1
|
Lin S, Wu B, Xiong Y, Huang L, Lin D, Lin J, Lin S, Wu J. Integrated endogenous hormones and transcriptome analysis contribute to fruit development related gene mining in Eriobotrya japonica. Sci Rep 2025; 15:14794. [PMID: 40295574 PMCID: PMC12037903 DOI: 10.1038/s41598-025-96870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Loquat has both a delicious taste and natural medicinal effects. Fruit yield is the foundation of loquat production. However, as loquat fruits ripen, the time course changes in endogenous hormones and the transcriptome are still unclear, and the mining of loquat fruit development-related genes is still limited. Pulps from four stages of fruit development, including 70 days after full-blooming (DAF) (Z01), 90 DAF (Z02), 110 DAF (Z03), and 130 DAF (Z04), were collected to detect the contents of endogenous hormones and conduct transcriptome analysis. The results revealed that the pulps thickened continuously at a steady speed, whereas the rapid fruit expansion before the Z02 stage could be attributed to a sharp expansion of seeds. In addition, the endogenous hormone levels of the pulps tended to differ among these four stages. A total of 39,051 genes were obtained, and each sample was compared. Z01-VS-Z02, Z01-VS-Z03, and Z01-VS-Z04 presented 2611, 12,594, and 19,214 differentially expressed genes (DEGs), respectively. We found that there were 259, 49, 47, 70, 169, 47, 22 and 33 DEGs related to Aux, GA, CTK, ABA, Eth, BR, SA and JA, respectively. GO and KEGG enrichment analyses revealed that the most obviously enriched terms were photosynthesis-antenna proteins, starch and sucrose metabolism, and photosynthesis. Cluster analysis of the expression trends of the DEGs revealed that 25 clusters were obtained, 16 of which were highly correlated with 1 to 5 hormones. A total of 25 and 28 core genes were systematically identified from clusters 21 and 25, respectively. Heterologous expression revealed that EjHsc70, a selected core gene, promoted Arabidopsis growth and could be involved in the development process of loquat fruit. This study provides new insights into fruit development in Eriobotrya japonica.
Collapse
Grants
- 2021N5014, 2022N5006, 2021J011106, 2022J011162, 2023J011006 Fujian Provincial Science and Technology Project
- 2021N5014, 2022N5006, 2024N0062, 2021J011106, 2022J011162, 2023J011006 Fujian Provincial Science and Technology Project
- 2021N5014, 2022N5006, 2021J011106, 2022J011162, 2023J011006 Fujian Provincial Science and Technology Project
- 2021N5014, 2022N5006, 2021J011106, 2022J011162, 2023J011006 Fujian Provincial Science and Technology Project
- 2021N5014, 2022N5006, 2021J011106, 2022J011162, 2023J011006 Fujian Provincial Science and Technology Project
- 2023GJGZ001, 2021ZP08, 2021ZP10, 2021ZP11 Science and Technology Plan Project of Putian
- 2024177 Research Projects of Putian University
- 2024177 Research Projects of Putian University
- 2024177 Research Projects of Putian University
Collapse
Affiliation(s)
- Shoukai Lin
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, Putian University, Putian, 351100, China
| | - Bisha Wu
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, Putian University, Putian, 351100, China
| | - Yifang Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liyan Huang
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, Putian University, Putian, 351100, China
| | - Dahe Lin
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, Putian University, Putian, 351100, China
| | - Jingli Lin
- Affiliated Hospital of Putian University, Putian, 351100, China
| | - Shunquan Lin
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, Putian University, Putian, 351100, China.
| | - Jincheng Wu
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, Putian University, Putian, 351100, China.
| |
Collapse
|
2
|
Cao M, Qiao C, Han L, Zhuang M, Wang S, Pang R, Guo L, Yang M, Gui M. Volatile profile of postharvest hardy kiwifruits treated with chitosan-silica nanocomposite coatings. Food Res Int 2025; 205:115981. [PMID: 40032473 DOI: 10.1016/j.foodres.2025.115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Chitosan (CTS) is a natural polysaccharide derived from the deacetylation of chitin. Chitosan-based coatings are widely used for the preservation of hardy kiwifruits. However, the effect of chitosan-based coating on fruit flavor during ripening is rarely reported. In this study, the postharvest qualities of hardy kiwifruits were investigated using chitosan coating and chitosan-silica nanoparticle coating (CTS-SiNPs) during storage at 25°C and 4°C. Physicochemical analyses showed that chitosan coating extended the shelf-life by delaying ripening and maintaining higher quality than uncoated fruits, and CTS-SiNPs treatment showed a superior preservation effect compared to CTS treatment. Untargeted metabolomics analysis based on HS-SPME-GC-MS was used to comprehensively evaluate the volatile profiles of hardy kiwifruits during postharvest storage. The metabolomics analysis showed that two chitosan coating treatments greatly delayed the accumulation of most volatiles while delaying the ripening process, and the differential volatiles were mostly involved in the terpenoids biosynthesis pathway. Notably, most green leaf volatiles (C6/C9 aldehydes, esters and alcohols) and methyl salicylate were up-regulated in the CTS-SiNPs coating groups. In addition, odor activity value (OAV) was used to characterize the key aroma-active compounds and odor profiles. A total of 32 compounds were identified as key aroma-active compounds (OAV ≥ 1) in hardy kiwifruits. The odor profile evaluation showed that the CTS-SiNPs coating treatment enhanced the intensity of the "herbal" odor, while reducing the intensity of "sweet" and "floral" odors in hardy kiwifruits at the eating-ripe stage.
Collapse
Affiliation(s)
- Mengyuan Cao
- College of Science, China Agricultural University, Beijing 100193, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 4535149, China.
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Ming Zhuang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Shiyu Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Mingqin Yang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Momo Gui
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Ji Q, Kowalski KP, Golenberg EM, Chung SH, Barker ND, Bickford WA, Gong P. Cell-Penetrating Peptide-Mediated Delivery of Gene-Silencing Nucleic Acids to the Invasive Common Reed Phragmites australis via Foliar Application. PLANTS (BASEL, SWITZERLAND) 2025; 14:458. [PMID: 39943020 PMCID: PMC11820330 DOI: 10.3390/plants14030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
As a popular tool for gene function characterization and gene therapy, RNA interference (RNAi)-based gene silencing has been increasingly explored for potential applications to control invasive species. At least two major hurdles exist when applying this approach to invasive plants: (1) the design and screening of species- and gene-specific biomacromolecules (i.e., gene-silencing agents or GSAs) made of DNA, RNA, or peptides that can suppress the expression of target genes efficiently, and (2) the delivery vehicle needed to penetrate plant cell walls and other physical barriers (e.g., leaf cuticles). In this study, we investigated the cell-penetrating peptide (CPP)-mediated delivery of multiple types of GSAs (e.g., double-stranded RNA (dsRNA), artificial microRNA (amiRNA), and antisense oligonucleotide (ASO)) to knock down a putative phytoene desaturase (PDS) gene in the invasive common reed (Phragmites australis spp. australis). Both microscopic and quantitative gene expression evidence demonstrated the CPP-mediated internalization of GSA cargos and transient suppression of PDS expression in both treated and systemic leaves up to 7 days post foliar application. Although various GSA combinations and application rates and frequencies were tested, we observed limitations, including low gene-silencing efficiency and a lack of physiological trait alteration, likely owing to low CPP payload capacity and the incomplete characterization of the PDS-coding genes (e.g., the recent discovery of two PDS paralogs) in P. australis. Our work lays a foundation to support further research toward the development of convenient, cost-effective, field-deployable, and environmentally benign gene-silencing technologies for invasive P. australis management.
Collapse
Affiliation(s)
- Qing Ji
- Bennett Aerospace, Inc., Raleigh, NC 27603, USA;
| | - Kurt P. Kowalski
- U.S. Geological Survey, Great Lakes Science Center, Ann Arbor, MI 48105, USA; (K.P.K.); (W.A.B.)
| | - Edward M. Golenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Seung Ho Chung
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; (S.H.C.); (N.D.B.)
| | - Natalie D. Barker
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; (S.H.C.); (N.D.B.)
| | - Wesley A. Bickford
- U.S. Geological Survey, Great Lakes Science Center, Ann Arbor, MI 48105, USA; (K.P.K.); (W.A.B.)
| | - Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; (S.H.C.); (N.D.B.)
| |
Collapse
|
4
|
Zeng Z, Li Y, Zhu M, Wang X, Wang Y, Li A, Chen X, Han Q, Nieuwenhuizen NJ, Ampomah-Dwamena C, Deng X, Cheng Y, Xu Q, Xiao C, Zhang F, Atkinson RG, Zeng Y. Kiwifruit spatiotemporal multiomics networks uncover key tissue-specific regulatory processes throughout the life cycle. PLANT PHYSIOLOGY 2024; 197:kiae567. [PMID: 39673719 DOI: 10.1093/plphys/kiae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 12/16/2024]
Abstract
Kiwifruit (Actinidia chinensis), a recently commercialized horticultural crop, is rich in various nutrient compounds. However, the regulatory networks controlling the dynamic changes in key metabolites among different tissues remain largely unknown. Here, high-resolution spatiotemporal datasets obtained by ultraperformance liquid chromatography-tandem mass spectrometry methodology and RNA-seq were employed to investigate the dynamic changes in the metabolic and transcriptional landscape of major kiwifruit tissues across different developmental stages, including from fruit skin, outer pericarp, inner pericarp, and fruit core. Kiwifruit spatiotemporal regulatory networks (KSRN) were constructed by integrating the 1,243 identified metabolites and co-expressed genes into 10 different clusters and 11 modules based on their biological functions. These networks allowed the generation of a global map for the major metabolic and transcriptional changes occurring throughout the life cycle of different kiwifruit tissues and discovery of the underlying regulatory networks. KSRN predictions confirmed previously established regulatory networks, including the spatiotemporal accumulation of anthocyanin and ascorbic acid (AsA). More importantly, the networks led to the functional characterization of three transcription factors: an A. chinensis ethylene response factor 1, which negatively controls sugar accumulation and ethylene production by perceiving the ripening signal, a basic-leucine zipper 60 (AcbZIP60) transcription factor, which is involved in the biosynthesis of AsA as part of the L-galactose pathway, and a transcription factor related to apetala 2.4 (RAP2.4), which directly activates the expression of the kiwi fruit aroma terpene synthase gene AcTPS1b. Our findings provide insights into spatiotemporal changes in kiwifruit metabolism and generate a valuable resource for the study of metabolic regulatory processes in kiwifruit as well as other fruits.
Collapse
Affiliation(s)
- Zhebin Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yawei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang 464000, P.R. China
| | - Xiaoyao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaoya Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qianrong Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Cui Xiao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
5
|
Kuwada E, Takeshita K, Kawakatsu T, Uchida S, Akagi T. Identification of lineage-specific cis-trans regulatory networks related to kiwifruit ripening initiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1987-1999. [PMID: 39462454 PMCID: PMC11629749 DOI: 10.1111/tpj.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Previous research on the ripening process of many fruit crop varieties typically involved analyses of the conserved genetic factors among species. However, even for seemingly identical ripening processes, the associated gene expression networks often evolved independently, as reflected by the diversity in the interactions between transcription factors (TFs) and the targeted cis-regulatory elements (CREs). In this study, explainable deep learning (DL) frameworks were used to predict expression patterns on the basis of CREs in promoter sequences. We initially screened potential lineage-specific CRE-TF interactions influencing the kiwifruit ripening process, which is triggered by ethylene, similar to the corresponding processes in other climacteric fruit crops. Some novel regulatory relationships affecting ethylene-induced fruit ripening were identified. Specifically, ABI5-like bZIP, G2-like, and MYB81-like TFs were revealed as trans-factors modulating the expression of representative ethylene signaling/biosynthesis-related genes (e.g., ACS1, ERT2, and ERF143). Transient reporter assays and DNA affinity purification sequencing (DAP-Seq) analyses validated these CRE-TF interactions and their regulatory relationships. A comparative analysis with co-expression networking suggested that this DL-based screening can identify regulatory networks independently of co-expression patterns. Our results highlight the utility of an explainable DL approach for identifying novel CRE-TF interactions. These imply that fruit crop species may have evolved lineage-specific fruit ripening-related cis-trans regulatory networks.
Collapse
Affiliation(s)
- Eriko Kuwada
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayama700‐8530Japan
| | - Kouki Takeshita
- Department of Advanced Information TechnologyKyushu UniversityFukuoka819‐0395Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukuba305‐8602IbarakiJapan
| | - Seiichi Uchida
- Department of Advanced Information TechnologyKyushu UniversityFukuoka819‐0395Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayama700‐8530Japan
- Japan Science and Technology AgencyPRESTOKawaguchi332‐0012SaitamaJapan
| |
Collapse
|
6
|
Guan W, Cao M, Chen W, Yang Z, Li X, Wang L, Shi L. Indole-3-acetic acid treatment promotes postharvest kiwifruit softening by regulating starch and cell wall metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1485678. [PMID: 39600895 PMCID: PMC11588445 DOI: 10.3389/fpls.2024.1485678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
The softening process of postharvest kiwifruit is a critical aspect of fruit quality that has been extensively studied. However, the impact of indole-3-acetic acid (IAA) treatment on this process remains largely unexplored. In this study, we examined the effect of IAA treatment on the softening of postharvest kiwifruit. The results depicted that kiwifruit treated with IAA exhibited decreased firmness and increased ethylene production. Treatment with IAA upregulated the expression of starch decomposition genes, including AcSEX and AcBAM, resulting in a reduction in starch content. Additionally, IAA treatment induced cell wall breakdown, attributed to the enhanced transcript levels of cell wall-related degradation genes such as AcPE, AcPG, AcPL, and AcCX compared to the control. Consequently, IAA-treated kiwifruit displayed lower levels of cellulose and protopectin but higher levels of water-soluble pectin. In summary, our findings indicate that exogenous IAA promoted postharvest starch and cell wall biodegradation in kiwifruit, which reduced fruit firmness and accelerated fruit softening.
Collapse
Affiliation(s)
- Wenhao Guan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Mengze Cao
- Senior School, Seymour College, Glen Osmond, SA, Australia
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Xuewen Li
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - Li Wang
- College of Tea and Food Sci Tech, Anhui Agricultural University, Hefei, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
7
|
Tipu MMH, Sherif SM. Ethylene and its crosstalk with hormonal pathways in fruit ripening: mechanisms, modulation, and commercial exploitation. FRONTIERS IN PLANT SCIENCE 2024; 15:1475496. [PMID: 39574438 PMCID: PMC11579711 DOI: 10.3389/fpls.2024.1475496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024]
Abstract
Ethylene is an important phytohormone that orchestrates a multitude of physiological and biochemical processes regulating fruit ripening, from early maturation to post-harvest. This review offers a comprehensive analysis of ethylene's multifaceted roles in climacteric fruit ripening, characterized by a pronounced increase in ethylene production and respiration rates. It explores potential genetic and molecular mechanisms underlying ethylene's action, focusing on key transcription factors, biosynthetic pathway genes, and signal transduction elements crucial for the expression of ripening-related genes. The varied sensitivity and dependency of ripening traits on ethylene are elucidated through studies employing genetic mutations and ethylene inhibitors such as AVG and 1-MCP. Additionally, the modulation of ripening traits by ethylene is influenced by its interaction with other phytohormones, including auxins, abscisic acid, gibberellins, jasmonates, brassinosteroids, and salicylic acid. Pre-harvest fruit drop is intricately linked to ethylene, which triggers enzyme activity in the abscission zone, leading to cell wall degradation and fruit detachment. This review also highlights the potential for applying ethylene-related knowledge in commercial contexts to enhance fruit quality, control pre-harvest drop, and extend shelf life. Future research directions are proposed, advocating for the integration of physiological, genetic, biochemical, and transcriptional insights to further elucidate ethylene's role in fruit ripening and its interaction with other hormonal pathways.
Collapse
Affiliation(s)
| | - Sherif M. Sherif
- Virginia Tech School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Winchester, VA, United States
| |
Collapse
|
8
|
Yi Z, Sharif R, Gulzar S, Huang Y, Ning T, Zhan H, Meng Y, Xu C. Changes in hemicellulose metabolism in banana peel during fruit development and ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109025. [PMID: 39142014 DOI: 10.1016/j.plaphy.2024.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Hemicellulose is key in determining the fate of plant cell wall in almost all growth and developmental stages. Nevertheless, there is limited knowledge regarding its involvement in the development and ripening of banana fruit. This study investigated changes in the temporal-spatial distribution of various hemicellulose components, hemicellulose content, activities of the main hydrolysis enzymes, and transcription level of the main hemicellulose-related gene families in banana peels. Both hemicellulose and xylan contents were positively correlated to the fruit firmness observed in our previous study. On the contrary, the xylanase activity was negatively correlated to xylan content and the fruit firmness. The vascular bundle cells, phloem, and cortex of bananas are abundant in xyloglucan, xylan, and mannan contents. Interestingly, the changes in the signal intensity of the CCRC-M104 antibody recognizing non-XXXG type xyloglucan are positively correlated to hemicellulose content. According to RNA-Seq analysis, xyloglucan and xylan-related genes were highly active in the early stages of growth, and the expression of MaMANs and MaXYNs increased as the fruit ripened. The abundance of plant hormonal and growth-responsive cis-acting elements was detected in the 2 kb upstream region of hemicellulose-related gene families. Interaction between hemicellulose and cell wall-specific proteins and MaKCBP1/2, MaCKG1, and MaHKL1 was found. The findings shed light on cell wall hemicellulose's role in banana fruit development and ripening, which could improve nutrition, flavor, and reduce postharvest fruit losses.
Collapse
Affiliation(s)
- Zan Yi
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Shazma Gulzar
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongxin Huang
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Ning
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Huiling Zhan
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Meng
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chunxiang Xu
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Su D, Shu P, Hu N, Chen Y, Wu Y, Deng H, Du X, Zhang X, Wang R, Li H, Zeng Y, Li D, Xie Y, Li M, Hong Y, Liu K, Liu M. Dynamic m6A mRNA methylation reveals the involvement of AcALKBH10 in ripening-related quality regulation in kiwifruit. THE NEW PHYTOLOGIST 2024; 243:2265-2278. [PMID: 39056285 DOI: 10.1111/nph.20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Kiwifruit ripening is a complex and highly coordinated process that occurs in conjunction with the formation of fruit edible quality. The significance of epigenetic changes, particularly the impact of N6-methyladenosine (m6A) RNA modification on fruit ripening and quality formation, has been largely overlooked. We monitored m6A levels and gene expression changes in kiwifruit at four different stages using LC-MS/MS, MeRIP, RNA-seq, and validated the function of AcALKBH10 through heterologous transgenic expression in tomato. Notable m6A modifications occurred predominantly at the stop codons and the 3' UTRs and exhibited a gradual reduction in m6A levels during the fruit ripening process. Moreover, these m6A modifications in the aforementioned sites demonstrated a discernible inverse relationship with the levels of mRNA abundance throughout the ripening process, suggesting a repression effect of m6A modification in the modulation of kiwifruit ripening. We further demonstrated that AcALKBH10 rather than AcECT9 predominantly regulates m6A levels in ripening-related genes, thereby exerting the regulatory control over the ripening process and the accumulation of soluble sugars and organic acids, ultimately influencing fruit ripening and quality formation. In conclusion, our findings illuminate the epi-regulatory mechanism involving m6A in kiwifruit ripening, offering a fresh perspective for cultivating high-quality kiwifruit with enhanced nutritional attributes.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yuan Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaofei Du
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xumeng Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ruochen Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Huajia Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dawei Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan, 430074, Hubei, China
| | - Yue Xie
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Mingzhang Li
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Yiguo Hong
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
10
|
Fu C, Han C, Yu Z, Liu D, Wei Y, Han Y. Ethylene induced AcNAC3 and AcNAC4 take part in ethylene synthesis through mediating AcACO1 during kiwifruit (Actinidia chinensis) ripening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7367-7374. [PMID: 38661291 DOI: 10.1002/jsfa.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Ethylene plays a vital role in the ripening process of kiwifruit. A terrific amount of transcription factors (TFs) have been shown to regulate ethylene synthesis in various fruits. RESULTS In this research, two new NAC TFs, named AcNAC3 and AcNAC4, were isolated from kiwifruit, which belonged to NAM subfamily. Bioinformatics analysis showed that both AcNAC3 and AcNAC4 were hydrophilic proteins with similar three-dimensional structures. The expression levels of AcNAC3, AcNAC4 and AcACO1 increased during kiwifruit ripening, as well as were induced by ethylene and repressed by 1-methylcyclopropene (1-MCP). Correlation analysis exhibited that ethylene production was positively correlated with the expression levels of AcNAC3, AcNAC4 and AcACO1. Moreover, both AcNAC3 and AcNAC4 acted as transcriptional activators and could bind to and activate AcACO1 promoter. CONCLUSION All results unveiled that the ethylene-induced AcNAC3 and AcNAC4 were transcriptional activators, and might participate in kiwifruit ripening and ethylene biosynthesis through activating AcACO1, providing a new insight of ethylene synthetic regulation during kiwifruit ripening. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changchun Fu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Zuolong Yu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Yunxiao Wei
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Yanchao Han
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| |
Collapse
|
11
|
Wang YW, Nambeesan SU. Ethylene promotes fruit ripening initiation by downregulating photosynthesis, enhancing abscisic acid and suppressing jasmonic acid in blueberry (Vaccinium ashei). BMC PLANT BIOLOGY 2024; 24:418. [PMID: 38760720 PMCID: PMC11102277 DOI: 10.1186/s12870-024-05106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences Building, Athens, GA, 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences Building, Athens, GA, 30602, USA.
| |
Collapse
|
12
|
Nonaka S, Ito M, Ezura H. Targeted modification of CmACO1 by CRISPR/Cas9 extends the shelf-life of Cucumis melo var. reticulatus melon. Front Genome Ed 2023; 5:1176125. [PMID: 37304010 PMCID: PMC10249633 DOI: 10.3389/fgeed.2023.1176125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
The gaseous plant hormone ethylene is a regulator of fruit shelf-life, one of the essential traits in fruits. Extending fruit shelf-life reduces food loss, thereby expected to contribute to food security. The enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) is the final step of the ethylene production pathway. Its suppression via antisense technology has been demonstrated to extend the shelf-life of melon, apple, and papaya. Genome editing technology is an innovative technique for plant breeding. Because the genome editing technology would not leave the exogenous genes in the final crop products, the crops via genome editing can be considered non-genetically modified yields; compared to conventional breeding, such as mutation breeding, the breeding term would be expected to be relatively short. These points include the advantage of this technique in utilization for commercial applications. We attempted to extend the shelf-life of the Japanese luxury melon (Cucumis melo var. reticulatus, 'Harukei-3') via modification of the ethylene synthesis pathway with the genome editing technology, CRISPR/Cas9 system. The Melonet-DB (https://melonet-db.dna.affrc.go.jp/ap/top) showed that the melon genome had the five CmACOs and the gene CmACO1 predominantly expressed in harvested fruits. From this information, CmACO1 was expected to be a key gene for shelf-life in melons. Based on this information, the CmACO1 was selected as the target of the CRISPR/Cas9 system and introduced the mutation. The final product of this melon did not have any exogenous genes. The mutation was inherited for at least two generations. In the T2 generation, the fruit phenotypes 14 days after harvest were as follows: ethylene production was reduced to one-tenth that of the wild type, pericarp colour remained green, and higher fruit firmness. Early fermentation of the fresh fruit was observed in the wild-type fruit but not in the mutant. These results show that CmACO1 knockout via CRISPR/Cas9 extended the melon's shelf-life. Moreover, our results suggest that genome editing technology would reduce food loss and contribute to food security.
Collapse
Affiliation(s)
- Satoko Nonaka
- Tskuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Agricultural Sciences, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Maki Ito
- College of Agro-Biological Resources, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Tskuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Agricultural Sciences, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. BIOLOGY 2023; 12:biology12040601. [PMID: 37106801 PMCID: PMC10135915 DOI: 10.3390/biology12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.
Collapse
Affiliation(s)
- Zareen Narayanan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA 98011, USA
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
14
|
Hemalatha P, Abda EM, Shah S, Venkatesa Prabhu S, Jayakumar M, Karmegam N, Kim W, Govarthanan M. Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117382. [PMID: 36753844 DOI: 10.1016/j.jenvman.2023.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Currently, international development requires innovative solutions to address imminent challenges like climate change, unsustainable food system, food waste, energy crisis, and environmental degradation. All the same, addressing these concerns with conventional technologies is time-consuming, causes harmful environmental impacts, and is not cost-effective. Thus, biotechnological tools become imperative for enhancing food and energy resilience through eco-friendly bio-based products by valorisation of plant and food waste to meet the goals of circular bioeconomy in conjunction with Sustainable Developmental Goals (SDGs). Genome editing can be accomplished using a revolutionary DNA modification tool, CRISPR-Cas9, through its uncomplicated guided mechanism, with great efficiency in various organisms targeting different traits. This review's main objective is to examine how the CRISPR-Cas system, which has positive features, could improve the bioeconomy by reducing food loss and waste with all-inclusive food supply chain both at on-farm and off-farm level; utilising food loss and waste by genome edited microorganisms through food valorisation; efficient microbial conversion of low-cost substrates as biofuel; valorisation of agro-industrial wastes; mitigating greenhouse gas emissions through forestry plantation crops; and protecting the ecosystem and environment. Finally, the ethical implications and regulatory issues that are related to CRISPR-Cas edited products in the international markets have also been taken into consideration.
Collapse
Affiliation(s)
- Palanivel Hemalatha
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Shipra Shah
- Department of Forestry, College of Agriculture, Fisheries and Forestry, Fiji National University, Kings Road, Koronivia, P. O. Box 1544, Nausori, Republic of Fiji
| | - S Venkatesa Prabhu
- Department of Chemical Engineering, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - M Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
15
|
Mao J, Gao Z, Lin M, Zhang X, Ning X, Gong X, Lu Y, Chen L, Wang X. Targeted multi-platform metabolome analysis and enzyme activity analysis of kiwifruit during postharvest ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1120166. [PMID: 36959943 PMCID: PMC10028114 DOI: 10.3389/fpls.2023.1120166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Kiwifruit is a climacteric fruit, in which the accumulation of flavor substances mainly occurs at the postharvest ripening stage. However, the dynamic changes in metabolite composition remain poorly understood. Here, targeted multi-platform metabolome analysis based on GC-MS and UPLC-MS/MS and enzyme activity analysis were performed at different postharvest ripening stages of kiwifruit. A total of 12 soluble sugars and 31 organic acids were identified. The main soluble sugars are sucrose, glucose and fructose, which exhibited similar variation tendencies along with the extension of ripening. The main organic acids are citric acid, quinic acid and malic acid, which showed different variation patterns. A total of 48 energy metabolites were identified, which were classified into two groups based on the content variation. The content of substances related to the respiratory metabolic pathway decreased gradually along with postharvest ripening, and there was obvious accumulation of downstream products such as amino acids at the late ripening stage. A total of 35 endogenous hormones were identified, among which seven cytokinins were highly accumulated at the later stage of softening. We further investigated the dynamic changes in the activities of 28 ripening-related enzymes. As a result, the activities of 13 enzymes were highly correlated with changes in starch, total pectin, and soluble sugars, and those of seven enzymes were closely associated with the change in firmness. In conclusion, this study comprehensively describes the dynamic changes in soluble sugars, organic acids, hormones, energy substances, and ripening-related enzyme activities during kiwifruit postharvest ripening, and provides a theoretical basis for the postharvest quality improvement of kiwifruit.
Collapse
Affiliation(s)
- Jipeng Mao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Zhu Gao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Xiaoli Zhang
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Xinyi Ning
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Xuchen Gong
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Yupeng Lu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Xiaoling Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Lai R, Wu X, Feng X, Gao M, Long Y, Wu R, Cheng C, Chen Y. Identification and Characterization of Long Non-Coding RNAs: Implicating Insights into Their Regulatory Role in Kiwifruit Ripening and Softening during Low-Temperature Storage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1070. [PMID: 36903929 PMCID: PMC10005093 DOI: 10.3390/plants12051070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) are crucial players regulating many biological processes in plants. However, limited knowledge is available regarding their roles in kiwifruit ripening and softening. In this study, using lncRNA-seq technology, 591 differentially expressed (DE) lncRNAs (DELs) and 3107 DE genes (DEGs) were identified from kiwifruit stored at 4 °C for 1, 2, and 3 weeks in comparison with non-treated control fruits. Of note, 645 DEGs were predicted to be targets of DELs (DEGTLs), including some DE protein-coding genes (such as β-amylase and pectinesterase). DEGTL-based GO enrichment analysis revealed that these genes were significantly enriched in cell wall modification and pectinesterase activity in 1 W vs. CK and 3 W vs. CK, which might be closely related to the fruit softening during low-temperature storage. Moreover, KEGG enrichment analysis revealed that DEGTLs were significantly associated with starch and sucrose metabolism. Our study revealed that lncRNAs play critical regulatory roles in kiwifruit ripening and softening under low-temperature storage, mainly by mediating the expression of starch and sucrose metabolism and cell wall modification related genes.
Collapse
Affiliation(s)
- Ruilian Lai
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiaopei Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xin Feng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Minxia Gao
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Long
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Rujian Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yiting Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
17
|
Xia H, Deng H, Li M, Xie Y, Lin L, Zhang H, Luo X, Lv X, Wang J, Liang D. Chromosome-scale genome assembly of a natural diploid kiwifruit (Actinidia chinensis var. deliciosa). Sci Data 2023; 10:92. [PMID: 36788248 PMCID: PMC9929245 DOI: 10.1038/s41597-023-02006-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The most commercialized kiwifruit, Actinidia chinensis var. deliciosa (Acd), is an allohexaploid (2n = 6x = 174), making high-quality assemblage genome challenging. We previously discovered a rare naturally occurring diploid Acd plant. Here, chromosome-level de novo genome assembly for this diploid Acd was reported, reaching approximately 621.98 Mb in length with contig and scaffold N50 values of 10.08 and 21.09 Mb, respectively, 99.66% of the bases anchored to 29 pseudochromosomes, and 38,990 protein-coding genes and 42.29% repetitive elements annotated. The divergence time of A. chinensis cv. 'Red5' and 'Hongyang' (11.1-27.7 mya) was more recent compared with the divergence time of them and Acd (19.9-41.2 mya), with the divergence time of A. eriantha cv. 'White' being the earliest (22.9-45.7 mya) among that of the four Actinidia species. The 4DTv distance distribution highlighted three recent whole-genome duplication events in Acd. This is the first high-quality diploid Acd genome, which lays an important foundation for not only kiwifruit functional genomics studies but also further elucidating genome evolution of allohexaploid Acd.
Collapse
Affiliation(s)
- Hui Xia
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Honghong Deng
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhang Li
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Yue Xie
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huifen Zhang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xian Luo
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Wang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dong Liang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Souleyre EJF, Nieuwenhuizen NJ, Wang MY, Winz RA, Matich AJ, Ileperuma NR, Tang H, Baldwin SJ, Wang T, List BW, Hoeata KA, Popowski EA, Atkinson RG. Alcohol acyl transferase genes at a high-flavor intensity locus contribute to ester biosynthesis in kiwifruit. PLANT PHYSIOLOGY 2022; 190:1100-1116. [PMID: 35916752 PMCID: PMC9516725 DOI: 10.1093/plphys/kiac316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Volatile esters are key compounds contributing to flavor intensity in commonly consumed fruits including apple (Malus domestica), strawberry (Fragaria spp.), and banana (Musa sapientum). In kiwifruit (Actinidia spp.), ethyl butanoate and other esters have been proposed to contribute fruity, sweet notes to commercial cultivars. Here, we investigated the genetic basis for ester production in Actinidia in an A. chinensis mapping population (AcMPO). A major quantitative trait loci for the production of multiple esters was identified at the high-flavor intensity (HiFI) locus on chromosome 20. This locus co-located with eight tandemly arrayed alcohol acyl transferase genes in the Red5 genome that were expressed in a ripening-specific fashion that corresponded with ester production. Biochemical characterization suggested two genes at the HiFI locus, alcohol acyl transferase 16-b/c (AT16-MPb/c), probably contributed most to the production of ethyl butanoate. A third gene, AT16-MPa, probably contributed more to hexyl butanoate and butyl hexanoate production, two esters that segregated in AcMPO. Sensory analysis of AcMPO indicated that fruit from segregating lines with high ester concentrations were more commonly described as being "fruity" as opposed to "beany". The downregulation of AT16-MPa-c by RNAi reduced ester production in ripe "Hort16A" fruit by >90%. Gas chromatography-olfactometry indicated the loss of the major "fruity" notes contributed by ethyl butanoate. A comparison of unimproved Actinidia germplasm with those of commercial cultivars indicated that the selection of fruit with high concentrations of alkyl esters (but not green note aldehydes) was probably an important selection trait in kiwifruit cultivation. Understanding ester production at the HiFI locus is a critical step toward maintaining and improving flavor intensity in kiwifruit.
Collapse
Affiliation(s)
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Robert A Winz
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Adam J Matich
- Plant and Food Research Ltd (PFR), Palmerston North 4442, New Zealand
| | - Nadeesha R Ileperuma
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Haidee Tang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | | | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| | - Blake W List
- Plant and Food Research Ltd (PFR), Lincoln, 7608, New Zealand
| | | | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 1142, New Zealand
| |
Collapse
|
19
|
Prolonged On-Vine vs. Cold of Actinidia eriantha: Differences in Fruit Quality and Aroma Substances during Soft Ripening Stage. Foods 2022; 11:foods11182860. [PMID: 36140991 PMCID: PMC9497916 DOI: 10.3390/foods11182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
In order to find an efficient, economical and feasible method for soft ripening storage of kiwifruit, two softening methods (on-vine, cold) were utilized for the ‘Ganlv-2’ kiwifruit (Actinidia. eriantha) cultivar. A comprehensive evaluation was conducted on the quality changes in ‘Ganlv-2’ under different methods after fruit ripening by principal component analysis and mathematical modeling. Compared to kiwifruit under cold softening, kiwifruit treated with on-vine soft ripening had slightly greater sugar-acid ratios and flesh firmness and higher contents of dry matter, soluble solids, and soluble sugar. The titratable acid content was slightly lower in the on-vine group than in the cold group. The sensory evaluation results manifested little difference in fruit flavor between the two groups. However, at the end of the trial, the overripe taste of the on-vine group was lighter and the taste was sweeter than those of the cold group. More aromatic substances were emitted from the kiwifruit in the on-vine group. According to the mathematic model, there was no significant difference in fruit quality and flavor between the on-vine and traditional cold groups. The fruit in the on-vine group had a stronger flavor and lighter overripe flavor when they reached the edible state. This paper provided a novel storage method of A. eriantha, it can reduce the cost of traditional cold storage and reduce the pressure on centralized harvesting, and the feasibility of this method was verified from the fruit quality.
Collapse
|
20
|
Odetayo T, Tesfay S, Ngobese NZ. Nanotechnology-enhanced edible coating application on climacteric fruits. Food Sci Nutr 2022; 10:2149-2167. [PMID: 35844928 PMCID: PMC9281961 DOI: 10.1002/fsn3.2557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/06/2022] Open
Abstract
Climacteric fruits continue to ripen after harvest and produce ethylene, coupled with an increase in respiration rate, which contributes to more rapid perishability. Inhibition of ethylene biosynthesis has been shown to be an efficient way to delay the onset of ripening and lengthen shelf life. The use of edible materials as coatings presents an efficient approach in preserving the quality of fruits. Edible coatings have many benefits, such as affordability, ease of application, and use of natural ingredients. Nanotechnology provides interesting approaches to the management of fruit shelf life after harvest. Nanotechnology has the capacity of producing new materials by minimizing the size of components to a nanometric level. These kinds of nanomaterials possess distinct and improved properties for delaying fruit ripening and decay. The main goal of adding nanoparticles to edible coatings is to enhance the biopolymer's mechanical and water vapor barrier properties. Nanoparticles also contain biopolymer-like features and are thought to have superior antibacterial, antifungal, and antiviral properties than edible coatings. This review is aimed at summarizing recent findings on the application of edible coatings in the form of nanoparticles, and their effect on quality parameters and shelf life extension of climacteric fruits. Peer-reviewed articles were obtained by using Scopus and science direct. The current materials widely used for coating climacteric fruits are zinc, silver and chitosan nanoparticles. Zinc nanoparticles have been shown to be more effective in delaying ripening significantly by reducing weight and moisture loss and ensuring retention of fruit firmness. Further research is needed to understand their effect on other physicochemical properties of fruits.
Collapse
Affiliation(s)
- Temitayo Odetayo
- Department of Botany and Plant BiotechnologyFaculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | - Samson Tesfay
- Department of Horticultural ScienceFaculty of ScienceUniversity of KwaZulu‐Natal South AfricaPietermaritzburgSouth Africa
| | - Nomali Ziphorah Ngobese
- Department of Botany and Plant BiotechnologyFaculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
21
|
Zhou H, Zhu W, Wang X, Bian Y, Jiang Y, Li J, Wang L, Yin P, Deng XW, Xu D. A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis. THE NEW PHYTOLOGIST 2022; 233:373-389. [PMID: 34935148 DOI: 10.1111/nph.17618] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) mediates various cellular and physiological processes in plants by targeting a large number of substrates for ubiquitination and degradation. In this study, we reveal that a substitution of Pro for Leu at amino acid position 409 in WRKY32 largely suppresses the short hypocotyls and expanded cotyledon phenotypes of cop1-6. WRKY32P409L promotes hypocotyl growth and inhibits the opening of cotyledons in Arabidopsis. Loss of WRKY32 function mutant seedlings display elongated hypocotyls, whereas overexpression of WRKY32 leads to shortened hypocotyls. WRKY32 directly associates with the promoter regions of HY5 to activate its transcription. COP1 interacts with and targets WRKY32 for ubiquitination and degradation in darkness. WRKY32P409L exhibits enhanced DNA binding ability and affects the expression of more genes compared with WRKY32 in Arabidopsis. Our results not only reveal the basic role for WRKY32 in promoting photomorphogenesis, but also provide insights into manipulating plant growth by engineering key components of light signaling.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
22
|
Liu Y, Lv G, Chai J, Yang Y, Ma F, Liu Z. The Effect of 1-MCP on the Expression of Carotenoid, Chlorophyll Degradation, and Ethylene Response Factors in 'Qihong' Kiwifruit. Foods 2021; 10:foods10123017. [PMID: 34945569 PMCID: PMC8701096 DOI: 10.3390/foods10123017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The development of yellow color is an important aspect of fruit quality in yellow fleshed kiwifruit during fruit ripening, and it has a large influence on consumer preference. The yellow color is determined by carotenoid accumulation and chlorophyll degradation and is likely affected by ethylene production. This study investigates the expression of carotenoid, chlorophyll degradation, and ethylene response factors in ‘Qihong’ fruit, which had reached the near ripening stage (firmness ≈ 20 N) and were either left untreated (controls) or treated with 0.5 μL L−1 of 1-MCP for 12 h. Both the accumulation of β-carotene (not lutein) and degradation of chlorophyll a and b increased in response to the 1-MCP treatment, resulting in more yellow colored flesh in the 1-MCP treated fruit with higher carotenoid and lower chlorophyll contents. 1-MCP up-regulated AcLCY-β, AcSGR1, and AcPAO2, but reduced the expression of AcCCD1. These four genes were correlated with the concentrations of β-carotene and the chlorophylls. The expression of three ethylene response factors, including Acc29730, Acc25620, and Acc23763 were delayed and down-regulated in 1-MCP treated fruit, showing the highest correlation with the expression of AcLCY-β, AcSGR1, AcPAO2, and AcCCD1. Dual-Luciferase assays showed that 1-MCP treatment not only eliminated the inhibition of Acc23763 on the promoters of both AcPAO2 and AcLCY-β, but also reduced the activation of Acc29730 and Acc25620 on the AcCCD1 promoter. Our findings indicate that Acc29730, Acc25620, and Acc23763 may play an important role in the response to 1-MCP treatment during the fruit eating ripe stage, which likely altered the promoter activities of carotenoid and chlorophyll-related genes (AcPAO2, AcLCY-β and AcCCD1) to regulate their transcripts, resulting in more yellow color in the fruit flesh of ‘Qihong’.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- College of Life Science, Northwest A&F University, Xianyang 712100, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Jiaxin Chai
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Yaqi Yang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- Correspondence:
| |
Collapse
|
23
|
Zhang QY, Ge J, Liu XC, Wang WQ, Liu XF, Yin XR. Consensus co-expression network analysis identifies AdZAT5 regulating pectin degradation in ripening kiwifruit. J Adv Res 2021; 40:59-68. [PMID: 36100334 PMCID: PMC9481940 DOI: 10.1016/j.jare.2021.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
CCNA was advanced by introducing physiological traits. Six cell wall genes and four transcription factors were identified for pectin degradation. A series of experiments validated the regulations of AdZAT5 on AdPL5 and Adβ-Gal5. CCNA would be powerful for phishing the unknown regulators with higher efficiency and accuracy.
Introduction Cell wall degradation and remodeling is the key factor causing fruit softening during ripening. Objectives To explore the mechanism underlying postharvest cell wall metabolism, a transcriptome analysis method for more precious prediction on functional genes was needed. Methods Kiwifruits treated by ethylene (a conventional and effective phytohormone to accelerate climacteric fruit ripening and softening as kiwifruits) or air were taken as materials. Here, Consensus Coexpression Network Analysis (CCNA), a procedure evolved from Weighted Gene Co-expression Network Analysis (WGCNA) package in R, was applied and generated 85 consensus clusters from twelve transcriptome libraries. Advanced and comprehensive modifications were achieved by combination of CCNA and WGCNA with introduction of physiological traits, including firmness, cell wall materials, cellulose, hemicellulose, water soluble pectin, covalent binding pectin and ionic soluble pectin. Results As a result, six cell wall metabolisms related structural genes AdGAL1, AdMAN1, AdPL1, AdPL5, Adβ-Gal5, AdPME1 and four transcription factors AdZAT5, AdDOF3, AdNAC083, AdMYBR4 were identified as hub candidate genes for pectin degradation. Dual-luciferase system and electrophoretic mobility shift assays validated that promoters of AdPL5 and Adβ-Gal5 were recognized and trans-activated by transcription factor AdZAT5. The relatively higher enzyme activities of PL and β-Gal were observed in ethylene treated kiwifruit, further emphasized the critical roles of these two pectin related genes for fruit softening. Moreover, stable transient overexpression AdZAT5 in kiwifruit significantly enhanced AdPL5 and Adβ-Gal5 expression, which confirmed the in vivo regulations between transcription factor and pectin related genes. Conclusion Thus, modification and application of CCNA would be powerful for the precious phishing the unknown regulators. It revealed that AdZAT5 is a key factor for pectin degradation by binding and regulating effector genes AdPL5 and Adβ-Gal5.
Collapse
|
24
|
Quality of ‘Hayward’ Kiwifruit in Prolonged Cold Storage as Affected by the Stage of Maturity at Harvest. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of ‘Hayward’ kiwifruit maturity at harvest on fruit quality during long-term storage at −0.5 °C was evaluated by harvesting the fruit several times, at different stages of maturity. The progress of maturation on the vine was monitored weekly from 136 DAFB (days after full bloom). Fruit were harvested for storage at three points and stored for 3–6 months in regular air (RA), or for 6–10 months in a controlled atmosphere (CA), with or without prestorage exposure to 1-methylcyclopropene (1-MCP). The softening rate under both storage regimes decreased with the advance in fruit maturation on the vine, as indicated by increasing soluble solids content (SSC), and declining firmness. As a result, the fruit from the first harvest (152 DAFB), which were the firmest at harvest, were the softest at the end of both storage regimes. Delaying harvest also decelerated the decline in acidity during storage, so that fruit picked last maintained the highest titratable acidity (TA) upon removal from storage. The overall fruit quality after shelf life, following prolonged storage in either RA or CA, was improved by delaying harvest to late November (ca. 200 DAFB). The harvest criteria for fruit with the best storage potential were dry matter (DM) > 17%, SSC > 7%, TA 2.0–2.6%, with more than 40% of the DM non soluble. From a commercial aspect the rule should therefore be ‘Last in, last out’ (LILO).
Collapse
|
25
|
Fu BL, Wang WQ, Liu XF, Duan XW, Allan AC, Grierson D, Yin XR. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. THE NEW PHYTOLOGIST 2021; 232:237-251. [PMID: 34137052 DOI: 10.1111/nph.17560] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.
Collapse
Affiliation(s)
- Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xue-Wu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
26
|
Nieuwenhuizen NJ, Chen X, Pellan M, Zhang L, Guo L, Laing WA, Schaffer RJ, Atkinson RG, Allan AC. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC PLANT BIOLOGY 2021; 21:411. [PMID: 34496770 PMCID: PMC8425125 DOI: 10.1186/s12870-021-03154-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.
Collapse
Affiliation(s)
- Niels J. Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Mickaël Pellan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Lei Zhang
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Lindy Guo
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | | | - Robert J. Schaffer
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
- PFR, 55 Old Mill Road, RD 3, Motueka, 7198 New Zealand
| | - Ross G. Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| |
Collapse
|
27
|
Gan Z, Yuan X, Shan N, Wan C, Chen C, Xu Y, Xu Q, Chen J. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110948. [PMID: 34134847 DOI: 10.1016/j.plantsci.2021.110948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
WRKY transcription factors belong to a superfamily that is involved in many important biological processes, including plant development and senescence. However, little is known about the transcriptional regulation mechanisms of WRKY genes involved in kiwifruit postharvest ripening. Here, we isolated a WRKY gene from the kiwifruit genome and named it AcWRKY40. AcWRKY40 is a nucleus-localized protein that possesses transcriptional activation activity. The expression of AcWRKY40 was detected, and the gene responded to ethylene treatment during kiwifruit postharvest ripening, indicating its involvement in this process at the transcriptional level. We found multiple cis-acting elements related to maturation and senescence in the AcWRKY40 promoter. GUS activity analysis showed that its promoter activity was induced by exogenous ethylene. Yeast one-hybrid and dual-luciferase assays demonstrated that AcWRKY40 binds to the promoters of AcSAM2, AcACS1, and AcACS2 to activate them. In addition, transient transformations showed that AcWRKY40 enhances the expression of AcSAM2, AcACS1, and AcACS2. Taken together, these results suggest that AcWRKY40 is involved in kiwifruit postharvest ripening, possibly by regulating the expression of genes related to ethylene biosynthesis, thus deepening our understanding of the regulatory mechanisms of WRKY transcription factors in fruit ripening.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Yuan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Nan Shan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunhe Xu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qin Xu
- Agriculture and Rural Bureau of Gongcheng Yao Autonomous County, Guilin, 542500, China
| | - Jinyin Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 330075, China.
| |
Collapse
|
28
|
Lobato-Gómez M, Hewitt S, Capell T, Christou P, Dhingra A, Girón-Calva PS. Transgenic and genome-edited fruits: background, constraints, benefits, and commercial opportunities. HORTICULTURE RESEARCH 2021; 8:166. [PMID: 34274949 PMCID: PMC8286259 DOI: 10.1038/s41438-021-00601-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 05/14/2023]
Abstract
Breeding has been used successfully for many years in the fruit industry, giving rise to most of today's commercial fruit cultivars. More recently, new molecular breeding techniques have addressed some of the constraints of conventional breeding. However, the development and commercial introduction of such novel fruits has been slow and limited with only five genetically engineered fruits currently produced as commercial varieties-virus-resistant papaya and squash were commercialized 25 years ago, whereas insect-resistant eggplant, non-browning apple, and pink-fleshed pineapple have been approved for commercialization within the last 6 years and production continues to increase every year. Advances in molecular genetics, particularly the new wave of genome editing technologies, provide opportunities to develop new fruit cultivars more rapidly. Our review, emphasizes the socioeconomic impact of current commercial fruit cultivars developed by genetic engineering and the potential impact of genome editing on the development of improved cultivars at an accelerated rate.
Collapse
Affiliation(s)
- Maria Lobato-Gómez
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain
| | - Seanna Hewitt
- Department of Horticulture, Washington State University, PO Box, 646414, Pullman, WA, USA
| | - Teresa Capell
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain
| | - Paul Christou
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, 08010, Barcelona, Spain
| | - Amit Dhingra
- Department of Horticulture, Washington State University, PO Box, 646414, Pullman, WA, USA
| | - Patricia Sarai Girón-Calva
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain.
| |
Collapse
|
29
|
Liu HQ, Zou YJ, Li XF, Wu L, Guo GQ. Stablization of ACOs by NatB mediated N-terminal acetylation is required for ethylene homeostasis. BMC PLANT BIOLOGY 2021; 21:320. [PMID: 34217224 PMCID: PMC8254318 DOI: 10.1186/s12870-021-03090-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
N-terminal acetylation (NTA) is a highly abundant protein modification catalyzed by N-terminal acetyltransferases (NATs) in eukaryotes. However, the plant NATs and their biological functions have been poorly explored. Here we reveal that loss of function of CKRC3 and NBC-1, the auxiliary subunit (Naa25) and catalytic subunit (Naa20) of Arabidopsis NatB, respectively, led to defects in skotomorphogenesis and triple responses of ethylene. Proteome profiling and WB test revealed that the 1-amincyclopropane-1-carboxylate oxidase (ACO, catalyzing the last step of ethylene biosynthesis pathway) activity was significantly down-regulated in natb mutants, leading to reduced endogenous ethylene content. The defective phenotypes could be fully rescued by application of exogenous ethylene, but less by its precursor ACC. The present results reveal a previously unknown regulation mechanism at the co-translational protein level for ethylene homeostasis, in which the NatB-mediated NTA of ACOs render them an intracellular stability to maintain ethylene homeostasis for normal growth and responses.
Collapse
Affiliation(s)
- Hai-Qing Liu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ya-Jie Zou
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Feng Li
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lei Wu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Qin Guo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
30
|
Oh TG, Jo JA, Lee SJ. Evaluation of time-temperature integrator for indicating the ripeness of kiwifruit in plastic container at home. J Food Sci 2021; 86:2872-2885. [PMID: 34146411 DOI: 10.1111/1750-3841.15795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/03/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022]
Abstract
Enzyme-based time-temperature integrators (TTIs) were applied to indicate the ripeness of plastic-container-packaged kiwifruit. The hypothesis was that the ethylene gas production, an indication of kiwifruit ripeness, depends on the time-temperature history. The market-purchased, unripe kiwifruit was assumed to be stored in a plastic container to ripen at home, as common practice in Korea. The kinetics of ethylene gas production and TTI color change was found to be suitable for the indication. The Arrhenius activation energy (Ea ) of the ethylene gas production and color changes of lipase-, amylase-, and laccase-based TTIs were 41.60 ± 10.87 kJ/mol, and 42.76 ± 9.57, 100.28 ± 6.84, and 30.49 ± 4.41 kJ/mol, respectively. Kiwifruit firmness was also tested as a practical, major quality factor. The Ea of the firmness changes was 39.66 ± 4.64 kJ/mol. In scenarios tests, the firmness could be most accurately predicted from the lipase-based TTI color. Overall, the lipase-based TTI was found to be the best in terms of the similarity of the Ea and the prediction accuracy. PRACTICAL APPLICATION: Currently, there is no commercially available indicator that can determine the ripeness of packaged kiwifruit. Although an ethylene gas indicator is possible, it has been difficult to commercialize because the gas may leak in the package. An indicator on plastic containers with kiwifruit, as is common in Korea, has been developed using a conventional time-temperature integrator (TTI). The hypothesis was that the production of ethylene gas, indicating kiwi ripening, is also dependent on the time-temperature history. It was found that the TTI color change over time was suitable for judging suitable kiwifruit hardness, a major kiwifruit ripeness index.
Collapse
Affiliation(s)
- Tae Gyu Oh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si, Republic of Korea
| | - Jung An Jo
- Kiwifruit Export Research Organization, Chonnam National University, Gwangju, Republic of Korea
| | - Seung Ju Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si, Republic of Korea
| |
Collapse
|
31
|
Wang D, Bai J, Huang T, Liang J, Zhang L, Li R, Yang S, Luo A. Effects of Penicillium expansum infection on the quality and flavor of yellow flesh kiwifruit during cold storage. J Food Biochem 2021; 45:e13797. [PMID: 34056742 DOI: 10.1111/jfbc.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to assess the effects of Penicillium expansum (P. expansum) infection on the quality and flavor of Jinmi (JM) and Jinyan (JY) kiwifruit. Kiwifruit were inoculated with P. expansum and stored at 0 ± 1°C, and the changes in quality indicators and volatile substances (VCs) at different stages of disease were determined. Results showed that in wound-inoculated kiwifruit, the soluble solid content (SSC) increased. Conversely, their titratable acidity and vitamin C (VC) content, firmness, lightness, and saturation decreased. The taste-related parameters and nutritional value of kiwifruit declined after infection. VCs such as ethanol, 3-methyl-1-butanol, and 2-methylisoborneol were detected only in the diseased fruit and gradually increased as the disease aggravated, suggesting that they may be the main sources of odor during P. expansum infection. Therefore, VCs detection can be used to determine possible P. expansum infection, as well as the degree of infection in kiwifruit. PRACTICAL APPLICATIONS: In practical application, we can use the results of this study to determine possible Penicillium expansum infection, as well as the degree of infection in kiwifruit according to the indicators such as volatile substances. Kiwifruit enterprises can use the nondestructive detection model established in this study to screen out the kiwifruit infected with P. expansum more efficiently, quickly, and accurately, in order to prevent harm to the health of consumers.
Collapse
Affiliation(s)
- Dan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Junqing Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianzi Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruijuan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuxia Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Li S, Chen K, Grierson D. Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening. Cells 2021; 10:1136. [PMID: 34066675 PMCID: PMC8151651 DOI: 10.3390/cells10051136] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
This article focuses on the molecular and hormonal mechanisms underlying the control of fleshy fruit ripening and quality. Recent research on tomato shows that ethylene, acting through transcription factors, is responsible for the initiation of tomato ripening. Several other hormones, including abscisic acid (ABA), jasmonic acid (JA) and brassinosteroids (BR), promote ripening by upregulating ethylene biosynthesis genes in different fruits. Changes to histone marks and DNA methylation are associated with the activation of ripening genes and are necessary for ripening initiation. Light, detected by different photoreceptors and operating through ELONGATED HYPOCOTYL 5(HY5), also modulates ripening. Re-evaluation of the roles of 'master regulators' indicates that MADS-RIN, NAC-NOR, Nor-like1 and other MADS and NAC genes, together with ethylene, promote the full expression of genes required for further ethylene synthesis and change in colour, flavour, texture and progression of ripening. Several different types of non-coding RNAs are involved in regulating expression of ripening genes, but further clarification of their diverse mechanisms of action is required. We discuss a model that integrates the main hormonal and genetic regulatory interactions governing the ripening of tomato fruit and consider variations in ripening regulatory circuits that operate in other fruits.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
33
|
Brian L, Warren B, McAtee P, Rodrigues J, Nieuwenhuizen N, Pasha A, David KM, Richardson A, Provart NJ, Allan AC, Varkonyi-Gasic E, Schaffer RJ. A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC PLANT BIOLOGY 2021; 21:121. [PMID: 33639842 PMCID: PMC7913447 DOI: 10.1186/s12870-021-02894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Transcriptomic studies combined with a well annotated genome have laid the foundations for new understanding of molecular processes. Tools which visualise gene expression patterns have further added to these resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of 33,044 genes. Here we investigate gene expression patterns in diverse tissues, visualised in an Electronic Fluorescent Pictograph (eFP) browser, to study the relationship of transcription factor (TF) expression using network analysis. RESULTS Sixty-one samples covering diverse tissues at different developmental time points were selected for RNA-seq analysis and an eFP browser was generated to visualise this dataset. 2839 TFs representing 57 different classes were identified and named. Network analysis of the TF expression patterns separated TFs into 14 different modules. Two modules consisting of 237 TFs were correlated with floral bud and flower development, a further two modules containing 160 TFs were associated with fruit development and maturation. A single module of 480 TFs was associated with ethylene-induced fruit ripening. Three "hub" genes correlated with flower and fruit development consisted of a HAF-like gene central to gynoecium development, an ERF and a DOF gene. Maturing and ripening hub genes included a KNOX gene that was associated with seed maturation, and a GRAS-like TF. CONCLUSIONS This study provides an insight into the complexity of the transcriptional control of flower and fruit development, as well as providing a new resource to the plant community. The Actinidia eFP browser is provided in an accessible format that allows researchers to download and work internally.
Collapse
Affiliation(s)
- Lara Brian
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Ben Warren
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Peter McAtee
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Jessica Rodrigues
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Asher Pasha
- Department of Cell & Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Karine M David
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Annette Richardson
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), 121 Keri Downs Road, Kerikeri, 0294, New Zealand
| | - Nicholas J Provart
- Department of Cell & Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Robert J Schaffer
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand.
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), 55 Old Mill Road, Motueka, 7198, New Zealand.
| |
Collapse
|
34
|
Tian X, Zhu L, Yang N, Song J, Zhao H, Zhang J, Ma F, Li M. Proteomics and Metabolomics Reveal the Regulatory Pathways of Ripening and Quality in Post-Harvest Kiwifruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:824-835. [PMID: 33410682 DOI: 10.1021/acs.jafc.0c05492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the metabolic modulation of major quality traits during ripening is critical for fruit quality improvement in kiwifruits. Here, integrated proteomic and metabolomic profiling was undertaken to comprehensively examine the dynamics of kiwifruit ripening. This data set presents a global view of the critical pathways involved in fruit ripening, and the contributions of key events to the regulation of kiwifruit ripening and softening, amino acid metabolism, balance in sugar accumulation and organic acid metabolism, glycolysis, and tricarboxylic acid (TCA) pathways were discussed. We suggested key enzymes for starch synthesis and degradation, including AGPase, SS, and SBE, especially for BMY, which was considered a key enzyme for starch degradation. In addition, our analysis implicated the key enzymes ACO4 and ACS9 in ethylene synthesis and the aspartate aminotransferase ASP3 in the conversion of amino acids. These results provide new insights into the modulation of fruit ripening, metabolism, and quality in post-harvest kiwifruits.
Collapse
Affiliation(s)
- Xiaocheng Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nanxiang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianyu Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiyan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
35
|
Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening. Sci Rep 2021; 11:1671. [PMID: 33462344 PMCID: PMC7814023 DOI: 10.1038/s41598-021-81155-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
Kiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This study aimed to analyze and compare the long noncoding RNA (lncRNA) and mRNA expression patterns in ABA-treated (ABA) and room temperature (RT)-stored fruits with those in freshly harvested fruits (CK) as control. A total of 697 differentially expressed genes (DEGs) and 81 differentially expressed lncRNAs (DELs) were identified while comparing ABA with CK, and 458 DEGs and 143 DELs were detected while comparing RT with CK. The Kyoto Encyclopedia of Genes and Genomes analysis of the identified DEGs and the target genes of DELs revealed that genes involved in starch and sucrose metabolism, brassinosteroid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis accounted for a large part. The co-localization networks, including 38 DEGs and 31 DELs in ABA vs. CK, and 25 DEGs and 25 DELs in RT vs. CK, were also performed. Genes related to fruit ripening, such as genes encoding β-galactosidase, mannan endo-1,4-β-mannosidase, pectinesterase/pectinesterase inhibitor, and NAC transcription factor, were present in the co-localization network, suggesting that lncRNAs were involved in regulating kiwifruit ripening. Notably, several ethylene biosynthesis- and signaling-related genes, including one 1-aminocyclopropane-1-carboxylic acid oxidase gene and three ethylene response factor genes, were found in the co-localization network of ABA vs. CK, suggesting that the promoting effect of ABA on ethylene biosynthesis and fruit softening might be embodied by increasing the expression of these lncRNAs. These results may help understand the regulatory mechanism of lncRNAs in ripening and ABA-induced fruit softening of kiwifruit.
Collapse
|
36
|
Shipman EN, Yu J, Zhou J, Albornoz K, Beckles DM. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? HORTICULTURE RESEARCH 2021; 8:1. [PMID: 33384412 PMCID: PMC7775472 DOI: 10.1038/s41438-020-00428-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 05/22/2023]
Abstract
Postharvest waste and loss of horticultural crops exacerbates the agricultural problems facing humankind and will continue to do so in the next decade. Fruits and vegetables provide us with a vast spectrum of healthful nutrients, and along with ornamentals, enrich our lives with a wide array of pleasant sensory experiences. These commodities are, however, highly perishable. Approximately 33% of the produce that is harvested is never consumed since these products naturally have a short shelf-life, which leads to postharvest loss and waste. This loss, however, could be reduced by breeding new crops that retain desirable traits and accrue less damage over the course of long supply chains. New gene-editing tools promise the rapid and inexpensive production of new varieties of crops with enhanced traits more easily than was previously possible. Our aim in this review is to critically evaluate gene editing as a tool to modify the biological pathways that determine fruit, vegetable, and ornamental quality, especially after storage. We provide brief and accessible overviews of both the CRISPR-Cas9 method and the produce supply chain. Next, we survey the literature of the last 30 years, to catalog genes that control or regulate quality or senescence traits that are "ripe" for gene editing. Finally, we discuss barriers to implementing gene editing for postharvest, from the limitations of experimental methods to international policy. We conclude that in spite of the hurdles that remain, gene editing of produce and ornamentals will likely have a measurable impact on reducing postharvest loss and waste in the next 5-10 years.
Collapse
Affiliation(s)
- Emma N Shipman
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Plant Biology Graduate Group, University of California, Davis, CA, 95616, USA.
| | - Jingwei Yu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Karin Albornoz
- Departamento de Produccion Vegetal, Universidad de Concepcion, Region del BioBio, Concepcion, Chile.
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
37
|
Fullerton CG, Prakash R, Ninan AS, Atkinson RG, Schaffer RJ, Hallett IC, Schröder R. Fruit From Two Kiwifruit Genotypes With Contrasting Softening Rates Show Differences in the Xyloglucan and Pectin Domains of the Cell Wall. FRONTIERS IN PLANT SCIENCE 2020; 11:964. [PMID: 32714354 PMCID: PMC7343912 DOI: 10.3389/fpls.2020.00964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Fruit softening is controlled by hormonal and developmental cues, causing an upregulation of cell wall-associated enzymes that break down the complex sugar matrices in the cell wall. The regulation of this process is complex, with different genotypes demonstrating quite different softening patterns, even when they are closely related. Currently, little is known about the relationship between cell wall structure and the rate of fruit softening. To address this question, the softening of two Actinidia chinensis var. chinensis (kiwifruit) genotypes (a fast 'AC-F' and a slow 'AC-S' softening genotype) was examined using a range of compositional, biochemical, structural, and molecular techniques. Throughout softening, the cell wall structure of the two genotypes was fundamentally different at identical firmness stages. In the hemicellulose domain, xyloglucanase enzyme activity was higher in 'AC-F' at the firm unripe stage, a finding supported by differential expression of xyloglucan transglycosylase/hydrolase genes during softening. In the pectin domain, differences in pectin solubilization and location of methyl-esterified homogalacturonan in the cell wall between 'AC-S' and 'AC-F' were shown. Side chain analyses and molecular weight elution profiles of polyuronides and xyloglucans of cell wall extracts revealed fundamental differences between the genotypes, pointing towards a weakening of the structural integrity of cell walls in the fast softening 'AC-F' genotype even at the firm, unripe stage. As a consequence, the polysaccharides in the cell walls of 'AC-F' may be easier to access and hence more susceptible to enzymatic degradation than in 'AC-S', resulting in faster softening. Together these results suggest that the different rates of softening between 'AC-F' and 'AC-S' are not due to changes in enzyme activities alone, but that fundamental differences in the cell wall structure are likely to influence the rates of softening through differential modification and accessibility of specific cell wall polysaccharides during ripening.
Collapse
Affiliation(s)
- Christina G. Fullerton
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
- Joint Graduate School of Plant and Food Science, University of Auckland, Auckland, New Zealand
| | - Roneel Prakash
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| | - Annu Smitha Ninan
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| | - Ross G. Atkinson
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| | - Robert J. Schaffer
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
- Joint Graduate School of Plant and Food Science, University of Auckland, Auckland, New Zealand
| | - Ian C. Hallett
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute For Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| |
Collapse
|
38
|
Wang S, Zhou Q, Zhou X, Zhang F, Ji S. Ethylene plays an important role in the softening and sucrose metabolism of blueberries postharvest. Food Chem 2020; 310:125965. [DOI: 10.1016/j.foodchem.2019.125965] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023]
|
39
|
Guo J, Ling N, Chen Z, Xue C, Li L, Liu L, Gao L, Wang M, Ruan J, Guo S, Vandenkoornhuyse P, Shen Q. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. THE NEW PHYTOLOGIST 2020; 225:1618-1634. [PMID: 31574168 DOI: 10.1111/nph.16233] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/23/2019] [Indexed: 05/18/2023]
Abstract
In the processes controlling ecosystem fertility, fungi are increasingly acknowledged as key drivers. However, our understanding of the rules behind fungal community assembly regarding the effect of soil fertility level remains limited. Using soil samples from typical tea plantations spanning c. 2167 km north-east to south-west across China, we investigated the assemblage complexity and assembly processes of 140 fungal communities along a soil fertility gradient. The community dissimilarities of total fungi and fungal functional guilds increased with increasing soil fertility index dissimilarity. The symbiotrophs were more sensitive to variations in soil fertility compared with pathotrophs and saprotrophs. Fungal networks were larger and showed higher connectivity as well as greater potential for inter-module connection in more fertile soils. Environmental factors had a slightly greater influence on fungal community composition than spatial factors. Species abundance fitted the Zipf-Mandelbrot distribution (niche-based mechanisms), which provided evidence for deterministic-based processes. Overall, the soil fungal communities in tea plantations responded in a deterministic manner to soil fertility, with high fertility correlated with complex fungal community assemblages. This study provides new insights that might contribute to predictions of fungal community complexity.
Collapse
Affiliation(s)
- Junjie Guo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- UMR 6553 EcoBio, Universite de Rennes 1, CNRS, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Zhaojie Chen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Xue
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Li
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisheng Liu
- Hengyang Red Soil Experimental Station, Chinese Academy of Agricultural Sciences, Hengyang, 421001, China
| | - Limin Gao
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Shiwei Guo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Philippe Vandenkoornhuyse
- UMR 6553 EcoBio, Universite de Rennes 1, CNRS, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
40
|
Wu YY, Liu XF, Fu BL, Zhang QY, Tong Y, Wang J, Wang WQ, Grierson D, Yin XR. Methyl Jasmonate Enhances Ethylene Synthesis in Kiwifruit by Inducing NAC Genes That Activate ACS1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3267-3276. [PMID: 32101430 DOI: 10.1021/acs.jafc.9b07379] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cross-talk between various hormones is important in regulating many aspects of plant growth, development, and senescence, including fruit ripening. Here, exogenous ethylene (ETH, 100 μL/L, 12 h) rapidly accelerated 'Hayward' kiwifruit (Actinidia deliciosa) softening and ethylene production and was enhanced by supplementing with continuous treatment with methyl jasmonate (MeJA, 100 μM/L, 12 h) (ETH+MeJA). ETH+MeJA enhanced ACC synthase (ACS) activities and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation but not ACC oxidase (ACO) activity. Increased transcripts of ACS genes AdACS1 and AdACS2, ACS activity, and ethylene production were positively correlated. The abundance of AdACS1 was about 6-fold higher than AdACS2. RNA-seq identified 6 transcription factors among the 87 differentially expressed unigenes induced by ETH+MeJA. Dual-luciferase and electrophoretic mobility shift assays (EMSA) indicated that AdNAC2/3 physically interacted with and trans-activated the AdACS1 promoter 2.2- and 3.5-fold, respectively. Collectively, our results indicate that MeJA accelerates ethylene production in kiwifruit induced by exogenous ethylene, via a preferential activation of AdACS1 and AdACS2.
Collapse
Affiliation(s)
- Ying-Ying Wu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xiao-Fen Liu
- National Engineering Laboratory of Cold Chain Logistics Technology and Facility for Horticultural Produce, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Qiu-Yun Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Yang Tong
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Jian Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- National Engineering Laboratory of Cold Chain Logistics Technology and Facility for Horticultural Produce, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
41
|
Zhang A, Zhang Q, Li J, Gong H, Fan X, Yang Y, Liu X, Yin X. Transcriptome co-expression network analysis identifies key genes and regulators of ripening kiwifruit ester biosynthesis. BMC PLANT BIOLOGY 2020; 20:103. [PMID: 32138665 PMCID: PMC7059668 DOI: 10.1186/s12870-020-2314-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/27/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Aroma is an important organoleptic quality for fruit and has a large influence on consumer preference. Kiwifruit esters undergo rapid and substantial changes contributing to the flavor during fruit ripening. Part of enzymes and their coding genes have been indicated potential candidates for flavor-related esters synthesis. However, there still exist obvious gaps in the biosynthetic pathways of esters and the mechanisms regulating ester biosynthesis in kiwifruit remain unknown. RESULTS Using gas chromatography-mass spectrometry (GC-MS), volatile compounds of kiwifruit were quantified in response to ethylene (ETH, 100 μl/l, 24 h, 20 °C) and 1-methylcyclopropene (1-MCP, 1 μl/l, 24 h, 20 °C). The results indicated that esters showed the most substantial changes enhanced by ethylene and were inhibited by 1-MCP. Correlations between RNA-seq results and concentrations of esters, constructed using Weighted Gene Co-Expression Network Analysis (WGCNA) indicated that three structural genes (fatty acid desaturase, AdFAD1; aldehyde dehydrogenase, AdALDH2; alcohol acyltransferase, AdAT17) had similar expression patterns that paralled the changes in total ester content, and AdFAD1 transcripts exhibited the highest correlation. In order to search for potential regulators for ester biosynthesis, 14 previously reported ethylene-responsive transcription factors (TFs) were included in the correlation analysis with esters and their biosynthetic genes. Using dual-luciferase assay, the in vivo regulatory activities of TFs on ester biosynthetic gene promoters were investigated and the results indicated that AdNAC5 and AdDof4 (DNA binding with one finger) trans-activated and trans-suppressed the AdFAD1 promoter. CONCLUSIONS The present study advanced the molecular basis of ripening-related ester biosynthesis in kiwifruit by identifying three biosynthetic related genes AdFAD1, AdALDH2 and AdAT17 by transcriptome analysis, and highlighted the function of two TFs by transactivation studies.
Collapse
Affiliation(s)
- Aidi Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong 264025 People’s Republic of China
- BioNanotechnology Institute, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Qiuyun Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 People’s Republic of China
| | - Jianzhao Li
- School of Agriculture, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai, Shandong 264025 People’s Republic of China
- BioNanotechnology Institute, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Xinguang Fan
- School of Food Engineering, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Yanqing Yang
- School of Food Engineering, Ludong University, Yantai, Shandong 264025 People’s Republic of China
| | - Xiaofen Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 People’s Republic of China
| | - Xueren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
42
|
Yang L, Liu J, Wang X, Wang R, Ren F, Zhang Q, Shan Y, Ding S. Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019; 24:molecules24213904. [PMID: 31671527 PMCID: PMC6864690 DOI: 10.3390/molecules24213904] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
Volatile components in jujube fruits from Zizyphus jujuba Mill. cv. Dongzao (DZ) and Zizyphus jujuba Mill. cv. Jinsixiaozao (JS) were analyzed under different cold storage periods via headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results identified 53 peaks that corresponded to 47 compounds and were mostly alcohols, aldehydes, esters, and ketones. Differences in the volatile components of jujube fruits were revealed in topographic plots and fingerprints. For DZ, 3-pentanone was the characteristic component of fresh fruits. After storage for 15 days, dipropyl disulfide became the most special substance. Moreover, when stored for 30 and 45 days, the fruits had some same volatile components, like 2-pentyl furan and diallyl sulfide. However, for DZ stored for 60 days, esters were the prominent constituent of the volatile components, simultaneously, some new alcohols appeared. For JS, 2-ethyl furan was the representative of fresh fruits, and 2-butoxyethanol content was the most abundant after 15 and 30 days of storage. Different from that in DZ, the content of ester in JS increased after storage for 45 days. Substances such as amyl acetate dimer, methyl salicylate, and linalool greatly contributed to the jujube flavor during the late storage period. Principal component analysis (PCA) showed that fresh samples and refrigerated fruits were effectively distinguished. Heat map clustering analysis displayed the similarity of volatile components in different samples and was in accordance with PCA results. Hence, the volatile components of jujube fruits can be readily identified via HS-GC-IMS, and jujube fruits can be classified at different periods based on the difference of volatile components.
Collapse
Affiliation(s)
- Lvzhu Yang
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Jie Liu
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Xinyu Wang
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Fang Ren
- G.A.S. Department of Shandong Hanon Science Instrument Co., Ltd., Jinan 253000, China.
| | - Qun Zhang
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Shenghua Ding
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
43
|
Uluisik S, Seymour GB. Pectate lyases: Their role in plants and importance in fruit ripening. Food Chem 2019; 309:125559. [PMID: 31679850 DOI: 10.1016/j.foodchem.2019.125559] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022]
Abstract
Plant cell walls are complex structures that are modified throughout development. They are a major contributor to the properties of plant structure and act as barriers against pathogens. The primary cell walls of plants are composed of polysaccharides and proteins. The polysaccharide fraction is divided into components cellulose, hemicelluloses and pectin, are all modified during fruit ripening. Pectin plays an important role in intercellular adhesion and controlling the porosity of the wall. A large number of pectin degrading enzymes have been characterised from plants and they are involved in numerous aspects of plant development. The role of pectate lyases in plant development has received little attention, probably because they are normally associated with the action of plant pathogenic organisms. However their importance in plant development and ripening is now becoming well established and new information about the role of pectate lyases in plant development forms the focus of this review.
Collapse
Affiliation(s)
- Selman Uluisik
- Burdur Mehmet Akif Ersoy University, Burdur Food Agriculture and Livestock Vocational School, 15030 Burdur, Turkey.
| | - Graham B Seymour
- Nottinham University, Division of Plant and Crop Sciences, University of Nottingham, Sutton Bonington, Loughborough LE12, UK.
| |
Collapse
|
44
|
Goffi V, Zampella L, Forniti R, Petriccione M, Botondi R. Effects of ozone postharvest treatment on physicochemical and qualitative traits of Actinidia chinensis 'Soreli' during cold storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5654-5661. [PMID: 31141163 DOI: 10.1002/jsfa.9823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ozone has been used for improving the postharvest life of fruits and vegetables. Ozonation, an alternative decontamination method, can be applied effectively to perishable commodities immediately after harvest. Kiwifruit is a subtropical climacteric fruit that is less able to acclimate and is susceptible to low temperatures. In this study, we investigated the influence of ozone and different storage temperatures on the physico-chemical and qualitative features in Actinidia chinensis 'Soreli'. The fruits were treated with a continuous flow of ozone in air (300 ppb), stored at 2 and 4 °C for 60 days, and sampled every 15 days. RESULTS It was found that ozone treatment induced the ripening process; this was evident at the end of the storage, with higher soluble solids content for ozone-treated fruits at 2 and 4 °C. Storage temperatures and gaseous ozone treatment influenced in a different manner the bioactive compounds, such as polyphenols, flavonoids, ascorbic acid, and carotenoids. Additionally, under gaseous ozone storage, microbial growth was delayed, improving the microbial quality index when the fruits were stored at the lowest storage temperature (2 °C). Principal component analysis highlighted that the effects of storage temperature on physico-chemical and bioactive compounds were greater than the postharvest treatment. CONCLUSION Storage temperature influenced the postharvest life of 'Soreli'. Storage at 2 °C and under 300 ppb gaseous ozone improved the yellow-fleshed fruit storage life. However, storage at 4 °C under 300 ppb gaseous ozone did not show advantages in preserving the fruit quality. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentina Goffi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Luigi Zampella
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| | - Roberto Forniti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| | - Rinaldo Botondi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
45
|
Forlani S, Masiero S, Mizzotti C. Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2993-3006. [PMID: 30854549 DOI: 10.1093/jxb/erz112] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 05/20/2023]
Abstract
Fruits result from complex biological processes that begin soon after fertilization. Among these processes are cell division and expansion, accumulation of secondary metabolites, and an increase in carbohydrate biosynthesis. Later fruit ripening is accomplished by chlorophyll degradation and cell wall lysis. Fruit maturation is an essential step to optimize seed dispersal, and is controlled by a complex network of transcription factors and genetic regulators that are strongly influenced by phytohormones. Abscisic acid (ABA) and ethylene are the major regulators of ripening and senescence in both dry and fleshy fruits, as demonstrated by numerous ripening-defective mutants, effects of exogenous hormone application, and transcriptome analyses. While ethylene is the best characterized player in the final step of a fruit's life, ABA also has a key regulatory role, promoting ethylene production and acting as a stress-related hormone in response to drought and pathogen attack. In this review, we focus on the role of ABA and ethylene in relation to the interconnected biotic and abiotic phenomena that affect ripening and senescence. We integrate and discuss the most recent data available regarding these biological processes, which are crucial for post-harvest fruit conservation and for food safety.
Collapse
Affiliation(s)
- Sara Forlani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Simona Masiero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Mizzotti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
46
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Gunaseelan K, McAtee PA, Nardozza S, Pidakala P, Wang R, David K, Burdon J, Schaffer RJ. Copy number variants in kiwifruit ETHYLENE RESPONSE FACTOR/APETALA2 (ERF/AP2)-like genes show divergence in fruit ripening associated cold and ethylene responses in C-REPEAT/DRE BINDING FACTOR-like genes. PLoS One 2019; 14:e0216120. [PMID: 31083658 PMCID: PMC6513069 DOI: 10.1371/journal.pone.0216120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/14/2019] [Indexed: 12/31/2022] Open
Abstract
The ETYHLENE RESPONSE FACTOR/APETALA2 (ERF/AP2) transcription factors have been shown to control a wide range of developmental and environmental responses in plants. These include hormonal responses to ethylene and Abscisic Acid (ABA) as well as to cold and drought. In Actinidia chinensis (kiwifruit), ripening is unusual: although it is sometimes classed as a climacteric fruit (ethylene-associated ripening), much of fruit ripening occurs independently from autocatalytic ethylene production. Initiation of ripening appears to be strongly developmentally controlled and modulated by low temperature. In this study, fruit treated with different temperatures showed an increase in soluble sugar accumulation, and a corresponding increase in ß-AMYLASE (BAM) genes (predominantly BAM3.2 and BAM9) with lower temperatures. To investigate the potential role of the AP2/ERF gene family in the control of fruit ripening in kiwifruit this family was investigated further. Using the new genome annotation and further genome sequence analysis we identified 226 ERF-like genes, 10 AP2L/RAV-like genes and 32 AP2-like genes. An RNA-seq screen from kiwifruit of different maturities, and following treatment with ethylene and temperatures between 0 and 16°C, revealed 4%, 26% and 18% of the ERF-like genes were upregulated by maturation, ethylene and cold temperatures, respectively. Focusing on the C-REPEAT/DRE BINDING FACTOR (CBF) cold master regulators, nine potential genes were identified based on sequence similarity. Five of these CBF-like genes were found in a copy number variant (CNV) cluster of six genes on chromosome 14. Expression analysis showed that two homeologous genes (ERF41 and ERF180) increased in abundance with cold and ethylene, while the cluster of CNV CBF-like genes had lost the ability to respond to cold and increased only with ethylene, suggesting an evolutionary progression of function of these genes.
Collapse
Affiliation(s)
| | - Peter A. McAtee
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Simona Nardozza
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Paul Pidakala
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Ruiling Wang
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karine David
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jeremy Burdon
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Robert J. Schaffer
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, New Zealand
- * E-mail:
| |
Collapse
|
48
|
Tu Y, He B, Gao S, Guo D, Jia X, Dong X, Guo M. CtACO1 Overexpression Resulted in the Alteration of the Flavonoids Profile of Safflower. Molecules 2019; 24:molecules24061128. [PMID: 30901924 PMCID: PMC6471848 DOI: 10.3390/molecules24061128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Flavonoids with various structures play a vital role in plant acclimatization to varying environments as well as in plant growth, development, and reproduction. Exogenous applications of ethylene and 1-aminocyclopropane carboxylic acid (ACC), could affect the accumulation of flavonoids. Very few attempts have been made to investigate the effect of 1-aminocyclopropane carboxylic acid oxidase (ACO), a unique enzyme that catalyzes ACC to ethylene, on genes and metabolites in the flavonoid biosynthetic pathway. In this study, two ACOs in safflower (CtACOs) were cloned, and then transgenic safflower with overexpressed CtACO1 was generated through the Agrobacterium-mediated floral dipping method. Results: CtACO1 and CtACO2 were both characterized by the 2-oxoglutarate binding domain RxS and the ferrous iron binding site HxDxnH as ACOs from other plants. However, the transcript levels of CtACO1 in flowers at stages I, II, III, and IV were all higher than those of CtACO2. At the cellular level, by using electroporation transformation, CtACO1 was found to be localized at the cytomembrane in onion epidermal cells. CtACO1 overexpression had varying effects on genes involved in the ethylene and flavonoid biosynthetic pathways. The metabolites analysis showed that CtACO1 overexpression lines had a higher accumulation of quercetin and its glycosylated derivatives (quercetin 3-β-d-glucoside and rutin). In contrast, the accumulation of quinochalcones (hydroxysafflor yellow A and carthamin), kaempferol glycosylated derivatives (kaempferol-3-O-β-rutinoside and kaempferol-3-O-β-d-glucoside), apigenin, and luteolin in CtACO1 overexpression lines were decreased. Conclusion: This study confirmed the feasibility of applying the floral dipping method to safflower and showed a novel regulatory effect of CtACO1 in the flavonoid biosynthetic pathway. It provides hypothetical and practical groundwork for further research on regulating the overall metabolic flux of flavonoids in safflower, particularly hydroxysafflor yellow A and other quinochalcones, by using appropriate genetic engineering strategies.
Collapse
Affiliation(s)
- Yanhua Tu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Songyan Gao
- Chemical Experiment Teaching Center, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Dandan Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xinlei Jia
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xin Dong
- Chemical Experiment Teaching Center, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
49
|
Farcuh M, Toubiana D, Sade N, Rivero RM, Doron-Faigenboim A, Nambara E, Sadka A, Blumwald E. Hormone balance in a climacteric plum fruit and its non-climacteric bud mutant during ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:51-65. [PMID: 30824029 DOI: 10.1016/j.plantsci.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 05/14/2023]
Abstract
Hormone balance plays a crucial role in the control of fruit ripening. We characterized and compared hormone balance in two Japanese plum cultivars (Prunus salicina Lindl.), namely Santa Rosa, a climacteric type, and Sweet Miriam, its non-climacteric bud-sport mutant. We assessed hormonal changes in gene expression associated with hormone biosynthesis, perception and signaling during ripening on-the tree and throughout postharvest storage and in response to ethylene treatments. Non-climacteric fruit displayed lower ethylene levels than climacteric fruit at all stages and lower auxin levels during the initiation of ripening on-the-tree and during most of post-harvest storage. Moreover, 1-MCP-induced ethylene decrease also resulted in low auxin contents in Santa Rosa, supporting the role of auxin in climacteric fruit ripening. The differences in auxin contents between Santa Rosa and Sweet Miriam fruit could be the consequence of different routed auxin biosynthesis pathways as indicated by the significant negative correlations between clusters of auxin metabolism-associated genes. Ethylene induced increased ABA levels throughout postharvest storage in both ripening types. Overall, ripening of Santa Rosa and Sweet Miriam fruit are characterized by distinct hormone accumulation pathways and interactions.
Collapse
Affiliation(s)
- Macarena Farcuh
- Department of Plant Sciences, University of California, Davis CA 95616, USA
| | - David Toubiana
- Department of Plant Sciences, University of California, Davis CA 95616, USA
| | - Nir Sade
- Department of Plant Sciences, University of California, Davis CA 95616, USA; Department of Molecular Biology & Ecology of Plants, Tel Aviv University, Tel Aviv, 69978 Israel
| | | | - Adi Doron-Faigenboim
- Department of Fruit Tree Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Avi Sadka
- Department of Fruit Tree Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis CA 95616, USA.
| |
Collapse
|
50
|
Commisso M, Negri S, Bianconi M, Gambini S, Avesani S, Ceoldo S, Avesani L, Guzzo F. Untargeted and Targeted Metabolomics and Tryptophan Decarboxylase In Vivo Characterization Provide Novel Insight on the Development of Kiwifruits ( Actinidia deliciosa). Int J Mol Sci 2019; 20:E897. [PMID: 30791398 PMCID: PMC6413197 DOI: 10.3390/ijms20040897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Kiwifruit (Actinidia deliciosa cv. Hayward) is a commercially important crop with highly nutritional green fleshy fruits. The post-harvest maturation of the fruits is well characterized, but little is known about the metabolic changes that occur during fruit development. Here we used untargeted metabolomics to characterize the non-volatile metabolite profile of kiwifruits collected at different time points after anthesis, revealing profound metabolic changes before the onset of ripening including the depletion of many classes of phenolic compounds. In contrast, the phytohormone abscisic acid accumulated during development and ripening, along with two indolamines (serotonin and its precursor tryptamine), and these were monitored in greater detail by targeted metabolomics. The role of indolamines in kiwifruit development is completely unknown, so we also characterized the identity of genes encoding tryptophan decarboxylase in A. deliciosa and its close relative A. chinensis to provide insight into the corresponding biological processes. Our results indicate that abscisic acid and indolamines fulfill unrecognized functions in the development and ripening of kiwifruits.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
- Demethra Biotech, Strada dell'Innovazione 1, Camisano Vicentino, 36043 Vicenza, Italy.
| | - Stefano Negri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Martino Bianconi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
- Demethra Biotech, Strada dell'Innovazione 1, Camisano Vicentino, 36043 Vicenza, Italy.
| | - Sofia Gambini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Sara Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Stefania Ceoldo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|