1
|
Alhabsi A, Ling Y, Crespi M, Reddy ASN, Mahfouz M. Alternative Splicing Dynamics in Plant Adaptive Responses to Stress. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:687-717. [PMID: 39952682 DOI: 10.1146/annurev-arplant-083123-090055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Plants thrive in dynamic environments by activating sophisticated molecular networks that fine-tune their responses to stress. A key component of these networks is gene regulation at multiple levels, including precursor messenger RNA (pre-mRNA) splicing, which shapes the transcriptome and proteome landscapes. Through the precise action of the spliceosome complex, noncoding introns are removed and coding exons are joined to produce spliced RNA transcripts. While constitutive splicing always generates the same messenger RNA (mRNA), alternative splicing (AS) produces multiple mRNA isoforms from a single pre-mRNA, enriching proteome diversity. Remarkably, 80% of multiexon genes in plants generate multiple isoforms, underscoring the importance of AS in shaping plant development and responses to abiotic and biotic stresses. Recent advances in CRISPR-Cas genome and transcriptome editing technologies offer revolutionary tools to dissect AS regulation at molecular levels, unveiling the functional significance of specific isoforms. In this review, we explore the intricate mechanisms of pre-mRNA splicing and AS in plants, with a focus on stress responses. Additionally, we examine how leveraging AS insights can unlock new opportunities to engineer stress-resilient crops, paving the way for sustainable agriculture in the face of global environmental challenges.
Collapse
Affiliation(s)
- Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Universite Paris Cité, Gif sur Yvette, France
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| |
Collapse
|
2
|
Joshi K, Ahmed S, Ge L, Avestakh A, Oloyede B, Phuntumart V, Kalinoski A, Morris PF. Spatial organization of putrescine synthesis in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112232. [PMID: 39214468 DOI: 10.1016/j.plantsci.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Three plant pathways for the synthesis of putrescine have been described to date. These are the synthesis of putrescine from ornithine, by ornithine decarboxylase (ODC); the synthesis of putrescine from arginine by arginine decarboxylase, agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (NLP1); and arginine decarboxylase and agmatinase. To address how these pathways are organized in plants, we have used transient expression analysis of these genes in the leaves of Nicotiana benthamiana. Brassicas do not have ODC, but the single ODC gene from rice and one of the soybean genes, were localized to the ER. Transient expression of the rice agmatinase gene showed that it was localized to the mitochondria. In A. thaliana there are five isoforms of AIH and three isoforms of NLP1. Stable GFP-tagged transformants of the longest isoforms of AIH and NLP1 showed that both proteins were localized to the ER, but in tissues with chloroplasts, the localization was concentrated to lamellae adjacent to chloroplasts. Transient expression analyses showed that four of the isoforms of AIH and all of the isoforms of NLP1 were localized to the ER. However, AIH.4 was localized to the chloroplast. Combining these results with other published data, reveal that putrescine synthesis is excluded from the cytoplasm and is spatially localized to the chloroplast, ER, and likely the mitochondria. Synthesis of putrescine in the ER may facilitate cell to cell transport via plasmodesmata, or secretion via vesicles. Differential expression of these pathways may enable putrescine-mediated activation of hormone-responsive genes.
Collapse
Affiliation(s)
- Kumud Joshi
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Lingxiao Ge
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Arefeh Avestakh
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Babatunde Oloyede
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo, 3000 Arlington Ave., Toledo, USA
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
3
|
Zhu X, Chen A, Butler NM, Zeng Z, Xin H, Wang L, Lv Z, Eshel D, Douches DS, Jiang J. Molecular dissection of an intronic enhancer governing cold-induced expression of the vacuolar invertase gene in potato. THE PLANT CELL 2024; 36:1985-1999. [PMID: 38374801 PMCID: PMC11062429 DOI: 10.1093/plcell/koae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to minimize sprouting and losses due to disease. However, cold temperatures strongly induce the expression of the potato vacuolar invertase gene (VInv) and cause reducing sugar accumulation. This process, referred to as "cold-induced sweetening," is a major postharvest problem for the potato industry. We discovered that the cold-induced expression of VInv is controlled by a 200 bp enhancer, VInvIn2En, located in its second intron. We identified several DNA motifs in VInvIn2En that bind transcription factors involved in the plant cold stress response. Mutation of these DNA motifs abolished VInvIn2En function as a transcriptional enhancer. We developed VInvIn2En deletion lines in both diploid and tetraploid potato using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. VInv transcription in cold-stored tubers was significantly reduced in the deletion lines. Interestingly, the VInvIn2En sequence is highly conserved among distantly related Solanum species, including tomato (Solanum lycopersicum) and other non-tuber-bearing species. We conclude that the VInv gene and the VInvIn2En enhancer have adopted distinct roles in the cold stress response in tubers of tuber-bearing Solanum species.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Airu Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Nathaniel M Butler
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Vegetable Crops Research Unit, United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, USA
| | - Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan Province, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu 610101, Sichuan Province, China
| | - Haoyang Xin
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lixia Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Zhaoyan Lv
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Institute, ARO, Rishon LeZion 50250, Israel
| | - David S Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Qi C, Xv L, Xia W, Zhu Y, Wang Y, Zhang Z, Dai H, Miao M. Genome-Wide Identification and Expression Patterns of Cucumber Invertases and Their Inhibitor Genes. Int J Mol Sci 2023; 24:13421. [PMID: 37686228 PMCID: PMC10487868 DOI: 10.3390/ijms241713421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Invertases and their inhibitors play important roles in sucrose metabolism, growth and development, signal transduction, and biotic and abiotic stress tolerance in many plant species. However, in cucumber, both the gene members and functions of invertase and its inhibitor families remain largely unclear. In this study, in comparison with the orthologues of Citrullus lanatus (watermelon), Cucumis melo (melon), and Arabidopsis thaliana (Arabidopsis), 12 invertase genes and 12 invertase inhibitor genes were identified from the genome of Cucumis sativus (cucumber). Among them, the 12 invertase genes were classified as 4 cell wall invertases, 6 cytoplasmic invertases, and 2 vacuolar invertases. Most invertase genes were conserved in cucumber, melon, and watermelon, with several duplicate genes in melon and watermelon. Transcriptome analysis distinguished these genes into various expression patterns, which included genes CsaV3_2G025540 and CsaV3_2G007220, which were significantly expressed in different tissues, organs, and development stages, and genes CsaV3_7G034730 and CsaV3_5G005910, which might be involved in biotic and abiotic stress. Six genes were further validated in cucumber based on quantitative real-time PCR (qRT-PCR), and three of them showed consistent expression patterns as revealed in the transcriptome. These results provide important information for further studies on the physiological functions of cucumber invertases (CSINVs) and their inhibitors (CSINHs).
Collapse
Affiliation(s)
- Chenze Qi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Liyun Xv
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Wenhao Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yunyi Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yudan Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Haibo Dai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics, The Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Jaiswal S, Paul K, Raman KV, Tyagi S, Saakre M, Tilgam J, Bhattacharjee S, Vijayan J, Mondal KK, Sreevathsa R, Pattanayak D. Amelioration of cold-induced sweetening in potato by RNAi mediated silencing of StUGPase encoding UDP-glucose pyrophosphorylase. FRONTIERS IN PLANT SCIENCE 2023; 14:1133029. [PMID: 36875591 PMCID: PMC9981964 DOI: 10.3389/fpls.2023.1133029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cold-induced sweetening (CIS) is an unwanted physiological phenomenon in which reducing sugars (RS) get accumulated in potato (Solanum tuberosum) upon cold storage. High RS content makes potato commercially unsuitable for processing due to the unacceptable brown color in processed products like chips, fries, etc., and the production of a potential carcinogen, acrylamide. UDP-glucose pyrophosphorylase (UGPase) catalyzes the synthesis of UDP-glucose towards the synthesis of sucrose and is also involved in the regulation of CIS in potato. The objective of the present work was RNAi-mediated downregulation of the StUGPase expression level in potato for the development of CIS tolerant potato. Hairpin RNA (hpRNA) gene construct was developed by placing UGPase cDNA fragment in sense and antisense orientation intervened by GBSS intron. Internodal stem explants (cv. Kufri Chipsona-4) were transformed with hpRNA gene construct, and 22 transgenic lines were obtained by PCR screening of putative transformants. Four transgenic lines showed the highest level of RS content reduction following 30 days of cold storage, with reductions in sucrose and RS (glucose & fructose) levels of up to 46% and 57.5%, respectively. Cold stored transgenic potato of these four lines produced acceptable chip colour upon processing. The selected transgenic lines carried two to five copies of the transgene. Northern hybridization revealed an accumulation of siRNA with a concomitant decrease in the StUGPase transcript level in these selected transgenic lines. The present work demonstrates the efficacy of StUGPase silencing in controlling CIS in potato, and the strategy can be employed for the development of CIS tolerant potato varieties.
Collapse
Affiliation(s)
- Sandeep Jaiswal
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Post Graduate (PG) School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Krishnayan Paul
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Post Graduate (PG) School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. Venkat Raman
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Saurabh Tyagi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Manjesh Saakre
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Post Graduate (PG) School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyotsana Tilgam
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Post Graduate (PG) School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sougata Bhattacharjee
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Post Graduate (PG) School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Joshitha Vijayan
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kalyan Kumar Mondal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
6
|
Transcriptome diversity assessment of Gossypium arboreum (FDH228) leaves under control, drought and whitefly infestation using PacBio long reads. Gene 2023; 852:147065. [PMID: 36435508 DOI: 10.1016/j.gene.2022.147065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) and alternative polyadenylation (APA) are common mechanisms in eukaryotes to increase the complexity of transcriptomes and subsequently proteomes. Analysis of long reads transcriptomics data can result in the discovery of novel transcripts, splice sites, AS or APA events. Gossypium arboreum is an important cultivated cotton species and a putative contributor of the A sub-genome to the modern tetraploid cotton; and inherently tolerant to several biotic and abiotic stresses. Specifically, its variety 'FDH228' is considered to be an important resistance source. In this study, we sequenced the G. arboreum (var. FDH228) transcriptome using PacBio IsoSeq and illumina short read sequencing under three different conditions i.e. untreated/healthy, treated with biotic stress through whitefly infestation, and treated with abiotic stress via water deprivation, for the discovery and surveying of canonical and non-canonical AS, APA and transcript fusion events. We were able to obtain 15,419 unique transcripts from all samples representing 11,343 genes, out of which 10,832 were annotated and 520 were novel with respect to the published reference genome. These transcripts were grouped into different structural categories including 60 Antisense, 11,959 having a full-splice match, 999 with incomplete-splice match, 30 fusion transcripts, 177 genic, 479 intergenic, 771 novels in the catalog, and 944 Novel but not found in the catalog. Subsequently, randomly selected candidate transcripts were experimentally validated using qRT-PCR. Our comprehensive identification of canonical and non-canonical splicing events, and novel and fusion transcripts aids in the understanding of the resistance mechanisms for this specific germplasm.
Collapse
|
7
|
Hussain SS, Abbas M, Abbas S, Wei M, El-Sappah AH, Sun Y, Li Y, Ragauskas AJ, Li Q. Alternative splicing: transcriptional regulatory network in agroforestry. FRONTIERS IN PLANT SCIENCE 2023; 14:1158965. [PMID: 37123829 PMCID: PMC10132464 DOI: 10.3389/fpls.2023.1158965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Alternative splicing (AS) in plants plays a key role in regulating the expression of numerous transcripts from a single gene in a regulatory pathway. Variable concentrations of growth regulatory hormones and external stimuli trigger alternative splicing to switch among different growth stages and adapt to environmental stresses. In the AS phenomenon, a spliceosome causes differential transcriptional modifications in messenger RNA (mRNAs), resulting in partial or complete retention of one or more introns as compared to fully spliced mRNA. Differentially expressed proteins translated from intron-retaining messenger RNA (mRNAir) perform vital functions in the feedback mechanism. At the post-transcriptional level, AS causes the remodeling of transcription factors (TFs) by the addition or deletion of binding domains to activate and/or repress transcription. In this study, we have summarized the specific role of AS in the regulation of gene expression through repression and activation of the transcriptional regulatory network under external stimuli and switch among developmental stages.
Collapse
Affiliation(s)
- Syed Sarfaraz Hussain
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Sammar Abbas
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Mingke Wei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| | - Arthur J. Ragauskas
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Chemical and Biomolecular Engineering, The University of Tennessee-Knoxville, Knoxville, TN, United States
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| |
Collapse
|
8
|
Shi W, Ma Q, Yin W, Liu T, Song Y, Chen Y, Song L, Sun H, Hu S, Liu T, Jiang R, Lv D, Song B, Wang J, Liu X. The transcription factor StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4968-4980. [PMID: 35511088 DOI: 10.1093/jxb/erac171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of reducing sugars in cold-stored tubers, known as cold-induced sweetening (CIS), negatively affects potato processing quality. The starch to sugar interconversion pathways that are altered in cold-stored CIS tubers have been elucidated, but the mechanism that regulates them remains largely unknown. This study identified a CBF/DREB transcription factor (StTINY3) that enhances CIS resistance by both activating starch biosynthesis and repressing the hydrolysis of sucrose to reducing sugars in detached cold-stored tubers. Silencing StTINY3 in a CIS-resistant genotype decreased CIS resistance, while overexpressing StTINY3 in a CIS-sensitive genotype increased CIS resistance, and altering StTINY3 expression was associated with expression changes in starch resynthesis-related genes. We showed first that overexpressing StTINY3 inhibited sucrose hydrolysis by enhancing expression of the invertase inhibitor gene StInvInh2, and second that StTINY3 promoted starch resynthesis by up-regulating a large subunit of the ADP-glucose pyrophosphorylase gene StAGPaseL3, and the glucose-6-phosphate transporter gene StG6PT2. Using electrophoretic mobility shift assays, we revealed that StTINY3 is a nuclear-localized transcriptional activator that directly binds to the dehydration-responsive element/CRT cis-element in the promoters of StInvInh2 and StAGPaseL3. Taken together, these findings established that StTINY3 influences CIS resistance in cold-stored tubers by coordinately modulating the starch to sugar interconversion pathways and is a good target for improving potato processing quality.
Collapse
Affiliation(s)
- Weiling Shi
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Qiuqin Ma
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Wang Yin
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Yuhao Song
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Yuanya Chen
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Linjin Song
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Hui Sun
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Shuting Hu
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Rui Jiang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Dianqiu Lv
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Jichun Wang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Xun Liu
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| |
Collapse
|
9
|
Coculo D, Lionetti V. The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily. FRONTIERS IN PLANT SCIENCE 2022; 13:863892. [PMID: 35401607 PMCID: PMC8990755 DOI: 10.3389/fpls.2022.863892] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named "Plant Invertase/Pectin Methylesterase Inhibitor Superfamily." INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVI/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVI/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVI/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.
Collapse
Affiliation(s)
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
10
|
He B, Meng L, Tang L, Qi W, Hu F, Lv Y, Song W. The Landscape of Alternative Splicing Regulating Potassium Use Efficiency in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2021; 12:774829. [PMID: 34858465 PMCID: PMC8630638 DOI: 10.3389/fpls.2021.774829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 06/01/2023]
Abstract
Alternative splicing (AS) occurs extensively in eukaryotes as an essential mechanism for regulating transcriptome complexity and diversity, but the AS landscape regulating potassium (K) use efficiency in plants is unclear. In this study, we performed high-throughput transcriptome sequencing of roots and shoots from allopolyploid Nicotiana tabacum under K+ deficiency. Preliminary physiological analysis showed that root system architecture was dramatically changed due to potassium deficiency and that IAA content was significantly reduced in root and shoot. AS analysis showed that a total of 28,179 genes exhibited 54,457 AS events, and 1,510 and 1,732 differentially alternatively spliced (DAS) events were identified in shoots and roots under low K+ stress. Nevertheless, only 120 DAS events occurred in both shoots and roots, implying that most DAS events were tissue-specific. Both in shoot and the root, the proportion of DAS genes in differentially expressed (DE) genes equaled that in non-DE genes, which indicated that AS might play a unique regulatory role in response to low potassium. Gene ontology analysis further indicated that transcription regulation and AS modulation worked independently in response to low K+ stress in tobacco, as their target biological processes were different. Totally 45 DAS transcription factors (TFs) were found, which were involved in 18 TF families. Five Auxin response factor (ARF) TFs were significantly DAS in root, suggesting that response to auxin was probably subject to AS regulation in the tobacco root. Our study shows that AS variation occurs extensively and has a particular regulatory mechanism under K+ deficiency in tobacco. The study also links changes in root system architecture with the changes in AS of ARF TFs, which implied the functional significance of these AS events for root growth and architecture.
Collapse
Affiliation(s)
- Bing He
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lina Tang
- Tobacco Science Research Institute, Fujian Tobacco Monopoly Administration, Fuzhou, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
11
|
Genies L, Martin L, Kanno S, Chiarenza S, Carasco L, Camilleri V, Vavasseur A, Henner P, Leonhardt N. Disruption of AtHAK/KT/KUP9 enhances plant cesium accumulation under low potassium supply. PHYSIOLOGIA PLANTARUM 2021; 173:1230-1243. [PMID: 34342899 DOI: 10.1111/ppl.13518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Understanding the molecular mechanisms that underlie cesium (Cs+ ) transport in plants is important to limit the entry of its radioisotopes from contaminated areas into the food chain. The potentially toxic element Cs+ , which is not involved in any biological process, is chemically closed to the macronutrient potassium (K+ ). Among the multiple K+ carriers, the high-affinity K+ transporters family HAK/KT/KUP is thought to be relevant in mediating opportunistic Cs+ transport. Of the 13 KUP identified in A. thaliana, only HAK5, the major contributor to root K+ acquisition under low K+ supply, has been functionally demonstrated to be involved in Cs+ uptake in planta. In the present study, we showed that accumulation of Cs+ increased by up to 30% in two A. thaliana mutant lines lacking KUP9 and grown under low K+ supply. Since further experiments revealed that Cs+ release from contaminated plants to the external medium is proportionally lower in the two kup9 mutant alleles, we proposed that KUP9 disruption could impair Cs+ efflux. By contrast, K+ status in kup9 mutants is not affected, suggesting that KUP9 disruption does not alter substantially K+ transport in experimental conditions used. The putative primary role of KUP9 in plants is further discussed.
Collapse
Affiliation(s)
- Laure Genies
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
- Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Institute for Radiological Protection and Nuclear Safety (IRSN), Cadarache, France
| | - Ludovic Martin
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| | - Satomi Kanno
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| | - Serge Chiarenza
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| | - Loïc Carasco
- Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Institute for Radiological Protection and Nuclear Safety (IRSN), Cadarache, France
| | - Virginie Camilleri
- Laboratory for Radionuclide Ecotoxicology (LECO), Institute for Radiological Protection and Nuclear Safety (IRSN), Cadarache, France
| | - Alain Vavasseur
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| | - Pascale Henner
- Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Institute for Radiological Protection and Nuclear Safety (IRSN), Cadarache, France
| | - Nathalie Leonhardt
- Aix Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratory of Signaling for the Adaptation to their Environment (SAVE), Saint-Paul-lez-Durance, France
| |
Collapse
|
12
|
John S, Olas JJ, Mueller-Roeber B. Regulation of alternative splicing in response to temperature variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6150-6163. [PMID: 34028544 PMCID: PMC8483784 DOI: 10.1093/jxb/erab232] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Correspondence: or
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
- Correspondence: or
| |
Collapse
|
13
|
Wang X, Chen Y, Jiang S, Xu F, Wang H, Wei Y, Shao X. PpINH1, an invertase inhibitor, interacts with vacuolar invertase PpVIN2 in regulating the chilling tolerance of peach fruit. HORTICULTURE RESEARCH 2020; 7:168. [PMID: 33082974 PMCID: PMC7527553 DOI: 10.1038/s41438-020-00389-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 05/03/2023]
Abstract
Sucrose metabolism, particularly the decomposition of sucrose by invertase, plays a central role in plant responses to cold stress. Invertase inhibitors (INHs) evolved in higher plants as essential regulators of sucrose metabolism. By limiting invertase activity, INHs keep cellular sugar levels elevated, which provides enhanced protection to plants under stress. Our results showed that the expression of PpVIN2, the only vacuolar invertase (VIN) gene in peach fruit sensitive to chilling temperatures, increases significantly during cold storage, while VIN enzyme activity increases more modestly. We also found that peach fruit transiently overexpressing PpINH1 had decreased VIN activity. Interactions of PpINH1 and PpVIN2 with recombinant proteins were shown by yeast two-hybrid assays and bimolecular fluorescence complementation assays, as well as in vitro. During cold storage, trehalose-treated peach fruit had significantly increased PpINH1 expression, decreased VIN enzyme activity, and significantly higher sucrose content than did untreated fruit. As a result, the treated fruit had enhanced resistance to chilling injury. Collectively, our data show that the post-translational repression of VIN enzyme activity by PpINH1 helps maintain sucrose levels in peach fruit during cold storage, thereby improving resistance to chilling injury.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315800 Ningbo, China
| | - Yi Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, 315800 Ningbo, China
| | - Shu Jiang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315800 Ningbo, China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, 315800 Ningbo, China
| | - Hongfei Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315800 Ningbo, China
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, 315800 Ningbo, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, 315800 Ningbo, China
| |
Collapse
|
14
|
Slugina MA, Kochieva EZ, Shchennikova AV. Polymorphism and Phylogeny of the Vacuolar Invertase Inhibitor Gene INH2 Homologs in Solanaceae Species. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Datir SS. Invertase inhibitors in potato: towards a biochemical and molecular understanding of cold-induced sweetening. Crit Rev Food Sci Nutr 2020; 61:3804-3818. [PMID: 32838549 DOI: 10.1080/10408398.2020.1808876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Invertase inhibitors classified as cell wall/apoplastic and vacuolar belonging to the pectin methylesterase family, play a major role in cold-induced sweetening (CIS) process of potato tubers. The CIS process is controlled at the post-translational level via an interaction between invertase (cell wall/apoplastic and vacuolar) by their compartment-specific inhibitors (cell wall/apoplastic and vacuolar). Invertase inhibitors have been cloned, sequenced and functionally characterized from potato cultivars differing in their CIS ability. The secondary structure of the invertase inhibitors consisted of seven alpha-helices and four conserved cysteine residues. The well-conserved three amino acids i.e. Pro-Lys-Phe are known to interact with invertase. Location of the genes encoding cell wall/apoplastic and vacuolar invertase inhibitors on potato chromosome number twelve in a tandem orientation without any intervening genes suggest their divergence into the cell wall and vacuole forms following the event of gene duplication. Under cold storage conditions, the vacuolar invertase inhibitor gene showed developmentally regulated alternative splicing and produce hybrid mRNAs which were the result of mRNA splicing of an upstream region of vacuolar invertase inhibitor gene to a downstream region of the apoplastic invertase inhibitor gene. Transgenic potato tubers overexpressing invertase inhibitors resulted in decreased invertase activity, low reducing sugars and improved processing quality making invertase inhibitors highly potential candidate genes for overcoming CIS. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology offers transgene-free breeding for developing CIS resistant potato cultivars. Moreover, the post-transcriptional regulation of invertase inhibitors during cold storage can be warranted. This review summarizes progress and current knowledge on biochemical and molecular approaches used for the understanding of invertase inhibitors with special reference to key findings in potato.
Collapse
Affiliation(s)
- Sagar S Datir
- Biology Department, Biosciences Complex, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Jiang N, Yu P, Fu W, Li G, Feng B, Chen T, Li H, Tao L, Fu G. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. PLANT, CELL & ENVIRONMENT 2020; 43:1273-1287. [PMID: 31994745 DOI: 10.1111/pce.13733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 05/25/2023]
Abstract
Heat stress impairs both pollen germination and pollen tube elongation, resulting in pollination failure caused by energy imbalance. Invertase plays a critical role in the maintenance of energy homoeostasis; however, few studies investigated this during heat stress. Two rice cultivars with different heat tolerance, namely, TLY83 (heat tolerant) and LLY722 (heat susceptible), were subjected to heat stress. At anthesis, heat stress significantly decreased spikelet fertility, accompanied by notable reductions in pollen germination on stigma and pollen tube elongation in ovule, especially in LLY722. Acid invertase (INV), rather than sucrose synthase, contributed to sucrose metabolism, which explains the different tolerances of both cultivars. Under heat stress, larger enhancements in NAD(H), ATP, and antioxidant capacity were found in TLY83 compared with LLY722, whereas a sharp reduction in poly(ADP-ribose) polymerase (PARP) activity was found in the former compared with the latter. Importantly, exogenous INV, 3-aminobenzamide (a PARP inhibitor), sucrose, glucose, and fructose significantly increased spikelet fertility under heat stress, where INV activity was enhanced and PARP activity was inhibited. Therefore, INV can balance the energy production and consumption to provide sufficient energy for pollen germination and pollen tube growth under heat stress.
Collapse
Affiliation(s)
- Ning Jiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pinghui Yu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
17
|
Datir SS, Yousf S, Sharma S, Kochle M, Ravikumar A, Chugh J. Cold storage reveals distinct metabolic perturbations in processing and non-processing cultivars of potato (Solanum tuberosum L.). Sci Rep 2020; 10:6268. [PMID: 32286457 PMCID: PMC7156394 DOI: 10.1038/s41598-020-63329-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/27/2020] [Indexed: 11/09/2022] Open
Abstract
Cold-induced sweetening (CIS) causes considerable losses to the potato processing industry wherein the selection of potato genotypes using biochemical information has found to be advantageous. Here, 1H NMR spectroscopy was performed to identify metabolic perturbations from tubers of five potato cultivars (Atlantic, Frito Lay-1533, Kufri Jyoti, Kufri Pukhraj, and PU1) differing in their CIS ability and processing characteristics at harvest and after cold storage (4 °C). Thirty-nine water-soluble metabolites were detected wherein significantly affected metabolites after cold storage were categorized into sugars, sugar alcohols, amino acids, and organic acids. Multivariate statistical analysis indicated significant differences in the metabolic profiles among the potato cultivars. Pathway enrichment analysis revealed that carbohydrates, amino acids, and organic acids are the key players in CIS. Interestingly, one of the processing cultivars, FL-1533, exhibited a unique combination of metabolites represented by low levels of glucose, fructose, and asparagine accompanied by high citrate levels. Conversely, non-processing cultivars (Kufri Pukhraj and Kufri Jyoti) showed elevated glucose, fructose, and malate levels. Our results indicate that metabolites such as glucose, fructose, sucrose, asparagine, glutamine, citrate, malate, proline, 4-aminobutyrate can be potentially utilized for the prediction, selection, and development of potato cultivars for long-term storage, nutritional, as well as processing attributes.
Collapse
Affiliation(s)
- Sagar S Datir
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India. .,Biology Department, Biosciences Complex, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Mohit Kochle
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ameeta Ravikumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India. .,Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
18
|
Yang W, Chen S, Cheng Y, Zhang N, Ma Y, Wang W, Tian H, Li Y, Hussain S, Wang S. Cell wall/vacuolar inhibitor of fructosidase 1 regulates ABA response and salt tolerance in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2020; 15:1744293. [PMID: 32213123 PMCID: PMC7194370 DOI: 10.1080/15592324.2020.1744293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
ABA regulates abiotic stress tolerance in plants via activating/repressing gene expression. However, the functions of many ABA response genes remained unknown. C/VIFs are proteinaceous inhibitors of the CWI and VI invertases. We report here the involvement of C/VIF1 in regulating ABA response and salt tolerance in Arabidopsis. We found that the expression level of C/VIF1 was increased in response to ABA treatment. By using CRISPR/Cas9 gene editing, we generated transgene-free c/vif1 mutants. We also generated C/VIF1 overexpression plants by expressing C/VIF1 under the control of the 35S promoter. We examined ABA response of the 35S:C/VIF1 transgenic plants and the c/vif1 mutants by using seed germination and seedling greening assays, and found that the 35S:C/VIF1 transgenic plants showed an enhanced sensitivity to ABA treatment in both assays. On the other hand, the c/vif1 mutants showed slight enhanced tolerance to ABA only at the early stage of germination. We also found that salt tolerance was reduced in the 35S:C/VIF1 transgenic plants in seed germination assays, but slightly increased in the c/vif1 mutants. Taken together, our results suggest that C/VIF1 is an ABA response gene, and C/VIF1 is involved in the regulation of ABA response and salt tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Siyu Chen
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yanxing Ma
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wei Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- College of Life Sciences, Linyi University, Linyi, China
- CONTACT Shucai Wang School of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
19
|
Datir S, Ghosh P. In silico analysis of the structural diversity and interactions between invertases and invertase inhibitors from potato ( Solanum tuberosum L.). 3 Biotech 2020; 10:178. [PMID: 32226707 DOI: 10.1007/s13205-020-02171-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/17/2020] [Indexed: 10/24/2022] Open
Abstract
We performed sequence diversity, phylogenetic profiling, 3D structure modelling and in silico interactions between invertases (cell wall/apoplastic and vacuolar) and invertase inhibitors (cell wall/apoplastic and vacuolar) from potato. Cloning and sequencing of invertase inhibitors was performed from different potato cultivars. The comparison of the protein sequences of the different isoforms of invertases and invertase inhibitors exhibited insertions and deletions as well as the variation in terms of amino acid residues. Furthermore, the phylogenetic tree analysis displayed two groups of invertase inhibitors corresponding to the cell wall/apoplast and vacuole. Using Phyre2 protein homology recognition engine, it revealed that the structure of invertase inhibitors was predominantly α-helical and that of invertase was α helices and β strands. Results of the Ramachandran plots for each structure showed that the percentage of amino acid residues in favoured region and in allowed region. Also, the Z score and QMEAN score indicated overall good, acceptable and reliable models. In silico interactions between different isoforms of invertase and invertase inhibitors suggested that cell wall/ apoplastic invertase inhibitor exhibited stronger interaction with vacuolar invertase compared to the vacuolar invertase inhibitor. In silico interactions provides valuable information in selecting the appropriate combinations of invertase and invertase inhibitor. Therefore, a better understanding of the interactions between specific invertase and invertase inhibitor alleles will be helpful for an intelligent manipulation of the cold-induced sweetening process of potato tubers.
Collapse
|
20
|
Tai HH, Lagüe M, Thomson S, Aurousseau F, Neilson J, Murphy A, Bizimungu B, Davidson C, Deveaux V, Bègue Y, Wang HY, Xiong X, Jacobs JME. Tuber transcriptome profiling of eight potato cultivars with different cold-induced sweetening responses to cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:163-176. [PMID: 31756603 DOI: 10.1016/j.plaphy.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 05/19/2023]
Abstract
Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2-4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada.
| | - Martin Lagüe
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - Frédérique Aurousseau
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Jonathan Neilson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Agnes Murphy
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Benoit Bizimungu
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Charlotte Davidson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Virginie Deveaux
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Yves Bègue
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Hui Ying Wang
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Xingyao Xiong
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| |
Collapse
|
21
|
Filyushin MA, Dyachenko EA, Khatefov EB, Shchennikova AV, Kochieva EZ, Skryabin KG. INVINH1 Gene Alleliс Polymorphism in Maize Accessions from VIR Collection. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Morey SR, Hirose T, Hashida Y, Miyao A, Hirochika H, Ohsugi R, Yamagishi J, Aoki N. Characterisation of a rice vacuolar invertase isoform, OsINV2, for growth and yield-related traits. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:777-785. [PMID: 31043226 DOI: 10.1071/fp18291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
OsINV2, a rice vacuolar invertase isoform, was assessed for its functional roles in plant growth and development with key focus on its agronomic traits such as grain weight, grain filling percentage, grain number and dry weights at various stages until harvest. Lack of differences between the wild-type and the mutants with respect to any of the aforementioned traits tested revealed a possibility of functional compensation of OsINV2 in the mutants conceivably by its isoform. This was confirmed by OsINV2 promoter::GUS studies, where its spatial and temporal expression in the panicle elongation stages showed that although OsINV2 expression was observed from the stage with young panicles ~1 cm in length to the flag leaf stage, significant differences with respect to panicle and spikelet phenotypes between the wild-type and the mutant were not present. However, complement lines displaying an overexpression phenotype of OsINV2 possessed a higher stem non-structural carbohydrate content under both monoculm and normal tillering conditions. A trade-off between the spikelet number and grain weight in the complement lines grown under monoculm conditions was also observed, pointing towards the necessity of OsINV2 regulation for grain yield-related traits.
Collapse
Affiliation(s)
- Shamitha R Morey
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tatsuro Hirose
- Central Region Agricultural Research Center, NARO, 1-2-1 Inada, Joetsu, Niigata, 943-0193, Japan; and Present address: Faculty of Agriculture, Takasaki University of Health and Welfare, 54 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Yoichi Hashida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; and Present address: Faculty of Agriculture, Takasaki University of Health and Welfare, 54 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Akio Miyao
- Advanced Genomics Breeding Section, Institute of Crop Science, NARO, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Hirohiko Hirochika
- Advanced Genomics Breeding Section, Institute of Crop Science, NARO, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Ryu Ohsugi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Junko Yamagishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naohiro Aoki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; and Corresponding author.
| |
Collapse
|
23
|
Datir SS, Mirikar D, RaviKumar A. Sequence diversity and in silico structure prediction of the vacuolar invertase inhibitor gene from potato (Solanum tuberosum L.) cultivars differing in sugar content. Food Chem 2019; 295:403-411. [PMID: 31174775 DOI: 10.1016/j.foodchem.2019.05.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022]
Abstract
The aim of this study was to examine the variations in sugar content and identify the polymorphism in vacuolar invertase inhibitor (INH2) gene from Indian non-processing (Kufri Jyoti, Kufri Pukhraj and PU1) and exotic processing (Atlantic and Frito Lay-1533) potato cultivars. Upon cold storage (4 °C) processing cultivars maintained low reducing sugars as compared to non-processing cultivars. Sequencing of the INH2 gene identified four alleles of which three identified as novel alleles. A total twelve SNPs resulted in silent mutations, with five conferring the amino acid substitutions. Phylogenetic analysis suggests a highly conserved nature of the INH2 gene. The 3D predicted structures generated for all the alleles revealed slight variations in the orientation of the helices (α1-3) in N-terminal region. Sequence polymorphism observed in INH2 alleles in processing and non-processing potato cultivars can be correlated with the observed variations in the sugar content suggesting a possible role in cold-induced sweetening.
Collapse
Affiliation(s)
- Sagar S Datir
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| | - Duhita Mirikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Ameeta RaviKumar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
24
|
Su T, Han M, Min J, Zhou H, Zhang Q, Zhao J, Fang Y. Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2019; 10:1654. [PMID: 31969894 PMCID: PMC6960229 DOI: 10.3389/fpls.2019.01654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) were considered to be essential coordinators in carbohydrate partitioning, sink strength determination, and stress responses. An increasing body of evidence revealed that the tight regulation of CWI and VI substantially depends on the post-translational mechanisms, which were mediated by small proteinaceous inhibitors (C/VIFs, Inhibitor of β-Fructosidases). As yet, the extensive survey of the molecular basis and biochemical property of C/VIFs remains largely unknown in black cottonwood (Populus trichocarpa Torr. & A. Gray), a model species of woody plants. In the present work, we have initiated a systematic review of the genomic structures, phylogenies, cis-regulatory elements, and conserved motifs as well as the tissue-specific expression, resulting in the identification of 39 genes encoding C/VIF in poplar genome. We characterized two putative invertase inhibitors PtC/VIF1 and 2, showing predominant transcript levels in the roots and highly divergent responses to the selected stress cues including fusarium wilt, drought, ABA, wound, and senescence. In silico prediction of the signal peptide hinted us that they both likely had the apoplastic targets. Based on the experimental visualization via the transient and stable transformation assays, we confirmed that PtC/VIF1 and 2 indeed secreted to the extracellular compartments. Further validation of their recombinant enzymes revealed that they displayed the potent inhibitory affinities on the extracted CWI, supporting the patterns that act as the typical apoplastic invertase inhibitors. To our knowledge, it is the first report on molecular characterization of the functional C/VIF proteins in poplar. Our results indicate that PtC/VIF1 and 2 may exert essential roles in defense- and stress-related responses. Moreover, novel findings of the up- and downregulated C/VIF genes and functional enzyme activities enable us to further unravel the molecular mechanisms in the promotion of woody plant performance and adapted-biotic stress, underlying the homeostatic control of sugar in the apoplast.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Mei Han, ;
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Huaiye Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Qi Zhang
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Jingyi Zhao
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
25
|
Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, Tada Y. Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Funct Integr Genomics 2018; 19:13-28. [PMID: 29931612 DOI: 10.1007/s10142-018-0623-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 03/17/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
Aegilops tauschii is the diploid progenitor of the bread wheat D-genome. It originated from Iran and is a source of abiotic stress tolerance genes. However, little is known about the molecular events of salinity tolerance in Ae. tauschii. This study investigates the leaf transcriptional changes associated with long-term salt stress. Total RNA extracted from leaf tissues of control and salt-treated samples was sequenced using the Illumina technology, and more than 98 million high-quality reads were assembled into 255,446 unigenes with an average length of 1398 bp and an N50 of 2269 bp. Functional annotation of the unigenes showed that 93,742 (36.69%) had at least a significant BLAST hit in the SwissProt database, while 174,079 (68.14%) showed significant similarity to proteins in the NCBI nr database. Differential expression analysis identified 4506 salt stress-responsive unigenes. Bioinformatic analysis of the differentially expressed unigenes (DEUs) revealed a number of biological processes and pathways involved in the establishment of ion homeostasis, signaling processes, carbohydrate metabolism, and post-translational modifications. Fine regulation of starch and sucrose content may be important features involved in salt tolerance in Ae. tauschii. Moreover, 82% of DEUs mapped to the D-subgenome, including known QTL for salt tolerance, and these DEUs showed similar salt stress responses in other accessions of Ae. tauschii. These results could provide fundamental insight into the regulatory process underlying salt tolerance in Ae. tauschii and wheat and facilitate identification of genes involved in their salt tolerance mechanisms.
Collapse
Affiliation(s)
- Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Reza Naghavi
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, 31587-11167, Iran.
| | - Hoshang Alizadeh
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, 31587-11167, Iran
| | - Ghasem Mohammadi-Nejad
- Department of Agronomy and plant Breeding, College of Agriculture and Center of Excellence for Abiotic Stress in Cereal Crop, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyed Ahmad Mousavi
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | - Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
26
|
Okeke UG, Akdemir D, Rabbi I, Kulakow P, Jannink JL. Regional Heritability Mapping Provides Insights into Dry Matter Content in African White and Yellow Cassava Populations. THE PLANT GENOME 2018; 11:10.3835/plantgenome2017.06.0050. [PMID: 29505634 PMCID: PMC7822058 DOI: 10.3835/plantgenome2017.06.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 05/21/2023]
Abstract
The HarvestPlus program for cassava ( Crantz) fortifies cassava with β-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. We investigated the genetic control of DM in white and yellow cassava. We used regional heritability mapping (RHM) to associate DM with genomic segments in both subpopulations. Significant segments were subjected to candidate gene analysis and candidates were validated with prediction accuracies. The RHM procedure was validated via a simulation approach and revealed significant hits for white cassava on chromosomes 1, 4, 5, 10, 17, and 18, whereas hits for the yellow were on chromosome 1. Candidate gene analysis revealed genes in the carbohydrate biosynthesis pathway including plant serine-threonine protein kinases (SnRKs), UDP (uridine diphosphate)-glycosyltransferases, UDP-sugar transporters, invertases, pectinases, and regulons. Validation using 1252 unique identifiers from the SnRK gene family genome-wide recovered 50% of the predictive accuracy of whole-genome single nucleotide polymorphisms for DM, whereas validation using 53 likely genes (extracted from the literature) from significant segments recovered 32%. Genes including an acid invertase, a neutral or alkaline invertase, and a glucose-6-phosphate isomerase were validated on the basis of an a priori list for the cassava starch pathway, and also a fructose-biphosphate aldolase from the Calvin cycle pathway. The power of the RHM procedure was estimated as 47% when the causal quantitative trait loci generated 10% of the phenotypic variance (sample size = 451). Cassava DM genetics are complex and RHM may be useful for complex traits.
Collapse
Affiliation(s)
- Uche Godfrey Okeke
- Section of Plant Breeding and Genetics, School of Integrative
Plant Sci., College of Agriculture and Life Sci., Cornell Univ., 14853, Ithaca,
NY
| | - Deniz Akdemir
- Section of Plant Breeding and Genetics, School of Integrative
Plant Sci., College of Agriculture and Life Sci., Cornell Univ., 14853, Ithaca,
NY
- current address, Statgen Consulting, Ithaca, NY 14850
| | | | | | - Jean-Luc Jannink
- Section of Plant Breeding and Genetics, School of Integrative
Plant Sci., College of Agriculture and Life Sci., Cornell Univ., 14853, Ithaca,
NY
- USDAARS, Robert W. Holley Centre for Agriculture and Health, Tower
Road, Ithaca, NY 14853
| |
Collapse
|
27
|
Shivalingamurthy SG, Anangi R, Kalaipandian S, Glassop D, King GF, Rae AL. Identification and Functional Characterization of Sugarcane Invertase Inhibitor ( ShINH1): A Potential Candidate for Reducing Pre- and Post-harvest Loss of Sucrose in Sugarcane. FRONTIERS IN PLANT SCIENCE 2018; 9:598. [PMID: 29774044 PMCID: PMC5944049 DOI: 10.3389/fpls.2018.00598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/16/2018] [Indexed: 05/19/2023]
Abstract
In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH) proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa) members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1-GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM), making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement of sugar yield and recovery in sugarcane.
Collapse
Affiliation(s)
| | - Raveendra Anangi
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | | | - Donna Glassop
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Glenn F. King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Anne L. Rae
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
- *Correspondence: Anne L. Rae
| |
Collapse
|
28
|
Xu XX, Hu Q, Yang WN, Jin Y. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato. BMC PLANT BIOLOGY 2017; 17:195. [PMID: 29121866 PMCID: PMC5679139 DOI: 10.1186/s12870-017-1145-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/31/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Hexoses are important metabolic signals that respond to abiotic and biotic stresses. Cold stress adversely affects plant growth and development, limiting productivity. The mechanism by which sugars regulate plant cold tolerance remains elusive. RESULTS We examined the function of INVINH1, a cell wall invertase inhibitor, in tomato chilling tolerance. Cold stress suppressed the transcription of INVINH1 and increased that of cell wall invertase genes, Lin6 and Lin8 in tomato seedlings. Silencing INVINH1 expression in tomato increased cell wall invertase activity and enhanced chilling tolerance. Conversely, transgenic tomatoes over-expressing INVINH1 showed reduced cell wall invertase activity and were more sensitive to cold stress. Chilling stress increased glucose and fructose levels, and the hexoses content increased or decreased by silencing or overexpression INVINH1. Glucose applied in vitro masked the differences in chilling tolerance of tomato caused by the different expressions of INVINH1. The repression of INVINH1 or glucose applied in vitro regulated the expression of C-repeat binding factors (CBFs) genes. Transcript levels of NCED1, which encodes 9-cisepoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of abscisic acid, were suppressed by INVINH1 after exposure to chilling stress. Meanwhile, application of ABA protected plant from chilling damage caused by the different expression of INVINH1. CONCLUSIONS In tomato, INVINH1 plays an important role in chilling tolerance by adjusting the content of glucose and expression of CBFs.
Collapse
Affiliation(s)
- Xiao-xia Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 People’s Republic of China
| | - Qin Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 People’s Republic of China
| | - Wan-nian Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 People’s Republic of China
| | - Ye Jin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 People’s Republic of China
| |
Collapse
|
29
|
Herman DJ, Knowles LO, Knowles NR. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.). PLANTA 2017; 245:563-582. [PMID: 27904974 DOI: 10.1007/s00425-016-2626-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/23/2016] [Indexed: 05/14/2023]
Abstract
Tolerance to heat stress for retention of low-temperature sweetening-resistant phenotype in potato is conferred by insensitivity of acid invertase activity to cold induction. Heat stress exacerbated cold sweetening (buildup of reducing sugars) of the LTS (low-temperature sweetening)-susceptible potato (Solanum tuberosum L.) cultivars, Ranger Russet and Russet Burbank, and completely abolished the resistance to cold sweetening in the LTS-resistant cultivars/clones, Sage Russet, GemStar Russet, POR06V12-3 and A02138-2. Payette Russet and EGA09702-2, however, demonstrated considerable tolerance to heat stress for retention of their LTS-resistant phenotype. Heat-primed Payette Russet and EGA09702-2 tubers accumulated fourfold more sucrose when subsequently stored at 4 °C, while reducing sugar concentrations also increased marginally but remained low relative to the non-heat-tolerant LTS-resistant clones, resulting in light-colored fries. By contrast, sucrose concentrations in heat-primed tubers of the non-heat-tolerant clones remained unchanged during LTS, but reducing sugars increased fivefold, resulting in darkening of processed fries. Acid invertase activity increased in the LTS-susceptible and non-heat-tolerant LTS-resistant cultivars/clones during cold storage. However, Payette Russet tubers maintained very low invertase activity regardless of heat stress and cold storage treatments, as was the case for Innate® Russet Burbank (W8) tubers, where silenced invertase conferred robust tolerance to heat stress for retention of LTS-resistant phenotype. Importantly, heat-stressed tubers of Payette Russet, EGA09702-2 and Innate® Russet Burbank (W8) demonstrated similar low reducing sugar and high sucrose-accumulating phenotypes when stored at 4 °C. Tolerance to heat stress for retention of LTS-resistant phenotype in Payette Russet and likely its maternal parent, EGA09702-2, is, therefore, conferred by the ability to maintain low invertase activity during cold storage of heat-stressed tubers.
Collapse
Affiliation(s)
- Derek J Herman
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA
| | - Lisa O Knowles
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA
| | - N Richard Knowles
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA.
| |
Collapse
|
30
|
Liu X, Shi W, Yin W, Wang J. Distinct cold responsiveness of a StInvInh2 gene promoter in transgenic potato tubers with contrasting resistance to cold-induced sweetening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:77-84. [PMID: 27915175 DOI: 10.1016/j.plaphy.2016.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/18/2016] [Accepted: 11/26/2016] [Indexed: 05/19/2023]
Abstract
Potato (Solanum tuberosum L.) vacuolar invertase (β-fructofuranosidase; EC 3.2.1.26) inhibitor 2 (StInvInh2) plays an important role in cold-induced sweetening (CIS) of potato tubers. The transcript levels of StInvInh2 were increased by prolonged cold in potato tubers with CIS-resistance but decreased in potato tubers with CIS-sensitivity. However, the transcript regulation mechanisms of StInvInh2 responding to prolonged cold are largely unclear in CIS-resistant and CIS-sensitive genotypes. In the present study, the 5'-flanking sequence of the StInvInh2 was cloned, and cis-acting elements were predicted. No informative differences in StInvInh2 promoter structure between resistant and sensitive-CIS potato genotypes were observed. Histochemical assay showed that the promoter of StInvInh2 mainly governed β-glucuronidase (GUS) expression in potato microtubers. Quantitative analysis of GUS expression suggested that StInvInh2 promoter activity was enhanced by prolonged cold in CIS-resistant genotype tubers but suppressed in CIS-sensitive tubers. These findings provide essential information regarding transcriptional regulatory mechanisms of StInvInh2 in cold-stored tubers contrasting CIS capacity.
Collapse
Affiliation(s)
- Xun Liu
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China.
| | - Weiling Shi
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China
| | - Wang Yin
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China
| | - Jichun Wang
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China.
| |
Collapse
|
31
|
Tang X, Su T, Han M, Wei L, Wang W, Yu Z, Xue Y, Wei H, Du Y, Greiner S, Rausch T, Liu L. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:469-482. [PMID: 28204559 PMCID: PMC5441900 DOI: 10.1093/jxb/erw425] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cell wall invertase (CWI) and vacuolar invertase (VI) play multiple functions in plant growth. As well as depending on transcriptional and post-transcriptional regulation, there is growing evidence that CWI and VI are also subject to post-translational control by small inhibitory proteins. Despite the significance of this, genes encoding inhibitors, their molecular and biochemical properties, and their potential roles in regulating seed production have not been well documented in soybean (Glycine max). In this study, two invertase inhibitor isoforms, GmCIF1 and GmC/VIF2, were characterized to possess inhibitory activities in vitro via heterologous expression. Transcript analyses showed that they were predominantly expressed in developing seeds and in response to ABA. In accordance with this, surveys of primary targets showed subcellular localizations to the apoplast in tobacco epidermis after expressing YFP-fusion constructs. Investigations using RNAi transgenic plants demonstrated marked elevations of CWI activities and improvements in seed weight in conjunction with higher accumulations of hexoses, starch, and protein in mature seeds. Further co-expression analyses of GmCIF1 with several putative CWI genes corroborated the notion that GmCIF1 modulation of CWI that affects seed weight is mainly contingent on post-translational mechanisms. Overall, the results suggest that post-translational elevation of CWI by silencing of GmCIF1 expression orchestrates the process of seed maturation through fine-tuning sucrose metabolism and sink strength.
Collapse
Affiliation(s)
- Xiaofei Tang
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Lai Wei
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Weiwei Wang
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Zhiyuan Yu
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Yongguo Xue
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Yejie Du
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Lijun Liu
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
32
|
Zhang H, Hou J, Liu J, Zhang J, Song B, Xie C. The roles of starch metabolic pathways in the cold-induced sweetening process in potatoes. STARCH-STARKE 2016. [DOI: 10.1002/star.201600194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Huiling Zhang
- College of Forestry; Henan University of Science and Technology; Luoyang P.R. China
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| | - Juan Hou
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| | - Jun Liu
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| | - Juping Zhang
- College of Forestry; Henan University of Science and Technology; Luoyang P.R. China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| | - Conghua Xie
- Key Laboratory of Horticultural Plant Biology (HAU); Ministry of Education, National Centre for Vegetable Improvement (Central China); Huazhong Agricultural University; Wuhan P.R. China
| |
Collapse
|
33
|
Qin G, Zhu Z, Wang W, Cai J, Chen Y, Li L, Tian S. A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening. PLANT PHYSIOLOGY 2016; 172:1596-1611. [PMID: 27694342 PMCID: PMC5100769 DOI: 10.1104/pp.16.01269] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 05/19/2023]
Abstract
Fruit ripening is a complex process that involves a series of physiological and biochemical changes that ultimately influence fruit quality traits, such as color and flavor. Sugar metabolism is an important factor in ripening, and there is evidence that it influences various aspects of ripening, although the associated mechanism is not well understood. In this study, we identified and analyzed the expression of 36 genes involved in Suc metabolism in ripening tomato (Solanum lycopersicum) fruit. Chromatin immunoprecipitation and gel mobility shift assays indicated that SlVIF, which encodes a vacuolar invertase inhibitor, and SlVI, encoding a vacuolar invertase, are directly regulated by the global fruit ripening regulator RIPENING INHIBITOR (RIN). Moreover, we showed that SlVIF physically interacts with SlVI to control Suc metabolism. Repression of SlVIF by RNA interference delayed tomato fruit ripening, while overexpression of SlVIF accelerated ripening, with concomitant changes in lycopene production and ethylene biosynthesis. An isobaric tags for relative and absolute quantification-based quantitative proteomic analysis further indicated that the abundance of a set of proteins involved in fruit ripening was altered by suppressing SlVIF expression, including proteins associated with lycopene generation and ethylene synthesis. These findings provide evidence for the role of Suc in promoting fruit ripening and establish that SlVIF contributes to fruit quality and the RIN-mediated ripening regulatory mechanisms, which are of significant agricultural value.
Collapse
Affiliation(s)
- Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian District, Beijing 100093, China (G.Q., Z.Z., W.W., J.C., Y.C., S.T.)
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China (W.W., J.C., Y.C., S.T.); and
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853 (L.L.)
| | - Zhu Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian District, Beijing 100093, China (G.Q., Z.Z., W.W., J.C., Y.C., S.T.)
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China (W.W., J.C., Y.C., S.T.); and
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853 (L.L.)
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian District, Beijing 100093, China (G.Q., Z.Z., W.W., J.C., Y.C., S.T.)
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China (W.W., J.C., Y.C., S.T.); and
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853 (L.L.)
| | - Jianghua Cai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian District, Beijing 100093, China (G.Q., Z.Z., W.W., J.C., Y.C., S.T.)
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China (W.W., J.C., Y.C., S.T.); and
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853 (L.L.)
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian District, Beijing 100093, China (G.Q., Z.Z., W.W., J.C., Y.C., S.T.)
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China (W.W., J.C., Y.C., S.T.); and
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853 (L.L.)
| | - Li Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian District, Beijing 100093, China (G.Q., Z.Z., W.W., J.C., Y.C., S.T.)
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China (W.W., J.C., Y.C., S.T.); and
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853 (L.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian District, Beijing 100093, China (G.Q., Z.Z., W.W., J.C., Y.C., S.T.);
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China (W.W., J.C., Y.C., S.T.); and
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853 (L.L.)
| |
Collapse
|
34
|
Leskow CC, Kamenetzky L, Dominguez PG, Díaz Zirpolo JA, Obata T, Costa H, Martí M, Taboga O, Keurentjes J, Sulpice R, Ishihara H, Stitt M, Fernie AR, Carrari F. Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4091-103. [PMID: 27194734 DOI: 10.1093/jxb/erw185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Improving carbon fixation in order to enhance crop yield is a major goal in plant sciences. By quantitative trait locus (QTL) mapping, it has been demonstrated that a vacuolar invertase (vac-Inv) plays a key role in determining the radical length in Arabidopsis. In this model, variation in vac-Inv activity was detected in a near isogenic line (NIL) population derived from a cross between two divergent accessions: Landsberg erecta (Ler) and Cape Verde Island (CVI), with the CVI allele conferring both higher Inv activity and longer radicles. The aim of the current work is to understand the mechanism(s) underlying this QTL by analyzing structural and functional differences of vac-Inv from both accessions. Relative transcript abundance analyzed by quantitative real-time PCR (qRT-PCR) showed similar expression patterns in both accessions; however, DNA sequence analyses revealed several polymorphisms that lead to changes in the corresponding protein sequence. Moreover, activity assays revealed higher vac-Inv activity in genotypes carrying the CVI allele than in those carrying the Ler allele. Analyses of purified recombinant proteins showed a similar K m for both alleles and a slightly higher V max for that of Ler. Treatment of plant extracts with foaming to release possible interacting Inv inhibitory protein(s) led to a large increase in activity for the Ler allele, but no changes for genotypes carrying the CVI allele. qRT-PCR analyses of two vac-Inv inhibitors in seedlings from parental and NIL genotypes revealed different expression patterns. Taken together, these results demonstrate that the vac-Inv QTL affects root biomass accumulation and also carbon partitioning through a differential regulation of vac-Inv inhibitors at the mRNA level.
Collapse
Affiliation(s)
- Carla Coluccio Leskow
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | - Laura Kamenetzky
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | - Pia Guadalupe Dominguez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | - José Antonio Díaz Zirpolo
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | - Toshihiro Obata
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Hernán Costa
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, (6700) Luján, Argentina
| | - Marcelo Martí
- Departamento de Química Biológica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| | | | - Ronan Sulpice
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Hirofumi Ishihara
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair Robert Fernie
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina
| |
Collapse
|
35
|
Involvement of Alternative Splicing in Barley Seed Germination. PLoS One 2016; 11:e0152824. [PMID: 27031341 PMCID: PMC4816419 DOI: 10.1371/journal.pone.0152824] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 11/19/2022] Open
Abstract
Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination.
Collapse
|
36
|
Su T, Wolf S, Han M, Zhao H, Wei H, Greiner S, Rausch T. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth. PLANT MOLECULAR BIOLOGY 2016; 90:137-55. [PMID: 26546341 DOI: 10.1007/s11103-015-0402-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/30/2015] [Indexed: 05/19/2023]
Abstract
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.
Collapse
Affiliation(s)
- Tao Su
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Sebastian Wolf
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Mei Han
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| |
Collapse
|
37
|
ZHANG N, JIANG J, YANG YL, WANG ZH. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit. J Zhejiang Univ Sci B 2015; 16:845-56. [PMID: 26465132 PMCID: PMC4609536 DOI: 10.1631/jzus.b1400319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/08/2015] [Indexed: 11/11/2022]
Abstract
In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato.
Collapse
Affiliation(s)
- Ning ZHANG
- Key Laboratory of Protected Horticulture, Ministry of Education, College of Horticulture,Shenyang Agricultural University, Shenyang 110866, China
| | | | | | | |
Collapse
|
38
|
Galani Yamdeu JH, Gupta PH, Patel NJ, Shah AK, Talati JG. Effect of Storage Temperature on Carbohydrate Metabolism and Development of Cold-Induced Sweetening in Indian Potato (S
olanum Tuberosum
L.) Varieties. J Food Biochem 2015. [DOI: 10.1111/jfbc.12190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph Hubert Galani Yamdeu
- Department of Agriculture and Veterinary Medicine; Université des Montagnes; PO Box 208 Bangangté Cameroon
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| | - Pooja H. Gupta
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| | - Nilesh J. Patel
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| | - Avadh K. Shah
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| | - Jayant G. Talati
- Department of Biochemistry; B.A. College of Agriculture; Anand Agricultural University; Anand India
| |
Collapse
|
39
|
Wiberley-Bradford AE, Busse JS, Jiang J, Bethke PC. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC Res Notes 2014; 7:801. [PMID: 25399251 PMCID: PMC4239387 DOI: 10.1186/1756-0500-7-801] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/24/2014] [Indexed: 11/15/2022] Open
Abstract
Background Storing potato tubers at low temperatures minimizes sprouting and disease but can cause an accumulation of reducing sugars in a process called cold-induced sweetening. Tubers with increased amounts of reducing sugars produce dark-colored, bitter-tasting fried products with elevated amounts of acrylamide, a possible carcinogen. Vacuolar invertase (VInv), which converts sucrose produced by starch breakdown to glucose and fructose, is the key determinant of reducing sugar accumulation during cold-induced sweetening. In this study, wild-type tubers and tubers in which VInv expression was reduced by RNA interference were used to investigate time- and temperature-dependent changes in sugar contents, chip color, and expression of VInv and other genes involved in starch metabolism in tubers during long-term cold storage. Results VInv activities and tuber reducing sugar contents were much lower, and tuber sucrose contents were much higher, in transgenic than in wild-type tubers stored at 3-9°C for up to eight months. Large differences in VInv mRNA accumulation were not observed at later times in storage, especially at temperatures below 9°C, so differences in invertase activity were likely established early in the storage period and maintained by stability of the invertase protein. Sugar contents, chip color, and expression of several of the studied genes, including AGPase and GBSS, were affected by storage temperature in both wild-type and transgenic tubers. Though transcript accumulation for other sugar-metabolism genes was affected by storage temperature and duration, it was essentially unaffected by invertase silencing and altered sugar contents. Differences in stem- and bud-end sugar contents in wild-type and transgenic tubers suggested different compartmentalization of sucrose at the two ends of stored tubers. Conclusions VInv silencing significantly reduced cold-induced sweetening in stored potato tubers, likely by means of differential VInv expression early in storage. Transgenic tubers retained sensitivity to storage temperature, and accumulated greater amounts of sucrose, glucose and fructose at 3°C than at 7-9°C. At each storage temperature, suppression of VInv expression and large differences in tuber sugar contents had no effect on expression of AGPase and GBSS, genes involved in starch metabolism, suggesting that transcription of these genes is not regulated by tuber sugar content.
Collapse
Affiliation(s)
| | | | | | - Paul C Bethke
- United States Department of Agriculture - Agricultural Research Service, Vegetable Crops Research Unit, 1575 Linden Dr,, Madison, WI 53706, USA.
| |
Collapse
|
40
|
Zommick DH, Knowles LO, Pavek MJ, Knowles NR. In-season heat stress compromises postharvest quality and low-temperature sweetening resistance in potato (Solanum tuberosum L.). PLANTA 2014; 239:1243-1263. [PMID: 24615233 DOI: 10.1007/s00425-014-2048-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
The effects of soil temperature during tuber development on physiological processes affecting retention of postharvest quality in low-temperature sweetening (LTS) resistant and susceptible potato cultivars were investigated. 'Premier Russet' (LTS resistant), AO02183-2 (LTS resistant) and 'Ranger Russet' (LTS susceptible) tubers were grown at 16 (ambient), 23 and 29 °C during bulking (111-164 DAP) and maturation (151-180 DAP). Bulking at 29 °C virtually eliminated yield despite vigorous vine growth. Tuber specific gravity decreased as soil temperature increased during bulking, but was not affected by temperature during maturation. Bulking at 23 °C and maturation at 29 °C induced higher reducing sugar levels in the proximal (basal) ends of tubers, resulting in non-uniform fry color at harvest, and abolished the LTS-resistant phenotype of 'Premier Russet' tubers. AO02183-2 tubers were more tolerant of heat for retention of LTS resistance. Higher bulking and maturation temperatures also accelerated LTS and loss of process quality of 'Ranger Russet' tubers, consistent with increased invertase and lower invertase inhibitor activities. During LTS, tuber respiration fell rapidly to a minimum as temperature decreased from 9 to 4 °C, followed by an increase to a maximum as tubers acclimated to 4 °C; respiration then declined over the remaining storage period. The magnitude of this cold-induced acclimation response correlated directly with the extent of buildup in sugars over the 24-day LTS period and thus reflected the effects of in-season heat stress on propensity of tubers to sweeten and lose process quality at 4 °C. While morphologically indistinguishable from control tubers, tubers grown at elevated temperature had different basal metabolic (respiration) rates at harvest and during cold acclimation, reduced dormancy during storage, greater increases in sucrose and reducing sugars and associated loss of process quality during LTS, and reduced ability to improve process quality through reconditioning. Breeding for retention of postharvest quality and LTS resistance should consider strategies for incorporating more robust tolerance to in-season heat stress.
Collapse
Affiliation(s)
- Daniel H Zommick
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA
| | | | | | | |
Collapse
|
41
|
Li Q, Xiao G, Zhu YX. Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns. MOLECULAR PLANT 2014; 7:829-40. [PMID: 24398628 DOI: 10.1093/mp/sst175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alternative splicing (AS) is a vital genetic mechanism that enhances the diversity of eukaryotic transcriptomes. Here, we generated 8.3 Gb high-quality RNA-sequencing data from cotton (Gossypium raimondii) and performed a systematic, comparative analysis of AS events. We mapped 85% of the RNA-sequencing data onto the reference genome and identified 154368 splice junctions with 16437 as events in 10197 genes. Intron retention constituted the majority (40%) of all AS events in G. raimondii. Comparison across 11 eukaryote species showed that intron retention is the most common AS type in higher plants. Although transposable elements (TEs) were found in only 2.9% of all G. raimondii introns, they are present in 43% of the retained introns, suggesting that TE-insertion may be an important mechanism for intron retention during AS. The majority of the TE insertions are concentrated 0-40 nt upstream of the 3'-splice site, substantially altering the distribution of branch points from preferred positions and reducing the efficiency of intron splicing by decreasing RNA secondary structure flexibility. Our data suggest that TE-insertion-induced changes in branch point-site distribution are important for intron retention-type AS. Our findings may help explain the vast differences in intron-retention frequencies between vertebrates and higher plants.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
42
|
Functional characterization of a vacuolar invertase from Solanum lycopersicum: post-translational regulation by N-glycosylation and a proteinaceous inhibitor. Biochimie 2013; 101:39-49. [PMID: 24374160 DOI: 10.1016/j.biochi.2013.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022]
Abstract
Plant vacuolar invertases, which belong to family 32 of glycoside hydrolases (GH32), are key enzymes in sugar metabolism. They hydrolyse sucrose into glucose and fructose. The cDNA encoding a vacuolar invertase from Solanum lycopersicum (TIV-1) was cloned and heterologously expressed in Pichia pastoris. The functional role of four N-glycosylation sites in TIV-1 has been investigated by site-directed mutagenesis. Single mutations to Asp of residues Asn52, Asn119 and Asn184, as well as the triple mutant (Asn52, Asn119 and Asn184), lead to enzymes with reduced specific invertase activity and thermostability. Expression of the N516D mutant, as well as of the quadruple mutant (N52D, N119D, N184D and N516D) could not be detected, indicating that these mutations dramatically affected the folding of the protein. Our data indicate that N-glycosylation is important for TIV-1 activity and that glycosylation of N516 is crucial for recombinant enzyme stability. Using a functional genomics approach a new vacuolar invertase inhibitor of S. lycopersicum (SolyVIF) has been identified. SolyVIF cDNA was cloned and heterologously expressed in Escherichia coli. Specific interactions between SolyVIF and TIV-1 were investigated by an enzymatic approach and surface plasmon resonance (SPR). Finally, qRT-PCR analysis of TIV-1 and SolyVIF transcript levels showed a specific tissue and developmental expression. TIV-1 was mainly expressed in flowers and both genes were expressed in senescent leaves.
Collapse
|
43
|
Lin Y, Liu J, Liu X, Ou Y, Li M, Zhang H, Song B, Xie C. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:237-44. [PMID: 24161651 DOI: 10.1016/j.plaphy.2013.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/18/2013] [Indexed: 05/19/2023]
Abstract
The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated.
Collapse
Affiliation(s)
- Yuan Lin
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China; Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, People's Republic of China; Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zommick DH, Kumar GNM, Knowles LO, Knowles NR. Translucent tissue defect in potato (Solanum tuberosum L.) tubers is associated with oxidative stress accompanying an accelerated aging phenotype. PLANTA 2013; 238:1125-1145. [PMID: 24037414 DOI: 10.1007/s00425-013-1951-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Translucent tissue defect (TTD) is an undesirable postharvest disorder of potato tubers characterized by the development of random pockets of semi-transparent tissue containing high concentrations of reducing sugars. Translucent areas turn dark during frying due to the Maillard reaction. The newly released cultivar, Premier Russet, is highly resistant to low temperature sweetening, but susceptible to TTD. Symptoms appeared as early as 170 days after harvest and worsened with time in storage (4-9 °C, 95 % RH). In addition to higher concentrations of glucose, fructose and sucrose, TTD resulted in lower dry matter, higher specific activities of starch phosphorylase and glc-6-phosphate dehydrogenase, higher protease activity, loss of protein, and increased concentrations of free amino acids (esp. asparagine and glutamine). The mechanism of TTD is unknown; however, the disorder has similarities with the irreversible senescent sweetening that occurs in tubers during long-term storage, where much of the decline in quality is a consequence of progressive increases in oxidative stress with advancing age. The respiration rate of non-TTD 'Premier Russet' tubers was inherently higher (ca. 40 %) than that of 'Russet Burbank' tubers (a non-TTD cultivar). Moreover, translucent tissue from 'Premier Russet' tubers had a 1.9-fold higher respiration rate than the average of non-translucent tissue and tissue from non-TTD tubers. Peroxidation of membrane lipids during TTD development resulted in increased levels of malondialdehyde and likely contributed to a measurable increase in membrane permeability. Superoxide dismutase and catalase activities and the ratio of oxidized to total glutathione were substantially higher in translucent tissue. TTD tubers also contained twofold less ascorbate than non-TTD tubers. TTD appears to be a consequence of oxidative stress associated with accelerated aging of 'Premier Russet' tubers.
Collapse
Affiliation(s)
- Daniel H Zommick
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA
| | - G N Mohan Kumar
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA
| | - Lisa O Knowles
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA
| | - N Richard Knowles
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA.
| |
Collapse
|
45
|
Aghamirzaie D, Nabiyouni M, Fang Y, Klumas C, Heath LS, Grene R, Collakova E. Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos. BIOLOGY 2013; 2:1311-37. [PMID: 24833227 PMCID: PMC4009788 DOI: 10.3390/biology2041311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 12/17/2022]
Abstract
Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.
Collapse
Affiliation(s)
- Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Mahdi Nabiyouni
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Yihui Fang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Curtis Klumas
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
46
|
Staiger D, Brown JWS. Alternative splicing at the intersection of biological timing, development, and stress responses. THE PLANT CELL 2013. [PMID: 24179132 DOI: 10.1105/tcp.113.117523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
High-throughput sequencing for transcript profiling in plants has revealed that alternative splicing (AS) affects a much higher proportion of the transcriptome than was previously assumed. AS is involved in most plant processes and is particularly prevalent in plants exposed to environmental stress. The identification of mutations in predicted splicing factors and spliceosomal proteins that affect cell fate, the circadian clock, plant defense, and tolerance/sensitivity to abiotic stress all point to a fundamental role of splicing/AS in plant growth, development, and responses to external cues. Splicing factors affect the AS of multiple downstream target genes, thereby transferring signals to alter gene expression via splicing factor/AS networks. The last two to three years have seen an ever-increasing number of examples of functional AS. At a time when the identification of AS in individual genes and at a global level is exploding, this review aims to bring together such examples to illustrate the extent and importance of AS, which are not always obvious from individual publications. It also aims to ensure that plant scientists are aware that AS is likely to occur in the genes that they study and that dynamic changes in AS and its consequences need to be considered routinely.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D33615 Bielefeld, Germany
| | | |
Collapse
|
47
|
Staiger D, Brown JW. Alternative splicing at the intersection of biological timing, development, and stress responses. THE PLANT CELL 2013; 25:3640-56. [PMID: 24179132 PMCID: PMC3877812 DOI: 10.1105/tpc.113.113803] [Citation(s) in RCA: 459] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/15/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
High-throughput sequencing for transcript profiling in plants has revealed that alternative splicing (AS) affects a much higher proportion of the transcriptome than was previously assumed. AS is involved in most plant processes and is particularly prevalent in plants exposed to environmental stress. The identification of mutations in predicted splicing factors and spliceosomal proteins that affect cell fate, the circadian clock, plant defense, and tolerance/sensitivity to abiotic stress all point to a fundamental role of splicing/AS in plant growth, development, and responses to external cues. Splicing factors affect the AS of multiple downstream target genes, thereby transferring signals to alter gene expression via splicing factor/AS networks. The last two to three years have seen an ever-increasing number of examples of functional AS. At a time when the identification of AS in individual genes and at a global level is exploding, this review aims to bring together such examples to illustrate the extent and importance of AS, which are not always obvious from individual publications. It also aims to ensure that plant scientists are aware that AS is likely to occur in the genes that they study and that dynamic changes in AS and its consequences need to be considered routinely.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D33615 Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, D33615 Bielefeld, Germany
| | - John W.S. Brown
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie DD2 5DA, Scotland, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, Scotland, United Kingdom
- Address correspondence to
| |
Collapse
|
48
|
Fischer M, Schreiber L, Colby T, Kuckenberg M, Tacke E, Hofferbert HR, Schmidt J, Gebhardt C. Novel candidate genes influencing natural variation in potato tuber cold sweetening identified by comparative proteomics and association mapping. BMC PLANT BIOLOGY 2013; 13:113. [PMID: 23919263 PMCID: PMC3750364 DOI: 10.1186/1471-2229-13-113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/02/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Higher plants evolved various strategies to adapt to chilling conditions. Among other transcriptional and metabolic responses to cold temperatures plants accumulate a range of solutes including sugars. The accumulation of the reducing sugars glucose and fructose in mature potato tubers during exposure to cold temperatures is referred to as cold induced sweetening (CIS). The molecular basis of CIS in potato tubers is of interest not only in basic research on plant adaptation to environmental stress but also in applied research, since high amounts of reducing sugars affect negatively the quality of processed food products such as potato chips. CIS-tolerance varies considerably among potato cultivars. Our objective was to identify by an unbiased approach genes and cellular processes influencing natural variation of tuber sugar content before and during cold storage in potato cultivars used in breeding programs. We compared by two-dimensional polyacrylamide gel electrophoresis the tuber proteomes of cultivars highly diverse for CIS. DNA polymorphisms in genomic sequences encoding differentially expressed proteins were tested for association with tuber starch content, starch yield and processing quality. RESULTS Pronounced natural variation of CIS was detected in tubers of a population of 40 tetraploid potato cultivars. Significant differences in protein expression were detected between CIS-tolerant and CIS-sensitive cultivars before the onset as well as during cold storage. Identifiable differential proteins corresponded to protease inhibitors, patatins, heat shock proteins, lipoxygenase, phospholipase A1 and leucine aminopeptidase (Lap). Association mapping based on single nucleotide polymorphisms supported a role of Lap in the natural variation of the quantitative traits tuber starch and sugar content. CONCLUSIONS The combination of comparative proteomics and association genetics led to the discovery of novel candidate genes for influencing the natural variation of quantitative traits in potato tubers. One such gene was a leucine aminopeptidase not considered so far to play a role in starch sugar interconversion. Novel SNP's diagnostic for increased tuber starch content, starch yield and chip quality were identified, which are useful for selecting improved potato processing cultivars.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Lena Schreiber
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas Colby
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Cologne, Germany
| | - Markus Kuckenberg
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Eckhard Tacke
- BIOPLANT, Biotechnologisches Forschungslabor GmbH, Cologne, Germany
| | | | - Jürgen Schmidt
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Cologne, Germany
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
49
|
Fischer M, Schreiber L, Colby T, Kuckenberg M, Tacke E, Hofferbert HR, Schmidt J, Gebhardt C. Novel candidate genes influencing natural variation in potato tuber cold sweetening identified by comparative proteomics and association mapping. BMC PLANT BIOLOGY 2013; 13:113. [PMID: 23919263 DOI: 10.1186/1471-222913-113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/02/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Higher plants evolved various strategies to adapt to chilling conditions. Among other transcriptional and metabolic responses to cold temperatures plants accumulate a range of solutes including sugars. The accumulation of the reducing sugars glucose and fructose in mature potato tubers during exposure to cold temperatures is referred to as cold induced sweetening (CIS). The molecular basis of CIS in potato tubers is of interest not only in basic research on plant adaptation to environmental stress but also in applied research, since high amounts of reducing sugars affect negatively the quality of processed food products such as potato chips. CIS-tolerance varies considerably among potato cultivars. Our objective was to identify by an unbiased approach genes and cellular processes influencing natural variation of tuber sugar content before and during cold storage in potato cultivars used in breeding programs. We compared by two-dimensional polyacrylamide gel electrophoresis the tuber proteomes of cultivars highly diverse for CIS. DNA polymorphisms in genomic sequences encoding differentially expressed proteins were tested for association with tuber starch content, starch yield and processing quality. RESULTS Pronounced natural variation of CIS was detected in tubers of a population of 40 tetraploid potato cultivars. Significant differences in protein expression were detected between CIS-tolerant and CIS-sensitive cultivars before the onset as well as during cold storage. Identifiable differential proteins corresponded to protease inhibitors, patatins, heat shock proteins, lipoxygenase, phospholipase A1 and leucine aminopeptidase (Lap). Association mapping based on single nucleotide polymorphisms supported a role of Lap in the natural variation of the quantitative traits tuber starch and sugar content. CONCLUSIONS The combination of comparative proteomics and association genetics led to the discovery of novel candidate genes for influencing the natural variation of quantitative traits in potato tubers. One such gene was a leucine aminopeptidase not considered so far to play a role in starch sugar interconversion. Novel SNP's diagnostic for increased tuber starch content, starch yield and chip quality were identified, which are useful for selecting improved potato processing cultivars.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Xiang L, Van den Ende W. Trafficking of plant vacuolar invertases: from a membrane-anchored to a soluble status. Understanding sorting information in their complex N-terminal motifs. PLANT & CELL PHYSIOLOGY 2013; 54:1263-1277. [PMID: 23737500 DOI: 10.1093/pcp/pct075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vacuolar invertases (VIs) are highly expressed in young tissues and organs. They may have a substantial regulatory influence on whole-plant metabolism as well as on photosynthetic efficiency. Therefore, they are emerging as potentially interesting biotechnological targets to increase plant biomass production, especially under stress. On the one hand, VIs are well known as soluble and extractable proteins. On the other hand, they contain complex N-terminal propeptide (NTPP) regions with a basic region (BR) and a transmembrane domain (TMD). Here we analyzed in depth the Arabidopsis thaliana VI2 (AtVI2) NTPP by mutagenesis. It was found that correct sorting to the lytic vacuole (LV) depends on the presence of intact dileucine (SSDALLPIS), BR (RRRR) and TMD motifs. AtVI2 remains inserted into membranes on its way to the LV, and the classical sorting pathway (endoplasmic reticulum→Golgi→LV) is followed. However, our data suggest that VIs might follow an alternative, adaptor protein 3 (AP3)-dependent route as well. Membrane-anchored transport and a direct recognition of the dileucine motif in the NTPP of VIs might have evolved as a simple and more efficient sorting mechanism as compared with the vacuolar sorting receptor 1/binding protein of 80 kDa (VSR1/BP80)-dependent sorting mechanism followed by those proteins that travel to the vacuole as soluble proteins.
Collapse
Affiliation(s)
- Li Xiang
- Biology Department, Laboratory for Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Box 2434, B-3001 Heverlee, Belgium
| | | |
Collapse
|