed NtSOC1/NtMADS133 could promote early flowering and dwarfism in transgenic tobacco plants. Therefore, our findings provide insights on the characterization of NtMADS-box genes to further study their functions in plant development.
Collapse
Affiliation(s)
- Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Peijian Cao
- China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Heng Yao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Yihan Zhang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Xuejun Chen
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Bingguang Xiao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Feng Li
- China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Zhen-Yu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China.
| | - Jun Yang
- China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| |
Collapse
|
27
|
Del Olmo I, Poza-Viejo L, Piñeiro M, Jarillo JA, Crevillén P. High ambient temperature leads to reduced FT expression and delayed flowering in Brassica rapa via a mechanism associated with H2A.Z dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:343-356. [PMID: 31257648 DOI: 10.1111/tpj.14446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 05/08/2023]
Abstract
Flowering time is a relevant agronomic trait because is crucial for the optimal formation of seeds and fruits. The genetic pathways controlling this developmental phase transition have been studied extensively in Arabidopsis thaliana. These pathways converge in a small number of genes including FT, the so-called florigen, which integrates environmental cues like ambient temperature. Nevertheless, detailed and functional studies about flowering time in Brassica crops are scarce. Here we study the role of the FT Brassica rapa homologues and the effect of high ambient temperature on flowering time in this crop. Phenotypic characterization and gene-expression analyses suggest that BraA.FT.a (BraA02g016700.3C) is decisive for initiating floral transition; consequently, braA.ft.a loss-of-function and hypomorphic mutations result in late flowering phenotypes. We also show that high ambient temperature delays B. rapa floral transition by reducing BraA.FT.a expression. Strikingly, these expression changes are associated with increased histone H2A.Z levels and less accessible chromatin configuration of the BraA.FT.a locus at high ambient temperature. Interestingly, increased H2A.Z levels at high ambient temperature were also observed for other B. rapa temperature-responsive genes. Previous reports delimited that Arabidopsis flowers earlier at high ambient temperature due to reduced H2A.Z incorporation in the FT locus. Our data reveal a conserved chromatin-mediated mechanism in B. rapa and Arabidopsis in which the incorporation of H2A.Z at FT chromatin in response to warm ambient temperature results in different flowering time responses. This work will help to develop improved Brassica crop varieties with flowering time requirements to cope with global warming. OPEN RESEARCH BADGES: This article has earned an Open Materials Badge for making publicly available the components of the research methodology needed to reproduce the reported procedure and analysis. Methods are available at protocols.iodx.doi.org/10.17504/protocols.io.zmff43n.
Collapse
Affiliation(s)
- Iván Del Olmo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - Laura Poza-Viejo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
28
|
Woodhouse MR, Hufford MB. Parallelism and convergence in post-domestication adaptation in cereal grasses. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180245. [PMID: 31154975 DOI: 10.1098/rstb.2018.0245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The selection of desirable traits in crops during domestication has been well studied. Many crops share a suite of modified phenotypic characteristics collectively known as the domestication syndrome. In this sense, crops have convergently evolved. Previous work has demonstrated that, at least in some instances, convergence for domestication traits has been achieved through parallel molecular means. However, both demography and selection during domestication may have placed limits on evolutionary potential and reduced opportunities for convergent adaptation during post-domestication migration to new environments. Here we review current knowledge regarding trait convergence in the cereal grasses and consider whether the complexity and dynamism of cereal genomes (e.g., transposable elements, polyploidy, genome size) helped these species overcome potential limitations owing to domestication and achieve broad subsequent adaptation, in many cases through parallel means. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- M R Woodhouse
- Iowa State University, Ecology, Evolution, and Organismal Biology , Ames, IA 50011 , USA
| | - M B Hufford
- Iowa State University, Ecology, Evolution, and Organismal Biology , Ames, IA 50011 , USA
| |
Collapse
|
29
|
Xiao D, Shen HR, Zhao JJ, Wei YP, Liu DR, Hou XL, Bonnema G. Genetic dissection of flowering time in Brassica rapa responses to temperature and photoperiod. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:110-119. [PMID: 30823988 DOI: 10.1016/j.plantsci.2018.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/19/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The Brassica rapa (B. rapa) species displays enormous phenotypic diversity, with leafy vegetables, storage root vegetables and oil crops. These different crops all have different flowering time, which determine their growing season and cultivation area. Little is known about the effects of diverse temperature and day-lengths on flowering time QTL associated with FLC paralogues. We phenotyped the flowering time of a doubled haploid population, established from a cross between Yellow sarson and Pak choi under diverse environmental conditions. We identified flowering-time QTL (fQTL) in different photoperiod and temperature regimes in the greenhouse, and studied their colocation with known flowering time genes. As several fQTL colocalized with FLC paralogues, we studied the expression patterns of four FLC paralogues during the course of vernalization in parental lines. Under all environmental conditions tested the major fQTL that mapped to the BrFLC2_A02 locus was detected, however its effect decreased when plants were grown at low temperatures. Another fQTL that mapped to the FLC paralogue, BrFLC5_A03 was also identified under all tested environments, while no fQTL colocated with BrFLC1_A10 or BrFLC3_A03. Furthermore, the vernalization treatment decreased expression of all BrFLC paralogues in the parental lines, and showed the lowest transcript level after 28 days of vernalization. Transcript abundance stayed low after returning the plants for seven days to normal growth temperature. Interestingly, transcript abundance of BrFLC3_A03 and BrFLC5_A03 was repressed much stronger and already reached lowest levels after 14d in the early-flowering type YS-143. This study improves understanding of the effects of daylength and vernalization on flowering time in B. rapa and the role of the different BrFLC paralogues therein.
Collapse
Affiliation(s)
- Dong Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao-Ran Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Jun Zhao
- Horticultural College, Agricultural University of Hebei, Baoding, 071001, China
| | - Yan-Ping Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong-Rang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|
30
|
Jian H, Zhang A, Ma J, Wang T, Yang B, Shuang LS, Liu M, Li J, Xu X, Paterson AH, Liu L. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics 2019; 20:21. [PMID: 30626329 PMCID: PMC6325782 DOI: 10.1186/s12864-018-5356-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/09/2018] [Indexed: 01/10/2023] Open
Abstract
Background Optimum flowering time is a key agronomic trait in Brassica napus. To investigate the genetic architecture and genetic regulation of flowering time in this important crop, we conducted quantitative trait loci (QTL) analysis of flowering time in a recombinant inbred line (RIL) population, including lines with extreme differences in flowering time, in six environments, along with RNA-Seq analysis. Results We detected 27 QTLs distributed on eight chromosomes among six environments, including one major QTL on chromosome C02 that explained 11–25% of the phenotypic variation and was stably detected in all six environments. RNA-Seq analysis revealed 105 flowering time-related differentially expressed genes (DEGs) that play roles in the circadian clock/photoperiod, autonomous pathway, and hormone and vernalization pathways. We focused on DEGs related to the regulation of flowering time, especially DEGs in QTL regions. Conclusions We identified 45 flowering time-related genes in these QTL regions, eight of which are DEGs, including key flowering time genes PSEUDO RESPONSE REGULATOR 7 (PRR7) and FY (located in a major QTL region on C02). These findings provide insights into the genetic architecture of flowering time in B. napus. Electronic supplementary material The online version of this article (10.1186/s12864-018-5356-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China.,Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Jinqi Ma
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Tengyue Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Lan Shuan Shuang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Min Liu
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA.
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China.
| |
Collapse
|
31
|
Qi HD, Lin Y, Ren QP, Wang YY, Xiong F, Wang XL. RNA Splicing of FLC Modulates the Transition to Flowering. FRONTIERS IN PLANT SCIENCE 2019; 10:1625. [PMID: 31921267 PMCID: PMC6928127 DOI: 10.3389/fpls.2019.01625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/19/2019] [Indexed: 05/10/2023]
Abstract
Flowering is a critical stage of plant development and is closely correlated with seed production and crop yield. Flowering transition is regulated by complex genetic networks in response to endogenous and environmental signals. FLOWERING LOCUS C (FLC) is a central repressor in the flowering transition of Arabidopsis thaliana. The regulation of FLC expression is well studied at transcriptional and post-transcriptional levels. A subset of antisense transcripts from FLC locus, collectively termed cold-induced long antisense intragenic RNAs (COOLAIR), repress FLC expression under cold exposure. Recent studies have provided important insights into the alternative splicing of COOLAIR and FLC sense transcripts in response to developmental and environmental cues. Herein, at the 20th anniversary of FLC functional identification, we summarise new research advances in the alternative splicing of FLC sense and antisense transcripts that regulates flowering.
Collapse
Affiliation(s)
- Hao-Dong Qi
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yi Lin
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Qiu-Ping Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
- *Correspondence: Xiu-Ling Wang,
| |
Collapse
|
32
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
33
|
Su T, Wang W, Li P, Zhang B, Li P, Xin X, Sun H, Yu Y, Zhang D, Zhao X, Wen C, Zhou G, Wang Y, Zheng H, Yu S, Zhang F. A Genomic Variation Map Provides Insights into the Genetic Basis of Spring Chinese Cabbage (Brassica rapa ssp. pekinensis) Selection. MOLECULAR PLANT 2018; 11:1360-1376. [PMID: 30217779 DOI: 10.1016/j.molp.2018.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
Chinese cabbage is the most consumed leafy crop in East Asian countries. However, premature bolting induced by continuous low temperatures severely decreases the yield and quality of the Chinese cabbage, and therefore restricts its planting season and geographic distribution. In the past 40 years, spring Chinese cabbage with strong winterness has been selected to meet the market demand. Here, we report a genome variation map of Chinese cabbage generated from the resequencing data of 194 geographically diverse accessions of three ecotypes. In-depth analyses of the selection sweeps and genome-wide patterns revealed that spring Chinese cabbage was selected from a specific population of autumn Chinese cabbage around the area of Shandong peninsula in northern China. We identified 23 genomic loci that underwent intensive selection, and further demonstrated by gene expression and haplotype analyses that the incorporation of elite alleles of VERNALISATION INSENTIVE 3.1 (BrVIN3.1) and FLOWER LOCUS C 1 (BrFLC1) is a determinant genetic source of variation during selection. Moreover, we showed that the quantitative response of BrVIN3.1 to cold due to the sequence variations in the cis elements of the BrVIN3.1 promoter significantly contributes to bolting-time variation in Chinese cabbage. Collectively, our study provides valuable insights into the genetic basis of spring Chinese cabbage selection and will facilitate the breeding of bolting-resistant varieties by molecular-marker-assisted selection, transgenic or gene editing approaches.
Collapse
Affiliation(s)
- Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, UK; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Bin Zhang
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Pan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Honghe Sun
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Gang Zhou
- Biomarker Technologies Corporation, Beijing, China
| | - Yuntong Wang
- Biomarker Technologies Corporation, Beijing, China
| | | | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China.
| |
Collapse
|
34
|
Xi X, Wei K, Gao B, Liu J, Liang J, Cheng F, Wang X, Wu J. BrFLC5: a weak regulator of flowering time in Brassica rapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2107-2116. [PMID: 30008108 DOI: 10.1007/s00122-018-3139-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/28/2018] [Indexed: 05/08/2023]
Abstract
A splicing site mutation in BrFLC5, a non-syntenic paralogue of FLOWERING LOCUS C, was demonstrated to be related to flowering time variation in Brassica rapa. Flowering time regulation in Brassica rapa is more complex than in Arabidopsis, as there are multiple paralogues of flowering time genes in B. rapa. Brassica rapa contains four FLOWERING LOCUS C (FLC) genes, three of which are syntenic orthologues of AtFLC, while BrFLC5 is not. BrFLC1, BrFLC2, and BrFLC3 have been reported to be involved in flowering time regulation. However, BrFLC5 has thus far been deemed a pseudogene. We detected two alternative splicing patterns of BrFLC5 resulting from a nucleotide mutation (G/A) at the first nucleotide of intron 3 (named as Pi3+1(G/A)). Genotyping of BrFLC5Pi3 + 1(G/A) for 301 B. rapa accessions showed that this single nucleotide polymorphism was significantly related to flowering time variation (p < 0.001). In the collection, the frequency of the functional G allele (35.2%) was much lower than that of the nonfunctional A allele (59.1%); however, the frequency of the G allele was very high among the turnips (83.6%). An F2 population segregating at this locus was developed to analyze the genetic effect of BrFLC5. The result showed that the G allele individuals began to bolt two days later than the A allele individuals, indicating that BrFLC5 is a weak regulator of flowering time. BrFLC5 was expressed at the lowest level among the three analyzed BrFLCs. The late allele (G allele) was dominant to the early allele (A allele) at the BrFLC5 locus, which was in contrast to that of BrFLC1 and BrFLC2. This characteristic suggests that BrFLC5 would be more efficient for breeding premature bolting resistance in B. rapa.
Collapse
Affiliation(s)
- Xi Xi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Keyun Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Baozhen Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Jiahe Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, Beijing, 100081, China.
| |
Collapse
|
35
|
Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Große I, Schiessl S, Jung C, Emrani N. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). PLANT, CELL & ENVIRONMENT 2018; 41:1935-1947. [PMID: 29813173 DOI: 10.1111/pce.13353] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 05/19/2018] [Indexed: 05/18/2023]
Abstract
Rapeseed (Brassica napus L.), one of the most important sources of vegetable oil and protein-rich meals worldwide, is adapted to different geographical regions by modification of flowering time. Rapeseed cultivars have different day length and vernalization requirements, which categorize them into winter, spring, and semiwinter ecotypes. To gain a deeper insight into genetic factors controlling floral transition in B. napus, we performed RNA sequencing (RNA-seq) in the semiwinter doubled haploid line, Ningyou7, at different developmental stages and temperature regimes. The expression profiles of more than 54,000 gene models were compared between different treatments and developmental stages, and the differentially expressed genes were considered as targets for association analysis and genetic mapping to confirm their role in floral transition. Consequently, 36 genes with association to flowering time, seed yield, or both were identified. We found novel indications for neofunctionalization in homologs of known flowering time regulators like VIN3 and FUL. Our study proved the potential of RNA-seq along with association analysis and genetic mapping to identify candidate genes for floral transition in rapeseed. The candidate genes identified in this study could be subjected to genetic modification or targeted mutagenesis and genotype building to breed rapeseed adapted to certain environments.
Collapse
Affiliation(s)
- Smit Shah
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Claus Weinholdt
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Jedrusik
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carlos Molina
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ivo Große
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sarah Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
36
|
Shea DJ, Tomaru Y, Itabashi E, Nakamura Y, Miyazaki T, Kakizaki T, Naher TN, Shimizu M, Fujimoto R, Fukai E, Okazaki K. The production and characterization of a BoFLC2 introgressed Brassica rapa by repeated backcrossing to an F 1. BREEDING SCIENCE 2018; 68:316-325. [PMID: 30100798 PMCID: PMC6081295 DOI: 10.1270/jsbbs.17115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/13/2018] [Indexed: 05/25/2023]
Abstract
Flowering time is an important agronomic trait for Brassica rapa crops, and previous breeding work in Brassica has successfully transmitted other important agronomic traits from donor species. However, there has been no previous attempts to produce hybrids replacing the original Brassica FLC alleles with alien FLC alleles. In this paper, we introduce the creation of a chromosome substitution line (CSSL) containing a homozygous introgression of Flowering Locus C from Brassica oleracea (BoFLC2) into a B. rapa genomic background, and characterize the CSSL line with respect to the parental cultivars. The preferential transmission of alien chromosome inheritance and the pattern of transmission observed during the production of the CSSLs are also discussed.
Collapse
Affiliation(s)
- Daniel J. Shea
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
| | - Yuki Tomaru
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
| | - Etsuko Itabashi
- National Institute of Vegetable and Tea Science,
360 Kusawa, Ano, Tsu, Mie 514-2392,
Japan
| | - Yuri Nakamura
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
| | - Toshio Miyazaki
- Nippon Norin Seed Co.,
6-6-5 Takinogawa, Kita-ku, Tokyo 114-0023,
Japan
| | - Tomohiro Kakizaki
- National Institute of Vegetable and Tea Science,
360 Kusawa, Ano, Tsu, Mie 514-2392,
Japan
| | | | - Motoki Shimizu
- Iwate Biotechnology Research Center,
22-174-4 Narita, Kitakami, Iwate 024-0003,
Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe, Hyogo 657-8501,
Japan
| | - Eigo Fukai
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
| | - Keiichi Okazaki
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Niigata University,
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181,
Japan
| |
Collapse
|
37
|
Yang L, Wang HN, Hou XH, Zou YP, Han TS, Niu XM, Zhang J, Zhao Z, Todesco M, Balasubramanian S, Guo YL. Parallel Evolution of Common Allelic Variants Confers Flowering Diversity in Capsella rubella. THE PLANT CELL 2018; 30:1322-1336. [PMID: 29764984 PMCID: PMC6048796 DOI: 10.1105/tpc.18.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 05/04/2023]
Abstract
Flowering time is an adaptive life history trait. Capsella rubella, a close relative of Arabidopsis thaliana and a young species, displays extensive variation for flowering time but low standing genetic variation due to an extreme bottleneck event, providing an excellent opportunity to understand how phenotypic diversity can occur with a limited initial gene pool. Here, we demonstrate that common allelic variation and parallel evolution at the FLC locus confer variation in flowering time in C. rubella. We show that two overlapping deletions in the 5' untranslated region (UTR) of C. rubella FLC, which are associated with local changes in chromatin conformation and histone modifications, reduce its expression levels and promote flowering. We further show that these two pervasive variants originated independently in natural C. rubella populations after speciation and spread to an intermediate frequency, suggesting a role of this parallel cis-regulatory change in adaptive evolution. Our results provide an example of how parallel mutations in the same 5' UTR region can shape phenotypic evolution in plants.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui-Na Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Jiang L, Li D, Jin L, Ruan Y, Shen WH, Liu C. Histone lysine methyltransferases BnaSDG8.A and BnaSDG8.C are involved in the floral transition in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:672-685. [PMID: 29797624 DOI: 10.1111/tpj.13978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 05/22/2023]
Abstract
Although increasing experimental evidence demonstrates that histone methylations play important roles in Arabidopsis plant growth and development, little information is available regarding Brassica napus. In this study, we characterized two genes encoding homologues of the Arabidopsis histone 3 lysine 36 (H3K36) methyltransferase SDG8, namely, BnaSDG8.A and BnaSDG8.C. Although no duplication of SDG8 homologous genes had been previously reported to occur during the evolution of any sequenced species, a domain-duplication was uncovered in BnaSDG8.C. This duplication led to the identification of a previously unknown NNH domain in the SDG8 homologues, providing a useful reference for future studies and revealing the finer mechanism of SDG8 function. One NNH domain is present in BnaSDG8.A, while two adjacent NNH domains are present in BnaSDG8.C. Reverse transcriptase-quantitative polymerase chain reaction analysis revealed similar patterns but with varied levels of expression of BnaSDG8.A/C in different plant organs/tissues. To directly investigate their function, BnaSDG8.A/C cDNA was ectopically expressed to complement the Arabidopsis mutant. We observed that the expression of either BnaSDG8.A or BnaSDG8.C could rescue the Arabidopsis sdg8 mutant to the wild-type phenotype. Using RNAi and CRISPR/Cas9-mediated gene editing, we obtained BnaSDG8.A/C knockdown and knockout mutants with the early flowering phenotype as compared with the control. Further analysis of two types of the mutants revealed that BnaSDG8.A/C are required for H3K36 m2/3 deposition and prevent the floral transition of B. napus by directly enhancing the H3K36 m2/3 levels at the BnaFLC chromatin loci. This observation on the floral transition by epigenetic modification in B. napus provides useful information for breeding early-flowering varieties.
Collapse
Affiliation(s)
- Ling Jiang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Donghao Li
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lu Jin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Ying Ruan
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cedex, 67084, France
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
39
|
Zheng Y, Luo L, Liu Y, Yang Y, Wang C, Kong X, Yang Y. Effect of vernalization on tuberization and flowering in the Tibetan turnip is associated with changes in the expression of FLC homologues. PLANT DIVERSITY 2018; 40:50-56. [PMID: 30159542 PMCID: PMC6091928 DOI: 10.1016/j.pld.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 05/18/2023]
Abstract
The turnip (Brassica rapa var. rapa) is a biennial crop that is planted in late summer/early fall and forms fleshy tubers for food in temperate regions. The harvested tubers then overwinter and are planted again the next spring for flowering and seeds. FLOWERING LOCUS C (FLC) is a MADS-box transcription factor that acts as a major repressor of floral transition by suppressing the flowering promoters FT and SOC1. Here we show that vernalization effectively represses tuber formation and promotes flowering in Tibetan turnip. We functionally characterized four FLC homologues (BrrFLC1, FLC2, FLC3, and FLC5), and found that BrrFLC2 and BrrFLC1 play a major role in repressing flowering in turnip and in transgenic Arabidopsis. In contrast, tuber formation was correlated with BrrFLC1 expression in the hypocotyl and was repressed under cold treatment following the quantitative downregulation of BrrFLC1. Grafting experiments of non-vernalized and vernalized turnips revealed that vernalization independently suppressed tuberization in the tuber or hypocotyl of the rootstock or scion, which occurred in parallel with the reduction in BrrFLC1 activity. Together, our results demonstrate that the Tibetan turnip is highly responsive to cold exposure, which is associated with the expression levels of BrrFLC genes.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Landi Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuanyuan Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chuntao Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangxiang Kong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Corresponding author. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Fax: +86 871 65230873.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Corresponding author. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Fax: +86 871 65230873.
| |
Collapse
|
40
|
Schilling S, Pan S, Kennedy A, Melzer R. MADS-box genes and crop domestication: the jack of all traits. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1447-1469. [PMID: 29474735 DOI: 10.1093/jxb/erx479] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 05/25/2023]
Abstract
MADS-box genes are key regulators of virtually every aspect of plant reproductive development. They play especially prominent roles in flowering time control, inflorescence architecture, floral organ identity determination, and seed development. The developmental and evolutionary importance of MADS-box genes is widely acknowledged. However, their role during flowering plant domestication is less well recognized. Here, we provide an overview illustrating that MADS-box genes have been important targets of selection during crop domestication and improvement. Numerous examples from a diversity of crop plants show that various developmental processes have been shaped by allelic variations in MADS-box genes. We propose that new genomic and genome editing resources provide an excellent starting point for further harnessing the potential of MADS-box genes to improve a variety of reproductive traits in crops. We also suggest that the biophysics of MADS-domain protein-protein and protein-DNA interactions, which is becoming increasingly well characterized, makes them especially suited to exploit coding sequence variations for targeted breeding approaches.
Collapse
Affiliation(s)
- Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Sirui Pan
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Alice Kennedy
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Irel
| |
Collapse
|
41
|
Fujikura U, Jing R, Hanada A, Takebayashi Y, Sakakibara H, Yamaguchi S, Kappel C, Lenhard M. Variation in Splicing Efficiency Underlies Morphological Evolution in Capsella. Dev Cell 2018; 44:192-203.e5. [DOI: 10.1016/j.devcel.2017.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/10/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
|
42
|
Luo X, Xu L, Liang D, Wang Y, Zhang W, Zhu X, Zhu Y, Jiang H, Tang M, Liu L. Comparative transcriptomics uncovers alternative splicing and molecular marker development in radish (Raphanus sativus L.). BMC Genomics 2017; 18:505. [PMID: 28673249 PMCID: PMC5496183 DOI: 10.1186/s12864-017-3874-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Background Alternative splicing (AS) plays important roles in gene expression and proteome diversity. Single nucleotide polymorphism (SNP) and insertion/deletion (InDel) are abundant polymorphisms and co-dominant inheritance markers, which have been widely used in germplasm identification, genetic mapping and marker-assisted selection in plants. So far, however, little information is available on utilization of AS events and development of SNP and InDel markers from transcriptome in radish. Results In this study, three radish transcriptome datasets were collected and aligned to the reference radish genome. A total of 56,530 AS events were identified from three radish genotypes with intron retention (IR) being the most frequent AS type, which accounted for 59.4% of the total expressed genes in radish. In all, 22,412 SNPs and 9436 InDels were identified with an average frequency of 1 SNP/17.9 kb and 1 InDel/42.5 kb, respectively. A total of 43,680 potential SSRs were identified in 31,604 assembled unigenes with a density of 1 SSR/2.5 kb. The ratio of SNPs with nonsynonymous/synonymous mutations was 1.05:1. Moreover, 35 SNPs and 200 InDels were randomly selected and validated by Sanger sequencing, 83.9% of the SNPs and 70% of the InDels exhibited polymorphism among these three genotypes. In addition, the 15 SNPs and 125 InDels were found to be unevenly distributed on 9 linkage groups. Furthermore, 40 informative InDel markers were successfully used for the genetic diversity analysis on 32 radish accessions. Conclusions These results would not only provide new insights into transcriptome complexity and AS regulation, but also furnish large amount of molecular marker resources for germplasm identification, genetic mapping and further genetic improvement of radish in breeding programs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3874-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dongyi Liang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haiyan Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
43
|
Wang X, Song H, Sun M, Zhu Z, Xing G, Xu X, Gao M, Hou L, Li M. Digital gene expression analysis during floral transition in pak choi ( Brassica rapasubsp . chinensis). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1307141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xueting Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Hongxia Song
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Mengxia Sun
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Zhujun Zhu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Hangzhou, P. R. China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Xiaoyong Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Meiying Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| |
Collapse
|
44
|
Schiessl SV, Huettel B, Kuehn D, Reinhardt R, Snowdon RJ. Flowering Time Gene Variation in Brassica Species Shows Evolutionary Principles. FRONTIERS IN PLANT SCIENCE 2017; 8:1742. [PMID: 29089948 PMCID: PMC5651034 DOI: 10.3389/fpls.2017.01742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 05/02/2023]
Abstract
Flowering time genes have a strong influence on successful reproduction and life cycle adaptation. However, their regulation is highly complex and only well understood in diploid model systems. For crops with a polyploid background from the genus Brassica, data on flowering time gene variation are scarce, although indispensable for modern breeding techniques like marker-assisted breeding. We have deep-sequenced all paralogs of 35 Arabidopsis thaliana flowering regulators using Sequence Capture followed by Illumina sequencing in two selected accessions of the vegetable species Brassica rapa and Brassica oleracea, respectively. Using these data, we were able to call SNPs, InDels and copy number variations (CNVs) for genes from the total flowering time network including central flowering regulators, but also genes from the vernalisation pathway, the photoperiod pathway, temperature regulation, the circadian clock and the downstream effectors. Comparing the results to a complementary data set from the allotetraploid species Brassica napus, we detected rearrangements in B. napus which probably occurred early after the allopolyploidisation event. Those data are both a valuable resource for flowering time research in those vegetable species, as well as a contribution to speciation genetics.
Collapse
Affiliation(s)
- Sarah V. Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- *Correspondence: Sarah V. Schiessl
| | - Bruno Huettel
- Max Planck Institute for Breeding Research, Cologne, Germany
| | - Diana Kuehn
- Max Planck Institute for Breeding Research, Cologne, Germany
| | | | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
45
|
Yi H, Li X, Lee SH, Nou IS, Lim YP, Hur Y. Natural variation in CIRCADIAN CLOCK ASSOCIATED 1 is associated with flowering time in Brassica rapa. Genome 2016; 60:402-413. [PMID: 28177832 DOI: 10.1139/gen-2016-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flowering time is a very important agronomic trait and the development of molecular markers associated with this trait can facilitate crop breeding. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a core oscillator component of circadian rhythms that affect metabolic pathways in plants, has been implicated in flowering time control in species of Brassica. CCA1 gene sequences from three Brassica rapa inbred lines, showing either early flowering or late flowering phenotypes, were analyzed and a high level of sequence variation was identified, especially within the fourth intron. Using this information, three PCR primer sets were designed and tested using various inbred lines of B. rapa. The usage of InDel markers was further validated by evaluation of flowering time and high resolution melting (HRM) analysis. Both methods, PCR and HRM, validated the use of newly developed markers. Additional sequence analyses of Brassica plants with diploid (AA, BB, or CC) and allotetraploid genomes further confirmed a large number of sequence polymorphisms in the CCA1 gene, including insertions/deletions in the fourth intron. Our results demonstrated that sequence variations in CCA1 can be used to develop valuable trait-related molecular markers for Brassica crop breeding.
Collapse
Affiliation(s)
- Hankuil Yi
- a Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Xiaonan Li
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea.,d Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Seong Ho Lee
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | - Ill-Sup Nou
- c Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Yong Pyo Lim
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | - Yoonkang Hur
- a Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
46
|
Hasan Y, Briggs W, Matschegewski C, Ordon F, Stützel H, Zetzsche H, Groen S, Uptmoor R. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1273-1288. [PMID: 26993486 DOI: 10.1007/s00122-016-2702-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/05/2016] [Indexed: 05/19/2023]
Abstract
QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.
Collapse
Affiliation(s)
- Yaser Hasan
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - William Briggs
- Syngenta Seeds BV, Westeinde 62, BK 1601, Enkhuizen, The Netherlands
| | - Claudia Matschegewski
- Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Frank Ordon
- Julius Kuehn-Institute, Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Zetzsche
- Julius Kuehn-Institute, Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Simon Groen
- Syngenta Seeds BV, Westeinde 62, BK 1601, Enkhuizen, The Netherlands
| | - Ralf Uptmoor
- Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.
| |
Collapse
|
47
|
Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis ES, Balasubramanian S. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. PLANT, CELL & ENVIRONMENT 2016; 39:1228-39. [PMID: 26428711 DOI: 10.1111/pce.12644] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 05/17/2023]
Abstract
Optimum flowering time is the key to maximize canola production in order to meet global demand of vegetable oil, biodiesel and canola-meal. We reveal extensive variation in flowering time across diverse genotypes of canola under field, glasshouse and controlled environmental conditions. We conduct a genome-wide association study and identify 69 single nucleotide polymorphism (SNP) markers associated with flowering time, which are repeatedly detected across experiments. Several associated SNPs occur in clusters across the canola genome; seven of them were detected within 20 Kb regions of a priori candidate genes; FLOWERING LOCUS T, FRUITFUL, FLOWERING LOCUS C, CONSTANS, FRIGIDA, PHYTOCHROME B and an additional five SNPs were localized within 14 Kb of a previously identified quantitative trait loci for flowering time. Expression analyses showed that among FLC paralogs, BnFLC.A2 accounts for ~23% of natural variation in diverse accessions. Genome-wide association analysis for FLC expression levels mapped not only BnFLC.C2 but also other loci that contribute to variation in FLC expression. In addition to revealing the complex genetic architecture of flowering time variation, we demonstrate that the identified SNPs can be modelled to predict flowering time in diverse canola germplasm accurately and hence are suitable for genomic selection of adaptative traits in canola improvement programmes.
Collapse
Affiliation(s)
- H Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - R Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - N Coombes
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - J Song
- Diversity Arrays Technology P/L, University of Canberra, Canberra, ACT, 2601, Australia
| | - R Prangnell
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - C Bandaranayake
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - R Tahira
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - V Sundaramoorthi
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - A Killian
- Diversity Arrays Technology P/L, University of Canberra, Canberra, ACT, 2601, Australia
| | - J Meng
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, China
| | - E S Dennis
- CSIRO Division of Plant Industry, Canberra, ACT, 2601, Australia
| | - S Balasubramanian
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
48
|
Kawanabe T, Osabe K, Itabashi E, Okazaki K, Dennis ES, Fujimoto R. Development of primer sets that can verify the enrichment of histone modifications, and their application to examining vernalization-mediated chromatin changes in Brassica rapa L. Genes Genet Syst 2016; 91:1-10. [PMID: 27074983 DOI: 10.1266/ggs.15-00058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epigenetic regulation is crucial for the development of plants and for adaptation to a changing environment. Recently, genome-wide profiles of histone modifications have been determined by a combination of chromatin immunoprecipitation (ChIP) and genomic tiling arrays (ChIP on chip) or ChIP and high-throughput sequencing (ChIP-seq) in species including Arabidopsis thaliana, rice and maize. Validation of ChIP analysis by PCR or qPCR using positive and negative regions of histone modification is necessary. In contrast, information about histone modifications is limited in Chinese cabbage, Brassica rapa. The aim of this study was to develop positive and negative control primer sets for H3K4me3 (trimethylation of the 4(th) lysine of H3), H3K9me2, H3K27me3 and H3K36me3 in B. rapa. The expression and histone modification of four FLC paralogs in B. rapa, before and after vernalization, were examined using the method developed here. After vernalization, expression of all four BrFLC genes was reduced, and accumulation of H3K27me3 was observed in three of them. As with A. thaliana, the vernalization response and stability of FLC repression correlated with the accumulation of H3K27me3. These results suggest that the epigenetic state during vernalization is important for high bolting resistance in B. rapa. The positive and negative control primer sets developed here revealed positive and negative histone modifications in B. rapa that can be used as a control for future studies.
Collapse
|
49
|
Fletcher RS, Herrmann D, Mullen JL, Li Q, Schrider DR, Price N, Lin J, Grogan K, Kern A, McKay JK. Identification of Polymorphisms Associated with Drought Adaptation QTL in Brassica napus by Resequencing. G3 (BETHESDA, MD.) 2016; 6:793-803. [PMID: 26801646 PMCID: PMC4825650 DOI: 10.1534/g3.115.021279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/17/2016] [Indexed: 11/24/2022]
Abstract
Brassica napus is a globally important oilseed for which little is known about the genetics of drought adaptation. We previously mapped twelve quantitative trait loci (QTL) underlying drought-related traits in a biparental mapping population created from a cross between winter and spring B. napus cultivars. Here we resequence the genomes of the mapping population parents to identify genetic diversity across the genome and within QTL regions. We sequenced each parental cultivar on the Illumina HiSeq platform to a minimum depth of 23 × and performed a reference based assembly in order to describe the molecular variation differentiating them at the scale of the genome, QTL and gene. Genome-wide patterns of variation were characterized by an overall higher single nucleotide polymorphism (SNP) density in the A genome and a higher ratio of nonsynonymous to synonymous substitutions in the C genome. Nonsynonymous substitutions were used to categorize gene ontology terms differentiating the parent genomes along with a list of putative functional variants contained within each QTL. Marker assays were developed for several of the discovered polymorphisms within a pleiotropic QTL on chromosome A10. QTL analysis with the new, denser map showed the most associated marker to be that developed from an insertion/deletion polymorphism located in the candidate gene Bna.FLC.A10, and it was the only candidate within the QTL interval with observed polymorphism. Together, these results provide a glimpse of genome-wide variation differentiating annual and biennial B. napus ecotypes as well as a better understanding of the genetic basis of root and drought phenotypes.
Collapse
Affiliation(s)
| | - David Herrmann
- Cargill Specialty Seeds & Oils, Fort Collins, Colorado 80525
| | - Jack L Mullen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Qinfei Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Daniel R Schrider
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Nicholas Price
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Junjiang Lin
- Department of Computer Science, University of Toronto, Ontario M5S 2J7, Canada
| | - Kelsi Grogan
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Andrew Kern
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - John K McKay
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
50
|
Nie S, Li C, Wang Y, Xu L, Muleke EM, Tang M, Sun X, Liu L. Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:682. [PMID: 27252709 PMCID: PMC4877535 DOI: 10.3389/fpls.2016.00682] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/03/2016] [Indexed: 05/11/2023]
Abstract
The transition of vegetative growth to bolting and flowering is an important process in the life cycle of plants, which is determined by numerous genes forming an intricate network of bolting and flowering. However, no comprehensive identification and profiling of bolting and flowering-related genes have been carried out in radish. In this study, RNA-Seq technology was applied to analyze the differential gene expressions during the transition from vegetative stage to reproductive stage in radish. A total of 5922 differentially expressed genes (DEGs) including 779 up-regulated and 5143 down-regulated genes were isolated. Functional enrichment analysis suggested that some DEGs were involved in hormone signaling pathways and the transcriptional regulation of bolting and flowering. KEGG-based analysis identified 37 DEGs being involved in phytohormone signaling pathways. Moreover, 95 DEGs related to bolting and flowering were identified and integrated into various flowering pathways. Several critical genes including FT, CO, SOC1, FLC, and LFY were characterized and profiled by RT-qPCR analysis. Correlation analysis indicated that 24 miRNA-DEG pairs were involved in radish bolting and flowering. Finally, a miRNA-DEG-based schematic model of bolting and flowering regulatory network was proposed in radish. These outcomes provided significant insights into genetic control of radish bolting and flowering, and would facilitate unraveling molecular regulatory mechanism underlying bolting and flowering in root vegetable crops.
Collapse
|