1
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
2
|
Dai H, Zheng S, Zhang C, Huang R, Yuan L, Tong H. Identification and expression analysis of the KNOX genes during organogenesis and stress responseness in Camellia sinensis (L.) O. Kuntze. Mol Genet Genomics 2023; 298:1559-1578. [PMID: 37922102 DOI: 10.1007/s00438-023-02075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/28/2023] [Indexed: 11/05/2023]
Abstract
Tea plant (Camellia sinensis L.), whose leaves are the major reproductive organs, has been cultivated and consumed widely for its economic and health benefits. The Knotted1-like Homeobox (KNOX) proteins play significant roles in leaf morphology formation and development. However, the functions of KNOX proteins in tea plants are still unknown. Here, 11 CsKNOX genes from the tea plants were cloned and divided into Class I, II, and KNATM clades based on their protein sequences. These 11 CsKNOX genes were mapped on 8 out of 15 tea plant chromosomes, all localized in the nucleus. Specific spatiotemporal expression patterns of CsKNOX genes were found in various tissues and different development periods of buds, flowers, and roots of tea plants. Meanwhile, transcript levels of CsKNOX in tea leaves were strongly correlated with the accumulation of flavan-3-ols and proanthocyanidins. It was found that most of the CsKNOX genes could respond to drought, salt, cold, and exogenous MeJA and GA3 by analysis of transcriptomics data and promoter elements. The protein interaction analysis showed that CsKNOX could cooperate with CsAS1 and other critical functional proteins. In conclusion, this research provided the basic information for the functions of the CsKNOX family during organogenesis and stress response in tea plants, which was necessary for further functional characterization verification.
Collapse
Affiliation(s)
- Hongwei Dai
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shuting Zheng
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Cheng Zhang
- Nanchuan District's Agricultural Characteristic Industry Development Center of Chongqing Municipality, Chongqing, 408400, People's Republic of China
| | - Rui Huang
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lianyu Yuan
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Huarong Tong
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
3
|
Bai Y, Shi T, Huang X, Zhou P, Ouma KO, Ni Z, Gao F, Tan W, Ma C, Ma Y, Gao Z. Genome-Wide Identification of the KNOX Gene Family in Japanese Apricot ( Prunus mume Sieb. et Zucc.) and Functional Characterization of PmKNAT2 Genes. Genes (Basel) 2023; 14:genes14040939. [PMID: 37107697 PMCID: PMC10138190 DOI: 10.3390/genes14040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The Knotted1-like Homeobox gene is crucial for plant morphological development and growth. Physicochemical characteristics, phylogenetic relationships, chromosomal localization, cis-acting elements, and tissue-specific expression patterns of the 11 PmKNOX genes found in the Japanese apricot genome in this study were examined. Proteins of 11 PmKNOX were soluble proteins with isoelectric points between 4.29 and 6.53, molecular masses between 15.732 and 44.011 kDa, and amino acid counts between 140 and 430. The identified PmKNOX gene family was split into three subfamilies by jointly constructing the phylogenetic tree of KNOX proteins in Japanese apricot and Arabidopsis thaliana. Combined outcomes of the analyzed conserved motifs and gene structures of the 11 PmKNOX genes from the same subfamily displayed comparable gene structure and motif patterns. The 11 PmKNOX members were distributed across six chromosomes, while two sets of PmKNOX genes were found to be collinear. Analysis of the 2000 bp promoter upstream of the coding region of the PmKNOX gene revealed that most PmKNOX genes might be involved in the physiological metabolism, growth and development processes of plants. The PmKNOX gene expression profile revealed that these genes were expressed at varying levels in different tissues, and most of them were linked to the meristems of leaf and flower buds, suggesting that PmKNOX may be involved in plants' apical meristems. In Arabidopsis thaliana, functional validation of PmKNAT2a and PmKNAT2b revealed that these two genes might be involved in regulating leaf and stem development. In addition to laying the groundwork for future research on the function of these genes, understanding the evolutionary relationships between members of the PmKNOX gene family provides opportunities for future breeding in Japanese apricots.
Collapse
Affiliation(s)
- Yang Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyu Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kenneth Omondi Ouma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengdong Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufan Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Prunus Knotted-like Genes: Genome-Wide Analysis, Transcriptional Response to Cytokinin in Micropropagation, and Rootstock Transformation. Int J Mol Sci 2023; 24:ijms24033046. [PMID: 36769369 PMCID: PMC9918302 DOI: 10.3390/ijms24033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Knotted1-like homeobox (KNOX) transcription factors are involved in plant development, playing complex roles in aerial organs. As Prunus species include important fruit tree crops of Italy, an exhaustive investigation of KNOX genes was performed using genomic and RNA-seq meta-analyses. Micropropagation is an essential technology for rootstock multiplication; hence, we investigated KNOX transcriptional behavior upon increasing 6-benzylaminopurine (BA) doses and the effects on GF677 propagules. Moreover, gene function in Prunus spp. was assessed by Gisela 6 rootstock transformation using fluorescence and peach KNOX transgenes. Based on ten Prunus spp., KNOX proteins fit into I-II-M classes named after Arabidopsis. Gene number, class member distribution, and chromosome positions were maintained, and exceptions supported the diversification of Prunus from Cerasus subgenera, and that of Armeniaca from the other sections within Prunus. Cytokinin (CK) cis-elements occurred in peach and almond KNOX promoters, suggesting a BA regulatory role in GF677 shoot multiplication as confirmed by KNOX expression variation dependent on dose, time, and interaction. The tripled BA concentration exacerbated stress, altered CK perception genes, and modified KNOX transcriptions, which are proposed to concur in in vitro anomalies. Finally, Gisela 6 transformation efficiency varied (2.6-0.6%) with the genetic construct, with 35S:GFP being more stable than 35S:KNOPE1 lines, which showed leaf modification typical of KNOX overexpression.
Collapse
|
5
|
Yang Q, Yuan C, Cong T, Wang J, Zhang Q. Genome-wide identification of three-amino-acid-loop-extension gene family and their expression profile under hormone and abiotic stress treatments during stem development of Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:1006360. [PMID: 36212383 PMCID: PMC9538144 DOI: 10.3389/fpls.2022.1006360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Transcription factors encoded by the three-amino-acid-loop-extension (TALE) gene family play a key role in regulating plant growth and development, and are involved in plant hormone regulatory pathways and responses to various environmental stresses. Researchers are currently studying TALE genes in different species, but Prunus mume TALE genes have not yet been studied. Therefore, based on the P. mume genome, we found a total of 23 TALE gene family members, which were distributed on eight chromosomes. TALE genes contained the characteristic domains of this family, and could be divided into KNOTTED-like homeobox (KNOX) subfamily and BEL1-like homeobox (BELL) subfamily. They can form heterodimers with each other. Fragment duplication and tandem duplication events were the main reasons for the expansion of P. mume TALE gene family members and the TALE genes were selected by different degrees of purification. The inter-species collinearity analysis showed that the relationship between P. mume and other four Prunus species was consistent with the distance of origin. Eleven members of P. mume TALE genes were specifically highly expressed in stem, mainly at the early stage of stem development. The cis-element analysis showed that the promoter of P. mume TALE genes contained a variety of hormone and abiotic stress response elements, and four TALE genes responded to two kinds of abiotic stresses and four kinds of hormones at the early stage of stem development. In conclusion, this study lays a foundation to explore the role of TALE gene family in P. mume growth and development.
Collapse
|
6
|
Guo HY, Zhang J, Lin LM, Song X, Zhang DD, Cui MH, Long CW, Long YH, Xing ZB. Metabolome and transcriptome analysis of eleutheroside B biosynthesis pathway in Eleutherococcus senticosus. Heliyon 2022; 8:e09665. [PMID: 35706960 PMCID: PMC9190005 DOI: 10.1016/j.heliyon.2022.e09665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Eleutheroside B (syringin) is a medicinal active ingredient extracted from Eleutherococcus senticosus (Ruper. et Maxim.) Maxim with high clinical application value. However, its synthesis pathway remains unknown. Here, we analyzed the eleutheroside B biosynthesis pathway in E. senticosus. Consequently, metabolomic and transcriptomic analyses identified 461 differentially expressed genes (DEGs) and 425 metabolites. Further, we identified 7 DEGs and 67 metabolites involved in the eleutheroside B biosynthetic pathway in the eleutheroside B high and low plants. The correlation between the gene and metabolites was explored using the pearson correlation coefficient (PCC) analysis. Caffeoyl-CoA O-methyltransferase, caffeic acid-O-methyltransferase, β-amyrin synthase (β-AS) genes, NAC5, and HB5 transcription factors were identified as candidate genes and transcription factors related to the eleutheroside B synthesis. Eleutheroside B content was the highest at the young stage of the leaves both in the high and low eleutheroside B plants. Quantitative real-time polymerase chain reaction revealed that phenylalanine ammonia-lyase1, cinnamate 4-hydroxylase, β-AS, and leucoanthocyanidin reductase gene had higher expression levels at the young stage of the leaves in the low eleutheroside B plants but lower expression levels in the high eleutheroside B plants. In the present study, we complemented the eleutheroside B biosynthetic pathway by analyzing the expression levels of relevant genes and metabolite accumulation patterns.
Collapse
Affiliation(s)
- Hong-Yu Guo
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jie Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Li-Mei Lin
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xin Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Duo-Duo Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Ming-Hui Cui
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | | | - Yue-Hong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
- Corresponding author.
| | - Zhao-Bin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
- Corresponding author.
| |
Collapse
|
7
|
Zeng RF, Zhou H, Fu LM, Yan Z, Ye LX, Hu SF, Gan ZM, Ai XY, Hu CG, Zhang JZ. Two citrus KNAT-like genes, CsKN1 and CsKN2, are involved in the regulation of spring shoot development in sweet orange. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7002-7019. [PMID: 34185082 DOI: 10.1093/jxb/erab311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/26/2021] [Indexed: 05/21/2023]
Abstract
Shoot-tip abortion is a very common phenomenon in some perennial woody plants and it affects the height, architecture, and branch orientation of trees; however, little is currently known about the underlying mechanisms. In this study, we identified a gene in sweet orange (Citrus sinensis) encoding a KNAT-like protein (CsKN1) and found high expression in the shoot apical meristem (SAM). Overexpression of CsKN1 in transgenic plants prolonged the vegetative growth of SAMs, whilst silencing resulted in either the loss or inhibition of SAMs. Yeast two-hybrid analysis revealed that CsKN1 interacted with another citrus KNAT-like protein (CsKN2), and overexpression of CsKN2 in lemon and tobacco caused an extreme multiple-meristem phenotype. Overexpression of CsKN1 and CsKN2 in transgenic plants resulted in the differential expression of numerous genes related to hormone biosynthesis and signaling. Yeast one-hybrid analysis revealed that the CsKN1-CsKN2 complex can bind to the promoter of citrus floral meristem gene LEAFY (CsLFY) and inhibit its expression. These results indicated that CsKN1 might prolong the vegetative growth period of SAMs by delaying flowering. In addition, an ethylene-responsive factor (CsERF) was found to bind to the CsKN1 promoter and suppresses its transcription. Overexpression of CsERF in Arabidopsis increased the contents of ethylene and reactive oxygen species, which might induce the occurrence of shoot-tip abscission. On the basis of our results, we conclude that CsKN1 and CsKN2 might work cooperatively to regulate the shoot-tip abscission process in spring shoots of sweet orange.
Collapse
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen Yan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Xia Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Genome-Wide Identification and Characterization of KNOTTED-Like Homeobox (KNOX) Homologs in Garlic ( Allium sativum L.) and Their Expression Profilings Responding to Exogenous Cytokinin and Gibberellin. Int J Mol Sci 2021; 22:ijms22179237. [PMID: 34502163 PMCID: PMC8430937 DOI: 10.3390/ijms22179237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Garlic (Allium sativum L.) is an important vegetable and is cultivated and consumed worldwide for its economic and medicinal values. Garlic cloves, the major reproductive and edible organs, are derived from the axillary meristems. KNOTTED-like homeobox (KNOX) proteins, such as SHOOT MERISTEM-LESS (STM), play important roles in axillary meristem formation and development. However, the KNOX proteins in garlic are still poorly known. Here, 10 AsKNOX genes, scattered on 5 of the 8 chromosomes, were genome-wide identified and characterized based on the newly released garlic genome. The typical conserved domains of KNOX proteins were owned by all these 10 AsKNOX homologs, which were divided into two Classes (Class I and Class II) based on the phylogenetic analysis. Prediction and verification of the subcellular localizations revealed the diverse subcellular localization of these 10 AsKNOX proteins. Cis-element prediction, tissue expression analysis, and expression profilings in responding to exogenous GA3 and 6-BA showed the potential involvement of AsKNOX genes in the gibberellin and cytokinin signaling pathways. Overall, the results of this work provided a better understanding of AsKNOX genes in garlic and laid an important foundation for their further functional studies.
Collapse
|
9
|
Jia P, Xing L, Zhang C, Zhang D, Ma J, Zhao C, Han M, Ren X, An N. MdKNOX19, a class II knotted-like transcription factor of apple, plays roles in ABA signalling/sensitivity by targeting ABI5 during organ development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110701. [PMID: 33288014 DOI: 10.1016/j.plantsci.2020.110701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 05/10/2023]
Abstract
The ABI5 transcription factor, which is a core component of the ABA signaling pathway, affects various plant processes, including seed development and germination and responses to environmental cues. The knotted1-like homeobox (KNOX) transcription factor has crucial functions related to plant development, including the regulation of various hormones. In this study, an ABA-responsive KNOX gene, MdKNOX19, was identified in apple (Malus domestica). The overexpression of MdKNOX19 increased the ABA sensitivity of apple calli, resulting in a dramatic up-regulation in the transcription of the Arabidopsis ABI5-like MdABI5 gene. Additionally, MdKNOX19 overexpression in Micro-Tom adversely affected fruit size and seed yield as well as enhanced ABA sensitivity and up-regulated SlABI5 transcription during seed germination and early seedling development. An examination of MdKNOX19-overexpressing Arabidopsis plants also revealed severe defects in seed development and up-regulated expression of ABA-responsive genes. Furthermore, we further confirmed that MdKNOX19 binds directly to the MdABI5 promoter to activate expression. Our findings suggest MdKNOX19 is a positive regulator of ABI5 expression, and the conserved module MdKNOX19-MdABI5-ABA may contribute to organ development.
Collapse
Affiliation(s)
- Peng Jia
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Chenguang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Identification of Homeobox Genes Associated with Lignification and Their Expression Patterns in Bamboo Shoots. Biomolecules 2019; 9:biom9120862. [PMID: 31835882 PMCID: PMC6995565 DOI: 10.3390/biom9120862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022] Open
Abstract
: Homeobox (HB) genes play critical roles in regulating various aspects of plant growth and development. However, little is known about HB genes in bamboo. In this study, a total of 115 HB genes (PeHB001‒PeHB115) were identified from moso bamboo (Phyllostachys edulis) and grouped into 13 distinct classes (BEL, DDT, HD-ZIP I‒IV, KNOX, NDX, PHD, PINTOX, PLINC, SAWADEE, and WOX) based on the conserved domains and phylogenetic analysis. The number of members in the different classes ranged from 2 to 24, and they usually varied in terms of exon‒intron distribution pattern and length. There were 20 conserved motifs found in 115 PeHBs, with motif 1 being the most common. Gene ontology (GO) analysis showed that PeHBs had diverse molecular functions, with 19 PeHBs being annotated as having xylem development, xylem, and phloem pattern formation functions. Co-expression network analysis showed that 10 of the 19 PeHBs had co-expression correlations, and three members of the KNOX class were hub proteins that interacted with other transcription factors (TFs) such as MYB, bHLH, and OVATE, which were associated with lignin synthesis. Yeast two-hybridization results further proved that PeHB037 (BEL class) interacted with PeHB057 (KNOX class). Transcriptome expression profiling indicated that all PeHBs except PeHB017 were expressed in at least one of the seven tissues of moso bamboo, and 90 PeHBs were expressed in all the tissues. The qRT-PCR results of the 19 PeHBs showed that most of them were upregulated in shoots as the height increased. Moreover, a KNOX binding site was found in the promoters of the key genes involved in lignin synthesis such as Pe4CL, PeC3H, PeCCR, and PeCOMT, which had positive expression correlations with five KNOX genes. Similar results were found in winter bamboo shoots with prolonged storage time, which was consistent with the degree of lignification. These results provide basic data on PeHBs in moso bamboo, which will be helpful for future functional research on PeHBs with positive regulatory roles in the process of lignification.
Collapse
|
11
|
Cheng X, Li M, Abdullah M, Li G, Zhang J, Manzoor MA, Wang H, Jin Q, Jiang T, Cai Y, Li D, Lin Y. In Silico Genome-Wide Analysis of the Pear ( Pyrus bretschneideri) KNOX Family and the Functional Characterization of PbKNOX1, an Arabidopsis BREVIPEDICELLUS Orthologue Gene, Involved in Cell Wall and Lignin Biosynthesis. Front Genet 2019; 10:632. [PMID: 31333718 PMCID: PMC6624237 DOI: 10.3389/fgene.2019.00632] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Abstract
Stone cells are a characteristic trait of pear fruit, but the contents and sizes of stone cells negatively correlate with fruit texture and flavor. Secondary cell wall thickening and lignification have been established as key steps of stone cell development. KNOTTED-LIKE HOMEOBOX (KNOX) proteins play important roles in plant cell growth and development, including cell wall formation and lignification. Although the characteristics and biological functions of KNOX proteins have been investigated in other plants, this gene family has not been functionally characterized in pear. Eighteen PbKNOX genes were identified in the present study, and all of the identified family members contained the KNOX I and/or KNOX II domains. Based on the phylogenetic tree and chromosomal localization, the 18 PbKNOX genes were divided into five subfamilies [SHOOT MERISTEMLESS (STM)-like, BREVIPEDICELLUS (BP)-like, KNOTTED ARABIDOPSIS THALIANA 2/6 (KNAT2/6)-like, KNAT7-like, and KNAT3-5-like] and were distributed among 10 chromosomes. In addition, we identified 9, 11, and 11 KNOX genes in the genomes of grape, mei, and strawberry, respectively, and the greatest number of collinear KNOX gene pairs formed between pears and peaches. Analyses of the spatiotemporal expression patterns showed that the tissue specificity of PbKNOX gene expression was not very significant and that the level of the PbKNOX1 transcript showed an opposite trend to the levels of stone cells and lignin accumulation. Furthermore, PbKNOX1 has high sequence identity and similarity with Arabidopsis BP. Compared with wild-type Arabidopsis, plants overexpressing PbKNOX1 not only showed an approximately 19% decrease in the secondary cell wall thickness of vessel cells but also exhibited an approximately 13% reduction in the lignin content of inflorescence stems. Moreover, the expression of several genes involved in lignin biosynthesis was downregulated in transgenic lines. Based on our results, PbKNOX1/BP participates in cell wall-thickening and lignin biosynthesis and represses the transcription of key structural genes involved in lignin synthesis, providing genetic evidence for the roles of KNOX in cell wall thickening and lignin biosynthesis in pear.
Collapse
Affiliation(s)
- Xi Cheng
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Manli Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | | | - Guohui Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Jingyun Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China.,Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | | | - Han Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Taoshan Jiang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Dahui Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Paolis AD, Frugis G, Giannino D, Iannelli MA, Mele G, Rugini E, Silvestri C, Sparvoli F, Testone G, Mauro ML, Nicolodi C, Caretto S. Plant Cellular and Molecular Biotechnology: Following Mariotti's Steps. PLANTS (BASEL, SWITZERLAND) 2019; 8:E18. [PMID: 30634627 PMCID: PMC6359066 DOI: 10.3390/plants8010018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 01/19/2023]
Abstract
This review is dedicated to the memory of Prof. Domenico Mariotti, who significantly contributed to establishing the Italian research community in Agricultural Genetics and carried out the first experiments of Agrobacterium-mediated plant genetic transformation and regeneration in Italy during the 1980s. Following his scientific interests as guiding principles, this review summarizes the recent advances obtained in plant biotechnology and fundamental research aiming to: (i) Exploit in vitro plant cell and tissue cultures to induce genetic variability and to produce useful metabolites; (ii) gain new insights into the biochemical function of Agrobacterium rhizogenes rol genes and their application to metabolite production, fruit tree transformation, and reverse genetics; (iii) improve genetic transformation in legume species, most of them recalcitrant to regeneration; (iv) untangle the potential of KNOTTED1-like homeobox (KNOX) transcription factors in plant morphogenesis as key regulators of hormonal homeostasis; and (v) elucidate the molecular mechanisms of the transition from juvenility to the adult phase in Prunus tree species.
Collapse
Affiliation(s)
- Angelo De Paolis
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Eddo Rugini
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Cristian Silvestri
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Francesca Sparvoli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy.
| | - Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Sofia Caretto
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
13
|
Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, Bassi D, Troggio M, Shu S, Grimwood J, Tartarini S, Dettori MT, Schmutz J. The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 2017. [PMID: 28284188 DOI: 10.1186/s12864-017-3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND The availability of the peach genome sequence has fostered relevant research in peach and related Prunus species enabling the identification of genes underlying important horticultural traits as well as the development of advanced tools for genetic and genomic analyses. The first release of the peach genome (Peach v1.0) represented a high-quality WGS (Whole Genome Shotgun) chromosome-scale assembly with high contiguity (contig L50 214.2 kb), large portions of mapped sequences (96%) and high base accuracy (99.96%). The aim of this work was to improve the quality of the first assembly by increasing the portion of mapped and oriented sequences, correcting misassemblies and improving the contiguity and base accuracy using high-throughput linkage mapping and deep resequencing approaches. RESULTS Four linkage maps with 3,576 molecular markers were used to improve the portion of mapped and oriented sequences (from 96.0% and 85.6% of Peach v1.0 to 99.2% and 98.2% of v2.0, respectively) and enabled a more detailed identification of discernible misassemblies (10.4 Mb in total). The deep resequencing approach fixed 859 homozygous SNPs (Single Nucleotide Polymorphisms) and 1347 homozygous indels. Moreover, the assembled NGS contigs enabled the closing of 212 gaps with an improvement in the contig L50 of 19.2%. CONCLUSIONS The improved high quality peach genome assembly (Peach v2.0) represents a valuable tool for the analysis of the genetic diversity, domestication, and as a vehicle for genetic improvement of peach and related Prunus species. Moreover, the important phylogenetic position of peach and the absence of recent whole genome duplication (WGD) events make peach a pivotal species for comparative genomics studies aiming at elucidating plant speciation and diversification processes.
Collapse
Affiliation(s)
- Ignazio Verde
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy.
| | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Luca Dondini
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Sabrina Micali
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy
| | - Giulia Pagliarani
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Elisa Vendramin
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy
| | - Roberta Paris
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
- Present address: Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centre of Research for Industrial Crops, 40128, Bologna, Italy
| | - Valeria Aramini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy
| | - Laura Gazza
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy
- Present address: Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Research Unit for Cereal Quality, Rome, Italy
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy
- Parco Tecnologico Padano, Via Einstein, 26900, Lodi, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy
| | - Michela Troggio
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38010, San Michele all'Adige, TN, Italy
| | - Shengqiang Shu
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Jane Grimwood
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Stefano Tartarini
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Maria Teresa Dettori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| |
Collapse
|
14
|
Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, Bassi D, Troggio M, Shu S, Grimwood J, Tartarini S, Dettori MT, Schmutz J. The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 2017; 18:225. [PMID: 28284188 PMCID: PMC5346207 DOI: 10.1186/s12864-017-3606-9] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The availability of the peach genome sequence has fostered relevant research in peach and related Prunus species enabling the identification of genes underlying important horticultural traits as well as the development of advanced tools for genetic and genomic analyses. The first release of the peach genome (Peach v1.0) represented a high-quality WGS (Whole Genome Shotgun) chromosome-scale assembly with high contiguity (contig L50 214.2 kb), large portions of mapped sequences (96%) and high base accuracy (99.96%). The aim of this work was to improve the quality of the first assembly by increasing the portion of mapped and oriented sequences, correcting misassemblies and improving the contiguity and base accuracy using high-throughput linkage mapping and deep resequencing approaches. RESULTS Four linkage maps with 3,576 molecular markers were used to improve the portion of mapped and oriented sequences (from 96.0% and 85.6% of Peach v1.0 to 99.2% and 98.2% of v2.0, respectively) and enabled a more detailed identification of discernible misassemblies (10.4 Mb in total). The deep resequencing approach fixed 859 homozygous SNPs (Single Nucleotide Polymorphisms) and 1347 homozygous indels. Moreover, the assembled NGS contigs enabled the closing of 212 gaps with an improvement in the contig L50 of 19.2%. CONCLUSIONS The improved high quality peach genome assembly (Peach v2.0) represents a valuable tool for the analysis of the genetic diversity, domestication, and as a vehicle for genetic improvement of peach and related Prunus species. Moreover, the important phylogenetic position of peach and the absence of recent whole genome duplication (WGD) events make peach a pivotal species for comparative genomics studies aiming at elucidating plant speciation and diversification processes.
Collapse
Affiliation(s)
- Ignazio Verde
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy.
| | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Luca Dondini
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Sabrina Micali
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy
| | - Giulia Pagliarani
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Elisa Vendramin
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy
| | - Roberta Paris
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy.,Present address: Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centre of Research for Industrial Crops, 40128, Bologna, Italy
| | - Valeria Aramini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy
| | - Laura Gazza
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy.,Present address: Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Research Unit for Cereal Quality, Rome, Italy
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy.,Parco Tecnologico Padano, Via Einstein, 26900, Lodi, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy
| | - Michela Troggio
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38010, San Michele all'Adige, TN, Italy
| | - Shengqiang Shu
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Jane Grimwood
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Stefano Tartarini
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Maria Teresa Dettori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di Ricerca per la Frutticoltura, 00134, Rome, Italy
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA.,U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| |
Collapse
|
15
|
Di Giacomo E, Laffont C, Sciarra F, Iannelli MA, Frugier F, Frugis G. KNAT3/4/5-like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development. THE NEW PHYTOLOGIST 2017; 213:822-837. [PMID: 27582377 DOI: 10.1111/nph.14146] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/12/2016] [Indexed: 05/21/2023]
Abstract
We investigated the role of KNOX genes in legume root nodule organogenesis. Class 1 KNOX homeodomain transcription factors (TFs) are involved in plant shoot development and leaf shape diversity. Class 2 KNOX genes are less characterized, even though an antagonistic function relative to class 1 KNOXs was recently proposed. In silico expression data and further experimental validation identified in the Medicago truncatula model legume three class 2 KNOX genes, belonging to the KNAT3/4/5-like subclass (Mt KNAT3/4/5-like), as expressed during nodulation from early stages. RNA interference (RNAi)-mediated silencing and overexpression studies were used to unravel a function for KNOX TFs in nodule development. Mt KNAT3/4/5-like genes encoded four highly homologous proteins showing overlapping expression patterns during nodule organogenesis, suggesting functional redundancy. Simultaneous reduction of Mt KNAT3/4/5-like genes indeed led to an increased formation of fused nodule organs, and decreased the expression of the MtEFD (Ethylene response Factor required for nodule Differentiation) TF and its direct target MtRR4, a cytokinin response gene. Class 2 KNOX TFs therefore regulate legume nodule development, potentially through the MtEFD/MtRR4 cytokinin-related regulatory module, and may control nodule organ boundaries and shape like class 2 KNOX function in leaf development.
Collapse
Affiliation(s)
- Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29300-00015, Monterotondo Scalo (Roma), Italy
| | - Carole Laffont
- Institute of Plant Sciences - Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, Gif sur Yvette, 91190, France
| | - Francesca Sciarra
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29300-00015, Monterotondo Scalo (Roma), Italy
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29300-00015, Monterotondo Scalo (Roma), Italy
| | - Florian Frugier
- Institute of Plant Sciences - Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, Gif sur Yvette, 91190, France
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29300-00015, Monterotondo Scalo (Roma), Italy
| |
Collapse
|
16
|
Wuddineh WA, Mazarei M, Zhang JY, Turner GB, Sykes RW, Decker SR, Davis MF, Udvardi MK, Stewart CN. Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:520. [PMID: 27200006 PMCID: PMC4848298 DOI: 10.3389/fpls.2016.00520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/01/2016] [Indexed: 05/18/2023]
Abstract
High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.
Collapse
Affiliation(s)
- Wegi A. Wuddineh
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Ji-Yi Zhang
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Geoffrey B. Turner
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Stephen R. Decker
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Michael K. Udvardi
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- *Correspondence: C. Neal Stewart Jr.,
| |
Collapse
|
17
|
Gao J, Yang X, Zhao W, Lang T, Samuelsson T. Evolution, diversification, and expression of KNOX proteins in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:882. [PMID: 26557129 PMCID: PMC4617109 DOI: 10.3389/fpls.2015.00882] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The KNOX (KNOTTED1-like homeobox) transcription factors play a pivotal role in leaf and meristem development. The majority of these proteins are characterized by the KNOX1, KNOX2, ELK, and homeobox domains whereas the proteins of the KNATM family contain only the KNOX domains. We carried out an extensive inventory of these proteins and here report on a total of 394 KNOX proteins from 48 species. The land plant proteins fall into two classes (I and II) as previously shown where the class I family seems to be most closely related to the green algae homologs. The KNATM proteins are restricted to Eudicots and some species have multiple paralogs of this protein. Certain plants are characterized by a significant increase in the number of KNOX paralogs; one example is Glycine max. Through the analysis of public gene expression data we show that the class II proteins of this plant have a relatively broad expression specificity as compared to class I proteins, consistent with previous studies of other plants. In G. max, class I protein are mainly distributed in axis tissues and KNATM paralogs are overall poorly expressed; highest expression is in the early plumular axis. Overall, analysis of gene expression in G. max demonstrates clearly that the expansion in gene number is associated with functional diversification.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Xue Yang
- Department of Life Sciences, Jilin Agricultural UniversityJilin, China
| | - Wei Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Tiange Lang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
| |
Collapse
|
18
|
Tsuda K, Hake S. Diverse functions of KNOX transcription factors in the diploid body plan of plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:91-6. [PMID: 26190742 DOI: 10.1016/j.pbi.2015.06.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 05/18/2023]
Abstract
KNOX genes were initially found as shoot meristem regulators in angiosperms. Recent studies in diverse plant lineages however, have revealed the divergence of KNOX gene function during the evolution of diploid body plans. Using genomic approaches, class I KNOX transcription factors have been shown to regulate multiple hormone pathways including auxin and brassinosteroid as well as many transcription factors that play important roles in plant development. Class I KNOX proteins appear to be activators, whereas class II proteins act as repressors in transcriptional regulation of their target genes.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Testone G, Condello E, Di Giacomo E, Nicolodi C, Caboni E, Rasori A, Bonghi C, Bruno L, Bitonti MB, Giannino D. The KNOTTED-like genes of peach (Prunus persica L. Batsch) are differentially expressed during drupe growth and the class 1 KNOPE1 contributes to mesocarp development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:69-79. [PMID: 26089153 DOI: 10.1016/j.plantsci.2015.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
The Knotted-like transcription factors (KNOX) contribute to plant organ development. The expression patterns of peach KNOX genes showed that the class 1 members act precociously (S1-S2 stages) and differentially during drupe growth. Specifically, the transcription of KNOPE1 and 6 decreased from early (cell division) to late (cell expansion) S1 sub-stages, whilst that of STMlike1, 2, KNOPE2, 2.1 ceased at early S1. The KNOPE1 role in mesocarp was further addressed by studying the mRNA localization in the pulp cells and vascular net at early and late S1. The message signal was first diffuse in parenchymatous cells and then confined to hypodermal cell layers, showing that the gene down-tuning accompanied cell expansion. As for bundles, the mRNA mainly featured in the procambium/phloem of collateral open types and subsequently in the phloem side of complex structures (converging bundles, ducts). The KNOPE1 overexpression in Arabidopsis caused fruit shortening, decrease of mesocarp cell size, diminution of vascular lignification together with the repression of the major gibberellin synthesis genes AtGA20ox1 and AtGA3ox1. Negative correlation between the expression of KNOPE1 and PpGA3ox1 was observed in four cultivars at S1, suggesting that the KNOPE1 repression of PpGA3ox1 may regulate mesocarp differentiation by acting on gibberellin homeostasis.
Collapse
Affiliation(s)
- Giulio Testone
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy (CNR), via Salaria km 29,300, 00015 Monterotondo Scalo, Rome, Italy.
| | - Emiliano Condello
- Fruit Tree Research Centre, Agriculture Research Council (CRA), Via di Fioranello 52, 00134 Rome, Italy.
| | - Elisabetta Di Giacomo
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy (CNR), via Salaria km 29,300, 00015 Monterotondo Scalo, Rome, Italy.
| | - Chiara Nicolodi
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy (CNR), via Salaria km 29,300, 00015 Monterotondo Scalo, Rome, Italy.
| | - Emilia Caboni
- Fruit Tree Research Centre, Agriculture Research Council (CRA), Via di Fioranello 52, 00134 Rome, Italy.
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - Leonardo Bruno
- Department of Ecology, University of Calabria, Ponte Bucci, 87030 Arcavacata di Rende, Cosenza, Italy.
| | - Maria Beatrice Bitonti
- Department of Ecology, University of Calabria, Ponte Bucci, 87030 Arcavacata di Rende, Cosenza, Italy.
| | - Donato Giannino
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy (CNR), via Salaria km 29,300, 00015 Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
20
|
Sojikul P, Saithong T, Kalapanulak S, Pisuttinusart N, Limsirichaikul S, Tanaka M, Utsumi Y, Sakurai T, Seki M, Narangajavana J. Genome-wide analysis reveals phytohormone action during cassava storage root initiation. PLANT MOLECULAR BIOLOGY 2015; 88:531-43. [PMID: 26118659 DOI: 10.1007/s11103-015-0340-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/23/2015] [Indexed: 05/04/2023]
Abstract
Development of storage roots is a process associated with a phase change from cell division and elongation to radial growth and accumulation of massive amounts of reserve substances such as starch. Knowledge of the regulation of cassava storage root formation has accumulated over time; however, gene regulation during the initiation and early stage of storage root development is still poorly understood. In this study, transcription profiling of fibrous, intermediate and storage roots at eight weeks old were investigated using a 60-mer-oligo microarray. Transcription and gene expression were found to be the key regulating processes during the transition stage from fibrous to intermediate roots, while homeostasis and signal transduction influenced regulation from intermediate roots to storage roots. Clustering analysis of significant genes and transcription factors (TF) indicated that a number of phytohormone-related TF were differentially expressed; therefore, phytohormone-related genes were assembled into a network of correlative nodes. We propose a model showing the relationship between KNOX1 and phytohormones during storage root initiation. Exogeneous treatment of phytohormones N (6) -benzylaminopurine and 1-Naphthaleneacetic acid were used to induce the storage root initiation stage and to investigate expression patterns of the genes involved in storage root initiation. The results support the hypothesis that phytohormones are acting in concert to regulate the onset of cassava storage root development. Moreover, MeAGL20 is a factor that might play an important role at the onset of storage root initiation when the root tip becomes swollen.
Collapse
Affiliation(s)
- Punchapat Sojikul
- Department of Biotechnology, Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bianchi VJ, Rubio M, Trainotti L, Verde I, Bonghi C, Martínez-Gómez P. Prunus transcription factors: breeding perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:443. [PMID: 26124770 PMCID: PMC4464204 DOI: 10.3389/fpls.2015.00443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/29/2015] [Indexed: 05/18/2023]
Abstract
Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome.
Collapse
Affiliation(s)
- Valmor J. Bianchi
- Department of Plant Physiology, Instituto de Biologia, Universidade Federal de PelotasPelotas-RS, Brazil
| | - Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | | | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA) - Centro di ricerca per la frutticolturaRoma, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, and Environment (DAFNAE). University of PaduaPadova, Italy
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| |
Collapse
|
22
|
Aguilar-Martínez JA, Uchida N, Townsley B, West DA, Yanez A, Lynn N, Kimura S, Sinha N. Transcriptional, posttranscriptional, and posttranslational regulation of SHOOT MERISTEMLESS gene expression in Arabidopsis determines gene function in the shoot apex. PLANT PHYSIOLOGY 2015; 167:424-42. [PMID: 25524441 PMCID: PMC4326739 DOI: 10.1104/pp.114.248625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/12/2014] [Indexed: 05/21/2023]
Abstract
The activity of SHOOT MERISTEMLESS (STM) is required for the functioning of the shoot apical meristem (SAM). STM is expressed in the SAM but is down-regulated at the site of leaf initiation. STM is also required for the formation of compound leaves. However, how the activity of STM is regulated at the transcriptional, posttranscriptional, and posttranslational levels is poorly understood. We previously found two conserved noncoding sequences in the promoters of STM-like genes across angiosperms, the K-box and the RB-box. Here, we characterize the function of the RB-box in Arabidopsis (Arabidopsis thaliana). The RB-box, along with the K-box, regulates the expression of STM in leaf sinuses, which are areas on the leaf blade with meristematic potential. The RB-box also contributes to restrict STM expression to the SAM. We identified FAR1-RELATED SEQUENCES-RELATED FACTOR1 (FRF1) as a binding factor to the RB-box region. FRF1 is an uncharacterized member of a subfamily of four truncated proteins related to the FAR1-RELATED SEQUENCES factors. Internal deletion analysis of the STM promoter identified a region required to repress the expression of STM in hypocotyls. Expression of STM in leaf primordia under the control of the JAGGED promoter produced plants with partially undifferentiated leaves. We further found that the ELK domain has a role in the posttranslational regulation of STM by affecting the nuclear localization of STM.
Collapse
Affiliation(s)
- José Antonio Aguilar-Martínez
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Naoyuki Uchida
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Brad Townsley
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Donnelly Ann West
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Andrea Yanez
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Nafeesa Lynn
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Seisuke Kimura
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| |
Collapse
|
23
|
Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman TS, Doron-Faigenboim A, Hetzroni A, Althan L, Adani Nadir L. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 2013; 14:460. [PMID: 23834507 PMCID: PMC3716973 DOI: 10.1186/1471-2164-14-460] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
Background The number of fibrous roots that develop into storage roots determines sweetpotato yield. The aim of the present study was to identify the molecular mechanisms involved in the initiation of storage root formation, by performing a detailed transcriptomic analysis of initiating storage roots using next-generation sequencing platforms. A two-step approach was undertaken: (1) generating a database for the sweetpotato root transcriptome using 454-Roche sequencing of a cDNA library created from pooled samples of two root types: fibrous and initiating storage roots; (2) comparing the expression profiles of initiating storage roots and fibrous roots, using the Illumina Genome Analyzer to sequence cDNA libraries of the two root types and map the data onto the root transcriptome database. Results Use of the 454-Roche platform generated a total of 524,607 reads, 85.6% of which were clustered into 55,296 contigs that matched 40,278 known genes. The reads, generated by the Illumina Genome Analyzer, were found to map to 31,284 contigs out of the 55,296 contigs serving as the database. A total of 8,353 contigs were found to exhibit differential expression between the two root types (at least 2.5-fold change). The Illumina-based differential expression results were validated for nine putative genes using quantitative real-time PCR. The differential expression profiles indicated down-regulation of classical root functions, such as transport, as well as down-regulation of lignin biosynthesis in initiating storage roots, and up-regulation of carbohydrate metabolism and starch biosynthesis. In addition, data indicated delicate control of regulators of meristematic tissue identity and maintenance, associated with the initiation of storage root formation. Conclusions This study adds a valuable resource of sweetpotato root transcript sequences to available data, facilitating the identification of genes of interest. This resource enabled us to identify genes that are involved in the earliest stage of storage root formation, highlighting the reduction in carbon flow toward phenylpropanoid biosynthesis and its delivery into carbohydrate metabolism and starch biosynthesis, as major events involved in storage root initiation. The novel transcripts related to storage root initiation identified in this study provide a starting point for further investigation into the molecular mechanisms underlying this process.
Collapse
Affiliation(s)
- Nurit Firon
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Townsley BT, Sinha NR, Kang J. KNOX1 genes regulate lignin deposition and composition in monocots and dicots. FRONTIERS IN PLANT SCIENCE 2013; 4:121. [PMID: 23653631 PMCID: PMC3642508 DOI: 10.3389/fpls.2013.00121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/16/2013] [Indexed: 05/04/2023]
Abstract
Plant secondary cell walls are deposited mostly in vascular tissues such as xylem vessels, tracheids, and fibers. These cell walls are composed of a complex matrix of compounds including cellulose, hemicellulose, and lignin. Lignin functions primarily to maintain the structural and mechanical integrity of both the transport vessel and the entire plant itself. Since lignin has been identified as a major source of biomass for biofuels, regulation of secondary cell wall biosynthesis has been a topic of much recent investigation. Biosynthesis and patterning of lignin involves many developmental and environmental cues including evolutionarily conserved transcriptional regulatory modules and hormonal signals. Here, we investigate the role of the class I Knotted1-like-homeobox (KNOX) genes and gibberellic acid in the lignin biosynthetic pathway in a representative monocot and a representative eudicot. Knotted1 overexpressing mutant plants showed a reduction in lignin content in both maize and tobacco. Expression of four key lignin biosynthesis genes was analyzed and revealed that KNOX1 genes regulate at least two steps in the lignin biosynthesis pathway. The negative regulation of lignin both in a monocot and a eudicot by the maize Kn1 gene suggests that lignin biosynthesis may be preserved across large phylogenetic distances. The evolutionary implications of regulation of lignification across divergent species are discussed.
Collapse
Affiliation(s)
- Brad T. Townsley
- Section of Plant Biology, University of California DavisDavis, CA, USA
| | - Neelima R. Sinha
- Section of Plant Biology, University of California DavisDavis, CA, USA
| | - Julie Kang
- Biology Department, University of Northern IowaCedar Falls, IA, USA
- *Correspondence: Julie Kang, Biology Department, University of Northern Iowa, 144 McCollum Science Hall, Cedar Falls, IA 50613, USA. e-mail:
| |
Collapse
|