1
|
Tan Z, Wang Y, Liu Y, Jiang H, Li Y, Zhong X, Zhuang L, Yang Z, Zhang X, Huang B. Transcriptional Regulation Mechanisms in AsAFL1-mediated Drought Tolerance for Creeping Bentgrass (Agrostis stolonifera). PHYSIOLOGIA PLANTARUM 2025; 177:e70225. [PMID: 40257002 DOI: 10.1111/ppl.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Drought stress is a major environmental stress that impairs plant growth and development. The At14a-like1 (AFL1) gene encodes a stress-induced membrane protein involved in endocytosis, signal transduction, and proline accumulation. The objective of the present study was to investigate biological functions and underlying mechanisms of AFL1 regulation of drought tolerance in a perennial grass species, creeping bentgrass (Agrostis stolonifera). AsAFL1 was cloned from creeping bentgrass, and its expression was induced by drought stress. Motif analysis showed that AsAFL1 has five epidermal growth factor structural domains and one β1-integrin structural domain. Transient expression in tobacco epidermal cells indicated that AsAFL1 was localized at the plasma membrane. Overexpression of AsAFL1 in creeping bentgrass significantly enhanced drought tolerance, as manifested by significantly increased leaf relative water content, chlorophyll and proline contents but lower electrolyte leakage and malondialdehyde content. Comparative transcriptomic and weighted correlation network analysis (WGCNA) revealed that AsAFL1-mediated drought tolerance was related to transcriptional regulation of genes involved in phytohormone (abscisic acid, auxin, and strigolactone) biosynthesis and signaling, redox homeostasis, and biosynthesis of second metabolites (lignin, cutin, suberin and wax), as well as nutrient transport and mobilization.
Collapse
Affiliation(s)
- Zhenzhen Tan
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yiting Wang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Liu
- School of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Hengyue Jiang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ya Li
- Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoxian Zhong
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lili Zhuang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaxiang Zhang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Zhang X, Wu J, Kong Z. Cellular basis of legume-rhizobium symbiosis. PLANT COMMUNICATIONS 2024; 5:101045. [PMID: 39099171 PMCID: PMC11589484 DOI: 10.1016/j.xplc.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The legume-rhizobium symbiosis represents the most important system for terrestrial biological nitrogen fixation on land. Efficient nitrogen fixation during this symbiosis depends on successful rhizobial infection and complete endosymbiosis, which are achieved by complex cellular events including cell-wall remodeling, cytoskeletal reorganizations, and extensive membrane expansion and trafficking. In this review, we explore the dynamic remodeling of the plant-specific cell wall-membrane system-cytoskeleton (WMC) continuum during symbiotic nitrogen fixation. We focus on key processes linked to efficient nitrogen fixation, including rhizobial uptake, infection thread formation and elongation, rhizobial droplet release, cytoplasmic bridge formation, and rhizobial endosymbiosis. Additionally, we discuss the advanced techniques for investigating the cellular basis of root-nodule symbiosis and provide insights into the unsolved mysteries of robust symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi, China.
| |
Collapse
|
3
|
Angelini J, Klassen R, Široká J, Novák O, Záruba K, Siegel J, Novotná Z, Valentová O. Silver Nanoparticles Alter Microtubule Arrangement, Dynamics and Stress Phytohormone Levels. PLANTS 2022; 11:plants11030313. [PMID: 35161294 PMCID: PMC8838976 DOI: 10.3390/plants11030313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
The superior properties of silver nanoparticles (AgNPs) has resulted in their broad utilization worldwide, but also the risk of irreversible environment infestation. The plant cuticle and cell wall can trap a large part of the nanoparticles and thus protect the internal cell structures, where the cytoskeleton, for example, reacts very quickly to the threat, and defense signaling is subsequently triggered. We therefore used not only wild-type Arabidopsis seedlings, but also the glabra 1 mutant, which has a different composition of the cuticle. Both lines had GFP-labeled microtubules (MTs), allowing us to observe their arrangement. To quantify MT dynamics, we developed a new microscopic method based on the FRAP technique. The number and growth rate of MTs decreased significantly after AgNPs, similarly in both lines. However, the layer above the plasma membrane thickened significantly in wild-type plants. The levels of three major stress phytohormone derivatives—jasmonic, abscisic, and salicylic acids—after AgNP (with concomitant Ag+) treatment increased significantly (particularly in mutant plants) and to some extent resembled the plant response after mechanical stress. The profile of phytohormones helped us to estimate the mechanism of response to AgNPs and also to understand the broader physiological context of the observed changes in MT structure and dynamics.
Collapse
Affiliation(s)
- Jindřiška Angelini
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
- Correspondence:
| | - Ruslan Klassen
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| | - Jitka Široká
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (O.N.)
| | - Kamil Záruba
- Deparment of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Zuzana Novotná
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| |
Collapse
|
4
|
Kumar MN, Bau YC, Longkumer T, Verslues PE. Low Water Potential and At14a-Like1 (AFL1) Effects on Endocytosis and Actin Filament Organization. PLANT PHYSIOLOGY 2019; 179:1594-1607. [PMID: 30728274 PMCID: PMC6446769 DOI: 10.1104/pp.18.01314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/31/2019] [Indexed: 05/20/2023]
Abstract
At14a-Like1 (AFL1) is a stress-induced protein of unknown function that promotes growth during low water potential stress and drought. Previous analysis indicated that AFL1 may have functions related to endocytosis and regulation of actin filament organization, processes for which the effects of low water potential are little known. We found that low water potential led to a decrease in endocytosis, as measured by uptake of the membrane-impermeable dye FM4-64. Ectopic expression of AFL1 reversed the decrease in FM4-64 uptake seen in wild type, while reduced AFL1 expression led to further inhibition of FM4-64 uptake. Increased AFL1 also made FM4-64 uptake less sensitive to the actin filament disruptor Latrunculin B (LatB). LatB decreased AFL1-Clathrin Light Chain colocalization, further indicating that effects of AFL1 on endocytosis may be related to actin filament organization or stability. Consistent with this hypothesis, ectopic AFL1 expression made actin filaments less sensitive to disruption by LatB or Cytochalasin D and led to increased actin filament skewness and decreased occupancy, indicative of more bundled actin filaments. This latter effect could be partially mimicked by the actin filament stabilizer Jasplakinolide (JASP). However, AFL1 did not substantially inhibit actin filament dynamics, indicating that AFL1 acts via a different mechanism than JASP-induced stabilization. AFL1 partially colocalized with actin filaments but not with microtubules, further indicating actin-filament-related function of AFL1. These data provide insight into endocytosis and actin filament responses to low water potential stress and demonstrate an involvement of AFL1 in these key cellular processes.
Collapse
Affiliation(s)
- M Nagaraj Kumar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chiuan Bau
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | | | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
5
|
Prince SJ, Valliyodan B, Ye H, Yang M, Tai S, Hu W, Murphy M, Durnell LA, Song L, Joshi T, Liu Y, Van de Velde J, Vandepoele K, Grover Shannon J, Nguyen HT. Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number. PLANT, CELL & ENVIRONMENT 2019; 42:212-229. [PMID: 29749073 DOI: 10.1111/pce.13333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/26/2018] [Indexed: 05/04/2023]
Abstract
Developing crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural traits in 397 soybean accessions were characterized and a high-density single nucleotide polymorphisms (SNPs)-based genome-wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected. Four loci were detected in landraces for lateral root number (LRN) and distribution of root thickness in diameter Class I with a major locus on chromosome 16. This major loci was detected in the coding region of unknown protein, and subsequent analyses demonstrated that root traits are affected with mutated haplotypes of the gene. In elite germplasm pool, 3 significant SNPs in alanine-glyoxalate aminotransferase, Leucine-Rich Repeat receptor/No apical meristem, and unknown functional genes were found to govern multiple traits including root surface area and volume. However, no major loci were detected for LRN in elite germplasm. Nucleotide diversity analysis found evidence of selective sweeps around the landraces LRN gene. Soybean accessions with minor and mutated allelic variants of LRN gene were found to perform better in both water-limited and optimal field conditions.
Collapse
Affiliation(s)
- Silvas J Prince
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
- Noble Research Institute, Ardmore, 73401, OK, USA
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Ming Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Wushu Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Mackensie Murphy
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Lorellin A Durnell
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Li Song
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Trupti Joshi
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology and Office of Research, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yang Liu
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jan Van de Velde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
6
|
Yu Q, Ren JJ, Kong LJ, Wang XL. Actin filaments regulate the adhesion between the plasma membrane and the cell wall of tobacco guard cells. PROTOPLASMA 2018; 255:235-245. [PMID: 28803402 DOI: 10.1007/s00709-017-1149-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
During the opening and closing of stomata, guard cells undergo rapid and reversible changes in their volume and shape, which affects the adhesion of the plasma membrane (PM) to the cell wall (CW). The dynamics of actin filaments in guard cells are involved in stomatal movement by regulating structural changes and intracellular signaling. However, it is unclear whether actin dynamics regulate the adhesion of the PM to the CW. In this study, we investigated the relationship between actin dynamics and PM-CW adhesion by the hyperosmotic-induced plasmolysis of tobacco guard cells. We found that actin filaments in guard cells were depolymerized during mannitol-induced plasmolysis. The inhibition of actin dynamics by treatment with latrunculin B or jasplakinolide and the disruption of the adhesion between the PM and the CW by treatment with RGDS peptide (Arg-Gly-Asp-Ser) enhanced guard cell plasmolysis. However, treatment with latrunculin B alleviated the RGDS peptide-induced plasmolysis and endocytosis. Our results reveal that the actin depolymerization is involved in the regulation of the PW-CW adhesion during hyperosmotic-induced plasmolysis in tobacco guard cells.
Collapse
Affiliation(s)
- Qin Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jing-Jing Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lan-Jing Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiu-Ling Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
7
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
8
|
Tolmie F, Poulet A, McKenna J, Sassmann S, Graumann K, Deeks M, Runions J. The cell wall of Arabidopsis thaliana influences actin network dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4517-4527. [PMID: 28981774 DOI: 10.1093/jxb/erx269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In plant cells, molecular connections link the cell wall-plasma membrane-actin cytoskeleton to form a continuum. It is hypothesized that the cell wall provides stable anchor points around which the actin cytoskeleton remodels. Here we use live cell imaging of fluorescently labelled marker proteins to quantify the organization and dynamics of the actin cytoskeleton and to determine the impact of disrupting connections within the continuum. Labelling of the actin cytoskeleton with green fluorescent protein (GFP)-fimbrin actin-binding domain 2 (FABD2) resulted in a network composed of fine filaments and thicker bundles that appeared as a highly dynamic remodelling meshwork. This differed substantially from the GFP-Lifeact-labelled network that appeared much more sparse with thick bundles that underwent 'simple movement', in which the bundles slightly change position, but in such a manner that the structure of the network was not substantially altered during the time of observation. Label-dependent differences in actin network morphology and remodelling necessitated development of two new image analysis techniques. The first of these, 'pairwise image subtraction', was applied to measurement of the more rapidly remodelling actin network labelled with GFP-FABD2, while the second, 'cumulative fluorescence intensity', was used to measure bulk remodelling of the actin cytoskeleton when labelled with GFP-Lifeact. In each case, these analysis techniques show that the actin cytoskeleton has a decreased rate of bulk remodelling when the cell wall-plasma membrane-actin continuum is disrupted either by plasmolysis or with isoxaben, a drug that specifically inhibits cellulose deposition. Changes in the rate of actin remodelling also affect its functionality, as observed by alteration in Golgi body motility.
Collapse
Affiliation(s)
- Frances Tolmie
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Axel Poulet
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Joseph McKenna
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Stefan Sassmann
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Michael Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - John Runions
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| |
Collapse
|
9
|
Langhans M, Weber W, Babel L, Grunewald M, Meckel T. The right motifs for plant cell adhesion: what makes an adhesive site? PROTOPLASMA 2017; 254:95-108. [PMID: 27091341 DOI: 10.1007/s00709-016-0970-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
Cells of multicellular organisms are surrounded by and attached to a matrix of fibrous polysaccharides and proteins known as the extracellular matrix. This fibrous network not only serves as a structural support to cells and tissues but also plays an integral part in the process as important as proliferation, differentiation, or defense. While at first sight, the extracellular matrices of plant and animals do not have much in common, a closer look reveals remarkable similarities. In particular, the proteins involved in the adhesion of the cell to the extracellular matrix share many functional properties. At the sequence level, however, a surprising lack of homology is found between adhesion-related proteins of plants and animals. Both protein machineries only reveal similarities between small subdomains and motifs, which further underlines their functional relationship. In this review, we provide an overview on the similarities between motifs in proteins known to be located at the plant cell wall-plasma membrane-cytoskeleton interface to proteins of the animal adhesome. We also show that by comparing the proteome of both adhesion machineries at the level of motifs, we are also able to identify potentially new candidate proteins that functionally contribute to the adhesion of the plant plasma membrane to the cell wall.
Collapse
Affiliation(s)
- Markus Langhans
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany
| | - Wadim Weber
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany
| | - Laura Babel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany
| | - Miriam Grunewald
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany
| | - Tobias Meckel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany.
| |
Collapse
|
10
|
Para A, Muhammad D, Orozco-Nunnelly DA, Memishi R, Alvarez S, Naldrett MJ, Warpeha KM. The Dehydratase ADT3 Affects ROS Homeostasis and Cotyledon Development. PLANT PHYSIOLOGY 2016; 172:1045-1060. [PMID: 27540109 PMCID: PMC5047074 DOI: 10.1104/pp.16.00464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/15/2016] [Indexed: 05/25/2023]
Abstract
During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling.
Collapse
Affiliation(s)
- Alessia Para
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - DurreShahwar Muhammad
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Danielle A Orozco-Nunnelly
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Ramis Memishi
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Sophie Alvarez
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Michael J Naldrett
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Katherine M Warpeha
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| |
Collapse
|
11
|
At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:10545-50. [PMID: 26240315 DOI: 10.1073/pnas.1510140112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Limited knowledge of how plants regulate their growth and metabolism in response to drought and reduced soil water potential has impeded efforts to improve stress tolerance. Increased expression of the membrane-associated protein At14a-like1 (AFL1) led to increased growth and accumulation of the osmoprotective solute proline without negative effects on unstressed plants. Conversely, inducible RNA-interference suppression of AFL1 decreased growth and proline accumulation during low water potential while having no effect on unstressed plants. AFL1 overexpression lines had reduced expression of many stress-responsive genes, suggesting AFL1 may promote growth in part by suppression of negative regulatory genes. AFL1 interacted with the endomembrane proteins protein disulfide isomerase 5 (PDI5) and NAI2, with the PDI5 interaction being particularly increased by stress. PDI5 and NAI2 are negative regulatory factors, as pdi5, nai2, and pdi5-2nai2-3 mutants had increased growth and proline accumulation at low water potential. AFL1 also interacted with Adaptor protein2-2A (AP2-2A), which is part of a complex that recruits cargo proteins and promotes assembly of clathrin-coated vesicles. AFL1 colocalization with clathrin light chain along the plasma membrane, together with predictions of AFL1 structure, were consistent with a role in vesicle formation or trafficking. Fractionation experiments indicated that AFL1 is a peripheral membrane protein associated with both plasma membrane and endomembranes. These data identify classes of proteins (AFL1, PDI5, and NAI2) not previously known to be involved in drought signaling. AFL1-predicted structure, protein interactions, and localization all indicate its involvement in previously uncharacterized membrane-associated drought sensing or signaling mechanisms.
Collapse
|
12
|
Wang L, He J, Ding H, Liu H, Lü B, Liang J, Wang L, He J, Ding HD, Liu H, Lü B, Liang JS. Overexpression of AT14A confers tolerance to drought stress-induced oxidative damage in suspension cultured cells of Arabidopsis thaliana. PROTOPLASMA 2015; 252:1111-1120. [PMID: 25500719 DOI: 10.1007/s00709-014-0744-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
Drought stress can affect interaction between plant cell plasma membrane and cell wall. Arabidopsis AT14A, an integrin-like protein, mediates the cell wall-plasma membrane-cytoskeleton continuum (WMC continuum). To gain further insight into the function of AT14A, the role of AT14A in response to drought stress simulated by polyethylene glycol (PEG-6000) in Arabidopsis suspension cultures was investigated. The expression of this gene was induced by PEG-6000 resulting from reverse transcription-PCR, which was further confirmed by the expression data from publically available microarray datasets. Compared to the wild-type cells, overexpression of AT14A (AT14A-OE) in Arabidopsis cultures exhibited a greater ability to adapt to water deficit, as evidenced by higher biomass accumulation and cell survival rate. Furthermore, AT14A-OE cells showed a higher tolerance to PEG-induced oxidative damage, as reflected by less H2O2 content, lipid peroxidation (malondialdehyde (MDA) content), and ion leakage, which was further verified by maintaining high levels of activities of antioxidant defense enzymes such as ascorbate peroxidase and guaiacol peroxidase and soluble protein. Taken together, our results suggest that overexpression of AT14A improves drought stress tolerance and that AT14A is involved in suppressing oxidative damage under drought stress in part via regulation of antioxidant enzyme activities.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu Z, Persson S, Zhang Y. The connection of cytoskeletal network with plasma membrane and the cell wall. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:330-40. [PMID: 25693826 PMCID: PMC4405036 DOI: 10.1111/jipb.12342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/14/2015] [Indexed: 05/18/2023]
Abstract
The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.
Collapse
Affiliation(s)
- Zengyu Liu
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville, 3010, Victoria, Australia
| | - Yi Zhang
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
| |
Collapse
|
14
|
Liu Z, Persson S, Sánchez-Rodríguez C. At the border: the plasma membrane-cell wall continuum. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1553-63. [PMID: 25697794 DOI: 10.1093/jxb/erv019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.
Collapse
Affiliation(s)
- Zengyu Liu
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Clara Sánchez-Rodríguez
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
15
|
Sardesai N, Lee LY, Chen H, Yi H, Olbricht GR, Stirnberg A, Jeffries J, Xiong K, Doerge RW, Gelvin SB. Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci Signal 2013; 6:ra100. [PMID: 24255177 DOI: 10.1126/scisignal.2004518] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Agrobacterium-mediated transformation is the most widely used technique for generating transgenic plants. However, many crops remain recalcitrant. We found that an Arabidopsis myb family transcription factor (MTF1) inhibited plant transformation susceptibility. Mutating MTF1 increased attachment of several Agrobacterium strains to roots and increased both stable and transient transformation in both susceptible and transformation-resistant Arabidopsis ecotypes. Cytokinins from Agrobacterium tumefaciens decreased the expression of MTF1 through activation of the cytokinin response regulator ARR3. Mutating AHK3 and AHK4, genes that encode cytokinin-responsive kinases, increased the expression of MTF1 and impaired plant transformation. Mutant mtf1 plants also had increased expression of AT14A, which encodes a putative transmembrane receptor for cell adhesion molecules. Plants overexpressing AT14A exhibited increased susceptibility to transformation, whereas at14a mutant plants exhibited decreased attachment of bacteria to roots and decreased transformation, suggesting that AT14A may serve as an anchor point for Agrobacteria. Thus, by promoting bacterial attachment and transformation of resistant plants and increasing such processes in susceptible plants, treating roots with cytokinins may help engineer crops with improved features or yield.
Collapse
Affiliation(s)
- Nagesh Sardesai
- 1Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zamani K, Lohrasebi T, Sabet MS, Malboobi MA, Mousavi A. Expression pattern and subcellular localization of Arabidopsis purple acid phosphatase AtPAP9. Gene Expr Patterns 2013; 14:9-18. [PMID: 24012521 DOI: 10.1016/j.gep.2013.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/29/2022]
Abstract
Purple acid phosphatase (PAP; EC 3.1.3.2) enzymes are metallophosphoesterases that hydrolysis phosphate ester bonds in a wide range of substrates. Twenty-nine PAP-encoding loci have been identified in the Arabidopsis genome, many of which have multiple transcript variants expressed in response to diverse environmental conditions. Having analyzed T-DNA insertion mutants, we have provided strong pieces of evidence that AtPAP9 locus encodes at least two types of transcripts, designated as AtPAP9-1 and AtPAP9-2. These transcript variants expressed distinctly during the course of growth in medium containing sufficient phosphate or none. Further histochemical analysis by the use of AtPAP9-1 promoter fused to β-glucuronidase reporter gene indicated the expression of this gene is regulated in a tissue-specific manner. AtPAP9-1 was highly expressed in stipule and vascular tissue, particularly in response to fungal infection. Subcellular localization of AtPAP9-1:green fluorescent fusion protein showed that it must be involved in plasma membrane and cell wall adhesion.
Collapse
Affiliation(s)
- Katayoun Zamani
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Islamic Republic of Iran.
| | - Tahmineh Lohrasebi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Islamic Republic of Iran.
| | - Mohammad S Sabet
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Islamic Republic of Iran.
| | - Mohammad A Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Islamic Republic of Iran.
| | - Amir Mousavi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Islamic Republic of Iran.
| |
Collapse
|
17
|
Hafke JB, Ehlers K, Föller J, Höll SR, Becker S, van Bel AJE. Involvement of the sieve element cytoskeleton in electrical responses to cold shocks. PLANT PHYSIOLOGY 2013; 162:707-19. [PMID: 23624858 PMCID: PMC3668064 DOI: 10.1104/pp.113.216218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La(3+) in keeping with the involvement of Ca(2+) channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca(2+) influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba).
Collapse
Affiliation(s)
- Jens B Hafke
- Plant Cell Physiology Group, Institute of Plant Physiology, Justus-Liebig-University, D-35390 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Christmann A, Grill E, Huang J. Hydraulic signals in long-distance signaling. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:293-300. [PMID: 23545219 DOI: 10.1016/j.pbi.2013.02.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 05/18/2023]
Abstract
Higher plants are sessile organisms that continuously adapt their metabolism and development in response to a changing environment. Control of water uptake and the maintenance of water status are key for the survival and optimal growth of plants. Environmental factors such as radiation, air temperature, rainfall, and humidity have a high impact on plant water relations. Hence, plants require a coordinated and timely response in above-ground and below-ground organs to cope with the changing need to take up and preserve water. In this review we will focus on changes in plant water availability and on how information on the water status is communicated to remote plant organs. We will summarize the current knowledge of long-distance signaling by hydraulic cues and of potential sensors required to convert a physical signal into a chemical messenger, namely the plant hormone abscisic acid (ABA).
Collapse
Affiliation(s)
- Alexander Christmann
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Strasse 4, D-85354 Freising, Germany.
| | | | | |
Collapse
|