1
|
Liao J, Shahul Hameed UF, Hoffmann TD, Kurze E, Sun G, Steinchen W, Nicoli A, Di Pizio A, Kuttler C, Song C, Catici DAM, Assaad-Gerbert F, Hoffmann T, Arold ST, Schwab WG. β-Carotene alleviates substrate inhibition caused by asymmetric cooperativity. Nat Commun 2025; 16:3065. [PMID: 40157902 PMCID: PMC11954892 DOI: 10.1038/s41467-025-58259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Enzymes are essential catalysts in biological systems. Substrate inhibition, once dismissed, is now observed in 20% of enzymes1 and is attributed to the formation of an unproductive enzyme-substrate complex, with no structural evidence of unproductivity provided to date1-6. This study uncovers the molecular mechanism of substrate inhibition in tobacco glucosyltransferase NbUGT72AY1, which transfers glucose to phenols for plant protection. The peculiarity that β-carotene strongly attenuates the substrate inhibition of NbUGT72AY1, despite being a competitive inhibitor, allows to determine the conformational changes that occur during substrate binding in both active and substrate-inhibited complexes. Crystallography reveals structurally different ternary enzyme-substrate complexes that do not conform to classical mechanisms. An alternative pathway suggests substrates bind randomly, but the reaction occurs only if a specific order is followed (asymmetric cooperativity). This unreported paradigm explains substrate inhibition and reactivation by competitive inhibitors, opening new research avenues in metabolic regulation and industrial applications.
Collapse
Affiliation(s)
- Jieren Liao
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Umar F Shahul Hameed
- KAUST Center of Excellence for Smart Health, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Guangxin Sun
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35043, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, 35043, Marburg, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany
- Chemoinformatics and Protein Modelling, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany
- Chemoinformatics and Protein Modelling, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Christina Kuttler
- Analysis and Mathematical Biology, Technical University of Munich, School of Computation, Information and Technology, 85748, Garching, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Dragana A M Catici
- Center for Protein Assemblies (CPA), Technical University of Munich, 85748, Garching, Germany
| | - Farhah Assaad-Gerbert
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Stefan T Arold
- KAUST Center of Excellence for Smart Health, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wilfried G Schwab
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
2
|
Jahan T, Huda MN, Zhang K, He Y, Lai D, Dhami N, Quinet M, Ali MA, Kreft I, Woo SH, Georgiev MI, Fernie AR, Zhou M. Plant secondary metabolites against biotic stresses for sustainable crop protection. Biotechnol Adv 2025; 79:108520. [PMID: 39855404 DOI: 10.1016/j.biotechadv.2025.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Sustainable agriculture practices are indispensable for achieving a hunger-free world, especially as the global population continues to expand. Biotic stresses, such as pathogens, insects, and pests, severely threaten global food security and crop productivity. Traditional chemical pesticides, while effective, can lead to environmental degradation and increase pest resistance over time. Plant-derived natural products such as secondary metabolites like alkaloids, terpenoids, phenolics, and phytoalexins offer promising alternatives due to their ability to enhance plant immunity and inhibit pest activity. Recent advances in molecular biology and biotechnology have improved our understanding of how these natural compounds function at the cellular level, activating specific plant defense through complex biochemical pathways regulated by various transcription factors (TFs) such as MYB, WRKY, bHLH, bZIP, NAC, and AP2/ERF. Advancements in multi-omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, have significantly improved the understanding of the regulatory networks that govern PSM synthesis. These integrative approaches have led to the discovery of novel insights into plant responses to biotic stresses, identifying key regulatory genes and pathways involved in plant defense. Advanced technologies like CRISPR/Cas9-mediated gene editing allow precise manipulation of PSM pathways, further enhancing plant resistance. Understanding the complex interaction between PSMs, TFs, and biotic stress responses not only advances our knowledge of plant biology but also provides feasible strategies for developing crops with improved resistance to pests and diseases, contributing to sustainable agriculture and food security. This review emphasizes the crucial role of PSMs, their biosynthetic pathways, the regulatory influence of TFs, and their potential applications in enhancing plant defense and sustainability. It also highlights the astounding potential of multi-omics approaches to discover gene functions and the metabolic engineering of genes associated with secondary metabolite biosynthesis. Taken together, this review provides new insights into research opportunities for enhancing biotic stress tolerance in crops through utilizing plant secondary metabolites.
Collapse
Affiliation(s)
- Tanzim Jahan
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Md Nurul Huda
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqi He
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dili Lai
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Namraj Dhami
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Dhungepatan, Pokhara-30, Kaski, Nepal
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Md Arfan Ali
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Zeng Q, Liu X, Yan X, Zhang J, Li C, Yan C, Zhang Y, Kliebenstein D, Li B. Novel Regulators and Their Epistatic Networks in Arabidopsis' Defence Responses to Alternaria alternata Infection. MOLECULAR PLANT PATHOLOGY 2025; 26:e70058. [PMID: 39894981 PMCID: PMC11788323 DOI: 10.1111/mpp.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Necrotrophic pathogens cause serious threats to agricultural crops, and understanding the resistance genes and their genetic networks is key to breeding new plant cultivars with better resistance traits. Although Alternaria alternata causes black spot in important leafy brassica vegetables, and leads to significant loss of yield and food quality, little is known about plant-A. alternata interactions. In this study, we used a unique and large collection of single, double and triple mutant lines of defence metabolite regulators in Arabidopsis to explore how these transcription factors and their epistatic networks may influence A. alternata infections. This identified nine novel regulators and 20 pairs of epistatic interactions that modulate Arabidopsis plants' defence responses to A. alternata infection. We further showed that the glucosinolate 4-methoxy-indol-3-ylmethyl is the only glucosinolate consistently responsive to A. alternata infection in Col-0 ecotype. With the further exploration of the regulators and the genetic networks on modulating the accumulation of glucosinolates under A. alternata infection, an inverted triangle regulatory model was proposed for Arabidopsis plants' defence responses at a metabolic level and a phenotypic level.
Collapse
Affiliation(s)
- Qi Zeng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xifan Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xuemei Yan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Jiahao Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chengtai Yan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi ProvinceYanglingShaanxiChina
| | | | - Baohua Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
4
|
Liu S, Ma A, Li J, Du Z, Zhu L, Feng G. Coumarin Promotes Hypocotyl Elongation by Increasing the Synthesis of Brassinosteroids in Plants. Int J Mol Sci 2025; 26:1092. [PMID: 39940860 PMCID: PMC11817769 DOI: 10.3390/ijms26031092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Coumarins are natural products commonly found in plants and are typical allelopathic substances that strongly affect the growth of plants after being exudated from the root and help plants absorb Fe in cases of iron deficiency. Although coumarins have been found to have multiple effects, this understanding is still relatively limited. Here, we show that coumarin significantly promotes the elongation of the hypocotyl by enhancing cell elongation. Further research has found that coumarin increases the content of BR in plants by enhancing the expression of brassinosteroid (BR) synthesis genes. The effect of coumarin on promoting hypocotyl elongation is completely blocked by the mutation of the BR synthesis gene DEETIOLATED 2 (DET2) or the co-addition of the BR synthesis inhibitor brassinazole (BRZ). Genetic analysis using Arabidopsis mutants showed that coumarin promoting hypocotyl elongation depends on the signaling pathway of the BRs. Overall, coumarin promotes elongation of the hypocotyl by increasing the synthesis of BRs in plants. These results provide us with new insights into the role of coumarins and offer strong theoretical support for the mechanisms of interactions between plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanping Feng
- Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, School of Life Sciences, Jinggangshan University, Ji’an 343009, China; (S.L.); (A.M.); (J.L.); (Z.D.); (L.Z.)
| |
Collapse
|
5
|
Gao L, Wang P, Yan X, Li J, Ma L, Hu M, Ge X, Li F, Hou Y. Feruloyl-CoA 6'-hydroxylase-mediated scopoletin accumulation enhances cotton resistance to Verticillium dahliae. PLANT PHYSIOLOGY 2024; 196:3007-3022. [PMID: 39324621 DOI: 10.1093/plphys/kiae508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Verticillium dahliae is a widespread and destructive soilborne fungus that can cause vascular wilt disease and substantially reduce cotton (Gossypium hirsutum) yield and quality. Scopoletin, a natural coumarin, exhibits antifungal activity against V. dahliae; however, the mechanisms of action remain unclear. In this study, we reveal the regulatory activities of feruloyl-CoA 6'-hydroxylase 1 (GhF6'H1) in enhancing V. dahliae resistance by modulating scopoletin accumulation. Silencing GhF6'H1, encoding the pivotal enzyme in scopoletin biosynthesis, through virus-induced silencing resulted in increased susceptibility to V. dahliae and decreased scopoletin accumulation. In transgenic cotton plants expressing GhF6'H1 under the CaMV 35S promoter, GhF6'H1 modulated scopoletin accumulation, affecting cotton resistance to V. dahliae, with increased resistance associated with increased scopoletin accumulation. GhF6'H1 has been identified as a direct target of the transcription factor GhWRKY33-like, indicating that GhWRKY33-like can bind to and activate the GhF6'H1 promoter. Moreover, GhWRKY33-like overexpression in cotton-enhanced resistance to V. dahliae through scopoletin accumulation, phenylpropanoid pathway activation, and upregulation of defense response genes. Ectopic expression of GhF6'H1 resulted in effective catalysis of scopoletin synthesis in enzyme assays using substrates like feruloyl coenzyme A, while molecular docking analysis revealed specific amino acid residues playing crucial roles in establishing salt-bridge interactions with the substrate. These findings suggest that GhF6'H1, regulated by GhWRKY33-like, plays a crucial role in enhancing cotton resistance to V. dahliae by modulating scopoletin accumulation.
Collapse
Affiliation(s)
- Linying Gao
- College of Science, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xin Yan
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jingmin Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Li Ma
- College of Science, China Agricultural University, Beijing 100193, China
| | - Menghui Hu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Xiao Z, Yang W, Yang A, Deng L, Geng R, Xiang H, Kong W, Jiang C, Li X, Chen Z, Gao Q. CRISPR/Cas9-mediated knockout of NtMYC2a gene involved in resistance to bacterial wilt in tobacco. Gene 2024; 927:148622. [PMID: 38878988 DOI: 10.1016/j.gene.2024.148622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
MYC2 is a class of bHLH family transcription factors and a major regulatory factor in the JA signaling pathway, and its molecular function in tobacco has not been reported. In this study, CRISPR/Cas9-mediated MYC2 gene NtMYC2a knockout mutants at tobacco was obtained and its agronomic traits, disease resistance, and chemical composition were identified. Comparing with the WT, the leaf width of the KO-NtMYC2a was narrowed, the nornicotine content and mecamylamine content increased significantly and the resistance to Ralstonia solanacearum significantly decreased. The transcriptome sequencing results showed that DEGs related to immunity, signal transduction and growth and development were enriched between KO-NtMYC2a and WT. NtJAR1 and NtCOI1 in KO-NtMYC2a were down-regulated to regulating the JA signaling pathway, result in a significant decrease in tobacco's resistance to R. solanacearum. Our research provides theoretical support for the functional research of MYC2 and the study of the mechanism of tobacco bacterial wilt resistance.
Collapse
Affiliation(s)
- Zhiliang Xiao
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenwu Yang
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Aiguo Yang
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lele Deng
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Ruimei Geng
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Weisong Kong
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Caihong Jiang
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xuemei Li
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Zhiqiang Chen
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, 650106, China.
| |
Collapse
|
7
|
Ma L, Song N, Duan Q, Du W, Li X, Jia W, Cui G, Wang J, Wu J. Jasmonate/ethylene- and NaWRKY6/3-regulated Alternaria resistance depends on ethylene response factor 1B-like in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6593-6608. [PMID: 39046351 DOI: 10.1093/jxb/erae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
Biosynthesis of the phytoalexins scopoletin and scopolin in Nicotiana species is regulated by upstream signals including jasmonate (JA), ethylene (ET), and NaWRKY3 in response to the necrotrophic fungus Alternaria alternata, which causes brown spot disease. However, how these signals are coordinated to regulate these phytoalexins remains unknown. By analyzing RNA sequencing data and RNAi, we identified NaERF1B-like (NaERF1B-L) as a key player in Nicotiana attenuata during A. alternata infection by regulating the transcripts of Feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), encoding a key enzyme for scopoletin biosynthesis, and NaVS1-like (NaVS1-L), a putative biosynthetic gene of the phytoalexin solavetivone. We further demonstrated that the synergistic induction of these two genes by JA and ET signaling is mediated by NaERF1B-L. Additionally, we found that the two closely related proteins, NaWRKY6 and NaWRKY3, physically interact to enhance NaERF1B-L expression by directly binding to and activating the NaERF1B-L promoter. Collectively, our current results demonstrate that NaERF1B-L plays a positive role in resistance to A. alternata by modulating phytoalexin biosynthesis through the integration of JA/ET and NaWRKY6/3 signaling. Our findings reveal a fine-tuned transcriptional regulatory hierarchy mediated by NaERF1B-L for brown spot disease resistance in wild tobacco.
Collapse
Affiliation(s)
- Lan Ma
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qing Duan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Wenwen Du
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Xiang Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Wenjie Jia
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Guangfen Cui
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
8
|
Wang L, Zhu T. Combined transcriptomic and metabolomic analysis of the mechanism by which Bacillus velezensis induces resistance to anthracnose in walnut. Front Microbiol 2024; 15:1420922. [PMID: 39444687 PMCID: PMC11496756 DOI: 10.3389/fmicb.2024.1420922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/07/2024] [Indexed: 10/25/2024] Open
Abstract
Walnut (Juglans spp.), a significant deciduous tree of economic and ecological importance, faces substantial threats from walnut anthracnose, primarily caused by Colletotrichum gloeosporioides. Bacillus velezensis has shown promise in mitigating this fungal pathogen. To delve deeper into the induction mechanism of B. velezensis on walnut plant resistance, we conducted a metabolomic analysis on walnut leaves from six different treatment groups. Specifically, the groups were defined as follows: Group B.v. was inoculated with B. velezensis alone, Group CK served as the blank control, and Group C.g. was inoculated solely with C. gloeosporioides. Group B.v.-C.g. received B. velezensis followed by C. gloeosporioides inoculation. Group B.v.+C.g. underwent simultaneous inoculation with both B. velezensis and C. gloeosporioides, while Group C.g.-B.v. was treated first with C. gloeosporioides then B. velezensis. A total of 1,503 metabolites were detected, mainly including flavonoids, terpenoids, and steroids. The results revealed that B. velezensis spraying not only enhanced the inherent resistance of walnut plants but also significantly regulated walnut plants already infected with C. gloeosporioides. This was mainly achieved by inducing walnut plants to adjust their metabolic pathways such as salicylic acid, jasmonic acid, and abscisic acid, thereby strengthening their stress response. Transcriptomic and metabolomic correlation analyses showed that in the comparisons of B.v. vs. CK, C.g. vs. CK, and C.g.-B.v. vs. C.g., 59, 244, and 122 differential abundance metabolites were detected, along with 7860, 3677, and 5587 differential genes, respectively. Amino acid synthesis, starch and sucrose metabolism, photosynthesis, phenylpropane metabolism, purine metabolism, and glutathione metabolism played crucial roles in walnut's disease resistance mechanism. Further analysis revealed that B. velezensis induced walnut plants to regulate multiple genes, such as LOC109005403, LOC108985444 and LOC118344177, resulting in the production of defensive metabolites such as palmitic acid, coumarin and ferulic acid, thereby enhancing their resistance to C. gloeosporioides. In summary, B. velezensis induces systemic resistance in walnut plants by modulating the metabolic pathways of salicylic acid, jasmonic acid, and abscisic acid. It enhances this resistance by strengthening cell walls, synthesizing defensive secondary metabolites, and regulating energy metabolism and stress responses. These findings provide a solid theoretical foundation for the future field application of B. velezensis in controlling walnut anthracnose.
Collapse
Affiliation(s)
- Linmin Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- School of Agronomy and Horticulture, Chengdu Agricultural College, Chengdu, Sichuan, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, China
| |
Collapse
|
9
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
10
|
Liu H, Wang Y, Chang Q, Li Q, Fang J, Cao N, Tong X, Jiang X, Yu X, Cheng Y. Combined metabolome and transcriptome reveal HmF6'H1 regulating simple coumarin accumulation against powdery mildew infection in Heracleum moellendorffii Hance. BMC PLANT BIOLOGY 2024; 24:507. [PMID: 38844853 PMCID: PMC11155083 DOI: 10.1186/s12870-024-05185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Powdery mildew, caused by Eeysiphe heraclei, seriously threatens Heracleum moellendorffii Hance. Plant secondary metabolites are essential to many activities and are necessary for defense against biotic stress. In order to clarify the functions of these metabolites in response to the pathogen, our work concentrated on the variations in the accumulation of secondary metabolites in H. moellendorffii during E. heraclei infection. RESULTS Following E. heraclei infection, a significant upregulation of coumarin metabolites-particularly simple coumarins and associated genes was detected by RNA-seq and UPLC-MS/MS association analysis. Identifying HmF6'H1, a Feruloyl CoA 6'-hydroxylase pivotal in the biosynthesis of the coumarin basic skeleton through ortho-hydroxylation, was a significant outcome. The cytoplasmic HmF6'H1 protein was shown to be able to catalyze the ortho-hydroxylation of p-coumaroyl-CoA and caffeoyl-CoA, resulting in the formation of umbelliferone and esculetin, respectively. Over-expression of the HmF6'H1 gene resulted in increased levels of simple coumarins, inhibiting the biosynthesis of furanocoumarins and pyranocoumarins by suppressing PT gene expression, enhancing H. moellendorffii resistance to powdery mildew. CONCLUSIONS These results established HmF6'H1 as a resistance gene aiding H. moellendorffii in combatting E. heraclei infection, offering additional evidence of feruloyl-CoA 6'-hydroxylase role in catalyzing various types of simple coumarins. Therefore, this work contributes to our understanding of the function of simple coumarins in plants' defense against powdery mildew infection.
Collapse
Affiliation(s)
- Hanbing Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yiran Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - QinZheng Chang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Qiubi Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Jiahui Fang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Cao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xuejiao Tong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xinmei Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xihong Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yao Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Hamsa S, Rajarammohan S, Aswal M, Kumar M, Kaur J. Transcriptome responses of Arabidopsis to necrotrophic fungus Alternaria brassicae reveal pathways and candidate genes associated with resistance. PLANT MOLECULAR BIOLOGY 2024; 114:68. [PMID: 38842571 DOI: 10.1007/s11103-024-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Alternaria leaf blight (ALB), caused by a necrotrophic fungus Alternaria brassicae is a serious disease of oleiferous Brassicas resulting in significant yield losses worldwide. No robust resistance against A. brassicae has been identified in the Brassicas. Natural accessions of Arabidopsis show a spectrum of responses to A. brassicae ranging from high susceptibility to complete resistance. To understand the molecular mechanisms of resistance/ susceptibility, we analysed the comparative changes in the transcriptome profile of Arabidopsis accessions with contrasting responses- at different time points post-infection. Differential gene expression, GO enrichment, pathway enrichment, and weighted gene co-expression network analysis (WGCNA) revealed reprogramming of phenylpropanoid biosynthetic pathway involving lignin, hydroxycinnamic acids, scopoletin, anthocyanin genes to be highly associated with resistance against A. brassicae. T-DNA insertion mutants deficient in the biosynthesis of coumarin scopoletin exhibited enhanced susceptibility to A. brassicae. The supplementation of scopoletin to medium or exogenous application resulted in a significant reduction in the A. brassicae growth. Our study provides new insights into the transcriptome dynamics in A. brassicae-challenged Arabidopsis and demonstrates the involvement of coumarins in plant immunity against the Brassica pathogen A. brassicae.
Collapse
Affiliation(s)
- S Hamsa
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Sivasubramanian Rajarammohan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab, India
| | - Manisha Aswal
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
12
|
Song N, Wu J. NaWRKY70 is a key regulator of Nicotiana attenuata resistance to Alternaria alternata through regulation of phytohormones and phytoalexins biosynthesis. THE NEW PHYTOLOGIST 2024; 242:1289-1306. [PMID: 38426573 DOI: 10.1111/nph.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Jasmonate (JA) and abscisic acid (ABA) are two major phytohormones involved in pathogen resistance. However, how their biosynthesis is regulated is not well understood. We silenced NaWRKY70 in wild tobacco Nicotiana attenuata and determined its role in regulating genes involved in the production of JA, ABA and the phytoalexin capsidiol in response to the fungal pathogen Alternaria alternata using techniques including electrophoretic mobility shift, chromatin immunoprecipitation, transient overexpression and virus-induced gene silencing. Silencing NaWRKY70 dramatically reduced both basal and A. alternata-induced jasmonoyl-isoleucine (JA-Ile) and ABA. Further evidence showed that NaWRKY70 directly binds to the W-boxes of the promoters of NaAOS and NaJAR4 (JA biosynthesis), NaNCED1 and NaXD1-like (ABA biosynthesis), and NaMPK4 (ABA signaling) to activate their expression, while binding but repressing the expression of NaCYP707A4-like3 (ABA degradation). Additionally, NaWRKY70 regulates capsidiol production through its key enzyme genes NaEASs and NaEAHs, and interacts with its regulator NaERF2-like to enhance their expression, whereas ABA negatively regulates capsidiol biosynthesis. Our results highlight the key role of NaWRKY70 in controlling both JA-Ile and ABA production, as well as capsidiol production, thus providing new insight into the defense mechanism of plant resistance to A. alternata.
Collapse
Affiliation(s)
- Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
13
|
Lv W, Jiang H, Cao Q, Ren H, Wang X, Wang Y. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signaling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1356-1376. [PMID: 38059663 DOI: 10.1111/tpj.16567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .
Collapse
Affiliation(s)
- Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Qinghai Cao
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Henze Ren
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| |
Collapse
|
14
|
Wahyuni DSC, Klinkhamer PGL, Choi YH, Leiss KA. Resistance to Frankliniella occidentalis during Different Plant Life Stages and under Different Environmental Conditions in the Ornamental Gladiolus. PLANTS (BASEL, SWITZERLAND) 2024; 13:687. [PMID: 38475533 DOI: 10.3390/plants13050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
The defense mechanisms of plants evolve as they develop. Previous research has identified chemical defenses against Western flower thrips (WFT) in Gladiolus (Gladiolus hybridus L.). Consequently, our study aimed to explore the consistency of these defense variations against WFT across the various developmental stages of Gladiolus grown under different conditions. Thrips bioassays were conducted on whole plants at three developmental stages, using the Charming Beauty and Robinetta varieties as examples of susceptible and resistant varieties, respectively. Metabolomic profiles of the leaves, buds and flowers before thrips infestation were analyzed. The thrips damage in Charming Beauty was more than 500-fold higher than the damage in Robinetta at all plant development stages. Relative concentrations of triterpenoid saponins and amino acids that were associated with resistance were higher in Robinetta at all plant stages. In Charming Beauty, the leaves exhibited greater damage compared to buds and flowers. The relative concentrations of alanine, valine and threonine were higher in buds and flowers than in leaves. The Metabolomic profiles of the leaves did not change significantly during plant development. In addition, we cultivated plants under different environmental conditions, ensuring consistency in the performance of the two varieties across different growing conditions. In conclusion, the chemical thrips resistance markers, based on the analysis of vegetative plants grown in climate rooms, were consistent over the plant's lifetime and for plants grown under field conditions.
Collapse
Affiliation(s)
- Dinar S C Wahyuni
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
- Pharmacy Department, Faculty Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kirsten A Leiss
- Business Unit Horticulture, Wageningen University and Research Center, Postbus 20, 2665ZG Bleiswijk, The Netherlands
| |
Collapse
|
15
|
Song N, Wu J. Synergistic induction of phytoalexins in Nicotiana attenuata by jasmonate and ethylene signaling mediated by NaWRKY70. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1063-1080. [PMID: 37870145 PMCID: PMC10837013 DOI: 10.1093/jxb/erad415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/21/2023] [Indexed: 10/24/2023]
Abstract
Production of the phytoalexins scopoletin and scopolin is regulated by jasmonate (JA) and ethylene signaling in Nicotiana species in response to Alternaria alternata, the necrotrophic fungal pathogen that causes brown spot disease. However, how these two signaling pathways are coordinated to control this process remains unclear. In this study, we found that the levels of these two phytoalexins and transcripts of their key enzyme gene, feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), were synergistically induced in Nicotiana attenuata by co-treatment with methyl jasmonate (MeJA) and ethephon. By combination of RNA sequencing and virus-induced gene silencing, we identified a WRKY transcription factor, NaWRKY70, which had a similar expression pattern to NaF6'H1 and was responsible for A. alternata-induced NaF6'H1 expression. Further evidence from stable transformed plants with RNA interference, knock out and overexpression of NaWRKY70 demonstrated that it is a key player in the synergistic induction of phytoalexins and plant resistance to A. alternata. Electrophoretic mobility shift, chromatin immunoprecipitation-quantitative PCR, and dual-luciferase assays revealed that NaWRKY70 can bind directly to the NaF6'H1 promoter and activate its expression. Furthermore, the key regulator of the ethylene pathway, NaEIN3-like1, can directly bind to the NaWRKY70 promoter and activate its expression. Meanwhile, NaMYC2s, important JA pathway transcription factors, also indirectly regulate the expression of NaWRKY70 and NaF6'H1 to control scopoletin and scopolin production. Our data reveal that these phytoalexins are synergistically induced by JA and ethylene signaling during A. alternata infection, which is largely mediated by NaWRKY70, thus providing new insights into the defense responses against A. alternata in Nicotiana species.
Collapse
Affiliation(s)
- Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
16
|
Wu B, Shi S, Zhang H, Lu B, Nan P, A Y. Anabolic metabolism of autotoxic substance coumarins in plants. PeerJ 2023; 11:e16508. [PMID: 38077428 PMCID: PMC10710134 DOI: 10.7717/peerj.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Background Autotoxicity is an intraspecific manifestation of allelopathy in plant species. The specialized metabolites and their derivatives that cause intraspecific allelopathic inhibition in the plant are known as autotoxic substances. Consequently, autotoxic substances production seriously affects the renewal and stability of ecological communities. Methods This article systematically summarizes the types of autotoxic substances present in different plants. They mainly include phenolic compounds, terpenoids, and nitrogenous organic compounds. Phenolic coumarins are the main autotoxic substances in many plants. Therefore, we also discuss differences in coumarin types and content among plant varieties, developmental stages, and tissue parts, as well as their mechanisms of autotoxicity. In addition, we review the metabolic pathways involved in coumarin biosynthesis, the key enzymes, genes, and transcription factors, as well as factors affecting coumarin biosynthesis. Results Coumarin biosynthesis involves three stages: (1) the formation of the coumarin nucleus; (2) acylation, hydroxylation, and cyclization; (3) structural modification. The key enzymes involved in the coumarin nuclear formation stage include PAL, C4H, 4CL, HCT, CAOMT, COSY, F6'H, and CCoAOMT1, and the key genes involved include BGA, CYP450 and MDR, among others. Ortho-hydroxylation is a key step in coumarin biosynthesis and PS, COSY and S8H are the key enzymes involved in this process. Finally, UGTs are responsible for the glycosylation modification of coumarins, and the MaUGT gene may therefore be involved in coumarin biosynthesis. Conclusion It is important to elucidate the autotoxicity and anabolic mechanisms of coumarins to create new germplasms that produce fewer autotoxic substances.
Collapse
Affiliation(s)
- Bei Wu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shangli Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Huihui Zhang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Baofu Lu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pan Nan
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yun A
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Beesley A, Beyer SF, Wanders V, Levecque S, Bredenbruch S, Habash SS, Schleker ASS, Gätgens J, Oldiges M, Schultheiss H, Conrath U, Langenbach CJG. Engineered coumarin accumulation reduces mycotoxin-induced oxidative stress and disease susceptibility. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2490-2506. [PMID: 37578146 PMCID: PMC10651151 DOI: 10.1111/pbi.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/23/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.
Collapse
Affiliation(s)
| | - Sebastian F. Beyer
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
- Present address:
BASF SE, Agricultural CenterLimburgerhofGermany
| | - Verena Wanders
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | - Sophie Levecque
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | | - Samer S. Habash
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Present address:
BASF Vegetable SeedsNunhemNetherlands
| | | | - Jochem Gätgens
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | - Marco Oldiges
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | | | - Uwe Conrath
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | |
Collapse
|
18
|
Zhang XM, Li JT, Xia Y, Shi XQ, Liu XL, Tang M, Tang J, Sun W, Yi Y. Early and Late Transcriptomic and Metabolomic Responses of Rhododendron 'Xiaotaohong' Petals to Infection with Alternaria sp. Int J Mol Sci 2023; 24:12695. [PMID: 37628875 PMCID: PMC10454523 DOI: 10.3390/ijms241612695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, petal blight disease caused by pathogens has become increasingly epidemic in Rhododendron. Breeding disease-resistant rhododendron is considered to be a more environmentally friendly strategy than is the use of chemical reagents. In this study, we aimed to investigate the response mechanisms of rhododendron varieties to petal blight, using transcriptomics and metabolomics analyses. Specifically, we monitored changes in gene expression and metabolite accumulation in Rhododendron 'Xiaotaohong' petals infected with the Alternaria sp. strain (MR-9). The infection of MR-9 led to the development of petal blight and induced significant changes in gene transcription. Differentially expressed genes (DEGs) were predominantly enriched in the plant-pathogen interaction pathway. These DEGs were involved in carrying out stress responses, with genes associated with H2O2 production being up-regulated during the early and late stages of infection. Correspondingly, H2O2 accumulation was detected in the vicinity of the blight lesions. In addition, defense-related genes, including PR and FRK, exhibited significant up-regulated expression during the infection by MR-9. In the late stage of the infection, we also observed significant changes in differentially abundant metabolites (DAMs), including flavonoids, alkaloids, phenols, and terpenes. Notably, the levels of euscaphic acid, ganoderol A, (-)-cinchonidine, and theophylline in infected petals were 21.8, 8.5, 4.5, and 4.3 times higher, respectively, compared to the control. Our results suggest that H2O2, defense-related genes, and DAM accumulation are involved in the complex response mechanisms of Rhododendron 'Xiaotaohong' petals to MR-9 infection. These insights provide a deeper understanding of the pathogenesis of petal blight disease and may have practical implications for developing disease-resistant rhododendron varieties.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Jie-Ting Li
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ying Xia
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xiao-Qian Shi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xian-Lun Liu
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ming Tang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| | - Jing Tang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
19
|
Philosoph AM, Dombrovsky A, Luria N, Sela N, Elad Y, Frenkel O. Rapid defense mechanism suppression during viral- oomycete disease complex formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1124911. [PMID: 37360707 PMCID: PMC10288809 DOI: 10.3389/fpls.2023.1124911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Combined infection of the host plant with pathogens involving different parasitic lifestyles may result in synergistic effects that intensify disease symptoms. Understanding the molecular dynamics during concurrent infection provides essential insight into the host response. The transcriptomic pattern of cucumber plants infected with a necrotrophic pathogen, Pythium spinosum, and a biotrophic pathogen, Cucumber green mottle mosaic virus (CGMMV) was studied at different time points, under regimes of single and co-infection. Analysis of CGMMV infection alone revealed a mild influence on host gene expression at the stem base, while the infection by P. spinosum is associated with drastic changes in gene expression. Comparing P. spinosum as a single infecting pathogen with a later co-infection by CGMMV revealed a rapid host response as early as 24 hours post-CGMMV inoculation with a sharp downregulation of genes related to the host defense mechanism against the necrotrophic pathogen. Suppression of the defense mechanism of co-infected plants was followed by severe stress, including 30% plants mortality and an increase of the P. spinosum hyphae. The first evidence of defense recovery against the necrotrophic pathogen only occurred 13 days post-viral infection. These results support the hypothesis that the viral infection of the Pythium pre-infected plants subverted the host defense system and changed the equilibrium obtained with P. spinosum. It also implies a time window in which the plants are most susceptible to P. spinosum after CGMMV infection.
Collapse
Affiliation(s)
- Amit M. Philosoph
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
20
|
Yuan Z, Li Y, He Y, Qian K, Zhang Y. Differential Analysis of Three Copper-Based Nanomaterials with Different Morphologies to Suppress Alternaria alternata and Safety Evaluation. Int J Mol Sci 2023; 24:ijms24119673. [PMID: 37298626 DOI: 10.3390/ijms24119673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The overuse of copper-based fertilizers and pesticides over the last few decades has resulted in detrimental risks to our environment. Nano-enabled agrichemicals with a high effective utilization ratio have shown great potential for maintaining or minimizing environmental issues in agriculture. Copper-based nanomaterials (Cu-based NMs) serve as a promising alternative to fungicides. Three types of Cu-based NMs with different morphologies were analyzed for their different antifungal effects on Alternaria alternata in this current study. Compared to commercial copper hydroxide water power (Cu(OH)2 WP), all tested Cu-based NMs, including cuprous oxide nanoparticles (Cu2O NPs), copper nanorods (Cu NRs) and copper nanowires (Cu NWs), especially Cu2O NPs and Cu NWs, showed higher antifungal activity against Alternaria alternata. Its EC50 were 104.24 and 89.40 mg L-1, respectively, achieving comparable activity using a dose approximately 1.6 and 1.9-fold lower. Cu-based NMs could introduce the downregulation of melanin production and soluble protein content. In contrast to trends in antifungal activity, Cu2O NPs showed the strongest power in regulating melanin production and protein content and similarly exhibited the highest acute toxicity to adult zebrafish compared to other Cu-based NMs. These results demonstrate that Cu-based NMs could offer great potential in plant disease management strategies.
Collapse
Affiliation(s)
- Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yiwei Li
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuke He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yongqiang Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
21
|
Sun G, Liao J, Kurze E, Hoffmann TD, Steinchen W, McGraphery K, Habegger R, Marek L, Catici DAM, Ludwig C, Jing T, Hoffmann T, Song C, Schwab W. Apocarotenoids are allosteric effectors of a dimeric plant glycosyltransferase involved in defense and lignin formation. THE NEW PHYTOLOGIST 2023; 238:2080-2098. [PMID: 36908092 DOI: 10.1111/nph.18875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/02/2023] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases are nature's versatile tools to tailor the functionalities of proteins, carbohydrates, lipids, and small molecules by transferring sugars. Prominent substrates are hydroxycoumarins such as scopoletin, which serve as natural plant protection agents. Similarly, C13-apocarotenoids, which are oxidative degradation products of carotenoids/xanthophylls, protect plants by repelling pests and attracting pest predators. We show that C13-apocarotenoids interact with the plant glycosyltransferase NbUGT72AY1 and induce conformational changes in the enzyme catalytic center ultimately reducing its inherent UDP-α-d-glucose glucohydrolase activity and increasing its catalytic activity for productive hydroxycoumarin substrates. By contrast, C13-apocarotenoids show no effect on the catalytic activity toward monolignol lignin precursors, which are competitive substrates. In vivo studies in tobacco plants (Nicotiana benthamiana) confirmed increased glycosylation activity upon apocarotenoid supplementation. Thus, hydroxycoumarins and apocarotenoids represent specialized damage-associated molecular patterns, as they each provide precise information about the plant compartments damaged by pathogen attack. The molecular basis for the C13-apocarotenoid-mediated interplay of two plant protective mechanisms and their function as allosteric enhancers opens up potential applications of the natural products in agriculture and pharmaceutical industry.
Collapse
Affiliation(s)
- Guangxin Sun
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Jieren Liao
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35043, Marburg, Germany
| | - Kate McGraphery
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Ruth Habegger
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Ludwig Marek
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Dragana A M Catici
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technische Universität München, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Thomas Hoffmann
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Wilfried Schwab
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| |
Collapse
|
22
|
Leung HS, Chan LY, Law CH, Li MW, Lam HM. Twenty years of mining salt tolerance genes in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:45. [PMID: 37313223 PMCID: PMC10248715 DOI: 10.1007/s11032-023-01383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/12/2023] [Indexed: 06/15/2023]
Abstract
Current combined challenges of rising food demand, climate change and farmland degradation exert enormous pressure on agricultural production. Worldwide soil salinization, in particular, necessitates the development of salt-tolerant crops. Soybean, being a globally important produce, has its genetic resources increasingly examined to facilitate crop improvement based on functional genomics. In response to the multifaceted physiological challenge that salt stress imposes, soybean has evolved an array of defences against salinity. These include maintaining cell homeostasis by ion transportation, osmoregulation, and restoring oxidative balance. Other adaptations include cell wall alterations, transcriptomic reprogramming, and efficient signal transduction for detecting and responding to salt stress. Here, we reviewed functionally verified genes that underly different salt tolerance mechanisms employed by soybean in the past two decades, and discussed the strategy in selecting salt tolerance genes for crop improvement. Future studies could adopt an integrated multi-omic approach in characterizing soybean salt tolerance adaptations and put our existing knowledge into practice via omic-assisted breeding and gene editing. This review serves as a guide and inspiration for crop developers in enhancing soybean tolerance against abiotic stresses, thereby fulfilling the role of science in solving real-life problems. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01383-3.
Collapse
Affiliation(s)
- Hoi-Sze Leung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Long-Yiu Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Cheuk-Hin Law
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000 People’s Republic of China
| |
Collapse
|
23
|
Liao J, Lederer V, Bardhi A, Zou Z, Hoffmann TD, Sun G, Song C, Hoffmann T, Schwab W. Acceptors and Effectors Alter Substrate Inhibition Kinetics of a Plant Glucosyltransferase NbUGT72AY1 and Its Mutants. Int J Mol Sci 2023; 24:ijms24119542. [PMID: 37298492 DOI: 10.3390/ijms24119542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
One of the main obstacles in biocatalysis is the substrate inhibition (SI) of enzymes that play important roles in biosynthesis and metabolic regulation in organisms. The promiscuous glycosyltransferase UGT72AY1 from Nicotiana benthamiana is strongly substrate-inhibited by hydroxycoumarins (inhibitory constant Ki < 20 µM), but only weakly inhibited when monolignols are glucosylated (Ki > 1000 µM). Apocarotenoid effectors reduce the inherent UDP-glucose glucohydrolase activity of the enzyme and attenuate the SI by scopoletin derivatives, which could also be achieved by mutations. Here, we studied the kinetic profiles of different phenols and used the substrate analog vanillin, which has shown atypical Michaelis-Menten kinetics in previous studies, to examine the effects of different ligands and mutations on the SI of NbUGT72AY1. Coumarins had no effect on enzymatic activity, whereas apocarotenoids and fatty acids strongly affected SI kinetics by increasing the inhibition constant Ki. Only the F87I mutant and a chimeric version of the enzyme showed weak SI with the substrate vanillin, but all mutants exhibited mild SI when sinapaldehyde was used as an acceptor. In contrast, stearic acid reduced the transferase activity of the mutants to varying degrees. The results not only confirm the multi-substrate functionality of NbUGT72AY1, but also reveal that the enzymatic activity of this protein can be fine-tuned by external metabolites such as apocarotenoids and fatty acids that affect SI. Since these signals are generated during plant cell destruction, NbUGT72AY1 likely plays an important role in plant defense by participating in the production of lignin in the cell wall and providing direct protection through the formation of toxic phytoalexins.
Collapse
Affiliation(s)
- Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Veronika Lederer
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Alba Bardhi
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Zhiwei Zou
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, China
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| |
Collapse
|
24
|
Liao J, Sun G, Kurze E, Steinchen W, Hoffmann TD, Song C, Zou Z, Hoffmann T, Schwab WG. Subfunctionalization of a monolignol to a phytoalexin glucosyltransferase is accompanied by substrate inhibition. PLANT COMMUNICATIONS 2023; 4:100506. [PMID: 36566353 DOI: 10.1016/j.xplc.2022.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
Uridine diphosphate-dependent glycosyltransferases (UGTs) mediate the glycosylation of plant metabolites, thereby altering their physicochemical properties and bioactivities. Plants possess numerous UGT genes, with the encoded enzymes often glycosylating multiple substrates and some exhibiting substrate inhibition kinetics, but the biological function and molecular basis of these phenomena are not fully understood. The promiscuous monolignol/phytoalexin glycosyltransferase NbUGT72AY1 exhibits substrate inhibition (Ki) at 4 μM scopoletin, whereas the highly homologous monolignol StUGT72AY2 is inhibited at 190 μM. We therefore used hydrogen/deuterium exchange mass spectrometry and structure-based mutational analyses of both proteins and introduced NbUGT72AY1 residues into StUGT72AY2 and vice versa to study promiscuity and substrate inhibition of UGTs. A single F87I and chimeric mutant of NbUGT72AY1 showed significantly reduced scopoletin substrate inhibition, whereas its monolignol glycosylation activity was almost unaffected. Reverse mutations in StUGT72AY2 resulted in increased scopoletin glycosylation, leading to enhanced promiscuity, which was accompanied by substrate inhibition. Studies of 3D structures identified open and closed UGT conformers, allowing visualization of the dynamics of conformational changes that occur during catalysis. Previously postulated substrate access tunnels likely serve as drainage channels. The results suggest a two-site model in which the second substrate molecule binds near the catalytic site and blocks product release. Mutational studies showed that minor changes in amino acid sequence can enhance the promiscuity of the enzyme and add new capabilities such as substrate inhibition without affecting existing functions. The proposed subfunctionalization mechanism of expanded promiscuity may play a role in enzyme evolution and highlights the importance of promiscuous enzymes in providing new functions.
Collapse
Affiliation(s)
- Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Zhiwei Zou
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried G Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| |
Collapse
|
25
|
Yang M, Cheng J, Yin M, Wu J. NaMLP, a new identified Kunitz trypsin inhibitor regulated synergistically by JA and ethylene, confers Spodoptera litura resistance in Nicotiana attenuata. PLANT CELL REPORTS 2023; 42:723-734. [PMID: 36740647 DOI: 10.1007/s00299-023-02986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
We identified a miraculin-like protein (NaMLP) who is a new Kunitz trypsin inhibitor regulated synergistically by JA and ethylene signals and confers Spodoptera litura resistance in wild tobacco Nicotiana attenuata. The findings revealed a new source of trypsin inhibitor activities after herbivory, and provide new insights into the complexity of the regulation of trypsin inhibitor-based defense after insect herbivore attack. Upon insect herbivore attack, wild tobacco Nicotiana attenuata accumulates trypsin protease inhibitor (TPI) activities as a defense response from different protease inhibitor (PI) coding genes, including WRKY3-regulated NaKTI2, and JA-dependent NaPI. However, whether any other TPI gene exists in N. attenuata is still unclear. A miraculin-like protein gene (NaMLP) was highly up-regulated in N. attenuata after Alternaria alternata infection. However, silencing or overexpression of NaMLP had no effect on the lesion diameter developed on N. attenuata leaves after A. alternata inoculation. Meanwhile, the transcripts of NaMLP could be induced by wounding and amplified by Spodoptera litura oral secretions (OS). S. litura larvae gained significantly more biomass on NaMLP-silenced plants but less on NaMLP overexpressed plants. Although NaMLP showed low sequence similarity to NaKTI2, it had conserved reaction sites of Kunitz trypsin inhibitors, and exhibited TPI activities when its coding gene was overexpressed transiently or stably in N. attenuata. This was consistent with the worst performance of S. litura larvae on NaMLP overexpressed lines. Furthermore, NaMLP-silenced plants had reduced TPI activities and better S. litura performance. Finally, OS-elicited NaMLP was dramatically reduced in JA-deficient AOC silencing and ethylene-reduced ACO-silencing plants, and the expression of NaMLP could be significantly induced by methyl jasmonate or ethephon alone, but dramatically amplified by co-treatment of both methyl jasmonate and ethephon. Thus, our results demonstrate that in addition to JA-regulated NaPI, and WRKY3/6-dependent NaKTI2, N. attenuata plants also up-regulates TPI activities via NaMLP, which confers S. litura resistance through JA and ethylene signaling pathways in a synergistic way.
Collapse
Affiliation(s)
- Mao Yang
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Junbin Cheng
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yin
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
26
|
Serag A, Salem MA, Gong S, Wu JL, Farag MA. Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications. Metabolites 2023; 13:424. [PMID: 36984864 PMCID: PMC10055942 DOI: 10.3390/metabo13030424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. What has been known for several decades is that the extraordinary variety of chemical compounds the plants are capable of synthesizing may be estimated in the range of hundreds of thousands, but only a fraction has been fully characterized to be implicated in defense responses. Despite the vast importance of these metabolites for plants and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for the phenylpropanoids and oxylipids metabolism, which is more emphasized in this review. With an increasing interest in monitoring plant metabolic reprogramming, the development of advanced analysis methods should now follow. This review capitalizes on the advanced technologies used in metabolome mapping in planta, including different metabolomics approaches, imaging, flux analysis, and interpretation using bioinformatics tools. Advantages and limitations with regards to the application of each technique towards monitoring which metabolite class or type are highlighted, with special emphasis on the necessary future developments to better mirror such intricate metabolic interactions in planta.
Collapse
Affiliation(s)
- Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom 32511, Menoufia, Egypt
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
27
|
Yang Y, Xu J, Li Y, He Y, Yang Y, Liu D, Wu C. Effects of Coumarin on Rhizosphere Microbiome and Metabolome of Lolium multiflorum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1096. [PMID: 36903956 PMCID: PMC10005730 DOI: 10.3390/plants12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rhizosphere microorganisms can help plants absorb nutrients, coordinate their growth, and improve their environmental adaptability. Coumarin can act as a signaling molecule that regulates the interaction between commensals, pathogens, and plants. In this study, we elucidate the effect of coumarin on plant root microorganisms. To provide a theoretical basis for the development of coumarin-derived compounds as biological pesticides, we determined the effect of coumarin on the root secondary metabolism and rhizosphere microbial community of annual ryegrass (Lolium multiflorum Lam.). We observed that a 200 mg/kg coumarin treatment had a negligible effect on the rhizosphere soil bacterial species of the annual ryegrass rhizosphere, though it exhibited a significant effect on the abundance of bacteria in the rhizospheric microbial community. Under coumarin-induced allelopathic stress, annual ryegrass can stimulate the colonization of beneficial flora in the root rhizosphere; however, certain pathogenic bacteria, such as Aquicella species, also multiply in large numbers in such conditions, which may be one of the main reasons for a sharp decline in the annual ryegrass biomass production. Further, metabolomics analysis revealed that the 200 mg/kg coumarin treatment triggered the accumulation of a total of 351 metabolites, of which 284 were found to be significantly upregulated, while 67 metabolites were significantly downregulated in the T200 group (treated with 200 mg/kg coumarin) compared to the CK group (control group) (p < 0.05). Further, the differentially expressed metabolites were primarily associated with 20 metabolic pathways, including phenylpropanoid biosynthesis, flavonoid biosynthesis, glutathione metabolism, etc. We found significant alterations in the phenylpropanoid biosynthesis and purine metabolism pathways (p < 0.05). In addition, there were significant differences between the rhizosphere soil bacterial community and root metabolites. Furthermore, changes in the bacterial abundance disrupted the balance of the rhizosphere micro-ecosystem and indirectly regulated the level of root metabolites. The current study paves the way towards comprehensively understanding the specific relationship between the root metabolite levels and the abundance of the rhizosphere microbial community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caixia Wu
- Correspondence: ; Tel.: +86-(13)-665293134
| |
Collapse
|
28
|
Fu J, Wang L, Pei W, Yan J, He L, Ma B, Wang C, Zhu C, Chen G, Shen Q, Wang Q. ZmEREB92 interacts with ZmMYC2 to activate maize terpenoid phytoalexin biosynthesis upon Fusarium graminearum infection through jasmonic acid/ethylene signaling. THE NEW PHYTOLOGIST 2023; 237:1302-1319. [PMID: 36319608 DOI: 10.1111/nph.18590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Maize (Zea mays) terpenoid phytoalexins (MTPs) induced by multiple fungi display extensive antimicrobial activities, yet how maize precisely regulates MTP accumulation upon pathogen infection remains elusive. In this study, pretreatment with jasmonic acid (JA)/ethylene (ET)-related inhibitors significantly reduced Fusarium graminearum-induced MTP accumulation and resulted in enhanced susceptibility to F. graminearum, indicating the involvement of JA/ET in MTP regulatory network. ZmEREB92 positively regulated MTP biosynthetic gene (MBG) expression by correlation analysis. Knockout of ZmEREB92 significantly compromised maize resistance to F. graminearum with delayed induction of MBGs and attenuated MTP accumulation. The activation of ZmEREB92 on MBGs is dependent on the interaction with ZmMYC2, which directly binds to MBG promoters. ZmJAZ14 interacts both with ZmEREB92 and with ZmMYC2 in a competitive manner to negatively regulate MBG expression. Altogether, our findings illustrate the regulatory mechanism for JA/ET-mediated MTP accumulation upon F. graminearum infection with the involvement of ZmEREB92, ZmMYC2, and ZmJAZ14, which provides new insights into maize disease responses.
Collapse
Affiliation(s)
- Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenzheng Pei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linqian He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ben Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chenying Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Chen
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510, Japan
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
29
|
Metabolites and Plant Hormones Related to the Resistance Response to Feeding Stimulation and Leaf Clipping Control in Chinese Pine ( Pinus tabuliformis Carr.). Curr Issues Mol Biol 2023; 45:1086-1099. [PMID: 36826017 PMCID: PMC9955327 DOI: 10.3390/cimb45020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
This experiment was conducted to define changes in metabolic pathways in response to mandibulate insect feeding and to provide a reference for further investigation of the molecular mechanisms underlying the development of conifer resistance. Chinese pine (Pinus tabuliformis Carr.) in good growth status in natural condition was chosen for stimulation by 10 pine caterpillars (Dendrolimus tabulaefomis Tsai et Liu) as feeding stimulation (FS), leaf clipping control (LCC) as mechanical damage, and CK group (with no treatment) (recorded as 0 h). The metabolome and total flavonoid content were measured in the needles at 0, 2, and 8 h after treatment. Plant hormones were measured with needles at 0, 0.5, 1, 1.5, 2, 4, 6, and 8 h after different treatments. The results show that a total of 30.8% flavonoids are identified by metabolomics analysis. Compared with leaf clipping control, feeding stimulation of Chinese pine caterpillars significantly induced the upregulation of metabolites in the flavonoid pathway in Chinese pine, and the plant hormones JA and IAA showed expression trends consistent with those of the metabolome. According to the biological processes of the four plant hormones involved, JA and SA are mostly involved in resistance formation, and in this study, both of them also have fluctuating expressions influenced by feeding stimulation, while the expressions of the growth-related hormones IAA and ABA have no significant changes at other time points except for 1 h after treatment. Thus, the flavonoid pathway is one of the main pathways involved in resistance formation in conifers, and JA and IAA are involved in the formation of resistance.
Collapse
|
30
|
Huh SU. Functional analysis of hot pepper ethylene responsive factor 1A in plant defense. PLANT SIGNALING & BEHAVIOR 2022; 17:2027137. [PMID: 35192782 PMCID: PMC9176226 DOI: 10.1080/15592324.2022.2027137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene-responsive factors play important roles in the biotic and abiotic stresses. Only some ERF genes from Capsicum annuum have been characterized. In the study, the CaERF1A gene is characterized in response to biotic stress. CaERF1A transcripts were induced by various plant defense-related hormone treatments. Knockdown of CaERF1A in hot pepper plants are negatively affected Tobacco mosaic virus-P0-mediated hypersensitive response cell death, resulting in reduced gene expression of pathogenesis-related genes and ethylene and jasmonic acid synthesis-related gene. Overexpressing CaERF1A transgenic plants show enhanced resistance to fungal pathogen via regulating ethylene and jasmonic acid synthesis-related gene expression. Thus, CaERF1A is a positive regulator of plant defense by modulating ethylene and jasmonic acid synthesis-related gene expressions.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biology, Kunsan National University, Gunsan, Republic of Korea
- CONTACT Sung Un Huh Department of Biology, Kunsan National University, Gunsan54150, Republic of Korea
| |
Collapse
|
31
|
Zhao M, Ma L, Song N, Cheng J, Zhao Z, Wu J. The regulation of Alternaria alternata resistance by LRR-RK4 through ERF109, defensin19 and phytoalexin scopoletin in Nicotiana attenuata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111414. [PMID: 35963495 DOI: 10.1016/j.plantsci.2022.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RKs), belonging to the largest subfamily of transmembrane receptor-like kinases in plants, are proposed to be involved in pathogen resistance. However, it is currently unknown whether LRR-RKs regulate Nicotiana attenuata resistance to Alternaria alternata, a notorious fungal pathogen causing tobacco brown disease. During transcriptome analysis, we identified a highly induced receptor kinase (NaLRR-RK4) in N. attenuata leaves after A. alternata inoculation. We speculated that this NaLRR-RK4 might be the resistance gene of tobacco to brown spot disease, and if so, what is its function and mechanism of action? Silencing of NaLRR-RK4 via virus-induced gene silencing (VIGS) lead to plants highly susceptible to A. alternata, and this result was further confirmed by two stable transformation lines (NaLRR-RK4-RNAi lines) generated by RNA interference technology. The susceptible of NaLRR-RK4-RNAi lines to A. alternata was associated with reduced levels of phytoalexin scopoletin and its key synthesis gene NaF6'H1. Further transcriptome analysis of leaves of WT and NaLRR-RK4-RNAi line after A. alternata inoculation revealed that NaLRR-RK4 regulated NaERF109 and NaDEF19. Silencing NaERF109 or NaDEF19 by VIGS lead to plants more susceptible to A.alternata, demonstrating their role in pathogen resistance. Interestingly, A.alternata-induced expression of NaF6'H1 and NaDEF19 were dramatically reduced in NaERF109-silenced VIGS plants. Taken all together, we identified LRR-RK4 as the first Leucine-rich repeat receptor-like kinases involved in A.alternata resistance in tobacco species, by regulating NaERF109, and subsequently NaDEF19 and NaF6'H1.
Collapse
Affiliation(s)
- Meiwei Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road 452, Panlong District, Kunming City, Yunnan Province, China.
| | - Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201 Kunming, China.
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201 Kunming, China.
| | - Junbin Cheng
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201 Kunming, China.
| | - Zhengxiong Zhao
- College of Resources and Environment, Yunnan Agricultural University, Fengyuan Road 452, Panlong District, Kunming City, Yunnan Province, China.
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201 Kunming, China.
| |
Collapse
|
32
|
Ghanei Ghooshkhaneh N, Golzarian MR, Mamarabadi M. Spectral pattern study of citrus black rot caused by Alternaria alternata and selecting optimal wavelengths for decay detection. Food Sci Nutr 2022; 10:1694-1706. [PMID: 35702301 PMCID: PMC10153684 DOI: 10.1002/fsn3.2739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal decay is one of the most common diseases that affect postharvest operations and sales of citrus. Sometimes, fungal disease develops and spreads inside the fruit and in the advanced stages of the disease, it appears apparent, so the use of efficient and reliable methods for early detection of the disease is very important. In this study, early detection of citrus black rot disease caused by Alternaria genus fungus was examined using spectroscopy. Jaffa oranges were inoculated with Alternaria alternata. The samples were inspected by spectroscopy (200–1100 nm) in the 1st, 2nd, and 3rd weeks after inoculation. The classification of healthy and infected samples and selection of most important wavelengths were conducted by soft independent modeling of class analogy (SIMCA). The most important wavelengths in the detection of healthy and infected samples of the 1st week were 507, 933, 937, and 950 nm with a classification accuracy of 60%. The most important wavelengths of the 2nd week were 522 and 787 nm with a classification accuracy of 60%. Also, wavelengths of 546, 660, 691, and 839 were found to be effective in the 3rd week with a classification accuracy of 100%.
Collapse
Affiliation(s)
| | | | - Mojtaba Mamarabadi
- Department of Plant Protection Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
33
|
Agati G, Brunetti C, Tuccio L, Degano I, Tegli S. Retrieving the in vivo Scopoletin Fluorescence Excitation Band Allows the Non-invasive Investigation of the Plant-Pathogen Early Events in Tobacco Leaves. Front Microbiol 2022; 13:889878. [PMID: 35572685 PMCID: PMC9100583 DOI: 10.3389/fmicb.2022.889878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we developed and applied a new spectroscopic fluorescence method for the in vivo detection of the early events in the interaction between tobacco (Nicotiana tabacum L.) plants and pathogenic bacteria. The leaf disks were infiltrated with a bacterial suspension in sterile physiological solution (SPS), or with SPS alone as control. The virulent Pseudomonas syringae pv. tabaci strain ATCC 11528, its non-pathogenic ΔhrpA mutant, and the avirulent P. syringae pv. tomato strain DC3000 were used. At different post-infiltration time-points, the in vivo fluorescence spectra on leaf disks were acquired by a fiber bundle-spectrofluorimeter. The excitation spectra of the leaf blue emission at 460 nm, which is mainly due to the accumulation of coumarins following a bacterial infiltration, were processed by using a two-bands Gaussian fitting that enabled us to isolate the scopoletin (SCT) contribution. The pH-dependent fluorescence of SCT and scopolin (SCL), as determined by in vitro data and their intracellular localization, as determined by confocal microscopy, suggested the use of the longer wavelength excitation band at 385 nm of 460 nm emission (F385_460) to follow the metabolic evolution of SCT during the plant-bacteria interaction. It was found to be directly correlated (R 2 = 0.84) to the leaf SCT content, but not to that of SCL, determined by HPLC analysis. The technique applied to the time-course monitoring of the bacteria-plant interaction clearly showed that the amount and the timing of SCT accumulation, estimated by F385_460, was correlated with the resistance to the pathogen. As expected, this host defense response was delayed after P. syringae pv. tabaci ATCC 11528 infiltration, in comparison to P. syringae pv. tomato DC3000. Furthermore, no significant increase of F385_460 (SCT) was observed when using the non-pathogenic ΔhrpA mutant of P. syringae pv. tabaci ATCC 11528, which lacks a functional Type Three Secretion System (TTSS). Our study showed the reliability of the developed fluorimetric method for a rapid and non-invasive monitoring of bacteria-induced first events related to the metabolite-based defense response in tobacco leaves. This technique could allow a fast selection of pathogen-resistant cultivars, as well as the on-site early diagnosis of tobacco plant diseases by using suitable fluorescence sensors.
Collapse
Affiliation(s)
- Giovanni Agati
- Istituto di Fisica Applicata “Nello Carrara” (IFAC), Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
- Consortium INSTM-Italian Interuniversity Consortium for Science and Technology of Materials, Firenze, Italy
| | - Cecilia Brunetti
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | - Lorenza Tuccio
- Istituto di Fisica Applicata “Nello Carrara” (IFAC), Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
- Consortium INSTM-Italian Interuniversity Consortium for Science and Technology of Materials, Firenze, Italy
| | - Ilaria Degano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Stefania Tegli
- Consortium INSTM-Italian Interuniversity Consortium for Science and Technology of Materials, Firenze, Italy
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
34
|
Parama D, Girisa S, Khatoon E, Kumar A, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. An Overview of the Pharmacological Activities of Scopoletin against Different Chronic Diseases. Pharmacol Res 2022; 179:106202. [DOI: 10.1016/j.phrs.2022.106202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
|
35
|
Gonçalves MFM, Hilário S, Tacão M, Van de Peer Y, Alves A, Esteves AC. Genome and Metabolome MS-Based Mining of a Marine Strain of Aspergillus affinis. J Fungi (Basel) 2021; 7:1091. [PMID: 34947073 PMCID: PMC8709101 DOI: 10.3390/jof7121091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/09/2023] Open
Abstract
Aspergillus section Circumdati encompasses several species that express both beneficial (e.g., biochemical transformation of steroids and alkaloids, enzymes and metabolites) and harmful compounds (e.g., production of ochratoxin A (OTA)). Given their relevance, it is important to analyze the genetic and metabolic diversity of the species of this section. We sequenced the genome of Aspergillus affinis CMG 70, isolated from sea water, and compared it with the genomes of species from section Circumdati, including A. affinis's strain type. The A. affinis genome was characterized considering secondary metabolites biosynthetic gene clusters (BGCs), carbohydrate-active enzymes (CAZymes), and transporters. To uncover the biosynthetic potential of A. affinis CMG 70, an untargeted metabolomics (LC-MS/MS) approach was used. Cultivating the fungus in the presence and absence of sea salt showed that A. affinis CMG 70 metabolite profiles are salt dependent. Analyses of the methanolic crude extract revealed the presence of both unknown and well-known Aspergillus compounds, such as ochratoxin A, anti-viral (e.g., 3,5-Di-tert-butyl-4-hydroxybenzoic acid and epigallocatechin), anti-bacterial (e.g., 3-Hydroxybenzyl alcohol, l-pyroglutamic acid, lecanoric acid), antifungal (e.g., lpyroglutamic acid, 9,12,13-Trihydroxyoctadec-10-enoic acid, hydroxyferulic acid), and chemotherapeutic (e.g., daunomycinone, mitoxantrone) related metabolites. Comparative analysis of 17 genomes from 16 Aspergillus species revealed abundant CAZymes (568 per species), secondary metabolite BGCs (73 per species), and transporters (1359 per species). Some BGCs are highly conserved in this section (e.g., pyranonigrin E and UNII-YC2Q1O94PT (ACR toxin I)), while others are incomplete or completely lost among species (e.g., bikaverin and chaetoglobosins were found exclusively in series Sclerotiorum, while asperlactone seemed completely lost). The results of this study, including genome analysis and metabolome characterization, emphasize the molecular diversity of A. affinis CMG 70, as well as of other species in the section Circumdati.
Collapse
Affiliation(s)
- Micael F. M. Gonçalves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Sandra Hilário
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Marta Tacão
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Artur Alves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Ana C. Esteves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| |
Collapse
|
36
|
Ma L, Li R, Ma L, Song N, Xu Z, Wu J. Involvement of NAC transcription factor NaNAC29 in Alternaria alternata resistance and leaf senescence in Nicotiana attenuata. PLANT DIVERSITY 2021; 43:502-509. [PMID: 35024519 PMCID: PMC8720690 DOI: 10.1016/j.pld.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
NAC-LIKE, ACTIVATED BY AP3/PI (NAP) is a NAC transcription factor regulating leaf senescence in Arabidopsis thaliana. In wild tobacco Nicotiana attenuata, a nuclear localized NAC transcription factor NaNAC29 was identified to be highly elicited after inoculation of Alternaria alternata, a notorious necrotic fungus on tobacco species. The NaNAC29 possesses similar tertiary structure to NAP with 60% amino acid identity. However, it remains unknown the role of NaNAC29 in plant defense responses to A. alternata and leaf senescence in N. attenuata. In this paper, Defensin-like protein 1 (NaDLP1) was highly induced in N. attenuata after A. alternata inoculation and bigger lesions were developed in NaDLP1-silenced plants. Interestingly, A. alternata-induced NaDLP1 was reduced by 76% in VIGS NaNAC29 plants and by 61% in JA deficient irAOC plants at 3 days post inoculation. The regulation of NaDLP1 expression by NaNAC29 was clearly independent on JA pathway, since exogenous methyl jasmonate treatment could not complement the induction levels of NaDLP1 in NaNAC29-silenced plants to the levels in WT plants. Otherwise, the expression of NaNAC29 was low expressed in young leaves but highly in senescent leaves and dark-treated leaves. NaNAC29-silenced plants, which were generated by virus-induced gene silencing (VIGS NaNAC29), showed delayed senescence phenotype. In addition, constitutive over-expression of NaNAC29 in A. thaliana could rescue the delayed-senescence phenotype of nap and caused precocious leaf senescence of wild-type Col-0 plants. All the data above demonstrate that NaNAC29 is a NAP homolog in N. attenuata participating in the defense responses to A. alternata by regulation of a defensin protein NaDLP1 and promoting leaf senescence.
Collapse
Affiliation(s)
- Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Rongping Li
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Luoyan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Zhen Xu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| |
Collapse
|
37
|
Gaikwad HD, Dalvi SG, Hasabnis S, Suprasanna P. Electron Beam Irradiated Chitosan elicits enhanced antioxidant properties combating resistance to Purple Blotch Disease ( Alternaria porri) in Onion ( Allium cepa). Int J Radiat Biol 2021; 98:100-108. [PMID: 34587466 DOI: 10.1080/09553002.2021.1987569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE This study was carried out to assess the effect of irradiated chitosan as an elicitor on the biochemical traits associated with resistance to purple blotch disease in onion. MATERIALS AND METHODS Chitosan was electron beam irradiated at 100 kGy dose to obtain low molecular weight chitosan. Irradiated chitosan at 20 and 0.04% concentration and different time intervals was used as a biological elicitor cum antimicrobial agent against purple blotch disease in onion. Field grown onion (Variety Basanvant 780) plants were foliar sprayed with irradiated chitosan and the biochemical responses were monitored using parameters namely chlorophylls, carotenoids, antioxidant enzymes, phenols, and antifungal enzyme β-1,3 Glucanase using standard methods. RESULTS Compared to control treatment, a positive correlation with irradiated chitosan treatment was observed for an increase in β-1,3-glucanase, peroxidase activity, and contents of total phenolics, chlorophylls, and carotenoids, which cumulatively contributed to resistance response against the purple blotch disease. Irradiated chitosan (0.04%) treated onion plants at 30, 45, and 60 DAT showed a higher total phenolics, β-1,3-glucanase activity, and peroxidase activity besides enhanced antioxidant properties. CONCLUSION The results suggest that irradiated chitosan has elicited resistance responses against purple blotch disease in onion. The increased production of antioxidant metabolites may provide value addition to onion as a food commodity.
Collapse
Affiliation(s)
| | - Sunil Govind Dalvi
- Department of Agricultural Sciences and Technology Vasantdada Sugar Institute, Manjari (Bk), Pune, India
| | | | - Penna Suprasanna
- Nuclear Agricultural Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
38
|
Yang L, Wei Z, Li S, Xiao R, Xu Q, Ran Y, Ding W. Plant secondary metabolite, daphnetin reduces extracellular polysaccharides production and virulence factors of Ralstonia solanacearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104948. [PMID: 34802533 DOI: 10.1016/j.pestbp.2021.104948] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Plants deploy a variety of secondary metabolites to fend off pathogen attack. Certain plants could accumulate coumarins in response to infection of bacteria, fungi, virus and oomycetes. Although coumarins are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we showed that a plant secondary metabolite daphnetin functions primarily by inhibiting Ralstonia solanacearum extracellular polysaccharides (EPS) production and biofilm formation in vitro, through suppressing genes expression of xpsR, epsE, epsB and lexM. Indeed, daphnetin significantly impaired virulence of R. solanacearum on tobacco plants. Transcriptional analysis suggested that daphnetin suppresses EPS synthesis cluster genes expression through transcriptional regulator XpsR. And daphnetin alter mainly virulence factors genes involved in type III secretion system, and type IV secretion system. R. solanacearum lacking EPS synthesis genes (epsB and epsC) that do not produce EPS, showed less virulence on tobacco plants. Molecular docking results indicated that the critical residues of domain in the binding pocket of the EpsB protein interact with daphnetin via conventional hydrogen bonding and hydrophobic interactions. Collectively, we found that daphnetin has potential as a novel virulence inhibitor of R. solanacearum, directly regulates EPS synthesis genes expression.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhouling Wei
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Rui Xiao
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qinqin Xu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuao Ran
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
39
|
Yang L, Guan D, Valls M, Ding W. Sustainable natural bioresources in crop protection: antimicrobial hydroxycoumarins induce membrane depolarization-associated changes in the transcriptome of Ralstonia solanacearum. PEST MANAGEMENT SCIENCE 2021; 77:5170-5185. [PMID: 34255407 DOI: 10.1002/ps.6557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ralstonia solanacearum is one of the most devastating pathogens affecting crop production worldwide. The hydroxycoumarins (umbelliferone, esculetin and daphnetin) represent sustainable natural bioresources on controlling plant bacterial wilt. However, the antibacterial mechanism of hydroxycoumarins against plant pathogens still remains poorly understood. RESULTS Here we characterized the effect of three hydroxycoumarins on the transcriptome of R. solanacearum. All three hydroxycoumarins were able to kill R. solanacearum, but their antibacterial activity impacted differently the bacterial transcriptome, indicating that their modes of action might be different. Treatment of R. solanacearum cultures with hydroxycoumarins resulted in a large number of differentially expressed genes (DEGs), involved in basic cellular functions and metabolic process, such as down-regulation of genes involved in fatty acid synthesis, lipopolysaccharides biosynthesis, RNA modification, ribosomal submits, oxidative phosphorylation and electrontransport, as well as up-regulation of genes involved in transcriptional regulators, drug efflux, and oxidative stress responses. Future studies based on in vitro experiments are proposed to investigate lipopolysaccharides biosynthesis pathway leading to R. solanacearum cell death caused by hydroxycoumarins. Deletion of lpxB substantially inhibited the growth of R. solanacearum, and reduced virulence of pathogen on tobacco plants. CONCULSION Our transcriptomic analyses show that specific hydroxycoumarins suppressed gene expression involved in fatty acid synthesis, RNA modification, ribosomal submits, oxidative phosphorylation and electrontransport. These findings provide evidence that hydroxycoumarins inhibit R. solanacearum growth through multi-target effect. Hydroxycoumarins could serve as sustainable natural bioresources against plant bacterial wilt through membrane destruction targeting the lipopolysaccharides biosynthesis pathway.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Genetics Section, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Han S, Yang L, Wang Y, Ran Y, Li S, Ding W. Preliminary Studies on the Antibacterial Mechanism of a New Plant-Derived Compound, 7-Methoxycoumarin, Against Ralstonia solanacearum. Front Microbiol 2021; 12:697911. [PMID: 34421853 PMCID: PMC8377673 DOI: 10.3389/fmicb.2021.697911] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Ralstonia solanacearum (R. solanacearum) is one of the most devastating plant bacterial pathogens and leads to serious economic losses in crops worldwide. In this study, the antibacterial mechanism of 7-methoxycoumarin, a new coumarin antibiotic, was preliminarily investigated by the observation of symptoms and physical and biochemical analyses. The results showed that 7-methoxycoumarin significantly suppressed bacterial growth of R. solanacearum, with the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of 75 and 175 mg/L, respectively. Electron microscopy observations showed that the bacterial cell membrane was destroyed after 7-methoxycoumarin treatment. Biofilm formation of R. solanacearum was significantly suppressed by 7-methoxycoumarin at concentrations ranging from 25 to 100 mg/L. Furthermore, virulence-associated genes epsE, hrpG, and popA of R. solanacearum were significantly inhibited by 7-methoxycoumarin. The application of 7-methoxycoumarin effectively suppressed tobacco bacterial wilt progress in pot experiments, with relative control efficiencies of 83.61, 68.78, and 58.11% at 6, 8, and 10 days post inoculation, respectively.
Collapse
Affiliation(s)
- Songting Han
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Yao Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Yuao Ran
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
41
|
Yang L, Wang Y, He X, Xiao Q, Han S, Jia Z, Li S, Ding W. Discovery of a novel plant-derived agent against Ralstonia solanacearum by targeting the bacterial division protein FtsZ. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104892. [PMID: 34301354 DOI: 10.1016/j.pestbp.2021.104892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Ralstonia solanacearum (R. solanacearum) is one of the most devastating bacterial pathogens and leads to serious economic losses in crops worldwide. In this study, the antibacterial activities of novel plant-derived coumarins against R. solanacearum and their underlying mechanisms were initially investigated. The bioactivity assay results showed that certain coumarins had significant in vitro inhibitory effects against R. solanacearum. Notably, 6-methylcoumarin showed the best in vitro antibacterial activity with 76.79%. Interestingly, 6-methylcoumarin was found to cause cell elongation, disrupt cell division, and suppress the expression of the bacterial division protein coding genes ftsZ. Compared with the control treatment, the ∆ftsZ mutant inhibited bacterial growth and caused the bacteria to be more sensitive to 6-methylcoumarin. The application of 6-methylcoumarin effectively suppressed the development of tobacco bacterial wilt in pot and field experiments, and significantly reduced the bacterial population in tobacco stems. The control efficiency of 6-methylcoumarin treatment was 35.76%, 40.51%, 38.99% at 10, 11, and 12 weeks after tobacco transplantation in field condition. All of these results demonstrate that 6-methylcoumarin has potential as an eco-friendly and target specificity agent for controlling tobacco bacterial wilt.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yao Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiaobin He
- Chongqing Tobacco Industry Co., Ltd., Chongqing 400060, China
| | - Qingli Xiao
- Chongqing Tobacco Industry Co., Ltd., Chongqing 400060, China
| | - Songting Han
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhou Jia
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
42
|
Perkowska I, Potrykus M, Siwinska J, Siudem D, Lojkowska E, Ihnatowicz A. Interplay between Coumarin Accumulation, Iron Deficiency and Plant Resistance to Dickeya spp. Int J Mol Sci 2021; 22:ijms22126449. [PMID: 34208600 PMCID: PMC8235353 DOI: 10.3390/ijms22126449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023] Open
Abstract
Coumarins belong to a group of secondary metabolites well known for their high biological activities including antibacterial and antifungal properties. Recently, an important role of coumarins in plant resistance to pathogens and their release into the rhizosphere upon pathogen infection was discovered. It is also well documented that coumarins play a crucial role in the Arabidopsis thaliana growth under Fe-limited conditions. However, the mechanisms underlying interplay between plant resistance, accumulation of coumarins and Fe status, remain largely unknown. In this work, we investigated the effect of both mentioned factors on the disease severity using the model system of Arabidopsis/Dickeya spp. molecular interactions. We evaluated the disease symptoms in Arabidopsis plants, wild-type Col-0 and its mutants defective in coumarin accumulation, grown in hydroponic cultures with contrasting Fe regimes and in soil mixes. Under all tested conditions, Arabidopsis plants inoculated with Dickeya solani IFB0099 strain developed more severe disease symptoms compared to lines inoculated with Dickeya dadantii 3937. We also showed that the expression of genes encoding plant stress markers were strongly affected by D. solani IFB0099 infection. Interestingly, the response of plants to D. dadantii 3937 infection was genotype-dependent in Fe-deficient hydroponic solution.
Collapse
Affiliation(s)
- Izabela Perkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
| | - Marta Potrykus
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland
| | - Joanna Siwinska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
| | - Dominika Siudem
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
| | - Anna Ihnatowicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
- Correspondence: ; Tel.: +48-58-5236330
| |
Collapse
|
43
|
Yu K, Stringlis IA, van Bentum S, de Jonge R, Snoek BL, Pieterse CMJ, Bakker PAHM, Berendsen RL. Transcriptome Signatures in Pseudomonas simiae WCS417 Shed Light on Role of Root-Secreted Coumarins in Arabidopsis-Mutualist Communication. Microorganisms 2021; 9:microorganisms9030575. [PMID: 33799825 PMCID: PMC8000642 DOI: 10.3390/microorganisms9030575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas simiae WCS417 is a root-colonizing bacterium with well-established plant-beneficial effects. Upon colonization of Arabidopsis roots, WCS417 evades local root immune responses while triggering an induced systemic resistance (ISR) in the leaves. The early onset of ISR in roots shows similarities with the iron deficiency response, as both responses are associated with the production and secretion of coumarins. Coumarins can mobilize iron from the soil environment and have a selective antimicrobial activity that impacts microbiome assembly in the rhizosphere. Being highly coumarin-tolerant, WCS417 induces the secretion of these phenolic compounds, likely to improve its own niche establishment, while providing growth and immunity benefits for the host in return. To investigate the possible signaling function of coumarins in the mutualistic Arabidopsis-WCS417 interaction, we analyzed the transcriptome of WCS417 growing in root exudates of coumarin-producing Arabidopsis Col-0 and the coumarin-biosynthesis mutant f6′h1. We found that coumarins in F6′H1-dependent root exudates significantly affected the expression of 439 bacterial genes (8% of the bacterial genome). Of those, genes with functions related to transport and metabolism of carbohydrates, amino acids, and nucleotides were induced, whereas genes with functions related to cell motility, the bacterial mobilome, and energy production and conversion were repressed. Strikingly, most genes related to flagellar biosynthesis were down-regulated by F6′H1-dependent root exudates and we found that application of selected coumarins reduces bacterial motility. These findings suggest that coumarins’ function in the rhizosphere as semiochemicals in the communication between the roots and WCS417. Collectively, our results provide important novel leads for future functional analysis of molecular processes in the establishment of plant-mutualist interactions.
Collapse
Affiliation(s)
- Ke Yu
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China
| | - Ioannis A. Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Sietske van Bentum
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Basten L. Snoek
- Theoretical Biology & Bioinformatics, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Roeland L. Berendsen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
- Correspondence: ; Tel.: +31-3025-36860
| |
Collapse
|
44
|
Robe K, Conejero G, Gao F, Lefebvre-Legendre L, Sylvestre-Gonon E, Rofidal V, Hem S, Rouhier N, Barberon M, Hecker A, Gaymard F, Izquierdo E, Dubos C. Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process. THE NEW PHYTOLOGIST 2021; 229:2062-2079. [PMID: 33205512 DOI: 10.1111/nph.17090] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is a major micronutrient and is required for plant growth and development. Nongrass species have evolved a reduction-based strategy to solubilize and take up Fe. The secretion of Fe-mobilizing coumarins (e.g. fraxetin, esculetin and sideretin) by plant roots plays an important role in this process. Although the biochemical mechanisms leading to their biosynthesis have been well described, very little is known about their cellular and subcellular localization or their mobility within plant tissues. Spectral imaging was used to monitor, in Arabidopsis thaliana, the in planta localization of Fe-mobilizing coumarins and scopolin. Molecular, genetic and biochemical approaches were also used to investigate the dynamics of coumarin accumulation in roots. These approaches showed that root hairs play a major role in scopoletin secretion, whereas fraxetin and esculetin secretion occurs through all epidermis cells. The findings of this study also showed that the transport of coumarins from the cortex to the rhizosphere relies on the PDR9 transporter under Fe-deficient conditions. Additional experiments support the idea that coumarins move throughout the plant body via the xylem sap and that several plant species can take up coumarins present in the surrounding media. Altogether, the data presented here demonstrate that coumarin storage and accumulation in roots is a highly complex and dynamic process.
Collapse
Affiliation(s)
- Kevin Robe
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Geneviève Conejero
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Fei Gao
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Linnka Lefebvre-Legendre
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Geneva, 1211, Switzerland
| | | | - Valérie Rofidal
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | | | - Marie Barberon
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Geneva, 1211, Switzerland
| | - Arnaud Hecker
- INRAE, IAM, Université de Lorraine, Nancy, F-54000, France
| | - Frédéric Gaymard
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Esther Izquierdo
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Christian Dubos
- BPMP, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| |
Collapse
|
45
|
Stassen MJJ, Hsu SH, Pieterse CMJ, Stringlis IA. Coumarin Communication Along the Microbiome-Root-Shoot Axis. TRENDS IN PLANT SCIENCE 2021; 26:169-183. [PMID: 33023832 DOI: 10.1016/j.tplants.2020.09.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 05/06/2023]
Abstract
Plants shape their rhizosphere microbiome by secreting root exudates into the soil environment. Recently, root-exuded coumarins were identified as novel players in plant-microbiome communication. Beneficial members of the root-associated microbiome stimulate coumarin biosynthesis in roots and their excretion into the rhizosphere. The iron-mobilizing activity of coumarins facilitates iron uptake from the soil environment, while their selective antimicrobial activity shapes the root microbiome, resulting in promotion of plant growth and health. Evidence is accumulating that, in analogy to strigolactones and flavonoids, coumarins may act in microbiome-to-root-to-shoot signaling events. Here, we review this multifaceted role of coumarins in bidirectional chemical communication along the microbiome-root-shoot axis.
Collapse
Affiliation(s)
- Max J J Stassen
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Shu-Hua Hsu
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands; Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, 10617, Taipei, Taiwan
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
46
|
Yin M, Song N, Chen S, Wu J. NaKTI2, a Kunitz trypsin inhibitor transcriptionally regulated by NaWRKY3 and NaWRKY6, is required for herbivore resistance in Nicotiana attenuata. PLANT CELL REPORTS 2021; 40:97-109. [PMID: 33048182 DOI: 10.1007/s00299-020-02616-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Here, we reported that a pathogen- and herbivore-induced Kunitz trypsin inhibitor gene, NaKTI2, is required for herbivore resistance, and transcriptionally regulated mainly by NaWRKY3 and NaWRKY6 but not Jasmonate signaling. Plant protease inhibitor (PI) occurs widely in plant species, and is considered as an important part of plant defense arsenal against herbivores. Transcriptome analysis of Nicotiana attenuata leaves revealed that a Kunitz trypsin inhibitor gene, NaKTI2, was highly elicited after inoculation of Alternaria alternata (tobacco pathotype). However, the roles of NaKTI2 in pathogen- and herbivore resistance and its regulation were unclear. NaKTI2 had typical domains of Kunitz trypsin inhibitors and exhibited a high level of trypsin protease inhibitor activities when transiently over-expressed. The transcripts of NaKTI2 could be induced by A. alternata and Spodoptera litura oral secretions (OS). Silencing NaKTI2 via virus-induced gene silencing technique has no influence on lesion diameters developed on N. attenuata leaves after A. alternata inoculation, but S. litura larvae gained more mass and had higher survivorship on NaKTI2-silenced plants. Meanwhile, the expression of NaPI, a PI gene essential for herbivore resistance previously identified in N. attenuata, was not affected in NaKTI2-silenced plants. Unlike NaPI, which was predominantly regulated by jasmonate (JA) signaling, OS-elicited NaKTI2 transcripts were only slightly reduced in JA-deficient plants, but were dramatically decreased in NaWRKY3- and NaWRKY6- silenced plants, respectively. Further electromobility shift assays indicated that NaWRKY3 and NaWRKY6 could directly bind to the promoter regions of NaKTI2 in vitro. Taken together, our results demonstrate that in addition to NaPI, NaKTI2, a pathogen- and herbivore-induced Kunitz trypsin inhibitor gene, is also required for herbivore resistance, and mainly regulated by NaWRKY3 and NaWRKY6.
Collapse
Affiliation(s)
- Min Yin
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, China
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Science, Beijing, 10049, China
| | - Suiyun Chen
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
47
|
Zhao L, Hu Z, Li S, Zhang L, Yu P, Zhang J, Zheng X, Rahman S, Zhang Z. Tagitinin A from Tithonia diversifolia provides resistance to tomato spotted wilt orthotospovirus by inducing systemic resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104654. [PMID: 32828372 DOI: 10.1016/j.pestbp.2020.104654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes devastating losses to agronomic and ornamental crops worldwide. Currently, there is no effective strategy to control this disease. Use of biotic inducers to enhance plant resistance to viruses maybe an effective approach. Our previous study indicated that Tagitinin A (Tag A) has a high curative and protective effect against TSWV. However, the underlying molecular mechanism of Tag A-mediated antiviral activity remains unknown. In this study, Tag A reduced the expression of the NSs, NSm genes was very low in untreated leaves following TSWV infection. In addition, the expression of all TSWV genes in the inoculated and systemic leaves was inhibited in the protective assay, and with an inhibition rate of more than 85% in systemic leaves. Tag A increased phenylalanine ammonia-lyase (PAL) activity in the curative and protective assays. The concentrations of jasmonic acid (JA) and jasmonic acid -isoleucine (JA-Ile) and the expression of its key gene NtCOI1 in Tag A-treated and systemic leaves of treated plants were significantly higher than those of the control plant. Furthermore, Tag A-induced resistance to TSWV could be eliminated by VIGS-mediated silencing of the NtCOI1 gene. These indicated that Tag A acts against TSWV by activating the JA defense signaling pathway.
Collapse
Affiliation(s)
- Lihua Zhao
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Zhonghui Hu
- Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Shunlin Li
- Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Lizhen Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Ping Yu
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Jie Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Xue Zheng
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Siddiqur Rahman
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Zhongkai Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China.
| |
Collapse
|
48
|
Massana-Codina J, Schnee S, Allard PM, Rutz A, Boccard J, Michellod E, Cléroux M, Schürch S, Gindro K, Wolfender JL. Insights on the Structural and Metabolic Resistance of Potato ( Solanum tuberosum) Cultivars to Tuber Black Dot ( Colletotrichum coccodes). FRONTIERS IN PLANT SCIENCE 2020; 11:1287. [PMID: 32973846 PMCID: PMC7468465 DOI: 10.3389/fpls.2020.01287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 05/03/2023]
Abstract
Black dot is a blemish disease of potato tubers caused by the phytopathogenic fungus Colletotrichum coccodes. Qualitative resistance (monogenic) that leads to the hypersensitive response has not been reported against black dot, but commercial potato cultivars show different susceptibility levels to the disease, indicating that quantitative resistance (polygenic) mechanisms against this pathogen exist. Cytological studies are essential to decipher pathogen colonization of the plant tissue, and untargeted metabolomics has been shown effective in highlighting resistance-related metabolites in quantitative resistance. In this study, we used five commercial potato cultivars with different susceptibility levels to black dot, and studied the structural and biochemical aspects that correlate with resistance to black dot using cytological and untargeted metabolomics methods. The cytological approach using semithin sections of potato tuber periderm revealed that C. coccodes colonizes the tuber periderm, but does not penetrate in cortical cells. Furthermore, skin thickness did not correlate with disease susceptibility, indicating that other factors influence quantitative resistance to black dot. Furthermore, suberin amounts did not correlate with black dot severity, and suberin composition was similar between the five potato cultivars studied. On the other hand, the untargeted metabolomics approach allowed highlighting biomarkers of infection, as well as constitutive and induced resistance-related metabolites. Hydroxycinnamic acids, hydroxycinnamic acid amides and steroidal saponins were found to be biomarkers of resistance under control conditions, while hydroxycoumarins were found to be specifically induced in the resistant cultivars. Notably, some of these biomarkers showed antifungal activity in vitro against C. coccodes. Altogether, our results show that quantitative resistance of potatoes to black dot involves structural and biochemical mechanisms, including the production of specialized metabolites with antifungal properties.
Collapse
Affiliation(s)
- Josep Massana-Codina
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sylvain Schnee
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Emilie Michellod
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
| | - Marilyn Cléroux
- Changins College for Viticulture and Enology, University Western Switzerland, Nyon, Switzerland
| | | | - Katia Gindro
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
49
|
Zhao H, Zhong S, Sang L, Zhang X, Chen Z, Wei Q, Chen G, Liu J, Yu Y. PaACL silencing accelerates flower senescence and changes the proteome to maintain metabolic homeostasis in Petunia hybrida. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4858-4876. [PMID: 32364241 PMCID: PMC7475263 DOI: 10.1093/jxb/eraa208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/25/2020] [Indexed: 06/07/2023]
Abstract
Cytosolic acetyl-CoA is an intermediate of the synthesis of most secondary metabolites and the source of acetyl for protein acetylation. The formation of cytosolic acetyl-CoA from citrate is catalysed by ATP-citrate lyase (ACL). However, the function of ACL in global metabolite synthesis and global protein acetylation is not well known. Here, four genes, PaACLA1, PaACLA2, PaACLB1, and PaACLB2, which encode the ACLA and ACLB subunits of ACL in Petunia axillaris, were identified as the same sequences in Petunia hybrida 'Ultra'. Silencing of PaACLA1-A2 and PaACLB1-B2 led to abnormal leaf and flower development, reduced total anthocyanin content, and accelerated flower senescence in petunia 'Ultra'. Metabolome and acetylome analysis revealed that PaACLB1-B2 silencing increased the content of many downstream metabolites of acetyl-CoA metabolism and the levels of acetylation of many proteins in petunia corollas. Mechanistically, the metabolic stress induced by reduction of acetyl-CoA in PaACL-silenced petunia corollas caused global and specific changes in the transcriptome, the proteome, and the acetylome, with the effect of maintaining metabolic homeostasis. In addition, the global proteome and acetylome were negatively correlated under acetyl-CoA deficiency. Together, our results suggest that ACL acts as an important metabolic regulator that maintains metabolic homeostasis by promoting changes in the transcriptome, proteome. and acetylome.
Collapse
Affiliation(s)
- Huina Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Shiwei Zhong
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lina Sang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xinyou Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zeyu Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qian Wei
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
50
|
Lemos ASO, Florêncio JR, Pinto NCC, Campos LM, Silva TP, Grazul RM, Pinto PF, Tavares GD, Scio E, Apolônio ACM, Melo RCN, Fabri RL. Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida tropicalis Strain. Front Microbiol 2020; 11:1525. [PMID: 32733416 PMCID: PMC7359730 DOI: 10.3389/fmicb.2020.01525] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/12/2020] [Indexed: 11/27/2022] Open
Abstract
Candida tropicalis is one the most relevant biofilm-forming fungal species increasingly associated with invasive mucosal candidiasis worldwide. The amplified antifungal resistance supports the necessity for more effective and less toxic treatment, including the use of plant-derived natural products. Scopoletin, a natural coumarin, has shown antifungal properties against plant yeast pathogens. However, the antifungal activity of this coumarin against clinically relevant fungal species such as C. tropicalis remains to be established. Here, we investigated the potential antifungal properties and mechanisms of action of scopoletin against a multidrug-resistant C. tropicalis strain (ATCC 28707). First, scopoletin was isolated by high-performance liquid chromatography from Mitracarpus frigidus, a plant species (family Rubiaceae) distributed throughout South America. Next, scopoletin was tested on C. tropicalis cultivated for 48h in both planktonic and biofilm forms. Fungal planktonic growth inhibition was analyzed by evaluating minimal inhibitory concentration (MIC), time-kill kinetics and cell density whereas the mechanisms of action were investigated with nucleotide leakage, efflux pumps and sorbitol and ergosterol bioassays. Finally, the scopoletin ability to affect C. tropicalis biofilms was evaluated through spectrophotometric and whole slide imaging approaches. In all procedures, fluconazole was used as a positive control. MIC values for scopoletin and fluconazole were 50 and 250 μg/L respectively, thus demonstrating a fungistatic activity for scopoletin. Scopoletin induced a significant decrease of C. tropicalis growth curves and cell density (91.7% reduction) compared to the growth control. Its action was related to the fungal cell wall, affecting plasma membrane sterols. When associated with fluconazole, scopoletin led to inhibition of efflux pumps at the plasma membrane. Moreover, scopoletin not only inhibited the growth rate of preformed biofilms (68.2% inhibition at MIC value) but also significantly decreased the extent of biofilms growing on the surface of coverslips, preventing the formation of elongated fungal forms. Our data demonstrate, for the first time, that scopoletin act as an effective antifungal phytocompound against a multidrug-resistant strain of C. tropicalis with properties that affect both planktonic and biofilm forms of this pathogen. Thus, the present findings support additional studies for antifungal drug development based on plant isolated-scopoletin to treat candidiasis caused by C. tropicalis.
Collapse
Affiliation(s)
- Ari S O Lemos
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jônatas R Florêncio
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Nícolas C C Pinto
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Lara M Campos
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Richard M Grazul
- Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Priscila F Pinto
- Protein Structure and Function Study Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Guilherme D Tavares
- Laboratory of Nanostructured Systems Development, Department of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Elita Scio
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ana Carolina M Apolônio
- Department of Parasitology, Microbiology, and Imunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rodrigo L Fabri
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|