1
|
Li Y, Kong L, Mu H, Wang J, Li F, Kuang Y, Duan W, Fan P, Yuan L, Liang Z, Wang L. Transcriptome analysis and functional identification of transfer RNA-derived fragments in grape leaves exposed to UV-C radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109425. [PMID: 39718286 DOI: 10.1016/j.plaphy.2024.109425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Transfer RNA-derived fragments (tRFs) are noncoding small RNAs derived from transfer RNAs (tRNAs) in microorganisms, animals and plants. In plants, tRFs are known to respond to environmental stimuli, including heat, oxidative stress and UV radiation; however, their specific functions in horticultural plants, such as grapevine, remain poorly understood. In this study, we used RNA-seq to identify differentially expressed genes (DEGs) in grape leaves exposed to UV-C radiation. A total of 1329 and 8055 of genes were differentially expression after 1 and 6 h of UV-C treatment, respectively. We identified a large number of secondary metabolism-related genes in the DEGs, including genes involved in stilbene and flavonoid biosynthesis. Noticeably, the stilbene biosynthesis-related gene was induced earlier than the other genes in the phenylalanine metabolic pathway. We also conducted small RNA-seq and identified differentially expressed (DE) miRNAs and their targets. To explore whether the tRFs involved in UV-C response, further analysis of the small RNA-seq data revealed 23 down-regulated and 41 up-regulated DE tRFs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that the target genes of these tRFs are involved in multiple biological processing, including hormone signal transduction and metabolite synthesis. To validate the function of tRFs, tRF39 and tRF45 were selected and overexpressed in tobacco leaves, and the expression levels of their target genes were inhibited. Our study suggests that the tRFs may regulate multiple biological processes in response to UV-C exposure in grapevine. Our findings provide a foundation for further elucidating the regulatory mechanisms of tRFs in horticultural crops.
Collapse
Affiliation(s)
- Yang Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Lingchao Kong
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Huayuan Mu
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Jiayu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Furui Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Yangfu Kuang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Kentucky, 40546, USA.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| |
Collapse
|
2
|
Lin K, Yi Z, Lv S, Zhang B, Guo Z, Li Y. Uncovering the key lncRNAs in regulating cadmium accumulation and translocation in sweet sorghum. PLANTA 2024; 261:12. [PMID: 39661199 DOI: 10.1007/s00425-024-04589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
MAIN CONCLUSION 1988 lncRNAs were identified in sweet sorghum roots under cadmium treatment; lncRNA 15962 and lncRNA 11558 were validated to be the key lncRNAs involved in regulating cadmium accumulation and translocation. Cadmium (Cd) has become one of the most harmful and widespread pollutants with industry development. Sweet sorghum is an ideal plant for phytoremediation of Cd-contaminated soil. However, little is known about the regulatory role of long non-coding RNAs (lncRNAs) associated with Cd stress response in sweet sorghum. Here, lncRNA-seq was carried out in the roots of two contrasting sweet sorghum genotypes (high-Cd accumulation genotype 'H18', and low-Cd accumulation genotype 'L69'). A total of 1988 lncRNAs were characterized, including 52 and 69 differentially expressed lncRNAs in 'H18' and 'L69' in response to Cd stress, respectively. Furthermore, the trans- or cis-target genes of lncRNAs were investigated. Then, 65 lncRNAs were characterized as the probable target of 117 miRNAs and 1888 genes were identified as putative cis-target genes of Cd-responsive lncRNAs. The dual-luciferase reporter assay indicated lncRNA 15962 may serve as the endogenous target mimics of sbi-miR5565e, which targeted two genes (Sobic.005G212900 and Sobic.009G144700) involved in cell wall metabolism. Four cis-target genes including SbYS1 which encoding a Cd chelate transporter, were up-regulated by overexpression of their corresponding lncRNAs in sweet sorghum protoplasts, suggesting the positive regulatory role of lncRNAs to these cis-target genes. Moreover, the expression of SbYS1 decreased when lncRNA 11558 was inhibited by exogenous miRNA application in 'H18' seedlings, further demonstrating the positive regulatory role of lncRNA 11558 to SbYS1. Altogether, our findings shed light on the regulatory role of lncRNAs associated with Cd accumulation and translocation in sweet sorghum.
Collapse
Affiliation(s)
- Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zijin Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
3
|
Liu H, Li J, Xu C, Liu H, Zhao Z. Characterization and expression analysis of the B3 gene family during seed development in Akebia trifoliata. BMC Genomics 2024; 25:1060. [PMID: 39516780 PMCID: PMC11549857 DOI: 10.1186/s12864-024-10981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND B3 genes encode transcription factors that play key roles in plant growth and development. However, the specific B3 genes involved in the seed development of Akebia trifoliata remain unexplored. RESULTS A total of 72 AktB3 genes were identified and classified into five subfamilies (ARF, LAV, RAV, HSI, and REM) based on phylogenetic analysis. These 72 AktB3 genes were unevenly distributed across 16 chromosomes. Collinear analysis indicated that segmental duplication has played a significant role in the evolution of AktB3 genes, and underwent purification selection. Expression profiling across seed development stages revealed that seven AktB3 genes, particularly from the LAV subfamily (AktABI3, AktFUS3, AktLEC2), were up-regulated at 70 days after flowering (DAF). Notably, the expression of oleosin exhibited a strong positive correlation with LAV subfamily genes, highlighting their potential roles as hub genes in lipid metabolism and seed development. Yeast two-hybrid (Y2H) and yeast one-hybrid (Y1H) experiments confirmed that AktFUS3-1, AktFUS3-2, and AktLEC2 form protein complexes and individually bind to the AktOLE1 promoter, thereby regulating downstream gene expression. These results provide direct evidence of the cooperative role these transcription factors play in controlling lipid metabolism, particularly related to oleosin proteins. Additionally, miRNA sequencing across three seed developmental stages identified 591 miRNAs and 1,673 target gene pairs. A total of 23 AktB3 genes were predicted to be targets of 20 miRNAs, with 11 miRNAs specifically targeting the ARF subfamily genes. Particularly, miR160-x, miR160-z, and miR167-z were predicted to target ARF subfamily genes, potentially influencing seed development. Moreover, the miRNA-B3 regulatory modules, especially involving ARF genes and miR160/167, require further study to clarify their roles in seed development. CONCLUSIONS These findings contribute valuable resources for future functional studies of the molecular regulatory networks governing seed development in A. trifoliata.
Collapse
Affiliation(s)
- Huijuan Liu
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Jinling Li
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Cunbin Xu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Hongchang Liu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Jie Y, Wang W, Wu Z, Ren Z, Li L, Zhou Y, Zhang M, Li Z, Yi F, Duan L. Deciphering physiological and transcriptional mechanisms of maize seed germination. PLANT MOLECULAR BIOLOGY 2024; 114:94. [PMID: 39210007 DOI: 10.1007/s11103-024-01486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024]
Abstract
Maize is a valuable raw material for feed and food production. Healthy seed germination is important for improving the yield and quality of maize. Seed aging occurs relatively fast in crops and it is a process that delays germination as well as reduces its rate and even causes total loss of seed viability. However, the physiological and transcriptional mechanisms that regulate maize seeds, especially aging seed germination remain unclear. Coronatine (COR) which is a phytotoxin produced by Pseudomonas syringae and a new type of plant growth regulator can effectively regulate plant growth and development, and regulate seed germination. In this study, the physiological and transcriptomic mechanisms of COR-induced maize seed germination under different aging degrees were analyzed. The results showed that 0.001-0.01 μmol/L COR could promote the germination of aging maize seed and the growth of primary roots and shoots. COR treatment increased the content of gibberellins (GA3) and decreased the content of abscisic acid (ABA) in B73 seeds before germination. The result of RNA-seq analysis showed 497 differentially expressed genes in COR treatment compared with the control. Three genes associated with GA biosynthesis (ZmCPPS2, ZmD3, and ZmGA2ox2), and two genes associated with GA signaling transduction (ZmGID1 and ZmBHLH158) were up-regulated. Three genes negatively regulating GA signaling transduction (ZmGRAS48, ZmGRAS54, and Zm00001d033369) and two genes involved in ABA biosynthesis (ZmVP14 and ZmPCO14472) were down-regulated. The physiological test results also showed that the effects of GA and ABA on seed germination were similar to those of high and low-concentration COR, respectively, which indicated that the effect of COR on seed germination may be carried out through GA and ABA pathways. In addition, GO and KEGG analysis suggested that COR is also highly involved in antioxidant enzyme systems and secondary metabolite synthesis to regulate maize seed germination processes. These findings provide a valuable reference for further research on the mechanisms of maize seed germination.
Collapse
Affiliation(s)
- Yaqi Jie
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zishan Wu
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zhaobin Ren
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Lu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
5
|
Tondepu SAG, Manova V, Vadivel D, Dondi D, Pagano A, Macovei A. MicroRNAs potentially targeting DDR-related genes are differentially expressed upon exposure to γ-rays during seed germination in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108771. [PMID: 38820913 DOI: 10.1016/j.plaphy.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
DNA damage response (DDR), a complex network of cellular pathways that cooperate to sense and repair DNA lesions, is regulated by several mechanisms, including microRNAs. As small, single-stranded RNA molecules, miRNAs post-transcriptionally regulate their target genes by mRNA cleavage or translation inhibition. Knowledge regarding miRNAs influence on DDR-associated genes is still scanty in plants. In this work, an in silico analysis was performed to identify putative miRNAs that could target DDR sensors, signal transducers and effector genes in wheat. Selected putative miRNA-gene pairs were tested in an experimental system where seeds from two wheat mutant lines were irradiated with 50 Gy and 300 Gy gamma(γ)-rays. To evaluate the effect of the treatments on wheat germination, phenotypic and molecular (DNA damage, ROS accumulation, gene/miRNA expression profile) analyses have been carried out. The results showed that in dry seeds ROS accumulated immediately after irradiation and decayed soon after while the negative impact on seedling growth was supported by enhanced accumulation of DNA damage. When a qRT-PCR analysis was performed, the selected miRNAs and DDR-related genes were differentially modulated by the γ-rays treatments in a dose-, time- and genotype-dependent manner. A significant negative correlation was observed between the expression of tae-miR5086 and the RAD50 gene, involved in double-strand break sensing and homologous recombination repair, one of the main processes that repairs DNA breaks induced by γ-rays. The results hereby reported can be relevant for wheat breeding programs and screening of the radiation response and tolerance of novel wheat varieties.
Collapse
Affiliation(s)
- Sri Amarnadh Gupta Tondepu
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy
| | - Vasilissa Manova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences "Acad. G. Bonchev", Street Bldg. 21, 1113, Sofia, Bulgaria.
| | - Dhanalakshmi Vadivel
- Department of Chemistry, University of Pavia, Via Torquato Taramelli 12, 27100, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Via Torquato Taramelli 12, 27100, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Zheng J, He X, Zhou X, Liu X, Yi Y, Su D, Zhang W, Liao Y, Ye J, Xu F. The Ginkgo biloba microRNA160-ERF4 module participates in terpene trilactone biosynthesis. PLANT PHYSIOLOGY 2024; 195:1446-1460. [PMID: 38431523 DOI: 10.1093/plphys/kiae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Terpene trilactones (TTLs) are important secondary metabolites in ginkgo (Ginkgo biloba); however, their biosynthesis gene regulatory network remains unclear. Here, we isolated a G. biloba ethylene response factor 4 (GbERF4) involved in TTL synthesis. Overexpression of GbERF4 in tobacco (Nicotiana tabacum) significantly increased terpenoid content and upregulated the expression of key enzyme genes (3-hydroxy-3-methylglutaryl-CoA reductase [HMGR], 3-hydroxy-3-methylglutaryl-CoA synthase [HMGS], 1-deoxy-D-xylulose-5-phosphate reductoisomerase [DXR], 1-deoxy-D-xylulose-5-phosphate synthase [DXS], acetyl-CoA C-acetyltransferase [AACT], and geranylgeranyl diphosphate synthase [GGPPS]) in the terpenoid pathway in tobacco, suggesting that GbERF4 functions in regulating the synthesis of terpenoids. The expression pattern analysis and previous microRNA (miRNA) sequencing showed that gb-miR160 negatively regulates the biosynthesis of TTLs. Transgenic experiments showed that overexpression of gb-miR160 could significantly inhibit the accumulation of terpenoids in tobacco. Targeted inhibition and dual-luciferase reporter assays confirmed that gb-miR160 targets and negatively regulates GbERF4. Transient overexpression of GbERF4 increased TTL content in G. biloba, and further transcriptome analysis revealed that DXS, HMGS, CYPs, and transcription factor genes were upregulated. In addition, yeast 1-hybrid and dual-luciferase reporter assays showed that GbERF4 could bind to the promoters of the HMGS1, AACT1, DXS1, levopimaradiene synthase (LPS2), and GGPPS2 genes in the TTL biosynthesis pathway and activate their expression. In summary, this study investigated the molecular mechanism of the gb-miR160-GbERF4 regulatory module in regulating the biosynthesis of TTLs. It provides information for enriching the understanding of the regulatory network of TTL biosynthesis and offers important gene resources for the genetic improvement of G. biloba with high contents of TTLs.
Collapse
Affiliation(s)
- Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiao He
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yuwei Yi
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Dongxue Su
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
7
|
Ruan Q, Bai X, Wang Y, Zhang X, Wang B, Zhao Y, Zhu X, Wei X. Regulation of endogenous hormone and miRNA in leaves of alfalfa (Medicago sativa L.) seedlings under drought stress by endogenous nitric oxide. BMC Genomics 2024; 25:229. [PMID: 38429670 PMCID: PMC10908014 DOI: 10.1186/s12864-024-10024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.
Collapse
Affiliation(s)
- Qian Ruan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaoming Bai
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Yizhen Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaofang Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
8
|
Suhorukova AV, Sobolev DS, Milovskaya IG, Fadeev VS, Goldenkova-Pavlova IV, Tyurin AA. A Molecular Orchestration of Plant Translation under Abiotic Stress. Cells 2023; 12:2445. [PMID: 37887289 PMCID: PMC10605726 DOI: 10.3390/cells12202445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The complexities of translational strategies make this stage of implementing genetic information one of the most challenging to comprehend and, simultaneously, perhaps the most engaging. It is evident that this diverse range of strategies results not only from a long evolutionary history, but is also of paramount importance for refining gene expression and metabolic modulation. This notion is particularly accurate for organisms that predominantly exhibit biochemical and physiological reactions with a lack of behavioural ones. Plants are a group of organisms that exhibit such features. Addressing unfavourable environmental conditions plays a pivotal role in plant physiology. This is particularly evident with the changing conditions of global warming and the irrevocable loss or depletion of natural ecosystems. In conceptual terms, the plant response to abiotic stress comprises a set of elaborate and intricate strategies. This is influenced by a range of abiotic factors that cause stressful conditions, and molecular genetic mechanisms that fine-tune metabolic pathways allowing the plant organism to overcome non-standard and non-optimal conditions. This review aims to focus on the current state of the art in the field of translational regulation in plants under abiotic stress conditions. Different regulatory elements and patterns are being assessed chronologically. We deem it important to focus on significant high-performance techniques for studying the genetic information dynamics during the translation phase.
Collapse
|
9
|
Sun X, Zheng HX, Li S, Gao Y, Dang Y, Chen Z, Wu F, Wang X, Xie Q, Sui N. MicroRNAs balance growth and salt stress responses in sweet sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:677-697. [PMID: 36534087 DOI: 10.1111/tpj.16065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
10
|
Jiang H, Gao W, Jiang BL, Liu X, Jiang YT, Zhang LT, Zhang Y, Yan SN, Cao JJ, Lu J, Ma CX, Chang C, Zhang HP. Identification and validation of coding and non-coding RNAs involved in high-temperature-mediated seed dormancy in common wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1107277. [PMID: 36818881 PMCID: PMC9929302 DOI: 10.3389/fpls.2023.1107277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Seed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusiveSeed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusive. METHODS Here, the wheat landrace 'Waitoubai' with strong SD and PHS resistance was treated with HT from 21 to 35 days post anthesis (DPA). Then, the seeds under HT and normal temperature (NT) environments were collected at 21 DPA, 28 DPA, and 35 DPA and subjected to whole-transcriptome sequencing. RESULTS The phenotypic data showed that the seed germination percentage significantly increased, whereas SD decreased after HT treatment compared with NT, consistent with the results of previous studies. In total, 5128 mRNAs, 136 microRNAs (miRNAs), 273 long non-coding RNAs (lncRNAs), and 21 circularRNAs were found to be responsive to HT, and some of them were further verified through qRT-PCR. In particular, the known gibberellin (GA) biosynthesis gene TaGA20ox1 (TraesCS3D02G393900) was proved to be involved in HT-mediated dormancy by using the EMS-mutagenized wheat cultivar Jimai 22. Similarly, a novel gene TaCDPK21 (TraesCS7A02G267000) involved in the calcium signaling pathway was validated to be associated with HT-mediated dormancy by using the EMS mutant. Moreover, TaCDPK21 overexpression in Arabidopsis and functional complementarity tests supported the negative role of TaCDPK21 in SD. We also constructed a co-expression regulatory network based on differentially expressed mRNAs, miRNAs, and lncRNAs and found that a novel miR27319 was located at a key node of this regulatory network. Subsequently, using Arabidopsis and rice lines overexpressing miR27319 precursor or lacking miR27319 expression, we validated the positive role of miR27319 in SD and further preliminarily dissected the molecular mechanism of miR27319 underlying SD regulation through phytohormone abscisic acid and GA biosynthesis, catabolism, and signaling pathways. DISCUSSION These findings not only broaden our understanding of the complex regulatory network of HT-mediated dormancy but also provide new gene resources for improving wheat PHS resistance to minimize PHS damage by using the molecular pyramiding approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cheng Chang
- *Correspondence: Cheng Chang, ; Hai-ping Zhang,
| | | |
Collapse
|
11
|
Villalobos-Escobedo JM, Martínez-Hernández JP, Pelagio-Flores R, González-De la Rosa PM, Carreras-Villaseñor N, Abreu-Goodger C, Herrera-Estrella AH. Trichoderma atroviride hyphal regeneration and conidiation depend on cell-signaling processes regulated by a microRNA-like RNA. Microb Genom 2022; 8. [PMID: 36239595 DOI: 10.1099/mgen.0.000869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to respond to injury is essential for the survival of an organism and involves analogous mechanisms in animals and plants. Such mechanisms integrate coordinated genetic and metabolic reprogramming events requiring regulation by small RNAs for adequate healing of the wounded area. We have previously reported that the response to injury of the filamentous fungus Trichoderma atroviride involves molecular mechanisms closely resembling those of plants and animals that lead to the formation of new hyphae (regeneration) and the development of asexual reproduction structures (conidiophores). However, the involvement of microRNAs in this process has not been investigated in fungi. In this work, we explore the participation of microRNA-like RNAs (milRNAs) molecules by sequencing messenger and small RNAs during the injury response of the WT strain and RNAi mutants. We found that Dcr2 appears to play an important role in hyphal regeneration and is required to produce the majority of sRNAs in T. atroviride. We also determined that the three main milRNAs produced via Dcr2 are induced during the damage-triggered developmental process. Importantly, elimination of a single milRNA phenocopied the main defects observed in the dcr2 mutant. Our results demonstrate the essential role of milRNAs in hyphal regeneration and asexual development by post-transcriptionally regulating cellular signalling processes involving phosphorylation events. These observations allow us to conclude that fungi, like plants and animals, in response to damage activate fine-tuning regulatory mechanisms.
Collapse
Affiliation(s)
- José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico
| | - J Pedro Martínez-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico
| | - Ramón Pelagio-Flores
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.,Present address: Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58030 Morelia, Michoacán, Mexico
| | - Pablo M González-De la Rosa
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.,Present address: Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Nohemí Carreras-Villaseñor
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.,Present address: Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. C.P. 91070 Xalapa, Veracruz, Mexico
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.,Present address: Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Alfredo H Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav. Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Gto, Mexico
| |
Collapse
|
12
|
Kong C, Su H, Deng S, Ji J, Wang Y, Zhang Y, Yang L, Fang Z, Lv H. Global DNA Methylation and mRNA-miRNA Variations Activated by Heat Shock Boost Early Microspore Embryogenesis in Cabbage ( Brassica oleracea). Int J Mol Sci 2022; 23:5147. [PMID: 35563550 PMCID: PMC9103256 DOI: 10.3390/ijms23095147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
Microspore culture, a type of haploid breeding, is extensively used in the cultivation of cruciferous crops such as cabbage. Heat shock (HS) treatment is essential to improve the embryo rate during the culture process; however, its molecular role in boosting early microspore embryogenesis (ME) remains unknown. Here we combined DNA methylation levels, miRNAs, and transcriptome profiles in isolated microspores of cabbage '01-88' under HS (32 °C for 24 h) and normal temperature (25 °C for 24 h) to investigate the regulatory roles of DNA methylation and miRNA in early ME. Global methylation levels were significantly different in the two pre-treatments, and 508 differentially methylated regions (DMRs) were identified; 59.92% of DMRs were correlated with transcripts, and 39.43% of miRNA locus were associated with methylation levels. Significantly, the association analysis revealed that 31 differentially expressed genes (DEGs) were targeted by methylation and miRNA and were mainly involved in the reactive oxygen species (ROS) response and abscisic acid (ABA) signaling, indicating that HS induced DNA methylation, and miRNA might affect ME by influencing ROS and ABA. This study revealed that DNA methylation and miRNA interfered with ME by modulating key genes and pathways, which could broaden our understanding of the molecular regulation of ME induced by HS pre-treatment.
Collapse
Affiliation(s)
- Congcong Kong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Henan Su
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Siping Deng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| |
Collapse
|
13
|
Palakolanu SR, Gupta S, Yeshvekar RK, Chakravartty N, Kaliamoorthy S, Shankhapal AR, Vempati AS, Kuriakose B, Lekkala SP, Philip M, Perumal RC, Lachagari VBR, Bhatnagar-Mathur P. Genome-wide miRNAs profiles of pearl millet under contrasting high vapor pressure deficit reveal their functional roles in drought stress adaptations. PHYSIOLOGIA PLANTARUM 2022; 174:e13521. [PMID: 34392545 DOI: 10.1111/ppl.13521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Pearl millet (Pennisetum glaucum [L.] R. Br.) is an important crop capable of growing in harsh and marginal environments, with the highest degree of tolerance to drought and heat stresses among cereals. Diverse germplasm of pearl millet shows a significant phenotypic variation in response to abiotic stresses, making it a unique model to study the mechanisms responsible for stress mitigation. The present study focuses on identifying the physiological response of two pearl millet high-resolution cross (HRC) genotypes, ICMR 1122 and ICMR 1152, in response to low and high vapor pressure deficit (VPD). Under high VPD conditions, ICMR 1152 exhibited a lower transpiration rate (Tr), higher transpiration efficiency, and lower root sap exudation than ICMR 1122. Further, Pg-miRNAs expressed in the contrasting genotypes under low and high VPD conditions were identified by deep sequencing analysis. A total of 116 known and 61 novel Pg-miRNAs were identified from ICMR 1152, while 26 known and six novel Pg-miRNAs were identified from ICMR 1122 genotypes, respectively. While Pg-miR165, 168, 170, and 319 families exhibited significant differential expression under low and high VPD conditions in both genotypes, ICMR 1152 showed abundant expression of Pg-miR167, Pg-miR172, Pg-miR396 Pg-miR399, Pg-miR862, Pg-miR868, Pg-miR950, Pg-miR5054, and Pg-miR7527 indicating their direct and indirect role in root physiology and abiotic stress responses. Drought responsive Pg-miRNA targets showed upregulation in response to high VPD stress, further narrowing down the miRNAs involved in regulation of drought tolerance in pearl millet.
Collapse
Affiliation(s)
- Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Saurabh Gupta
- AgriGenome Labs Pvt. Ltd, Hyderabad, Telangana, India
| | - Richa K Yeshvekar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, UK
| | | | - Sivasakthi Kaliamoorthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | - Ashwini Soumya Vempati
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | | | | | | | | | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| |
Collapse
|
14
|
Wang C, Tian M, Zhang Y. Characterization of microRNAs involved in asymbiotic germination of Bletilla striata (Orchidaceae) seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:163-173. [PMID: 34358730 DOI: 10.1016/j.plaphy.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Orchids are distributed worldwide, and some species have considerable economic value. Orchid seeds are minute in size, simple in structure, and deficient in nutrient reserves. Asymbiotic seed germination is an important propagation strategy for orchids. MicroRNAs (miRNAs) play an essential role in seed germination. However, few studies have examined miRNAs involved in seed germination in orchids. Here, we conducted comparative small RNA sequencing at five stages to characterize the miRNAs involved in asymbiotic seed germination in Bletilla striata. A total of 253 known and 125 novel miRNAs were identified. Of them, 71 known and 29 novel miRNAs showed distinct expression among the five stages. Quantitative PCR revealed negative correlations of expression between differentially expressed miRNAs (DE miRNAs) and their targets. Function annotation and enrichment analyses of the targets of DE miRNAs between adjacent stages indicate that miRNA-target regulations are involved in many important processes during germination, such as signaling, biosynthesis, and transport of plant hormones. Twenty-two miRNAs were inferred to participate in plant hormone-related processes. The contents of abscisic acid, gibberellin A3, indole-3-acetic acid, jasmonic acid, trans zeatin riboside, and N6-(Δ2-isopentenyl) adenine varied significantly among the five stages. Nine tested plant hormone-related miRNAs and their targets exhibited significant correlations with at least one plant hormone. 5'-RLM-RACE validated that a transcript encoding auxin response factor was cleaved by Bst-miR160e as predicted. For the first time, we characterized miRNAs associated with the asymbiotic seed germination of an orchid species, which will help understand the miRNA-mediated regulatory mechanism of seed germination in orchids.
Collapse
Affiliation(s)
- Caixia Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| | - Min Tian
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ying Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| |
Collapse
|
15
|
Identification and expression analysis of miRNAs in germination and seedling growth of Tibetan hulless barley. Genomics 2021; 113:3735-3749. [PMID: 34517091 DOI: 10.1016/j.ygeno.2021.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2023]
Abstract
Germination and seedling growth are crucial for plant development and agricultural production. While, the regulatory mechanisms during these processes in Tibetan hulless barley (Hordeum vulgare L. var. nudum) are not well understood. Given the regulatory roles of microRNAs (miRNAs) in crop plants and the irreplaceability of barley in the highland area of China, we herein presented a genome-wide survey of miRNAs to reveal a potential regulatory network in the early developmental stages of two Tibetan hulless barleys, from which a total of 156 miRNAs was identified including 35 known and 121 novel ones. Six of the identified novel miRNAs were further experimentally validated. According to the evolutionary analysis, miR156, miR166, miR168, and miR171 were conserved across Tibetan hulless barleys and eight other seed plants. Expression profiles of ten known miRNAs showed that they were involved in phytohormone signaling, carbohydrate and lipid metabolism, as well as juvenile-adult transition during barley development. Moreover, a total of 1280 genes targeted by 101 miRNAs were predicted from both barley libraries. Three genes (PLN03212, MATE eukaryotic, and GRAS) were validated via the RNA ligase-mediated 5'-rapid amplification of cDNA ends (RLM-5' RACE) to be the targets of hvu-miR159a, hvu-miR166a, and hvu-miR171-3p, respectively. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of putative targets, the most abundant pathways were related to "metabolism". These results revealed that miRNA-target pairs participating in the regulation of multigene expression and the embryonic development of Tibetan hulless barleys were controlled by complex mechanisms involving the concordant expression of different miRNAs and feedback loops among miRNAs as well as their targets. The study provides insight into the regulatory network of barley miRNAs for better understanding of miRNA functions during germination and seedling growth.
Collapse
|
16
|
Tognacca RS, Botto JF. Post-transcriptional regulation of seed dormancy and germination: Current understanding and future directions. PLANT COMMUNICATIONS 2021; 2:100169. [PMID: 34327318 PMCID: PMC8299061 DOI: 10.1016/j.xplc.2021.100169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/13/2021] [Indexed: 05/06/2023]
Abstract
Seed dormancy is a developmental checkpoint that prevents mature seeds from germinating under conditions that are otherwise favorable for germination. Temperature and light are the most relevant environmental factors that regulate seed dormancy and germination. These environmental cues can trigger molecular and physiological responses including hormone signaling, particularly that of abscisic acid and gibberellin. The balance between the content and sensitivity of these hormones is the key to the regulation of seed dormancy. Temperature and light tightly regulate the transcription of thousands of genes, as well as other aspects of gene expression such as mRNA splicing, translation, and stability. Chromatin remodeling determines specific transcriptional outputs, and alternative splicing leads to different outcomes and produces transcripts that encode proteins with altered or lost functions. Proper regulation of chromatin remodeling and alternative splicing may be highly relevant to seed germination. Moreover, microRNAs are also critical for the control of gene expression in seeds. This review aims to discuss recent updates on post-transcriptional regulation during seed maturation, dormancy, germination, and post-germination events. We propose future prospects for understanding how different post-transcriptional processes in crop seeds can contribute to the design of genotypes with better performance and higher productivity.
Collapse
Affiliation(s)
- Rocío Soledad Tognacca
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CP1428 Buenos Aires, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| | - Javier Francisco Botto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| |
Collapse
|
17
|
Yue E, Tao H, Xu J. Genome-wide analysis of microRNA156 and its targets, the genes encoding SQUAMOSA promoter-binding protein-like (SPL) transcription factors, in the grass family Poaceae. J Zhejiang Univ Sci B 2021; 22:366-382. [PMID: 33973419 DOI: 10.1631/jzus.b2000519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play an important role in post-transcriptional gene regulation in plants and animals by targeting messenger RNAs (mRNAs) for cleavage or repressing translation of specific mRNAs. The first miRNA identified in plants, miRNA156 (miR156), targets the SQUAMOSA promoter-binding protein-like (SPL) transcription factors, which play critical roles in plant phase transition, flower and plant architecture, and fruit development. We identified multiple copies of MIR156 and SPL in the rice, Brachypodium, sorghum, maize, and foxtail millet genomes. Sequence and chromosomal synteny analysis showed that both MIR156s and SPLs are conserved across species in the grass family. Analysis of expression data of the SPLs in eleven juvenile and adult rice tissues revealed that four non-miR156-targeted genes were highly expressed and three miR156-targeted genes were only slightly expressed in all tissues/developmental stages. The remaining SPLs were highly expressed in the juvenile stage, but their expression was lower in the adult stage. It has been proposed that under strong selective pressure, non-miR156-targeted mRNA may be able to re-structure to form a miRNA-responsive element. In our analysis, some non-miR156-targeted SPLs (SPL5/8/10) had gene structure and gene expression patterns similar to those of miR156-targeted genes, suggesting that they could diversify into miR156-targeted genes. DNA methylation profiles of SPLs and MIR156s in different rice tissues showed diverse methylation patterns, and hypomethylation of non-CG sites was observed in rice endosperm. Our findings suggested that MIR156s and SPLs had different origination and evolutionary mechanisms: the SPLs appear to have resulted from vertical evolution, whereas MIR156s appear to have resulted from strong evolutionary selection on mature sequences.
Collapse
Affiliation(s)
- Erkui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Hua Tao
- Henan Agricultural Radio and Television School, Zhengzhou 450008, China
| | - Jianhong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Zhang M, Cui G, Bai X, Ye Z, Zhang S, Xie K, Sun F, Zhang C, Xi Y. Regulatory Network of Preharvest Sprouting Resistance Revealed by Integrative Analysis of mRNA, Noncoding RNA, and DNA Methylation in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4018-4035. [PMID: 33769818 DOI: 10.1021/acs.jafc.1c00050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preharvest sprouting (PHS) of grain occurs universally and sharply decreases grain quality and yield, but the mechanism remains unclear. MingXian169, a breeding inducer wheat for stripe rust, is widely used in the Huanghuai wheat-producing region, China. In this study, we found that MingXian169 could be considered an ideal material for PHS research because of its high PHS resistance. To further analyze the network of PHS, transcriptome sequencing of mRNA, noncoding RNA (ncRNA), and DNA methylome data were used to comparison germination seeds (GS) and dormant seeds (DS); 3027, 1516, and 22 genes and 95 103 methylation regions were identified as differentially expressed mRNA, DE-microRNAs (DE-miRNA), DE-long noncoding RNAs (DE-lncRNA), and differentially methylated regions (DMRs). Pathway enrichment tests highlighted plant hormone biosynthesis and signal transduction, glutathione-ascorbate metabolism, and starch and sucrose metabolism processes related to PHS mechanisms. Further analysis demonstrated that long noncoding RNA, miRNA, and DNA methylation played critical roles in transcriptional regulation of critical pathways during PHS by modifying and interacting with target genes. Quantitative real-time polymerase chain reaction (PCR) analyses of mRNA and miRNA confirmed the sequencing results. In the phytohormone content assay, abscisic acid (ABA) and jasmonic acid (JA) increased significantly in DS, and GA19 increased in GS. The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and β-d-glucosidase (BGLU) enzyme activities and the substance content of glutathione and sucrose were significantly higher in GS than in DS, implying that they were responsible for increasing PHS in MingXian169. Our results provide new insights into wheat PHS resistance at mRNA, ncRNA, and DNA methylation levels, with suggestions for crop breeding and production.
Collapse
Affiliation(s)
- Mingting Zhang
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Guibin Cui
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xinchen Bai
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Zi Ye
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Shumeng Zhang
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Kunliang Xie
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Fengli Sun
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Chao Zhang
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yajun Xi
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
19
|
Parreira JR, Cappuccio M, Balestrazzi A, Fevereiro P, Araújo SDS. MicroRNAs expression dynamics reveal post-transcriptional mechanisms regulating seed development in Phaseolus vulgaris L. HORTICULTURE RESEARCH 2021; 8:18. [PMID: 33436559 PMCID: PMC7804330 DOI: 10.1038/s41438-020-00448-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 05/04/2023]
Abstract
The knowledge on post-transcriptional regulation mechanisms implicated in seed development (SD) is still limited, particularly in one of the most consumed grain legumes, Phaseolus vulgaris L. We explore for the first time the miRNA expression dynamics in P. vulgaris developing seeds. Seventy-two known and 39 new miRNAs were found expressed in P. vulgaris developing seeds. Most of the miRNAs identified were more abundant at 10 and 40 days after anthesis, suggesting that late embryogenesis/early filling and desiccation were SD stages in which miRNA action is more pronounced. Degradome analysis and target prediction identified targets for 77 expressed miRNAs. While several known miRNAs were predicted to target HD-ZIP, ARF, SPL, and NF-Y transcription factors families, most of the predicted targets for new miRNAs encode for functional proteins. MiRNAs-targets expression profiles evidenced that these miRNAs could tune distinct seed developmental stages. MiRNAs more accumulated at early SD stages were implicated in regulating the end of embryogenesis, postponing the seed maturation program, storage compound synthesis and allocation. MiRNAs more accumulated at late SD stages could be implicated in seed quiescence, desiccation tolerance, and longevity with still uncovered roles in germination. The miRNAs herein described represent novel P. vulgaris resources with potential application in future biotechnological approaches to modulate the expression of genes implicated in legume seed traits with impact in horticultural production systems.
Collapse
Affiliation(s)
- José Ricardo Parreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Michela Cappuccio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Pedro Fevereiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- InnovPlantProtect Collaborative Laboratory, Estrada de Gil Vaz, 7351-901, Elvas, Portugal
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- Association BLC3-Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição 2, Lagares da Beira, 3405-155, Oliveira do Hospital, Portugal.
| |
Collapse
|
20
|
Feng X, Liu W, Dai H, Qiu Y, Zhang G, Chen ZH, Wu F. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6057-6073. [PMID: 32588054 DOI: 10.1093/jxb/eraa290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/20/2020] [Indexed: 05/10/2023]
Abstract
Aluminum (Al) toxicity is the primary limiting factor of crop production on acid soils. Tibetan wild barley germplasm is a valuable source of potential genes for breeding barley with acid and Al tolerance. We performed microRNA and RNA sequencing using wild (XZ16, Al-tolerant; XZ61, Al-sensitive) and cultivated (Dayton, Al-tolerant) barley. A novel homeobox-leucine zipper transcription factor, HvHOX9, was identified as a target gene of miR166b and functionally characterized. HvHOX9 was up-regulated by Al stress in XZ16 (but unchanged in XZ61 and Dayton) and was significantly induced only in root tip. Phylogenetic analysis showed that HvHOX9 is most closely related to wheat TaHOX9 and orthologues of HvHOX9 are present in the closest algal relatives of Zygnematophyceae. Barley stripe mosaic virus-induced gene silencing of HvHOX9 in XZ16 led to significantly increased Al sensitivity but did not affect its sensitivity to other metals and low pH. Disruption of HvHOX9 did not change Al concentration in the root cell sap, but led to more Al accumulation in root cell wall after Al exposure. Silencing of HvHOX9 decreased H+ influx after Al exposure. Our findings suggest that miR166b/HvHOX9 play a critical role in Al tolerance by decreasing root cell wall Al binding and increasing apoplastic pH for Al detoxification in the root.
Collapse
Affiliation(s)
- Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Huaxin Dai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yue Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Liu J, Guo X, Zhai T, Shu A, Zhao L, Liu Z, Zhang S. Genome-wide identification and characterization of microRNAs responding to ABA and GA in maize embryos during seed germination. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:949-957. [PMID: 32526094 DOI: 10.1111/plb.13142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are an important class of non-coding small RNAs that regulate the expression of target genes through mRNA cleavage or translational inhibition. Previous studies have revealed their roles in regulating seed dormancy and germination in model plants such as Arabidopsis thaliana, rice (Oryza sativa) and maize (Zea mays). However, the miRNA response to exogenous gibberellic acid (GA) and abscisic acid (ABA) during seed germination in maize has yet to be explored. In this study, small RNA libraries were generated and sequenced from maize embryos treated with GA, ABA or double-distilled water as control. A total of 247 miRNAs (104 known and 143 novel) were identified, of which 45 known and 53 novel miRNAs were differentially expressed in embryos in the different treatment groups. In total, 74 (37 up-regulated and 37 down-regulated) and 55 (23 up-regulated and 32 down-regulated) miRNAs were expressed in response to GA and to ABA, respectively, and a total of 18 known and 38 novel miRNAs displayed differential expression between the GA- and ABA-treated groups. Using bioinformatics tools, we predicted the target genes of the differentially expressed miRNAs. Using GO enrichment and KEGG pathway analysis of these targets, we showed that miRNAs differentially expressed in our samples affect genes encoding proteins involved in the peroxisome, ribosome and plant hormonal signalling pathways. Our results indicate that miRNA-mediated gene expression influences the GA and ABA signalling pathways during seed germination.
Collapse
Affiliation(s)
- J Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - X Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - T Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - A Shu
- Rice Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - L Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Z Liu
- Institute of Soil and Fertilizer & Resource and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - S Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| |
Collapse
|
22
|
Ricci A, Sabbadini S, Prieto H, Padilla IM, Dardick C, Li Z, Scorza R, Limera C, Mezzetti B, Perez-Jimenez M, Burgos L, Petri C. Genetic Transformation in Peach ( Prunus persica L.): Challenges and Ways Forward. PLANTS (BASEL, SWITZERLAND) 2020; 9:E971. [PMID: 32752031 PMCID: PMC7465125 DOI: 10.3390/plants9080971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Almost 30 years have passed since the first publication reporting regeneration of transformed peach plants. Nevertheless, the general applicability of genetic transformation of this species has not yet been established. Many strategies have been tested in order to obtain an efficient peach transformation system. Despite the amount of time and the efforts invested, the lack of success has significantly limited the utility of peach as a model genetic system for trees, despite its relatively short generation time; small, high-quality genome; and well-studied genetic resources. Additionally, the absence of efficient genetic transformation protocols precludes the application of many biotechnological tools in peach breeding programs. In this review, we provide an overview of research on regeneration and genetic transformation in this species and summarize novel strategies and procedures aimed at producing transgenic peaches. Promising future approaches to develop a robust peach transformation system are discussed, focusing on the main bottlenecks to success including the low efficiency of A. tumefaciens-mediated transformation, the low level of correspondence between cells competent for transformation and those that have regenerative competence, and the high rate of chimerism in the few shoots that are produced following transformation.
Collapse
Affiliation(s)
- Angela Ricci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Humberto Prieto
- Laboratorio de Biotecnología, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, La Pintana, Santiago 11610, Chile
| | - Isabel Mg Padilla
- Área de Genómica y Biotecnología, Grupo de Morfogénesis y Modificación Genética, IFAPA-Centro de Churriana, Cortijo de la Cruz s/n, 29140 Málaga, Spain
| | - Chris Dardick
- USDA-ARS-Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Zhijian Li
- USDA-ARS-Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Ralph Scorza
- Ralph Scorza LLC, Plant Breeding and Biotechnology Consulting Services, P.O. Box 1191, Shepherdstown, WV 25443, USA
| | - Cecilia Limera
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Margarita Perez-Jimenez
- Mejora Genética de Cítricos, Instituto Murciano de Investigación y Desarrollo Agroalimentario (IMIDA), C/ Mayor s/n, 30150 Murcia, Spain
| | - Lorenzo Burgos
- Departamento de Mejora Vegetal, Grupo de Biotecnología de Frutales, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Murcia, Spain
| | - Cesar Petri
- Departamento de Fruticultura Subtropical y Mediterránea, IHSM-UMA-CSIC, Avenida Dr. Wienberg, s/n. 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
23
|
DeBoer K, Melser S, Sperschneider J, Kamphuis LG, Garg G, Gao LL, Frick K, Singh KB. Identification and profiling of narrow-leafed lupin (Lupinus angustifolius) microRNAs during seed development. BMC Genomics 2019; 20:135. [PMID: 30764773 PMCID: PMC6376761 DOI: 10.1186/s12864-019-5521-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Whilst information regarding small RNAs within agricultural crops is increasing, the miRNA composition of the nutritionally valuable pulse narrow-leafed lupin (Lupinus angustifolius) remains unknown. RESULTS By conducting a genome- and transcriptome-wide survey we identified 7 Dicer-like and 16 Argonaute narrow-leafed lupin genes, which were highly homologous to their legume counterparts. We identified 43 conserved miRNAs belonging to 16 families, and 13 novel narrow-leafed lupin-specific miRNAs using high-throughput sequencing of small RNAs from foliar and root and five seed development stages. We observed up-regulation of members of the miRNA families miR167, miR399, miR156, miR319 and miR164 in narrow-leafed lupin seeds, and confirmed expression of miR156, miR166, miR164, miR1507 and miR396 using quantitative RT-PCR during five narrow-leafed lupin seed development stages. We identified potential targets for the conserved and novel miRNAs and were able to validate targets of miR399 and miR159 using 5' RLM-RACE. The conserved miRNAs are predicted to predominately target transcription factors and 93% of the conserved miRNAs originate from intergenic regions. In contrast, only 43% of the novel miRNAs originate from intergenic regions and their predicted targets were more functionally diverse. CONCLUSION This study provides important insights into the miRNA gene regulatory networks during narrow-leafed lupin seed development.
Collapse
Affiliation(s)
- Kathleen DeBoer
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
| | - Su Melser
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- Present address: INSERM U1215, Neurocentre Magendie, Bordeaux, France
| | - Jana Sperschneider
- Centre for Genomics, Metabolomics and Bioinformatics (CGMB), The Australian National University, Canberra, ACT 2601 Australia
| | - Lars G. Kamphuis
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6102 Australia
| | - Gagan Garg
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
| | - Ling-Ling Gao
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
| | - Karen Frick
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- The School of Plant Biology, University of Western Australia, Crawley, WA 6009 Australia
| | - Karam B. Singh
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6102 Australia
| |
Collapse
|
24
|
Identification of browning-related microRNAs and their targets reveals complex miRNA-mediated browning regulatory networks in Luffa cylindrica. Sci Rep 2018; 8:16242. [PMID: 30389964 PMCID: PMC6214963 DOI: 10.1038/s41598-018-33896-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/07/2018] [Indexed: 11/09/2022] Open
Abstract
As a non-coding and endogenous small RNA, MicroRNA (miRNA) takes a vital regulatory role in plant growth and development. Long-term storage and processing of many fruits and vegetables, including Luffa, are subject to influences from browning, a common post-harvest problem that adversely affects flavor, aroma, and nutritional value. The browning regulatory networks mediated by miRNA, however, remain largely unexplored. For a systematic identification of browning-responsive miRNAs and the targets, we built two RNA libraries from Luffa pulps of near-isogenic line, with resistant and sensitive browning characteristics respectively, and then sequenced them using Solexa high-throughput technology. We consequently identified 179 known miRNAs that represent 17 non-conserved miRNA families and 24 conserved families, as well as 84 potential novel miRNAs, among which 16 miRNAs (eight known and eight novel miRNAs) were found to exhibit significant differential expressions and were thus identified as browning-related miRNAs. We then studied those browning-responsive miRNAs and the corresponding targets with RT-qPCR and finally validated their expression patterns. The results revealed that the expression patterns are specific to plant development stages and the miRNAs are identified with 39 target transcripts, which involve in plant development, defense response, transcriptional regulation, and signal transduction. After characterizing these miRNAs and their targets, we propose a browning regulatory network model of miRNA-mediatation in this paper. The findings of the work are helpful for the understanding of miRNA-mediated regulatory mechanisms of browning in Luffa, and will facilitate genetic improvement of pulp characteristics in Luffa.
Collapse
|
25
|
Huang Y, Gong WB. Identification and Characterization of MicroRNAs in Skin of Chinese Giant Salamander (Andrias davidianus) by the Deep Sequencing Approach. BIOCHEMISTRY (MOSCOW) 2018; 83:766-777. [PMID: 30195333 DOI: 10.1134/s0006297918060147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNA) play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. However, the miRNAs from skin of Andrias davidianus have not been reported. In this study, a small-RNA cDNA library was constructed and sequenced from skin of A. davidianus. A total of 513 conserved miRNAs belonging to 174 families were identified. The remaining 108 miRNAs we identified were novel and likely to be skin tissue-specific but were expressed at low levels. The presence of randomly selected 15 miRNAs identified and their expression in eight different tissues from A. davidianus were validated by stem-loop qRT-PCR. For better understanding the functions of miRNAs, 129,791 predicated target genes were analyzed by GO and their pathways illustrated by KEGG pathway analyses. The results show that these identified miRNAs from A. davidianus skin are involved in a broad range of physiological functions including metabolism, growth, development, and immune responses. This study exhaustively identifies miRNAs and their target genes, which will ultimately pave the way for understanding their role in skin of A. davidianus and other amphibians. Further studies are necessary to better understand miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Wang Bao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
26
|
Singh A, Gautam V, Singh S, Sarkar Das S, Verma S, Mishra V, Mukherjee S, Sarkar AK. Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. PLANTA 2018; 248:545-558. [PMID: 29968061 DOI: 10.1007/s00425-018-2927-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/12/2018] [Indexed: 05/07/2023]
Abstract
Present review addresses the advances made in the understanding of biogenesis of plant small RNAs and their role in plant development. We discuss the elaborate role of microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs) in various aspects of plant growth and development and highlight relevance of small RNA mobility. Small non-coding RNAs regulate various aspects of plant development. Small RNAs (sRNAs) of 21-24 nucleotide length are derived from double-stranded RNAs through the combined activity of several biogenesis and processing components. These sRNAs function by negatively regulating the expression of target genes. miRNAs and ta-siRNAs constitute two important classes of endogenous small RNAs in plants, which play important roles in plant growth and developmental processes like embryogenesis, organ formation and patterning, shoot and root growth, and reproductive development. Biogenesis of miRNAs is a multistep process which includes transcription, processing and modification, and their loading onto RNA-induced silencing complex (RISC). RISC-loaded miRNAs carry out post-transcriptional silencing of their target(s). Recent studies identified orthologues of different biogenesis components of novel and conserved small RNAs from different model plants. Although many small RNAs have been identified from diverse plant species, only a handful of them have been functionally characterized. In this review, we discuss the advances made in understanding the biogenesis, functional conservation/divergence in miRNA-mediated gene regulation, and the developmental role of small RNAs in different plant species.
Collapse
Affiliation(s)
- Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shabari Sarkar Das
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swati Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shalini Mukherjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
27
|
Wang L, Wang HL, Yin L, Tian CY. Transcriptome assembly in Suaeda aralocaspica to reveal the distinct temporal gene/miRNA alterations between the dimorphic seeds during germination. BMC Genomics 2017; 18:806. [PMID: 29052505 PMCID: PMC5649071 DOI: 10.1186/s12864-017-4209-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dimorphic seeds from Suaeda aralocaspica exhibit different germination behaviors that are thought to be a bet-hedging strategy advantageous in harsh and unpredictable environments. To understand the molecular mechanisms of Suaeda aralocaspica dimorphic seed germination, we applied RNA sequencing and small RNA sequencing for samples collected at three germination stages. RESULTS A total of 79,414 transcripts were assembled using Trinity, of which 57.67% were functionally annotated. KEGG enrichment unveiled that photosynthesis and flavonol biosynthesis pathways were activated earlier in brown seed compared with black seed. Gene expression analysis revealed that nine candidate unigenes in gibberellic acid and abscisic acid signal transduction and 23 unigenes in circadian rhythm-plant pathway showed distinct expression profiles to promote dimorphic seed germination. 194 conserved miRNAs comprising 40 families and 21 novel miRNAs belonging to 20 families in Suaeda aralocaspica were identified using miRDeep-P and Mfold. The expression of miRNAs in black seed was suppressed at imbibition stage. Among the identified miRNAs, 59 conserved and 13 novel miRNAs differentially expressed during seed germination. Of which, 43 conserved and nine novel miRNAs showed distinct expression patterns between black and brown seed. Using TAPIR, 208 unigenes were predicted as putative targets of 35 conserved miRNA families and 17 novel miRNA families. Among functionally annotated targets, genes participated in transcription regulation constituted the dominant category, followed by genes involved in signaling and stress response. Seven of the predicted targets were validated using 5' rapid amplification of cDNA ends or real-time quantitative reverse transcription-PCR. CONCLUSIONS Our results indicate that specific genes and miRNAs are regulated differently between black and brown seed during germination, which may contribute to the different germination behaviors of Suaeda aralocaspica dimorphic seeds in unpredictable variable environments. Our results lay a solid foundation for further studying the roles of candidate genes and miRNAs in Suaeda aralocaspica dimorphic seed germination.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Hong-Ling Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Lan Yin
- ABLife, Inc., Optics Valley International Biomedical Park, Building 18, East Lake High-Tech Development Zone, 858 Gaoxin Boulevard, Wuhan, 430075, China.
| | - Chang-Yan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
28
|
Kenesi E, Carbonell A, Lózsa R, Vértessy B, Lakatos L. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC. Nucleic Acids Res 2017; 45:7736-7750. [PMID: 28499009 PMCID: PMC5737661 DOI: 10.1093/nar/gkx379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022] Open
Abstract
In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine.
Collapse
Affiliation(s)
- Erzsébet Kenesi
- Department of Dermatology and Allergology, University of Szeged, Szeged H-6720, Hungary
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Rita Lózsa
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest H-1116, Hungary
| | - Beáta Vértessy
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1114, Hungary
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest H-1114, Hungary
| | - Lóránt Lakatos
- Department of Dermatology and Allergology, University of Szeged, Szeged H-6720, Hungary
- MTA-SZTE Dermatological Research Group
- Department of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
29
|
Feng JL, Yang ZJ, Chen SP, El-Kassaby YA, Chen H. High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying. BMC Genomics 2017; 18:546. [PMID: 28728593 PMCID: PMC5520325 DOI: 10.1186/s12864-017-3923-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/04/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Camellia species are ancient oilseed plants with a history of cultivation over two thousand years. Prior to oil extraction, natural seed drying is often practiced, a process affecting fatty acid quality and quantity. MicroRNAs (miRNA) of lipid metabolism associated with camellia seed natural drying are unexplored. To obtain insight into the function of miRNAs in lipid metabolism during natural drying, Illumina sequencing of C. oleifera and C. meiocarpa small-RNA was conducted. RESULTS A total of 274 candidate miRNAs were identified and 3733 target unigenes were annotated by performing a BLASTX. Through integrated GO and KEGG function annotation, 23 miRNA regulating 131 target genes were identified as lipid metabolism, regulating fatty acid biosynthesis, accumulation and catabolism. We observed one, two, and four miRNAs of lipid metabolism which were specially expressed in C. Meiocarpa, C. oleifera, and the two species collectively, respectively. At 30% moisture contents, C. meiocarpa and C. oleifer produced nine and eight significant differentially expressed miRNAs, respectively, with high fatty acid synthesis and accumulation activities. Across the two species, 12 significant differentially expressed miRNAs were identified at the 50% moisture content. CONCLUSIONS Sequencing of small-RNA revealed the presence of 23 miRNAs regulating lipid metabolism in camellia seed during natural drying and permitted comparative miRNA profiles between C. Meiocarpa and C. oleifera. Furthermore, this study successfully identified the best drying environment at which the quantity and quality of lipid in camellia seed are at its maximum.
Collapse
Affiliation(s)
- Jin-Ling Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi-Jian Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Hui Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
30
|
Guo S, Hsueh YC, Tucker-Kellogg G, Wong SM. Differential expression of novel microRNAs in response to the infection of a TMV mutant with an internal poly(A) tract in N. benthamiana. Virus Res 2017; 239:143-171. [PMID: 28668702 DOI: 10.1016/j.virusres.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/15/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022]
Abstract
We first constructed small RNA libraries of TMV- and TMV-43A-infected N. benthamiana for high throughput sequencing. A total number of 181 novel microRNAs (miRNAs) were identified through an improved miRNAs analysis pipeline. We were able to identify consistent miRNA expression changes induced in TMV and TMV-43A-infected plants, as well as differences associated with the UPD substitution in the TMV-43A viral genome. Virally induced miRNAs are associated with distinct processes and functions of predicted mRNA targets, including relation to host target defense. This study suggests an approach for functional genomics miRNAs in incompletely assembled genomes. These findings provide valuable information for further characterization of miRNAs by two genomic similar viruses, and provide clues to the study of TMV-UPD to find potential defense-related host genes targeted by miRNAs (126 words).
Collapse
Affiliation(s)
- Song Guo
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | | | - Greg Tucker-Kellogg
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Republic of Singapore; Temasek Life Sciences Laboratory, Singapore, Republic of Singapore; National University of Singapore Research Institute in Suzhou, Jiangsu, PR China.
| |
Collapse
|
31
|
Gasparis S, Kała M, Przyborowski M, Orczyk W, Nadolska-Orczyk A. Artificial MicroRNA-Based Specific Gene Silencing of Grain Hardness Genes in Polyploid Cereals Appeared to Be Not Stable Over Transgenic Plant Generations. FRONTIERS IN PLANT SCIENCE 2017; 7:2017. [PMID: 28119710 PMCID: PMC5220083 DOI: 10.3389/fpls.2016.02017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 05/09/2023]
Abstract
Gene silencing by RNA interference is a particularly important tool in the study of gene function in polyploid cereal species for which the collections of natural or induced mutants are very limited. Previously we have been testing small interfering RNA-based approach of gene silencing in wheat and triticale. In this research, artificial microRNAs (amiRs) were studied in the same species and the same target genes to compare effectiveness of both gene silencing pathways. amiR cassettes were designed to silence Puroindoline a (Pina) and Puroindoline b (Pinb) hardness genes in wheat and their orthologues Secaloindoline a (Sina) and Secaloindoline b (Sinb) genes in triticale. Each of the two cassettes contained 21 nt microRNA (miR) precursor derived from conserved regions of Pina/Sina or Pinb/Sinb genes, respectively. Transgenic plants were obtained with high efficiency in two cultivars of wheat and one cultivar of triticale after using the Pinb-derived amiR vector for silencing of Pinb or Sinb, respectively. Lack of transgenic plants in wheat or very low transformation efficiency in triticale was observed using the Pina-derived amiR cassette, despite large numbers of embryos attempted. Silencing of Pinb in wheat and Sinb in triticale was highly efficient in the T1 generation. The transcript level of Pinb in wheat was reduced up to 92% and Sinb in triticale was reduced up to 98%. Moreover, intended silencing of Pinb/Sinb with Pinb-derived amiR cassette was highly correlated with simultaneous silencing of Pina/Sina in the same transgenic plants. High downregulation of Pinb/Pina genes in T1 plants of wheat and Sinb/Sina genes in T1 plants of triticale was associated with strong expression of Pinb-derived amiR. Silencing of the target genes correlated with increased grain hardness in both species. Total protein content in the grains of transgenic wheat was significantly lower. Although, the Pinb-derived amiR cassette was stably inherited in the T2 generation of wheat and triticale the silencing effect including strongly decreased expression of silenced genes as well as strong expression of Pinb-derived amiR was not transmitted. Advantages and disadvantages of posttranscriptional silencing of target genes by means of amiR and siRNA-based approaches in polyploid cereals are discussed.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute (IHAR) – National Research InstituteBlonie, Poland
| | - Maciej Kała
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute (IHAR) – National Research InstituteBlonie, Poland
| | - Mateusz Przyborowski
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute (IHAR) – National Research InstituteBlonie, Poland
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute (IHAR) – National Research InstituteBlonie, Poland
| | - Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute (IHAR) – National Research InstituteBlonie, Poland
| |
Collapse
|
32
|
He L, Xie M, Huang J, Zhang T, Shi S, Tang T. Efficient and specific inhibition of plant microRNA function by anti-microRNA oligonucleotides (AMOs) in vitro and in vivo. PLANT CELL REPORTS 2016; 35:933-45. [PMID: 26792284 DOI: 10.1007/s00299-016-1933-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 05/20/2023]
Abstract
Anti-microRNA oligonucleotides (AMOs) are efficient and sequence-specific inhibitors of plant miRNA function both in vitro and in vivo. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in developmental and physiological processes in plants and animals. Although miRNA knockdown by chemically modified antisense oligonucleotides prevails in animal and therapeutic studies, no such application has ever been reported in plants. Here, we show that sucrose-mediated delivery of 2'-O-methyl (2'-O-Me) anti-miRNA oligonucleotides (AMOs) is an efficient and sequence-specific way of inhibiting plant miRNA activity both in vitro and in vivo. Administration of AMOs to rice protoplasts and intact leaves resulted in efficient inhibition of miRNAs with concurrent de-repression of their target genes. AMOs caused simultaneous inhibition of miRNAs from the same family but exerted negligible effects on miRNAs from different families. In rice seedlings, a single-dose AMO treatment conferred long-lasting miRNA inhibition for at least 7 days. Although simultaneous dysregulation of multiple miRNAs by an AMO-and-miRNA-mimic mixture resulted in severe root defects, the phenotypic effects of individual AMOs and miRNA mimics were negligible, suggesting that those miRNAs function together in regulatory networks to ensure homeostasis. Our results validate the utility of AMOs as an efficient tool for plant miRNA loss-of-function studies in vivo, and this approach may prove to be a highly promising general method for unraveling miRNA-mediated gene-regulatory networks.
Collapse
Affiliation(s)
- Lian He
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Institute of Biosciences and Technology, Texas Agriculture and Mechanics University, Houston, TX, 77030, USA
| | - Munan Xie
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianhua Huang
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tianyuan Zhang
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
33
|
Xing L, Zhang D, Zhao C, Li Y, Ma J, An N, Han M. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:749-70. [PMID: 26133232 PMCID: PMC4755197 DOI: 10.1111/pbi.12425] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 05/25/2015] [Indexed: 05/04/2023]
Abstract
Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Youmei Li
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| |
Collapse
|
34
|
Finch-Savage WE, Bassel GW. Seed vigour and crop establishment: extending performance beyond adaptation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:567-91. [PMID: 26585226 DOI: 10.1093/jxb/erv490] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seeds are central to crop production, human nutrition, and food security. A key component of the performance of crop seeds is the complex trait of seed vigour. Crop yield and resource use efficiency depend on successful plant establishment in the field, and it is the vigour of seeds that defines their ability to germinate and establish seedlings rapidly, uniformly, and robustly across diverse environmental conditions. Improving vigour to enhance the critical and yield-defining stage of crop establishment remains a primary objective of the agricultural industry and the seed/breeding companies that support it. Our knowledge of the regulation of seed germination has developed greatly in recent times, yet understanding of the basis of variation in vigour and therefore seed performance during the establishment of crops remains limited. Here we consider seed vigour at an ecophysiological, molecular, and biomechanical level. We discuss how some seed characteristics that serve as adaptive responses to the natural environment are not suitable for agriculture. Past domestication has provided incremental improvements, but further actively directed change is required to produce seeds with the characteristics required both now and in the future. We discuss ways in which basic plant science could be applied to enhance seed performance in crop production.
Collapse
Affiliation(s)
- W E Finch-Savage
- School of Life Sciences, Warwick University, Wellesbourne Campus, Warwick CV35 9EF, UK
| | - G W Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
35
|
Jian H, Wang J, Wang T, Wei L, Li J, Liu L. Identification of Rapeseed MicroRNAs Involved in Early Stage Seed Germination under Salt and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:658. [PMID: 27242859 PMCID: PMC4865509 DOI: 10.3389/fpls.2016.00658] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/29/2016] [Indexed: 05/18/2023]
Abstract
Drought and salinity are severe and wide-ranging abiotic stresses that substantially affect crop germination, development and productivity, and seed germination is the first critical step in plant growth and development. To comprehensively investigate small-RNA targets and improve our understanding of miRNA-mediated post-transcriptional regulation networks during Brassica napus seed imbibition under drought and salt stresses, we constructed three small-RNA libraries from B. napus variety ZS11 embryos exposed to salt (200 mM NaCl, denoted "S"), drought (200 g L(-1) PEG-6000, denoted "D"), and distilled water (denoted "CK") during imbibition and sequenced them using an Illumina Genome Analyzer. A total of 11,528,557, 12,080,081, and 12,315,608 raw reads were obtained from the CK, D, and S libraries, respectively. Further analysis identified 85 known miRNAs belonging to 31 miRNA families and 882 novel miRNAs among the three libraries. Comparison of the D and CK libraries revealed significant down-regulation of six miRNA families, miR156, miR169, miR860, miR399, miR171, and miR395, whereas only miR172 was significantly up-regulated. In contrast, comparison of the S library with the CK library showed significant down-regulation of only two miRNA families: miRNA393 and miRNA399. Putative targets for 336, 376, and 340 novel miRNAs were successfully predicted in the CK, D, and S libraries, respectively, and 271 miRNA families and 20 target gene families [including disease resistance protein (DIRP), drought-responsive family protein (DRRP), early responsive to dehydration stress protein (ERD), stress-responsive alpha-beta barrel domain protein (SRAP), and salt tolerance homolog2 (STH2)] were confirmed as being core miRNAs and genes involved in the seed imbibition response to salt and drought stresses. The sequencing results were partially validated by quantitative RT-PCR for both conserved and novel miRNAs as well as the predicted target genes. Our data suggest that diverse and complex miRNAs are involved in seed imbibition, indicating that miRNAs are involved in plant hormone regulation, and may play important roles during seed germination under salt- or drought-stress conditions.
Collapse
|
36
|
Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4653-67. [PMID: 26002970 PMCID: PMC4507771 DOI: 10.1093/jxb/erv238] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are important transcriptional and post-transcriptional modulators of gene expression that play crucial roles in the responses to diverse stresses. To explore jasmonic acid (JA)-dependent miRNA-mediated regulatory networks that are responsive to root-knot nematode (RKN), two small RNA libraries were constructed from wild-type (WT) and JA mutant (spr2) plants. A total of 263 known miRNAs and 441 novel miRNAs were significantly regulated under RKN stress in the two libraries. The spatio-temporal expression of candidate miRNAs and their corresponding targets were analysed by qRT-PCR under RKN stress. A clear negative correlation was observed between miR319 and its target TEOSINTE BRANCHED1/CYCLOIDEA/PRO-LIFERATING CELL FACTOR 4 (TCP4) in leaf, stem, and root under RKN stress, implying that the miR319/TCP4 module is involved in the systemic defensive response. Reverse genetics demonstrated that the miR319/TCP4 module affected JA synthetic genes and the endogenous JA level in leaves, thereby mediating RKN resistance. These results suggested that the action of miR319 in serving as a systemic signal responder and regulator that modulated the RKN systemic defensive response was mediated via JA. The potential cross-talk between miR319/TCP4 and miR396/GRF (GROWTH RESPONDING FACTOR) in roots under RKN invasion is discussed, and a predictive model regarding miR319/TCP4-mediated RKN resistance is proposed.
Collapse
Affiliation(s)
- Wenchao Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zilong Li
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jingwei Fan
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Canli Hu
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xin Qi
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hua Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Fukuan Zhao
- Biological Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
37
|
Zhang S, Liu Y, Yu B. New insights into pri-miRNA processing and accumulation in plants. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:533-45. [PMID: 26119101 DOI: 10.1002/wrna.1292] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) regulate many biological processes such as development, metabolism, and others. They are processed from their primary transcripts called primary miRNA transcripts (pri-miRNAs) by the processor complex containing the RNAse III enzyme, DICER-LIKE1 (DCL1), in plants. Consequently, miRNA biogenesis is controlled through altering pri-miRNA accumulation and processing, which is crucial for plant development and adaptation to environmental changes. Plant pri-miRNAs are transcribed by DNA-dependent RNA polymerase II (Pol II) and their levels are determined through transcription and degradation, whereas pri-miRNA processing is affected by its structure, splicing, alternative splicing, loading to the processor and the processor activity, which involve in many accessory proteins. Here, we summarize recent progresses related to pri-miRNA transcription, stability, and processing in plants.
Collapse
Affiliation(s)
- Shuxin Zhang
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.,State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yuhui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences & Key Laboratory of Agricultural Genomics, Ministry of Agriculture, Beijing, China
| | - Bin Yu
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
38
|
Trumbo JL, Zhang B, Stewart CN. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:337-54. [PMID: 25707745 DOI: 10.1111/pbi.12319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 05/22/2023]
Abstract
Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts.
Collapse
Affiliation(s)
- Jennifer Lynn Trumbo
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
39
|
Xie M, Zhang S, Yu B. microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 2015; 72:87-99. [PMID: 25209320 PMCID: PMC11113746 DOI: 10.1007/s00018-014-1728-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) are important regulators of gene expression. After excised from primary miRNA transcript by dicer-like1 (DCL1, an RNAse III enzyme), miRNAs bind and guide their effector protein named argonaute 1 (AGO1) to silence the expression of target RNAs containing their complementary sequences in plants. miRNA levels and activities are tightly controlled to ensure their functions in various biological processes such as development, metabolism and responses to abiotic and biotic stresses. Studies have identified many factors that involve in miRNA accumulation and activities. Characterization of these factors in turn greatly improves our understanding of the processes related to miRNAs. Here, we review recent progress of mechanisms underlying miRNA expression and functions in plants.
Collapse
Affiliation(s)
- Meng Xie
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0660 USA
| | - Shuxin Zhang
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0660 USA
| | - Bin Yu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0660 USA
| |
Collapse
|
40
|
Das SS, Karmakar P, Nandi AK, Sanan-Mishra N. Small RNA mediated regulation of seed germination. FRONTIERS IN PLANT SCIENCE 2015; 6:828. [PMID: 26528301 PMCID: PMC4602112 DOI: 10.3389/fpls.2015.00828] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/22/2015] [Indexed: 05/03/2023]
Abstract
Mature seeds of most of the higher plants harbor dormant embryos and go through the complex process of germination under favorable environmental conditions. The germination process involves dynamic physiological, cellular and metabolic events that are controlled by the interplay of several gene products and different phytohormones. The small non-coding RNAs comprise key regulatory modules in the process of seed dormancy and germination. Recent studies have implicated the small RNAs in plant growth in correlation with various plant physiological processes including hormone signaling and stress response. In this review we provide a brief overview of the regulation of seed germination or dormancy while emphasizing on the current understanding of the role of small RNAs in this regard. We have also highlighted specific examples of stress responsive small RNAs in seed germination and discussed their future potential.
Collapse
Affiliation(s)
- Shabari Sarkar Das
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prakash Karmakar
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| | - Asis Kumar Nandi
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| | - Neeti Sanan-Mishra
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- *Correspondence: Neeti Sanan-Mishra,
| |
Collapse
|
41
|
|
42
|
Tian Y, Tian Y, Luo X, Zhou T, Huang Z, Liu Y, Qiu Y, Hou B, Sun D, Deng H, Qian S, Yao K. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis. BMC PLANT BIOLOGY 2014; 14:226. [PMID: 25181943 PMCID: PMC4167151 DOI: 10.1186/s12870-014-0226-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 08/12/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses. RESULTS Two libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt. CONCLUSION A comprehensive study of broccoli miRNA in relation to salt stress has been performed. We report significant data on the miRNA profile of broccoli that will underpin further studies on stress responses in broccoli and related species. The differential regulation of miRNAs between control and salt-stressed broccoli indicates that miRNAs play an integral role in the regulation of responses to salt stress.
Collapse
Affiliation(s)
- Yunhong Tian
- />Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province People’s Republic of China
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Yunming Tian
- />State Key Laboratory of Oncology of Southern China, Guangzhou, Guangdong Province People’s Republic of China
- />Department of Radiation Oncology, Cancer Center of Sun Yat-Sen University, Guangzhou, Guangdong Province People’s Republic of China
| | - Xiaojun Luo
- />Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province People’s Republic of China
| | - Tao Zhou
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Zuoping Huang
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Ying Liu
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Yihan Qiu
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Bing Hou
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Dan Sun
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Hongyu Deng
- />Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province People’s Republic of China
| | - Shen Qian
- />Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province People’s Republic of China
| | - Kaitai Yao
- />Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province People’s Republic of China
| |
Collapse
|
43
|
Guerriero G, Legay S, Hausman JF. Alfalfa Cellulose synthase gene expression under abiotic stress: a Hitchhiker's guide to RT-qPCR normalization. PLoS One 2014; 9:e103808. [PMID: 25084115 PMCID: PMC4118957 DOI: 10.1371/journal.pone.0103808] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023] Open
Abstract
Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses.
Collapse
Affiliation(s)
- Gea Guerriero
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, Belvaux, Luxembourg
| | - Sylvain Legay
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, Belvaux, Luxembourg
| | - Jean-Francois Hausman
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, Belvaux, Luxembourg
| |
Collapse
|
44
|
Yin F, Gao J, Liu M, Qin C, Zhang W, Yang A, Xia M, Zhang Z, Shen Y, Lin H, Luo C, Pan G. Genome-wide analysis of water-stress-responsive microRNA expression profile in tobacco roots. Funct Integr Genomics 2014; 14:319-32. [PMID: 24664280 DOI: 10.1007/s10142-014-0365-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/09/2014] [Accepted: 02/24/2014] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNAs) play a pivotal role in post-transcriptional regulation of gene expression in plants. In this study, we investigate miRNAs in an agronomically important common tobacco in China, named Honghua Dajinyuan (a drought-tolerant cultivar). Here, we report a comprehensive analysis of miRNA expression profiles in mock-treat grown (CK) and 20 % polyethylene glycol-grown (PEG-grown) tobacco roots using a high-throughput sequencing approach. A total of 656 unique miRNAs representing 53 miRNA families were identified in the two libraries, of which 286 unique miRNAs representing 162 microRNAs were differentially expressed. In addition, nine differentially expressed microRNAs selected from different expressed miRNA family with high abundance were subjected to further analysis and validated by quantitative real-time PCR (Q-PCR). In addition, the expression pattern of these identified candidate conserved miRNA and target genes of three identified miRNA (nta-miR172b, nta-miR156i, and nta-miR160a) were also validated by Q-PCR. Gene ontology (GO) enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in metabolic process and response to stimulus. In particular, 25 target genes are involved in regulating plant hormone signal transduction and metabolism, indicating that these association microRNAs may play important regulatory roles in responding to PEG resistance. Moreover, this study adds a significant number of novel miRNAs to the tobacco miRNome.
Collapse
Affiliation(s)
- Fuqiang Yin
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pashkovskiy PP, Ryazansky SS. Biogenesis, evolution, and functions of plant microRNAs. BIOCHEMISTRY (MOSCOW) 2014; 78:627-37. [PMID: 23980889 DOI: 10.1134/s0006297913060084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on the biological role of one class of plant small RNAs, ~22-nt microRNAs (miRNAs). The majority of plant miRNA targets are genes encoding the effector factors of cell signaling pathways. The regulation of their expression is necessary for both ontogenesis and rapid response of plants to biotic and abiotic stress factors. We also summarized current views on the biogenesis and evolution of plant miRNAs as well as the techniques used for their investigation.
Collapse
Affiliation(s)
- P P Pashkovskiy
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia.
| | | |
Collapse
|
46
|
Sun XH, Zhao LP, Zou Q, Wang ZB. Identification of microRNA genes and their mRNA targets in Festuca arundinacea. Appl Biochem Biotechnol 2014; 172:3875-87. [PMID: 24577674 DOI: 10.1007/s12010-014-0805-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/12/2014] [Indexed: 01/26/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, non-coding RNAs of 22 nucleotides (nts) in length, which plays important roles in post-transcriptional degradation of target mRNA or inhibition of protein synthesis through binding the specific sites of target mRNA. Growing evidences have shown that miRNAs play an important role in various biological processes, including growth and development, signal transduction, apoptosis, proliferation, stress responses, maintenance of genome stability, and so on. In our study, we used bioinformatic tools to predict miRNA and the corresponding target genes of Festuca arundinacea. We used known miRNAs of other plants from miRBase to search against expressed sequence tags (EST) databases and genome survey sequences (GSS) of F. arundinacea. A total of 8 potential miRNAs were predicted. Phylogenetic analysis of the predicted miRNAs revealed that miRNA398c of F. arundinacea species was evolutionary highly conserved with Populus trichocarpa. The 8 potential miRNAs corresponding to 20 target genes were found. Most of the miRNA target genes were predicted to encode transcription factors that regulate cell growth and development, signaling, metabolism, and other biology processes. By bioinformatics methods, we can effectively predict novel miRNAs and its target genes and add information to F. arundinacea miRNA database. Moreover, it shows a path for the prediction and analysis of miRNAs to those species whose genomes are not available through bioinformatics tools.
Collapse
Affiliation(s)
- Xi Hong Sun
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang City, 471003, Henan Province, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Pintó-Marijuan M, Da Silva AB, Flexas J, Dias T, Zarrouk O, Martins-Loução MA, Chaves MM, Cruz C. Photosynthesis of Quercus suber is affected by atmospheric NH3 generated by multifunctional agrosystems. TREE PHYSIOLOGY 2013; 33:1328-1337. [PMID: 24150034 DOI: 10.1093/treephys/tpt077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Montados are evergreen oak woodlands dominated by Quercus species, which are considered to be key to biodiversity conservation and ecosystem services. This ecosystem is often used for cattle breeding in most regions of the Iberian Peninsula, which causes plants to receive extra nitrogen as ammonia (NH(3)) through the atmosphere. The effect of this atmospheric NH(3) (NH(3atm)) on ecosystems is still under discussion. This study aimed to evaluate the effects of an NH(3atm) concentration gradient downwind of a cattle barn in a Montado area. Leaves from the selected Quercus suber L. trees along the gradient showed a clear influence of the NH(3) on δ(13)C, as a consequence of a strong limitation on the photosynthetic machinery by a reduction of both stomatal and mesophyll conductance. A detailed study of the impact of NH(3atm) on the photosynthetic performance of Q. suber trees is presented, and new mechanisms by which NH(3) affects photosynthesis at the leaf level are suggested.
Collapse
Affiliation(s)
- Marta Pintó-Marijuan
- Molecular Ecophysiology Lab. (LEM), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lukasik A, Pietrykowska H, Paczek L, Szweykowska-Kulinska Z, Zielenkiewicz P. High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genomics 2013; 14:801. [PMID: 24245539 PMCID: PMC3840582 DOI: 10.1186/1471-2164-14-801] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/14/2013] [Indexed: 11/20/2022] Open
Abstract
Background Plant microRNAs are short (~21 nt) non-coding molecules that regulate gene expression by targeting the mRNA cleavage or protein translation inhibition. In this manner, they play many important roles in the cells of living organisms. One of the plant species in which the entire set of miRNAs has not been yet completely identified is Brassica oleracea var. capitata (cabbage). For this reason and for the economic and nutritional importance of this food crop, high-throughput small RNAs sequencing has been performed to discover the novel and conserved miRNAs in mature cabbage leaves. Results In this study, raw reads generated from three small RNA libraries were bioinformatically processed and further analyzed to select sequences homologous to known B. oleracea and other plant miRNAs. As a result of this analysis, 261 conserved miRNAs (belonging to 62 families) have been discovered. MIR169, MIR167 and MIR166 were the largest miRNA families, while the highest abundance molecules were miR167, miR166, miR168c and miR157a. Among the generated sequencing reads, miRNAs* were also found, such as the miR162c*, miR160a* and miR157a*. The unannotated tags were used in the prediction and evaluation of novel miRNAs, which resulted in the 26 potential miRNAs proposal. The expressions of 13 selected miRNAs were analyzed by northern blot hybridization. The target prediction and annotation for identified miRNAs were performed, according to which discovered molecules may target mRNAs encoding several potential proteins – e.g., transcription factors, polypeptides that regulate hormone stimuli and abiotic stress response, and molecules participating in transport and cell communication. Additionally, KEGG maps analysis suggested that the miRNAs in cabbage are involved in important processing pathways, including glycolysis, glycerolipid metabolism, flavonoid biosynthesis and oxidative phosphorylation. Conclusions Conclusively, for the first time, the large set of miRNAs was identified in mature cabbage leaves. Potential targets designation for these miRNAs may suggest their essential role in many plants primary biological processes. Presented study not only supplements the knowledge about B. oleracea miRNAs, but additionally it may be used in other research concerning the improvement of the cabbage cultivation.
Collapse
Affiliation(s)
| | | | | | | | - Piotr Zielenkiewicz
- Institute of Biophysics and Biochemistry, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
49
|
Vidal EA, Moyano TC, Krouk G, Katari MS, Tanurdzic M, McCombie WR, Coruzzi GM, Gutiérrez RA. Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC Genomics 2013; 14:701. [PMID: 24119003 PMCID: PMC3906980 DOI: 10.1186/1471-2164-14-701] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022] Open
Abstract
Background Nitrate and other nitrogen metabolites can act as signals that regulate global gene expression in plants. Adaptive changes in plant morphology and physiology triggered by changes in nitrate availability are partly explained by these changes in gene expression. Despite several genome-wide efforts to identify nitrate-regulated genes, no comprehensive study of the Arabidopsis root transcriptome under contrasting nitrate conditions has been carried out. Results In this work, we employed the Illumina high throughput sequencing technology to perform an integrated analysis of the poly-A + enriched and the small RNA fractions of the Arabidopsis thaliana root transcriptome in response to nitrate treatments. Our sequencing strategy identified new nitrate-regulated genes including 40 genes not represented in the ATH1 Affymetrix GeneChip, a novel nitrate-responsive antisense transcript and a new nitrate responsive miRNA/TARGET module consisting of a novel microRNA, miR5640 and its target, AtPPC3. Conclusions Sequencing of small RNAs and mRNAs uncovered new genes, and enabled us to develop new hypotheses for nitrate regulation and coordination of carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Elena A Vidal
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y. Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2013; 13:140. [PMID: 24060047 PMCID: PMC4015866 DOI: 10.1186/1471-2229-13-140] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes by mRNA degradation or translational repression. Numerous plant miRNAs have been identified. Evidence is increasing for their crucial roles during plant development. In the globally important crop of wheat (Triticum aestivum L.), the process by which grains are formed determines yield and end-use quality. However, little is known about miRNA-mediated developmental regulation of grain production. Here, we applied high-throughput sRNA sequencing and genome-wide mining to identify miRNAs potentially involved in the developmental regulation of wheat grains. RESULTS Four sRNA libraries were generated and sequenced from developing grains sampled at 5, 15, 25, and 30 days after pollination (DAP). Through integrative analysis, we identified 605 miRNAs (representing 540 families) and found that 86 are possibly involved in the control of grain-filling. Additionally, 268 novel miRNAs (182 families) were identified, with 18 of them also potentially related to that maturation process. Our target predictions indicated that the 104 grain filling-associated miRNAs might target a set of wheat genes involved in various biological processes, including the metabolism of carbohydrates and proteins, transcription, cellular transport, cell organization and biogenesis, stress responses, signal transduction, and phytohormone signaling. Together, these results demonstrate that the developmental steps by which wheat grains are filled is correlated with miRNA-mediated gene regulatory networks. CONCLUSIONS We identified 605 conserved and 268 novel miRNAs from wheat grains. Of these, 104 are potentially involved in the regulation of grain-filling. Our dataset provides a useful resource for investigating miRNA-mediated regulatory mechanisms in cereal grains, and our results suggest that miRNAs contribute to this regulation during a crucial phase in determining grain yield and flour quality.
Collapse
Affiliation(s)
- Fanrong Meng
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Ketao Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lulu Liu
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaohui Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanhong Zhao
- College of Agriculture, Ludong University, Yantai 264025, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongchun Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|