1
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
2
|
Liu N, Hu Z, Zhang L, Yang Q, Deng L, Terzaghi W, Hua W, Yan M, Liu J, Zheng M. BAPID suppresses the inhibition of BRM on Di19-PR module in response to drought. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:253-271. [PMID: 39166483 DOI: 10.1111/tpj.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Drought is one of the most important abiotic stresses, and seriously threatens plant development and productivity. Increasing evidence indicates that chromatin remodelers are pivotal for plant drought response. However, molecular mechanisms of chromatin remodelers-mediated plant drought responses remain obscure. In this study, we found a novel interactor of BRM called BRM-associated protein involved in drought response (BAPID), which interacted with SWI/SNF chromatin remodeler BRM and drought-induced transcription factor Di19. Our findings demonstrated that BAPID acted as a positive drought regulator since drought tolerance was increased in BAPID-overexpressing plants, but decreased in BAPID-deficient plants, and physically bound to PR1, PR2, and PR5 promoters to mediate expression of PR genes to defend against dehydration stress. Genetic approaches demonstrated that BRM acted epistatically to BAPID and Di19 in drought response in Arabidopsis. Furthermore, the BAPID protein-inhibited interaction between BRM and Di19, and suppressed the inhibition of BRM on the Di19-PR module by mediating the H3K27me3 deposition at PR loci, thus changing nucleosome accessibility of Di19 and activating transcription of PR genes in response to drought. Our results shed light on the molecular mechanism whereby the BAPID-BRM-Di19-PRs pathway mediates plant drought responses. We provide data improving our understanding of chromatin remodeler-mediated plant drought regulation network.
Collapse
Affiliation(s)
- Nian Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Zhiyong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Liang Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Qian Yang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Yuelushan Laboratory, Changsha, 410125, China
| | - Linbin Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, USA
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Yuelushan Laboratory, Changsha, 410125, China
| | - Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| |
Collapse
|
3
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
5
|
Ren G, Zhang Y, Chen Z, Xue X, Fan H. Research Progress of Small Plant Peptides on the Regulation of Plant Growth, Development, and Abiotic Stress. Int J Mol Sci 2024; 25:4114. [PMID: 38612923 PMCID: PMC11012589 DOI: 10.3390/ijms25074114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Small peptides in plants are typically characterized as being shorter than 120 amino acids, with their biologically active variants comprising fewer than 20 amino acids. These peptides are instrumental in regulating plant growth, development, and physiological processes, even at minimal concentrations. They play a critical role in long-distance signal transduction within plants and act as primary responders to a range of stress conditions, including salinity, alkalinity, drought, high temperatures, and cold. This review highlights the crucial roles of various small peptides in plant growth and development, plant resistance to abiotic stress, and their involvement in long-distance transport. Furthermore, it elaborates their roles in the regulation of plant hormone biosynthesis. Special emphasis is given to the functions and mechanisms of small peptides in plants responding to abiotic stress conditions, aiming to provide valuable insights for researchers working on the comprehensive study and practical application of small peptides.
Collapse
Affiliation(s)
- Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Xin Xue
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| |
Collapse
|
6
|
Datta T, Kumar RS, Sinha H, Trivedi PK. Small but mighty: Peptides regulating abiotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2024; 47:1207-1223. [PMID: 38164016 DOI: 10.1111/pce.14792] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Throughout evolution, plants have developed strategies to confront and alleviate the detrimental impacts of abiotic stresses on their growth and development. The combat strategies involve intricate molecular networks and a spectrum of early and late stress-responsive pathways. Plant peptides, consisting of fewer than 100 amino acid residues, are at the forefront of these responses, serving as pivotal signalling molecules. These peptides, with roles similar to phytohormones, intricately regulate plant growth, development and facilitate essential cell-to-cell communications. Numerous studies underscore the significant role of these small peptides in coordinating diverse signalling events triggered by environmental challenges. Originating from the proteolytic processing of larger protein precursors or directly translated from small open reading frames, including microRNA (miRNA) encoded peptides from primary miRNA, these peptides exert their biological functions through binding with membrane-embedded receptor-like kinases. This interaction initiates downstream cellular signalling cascades, often involving major phytohormones or reactive oxygen species-mediated mechanisms. Despite these advances, the precise modes of action for numerous other small peptides remain to be fully elucidated. In this review, we delve into the dynamics of stress physiology, mainly focusing on the roles of major small signalling peptides, shedding light on their significance in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Tapasya Datta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Ravi S Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hiteshwari Sinha
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh K Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
8
|
Nietzschmann L, Smolka U, Perino EHB, Gorzolka K, Stamm G, Marillonnet S, Bürstenbinder K, Rosahl S. The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato. Sci Rep 2023; 13:20534. [PMID: 37996470 PMCID: PMC10667265 DOI: 10.1038/s41598-023-47648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Collapse
Affiliation(s)
- Linda Nietzschmann
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ulrike Smolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Elvio Henrique Benatto Perino
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gina Stamm
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
9
|
Singh P, Maurya SK, Singh D, Sane AP. The rose INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE genes, RbIDL1 and RbIDL4, regulate abscission in an ethylene-responsive manner. PLANT CELL REPORTS 2023; 42:1147-1161. [PMID: 37069436 DOI: 10.1007/s00299-023-03017-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE RbIDL1 and RbIDL4 are up-regulated in an ethylene-responsive manner during rose petal abscission and restored the Arabidopsis ida-2 mutant abscission defect suggesting functional conservation of the IDA pathway in rose. Abscission is an ethylene-regulated developmental process wherein plants shed unwanted organs in a controlled manner. The INFLORESCENCE DEFICIENT IN ABSCISSION family has been identified as a key regulator of abscission in Arabidopsis, encoding peptides that interact with receptor-like kinases to activate abscission. Loss of function ida mutants show abscission deficiency in Arabidopsis. Functional conservation of the IDA pathway in other plant abscission processes is a matter of interest given the discovery of these genes in several plants. We have identified four members of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE family from the ethylene-sensitive, early-abscising fragrant rose, Rosa bourboniana. All four are conserved in sequence and possess well-defined PIP, mIDa and EPIP motifs. Three of these, RbIDL1, RbIDL2 and RbIDL4 show a three-fourfold increase in transcript levels in petal abscission zones (AZ) during ethylene-induced petal abscission as well as natural abscission. The genes are also expressed in other floral tissues but respond differently to ethylene in these tissues. RbIDL1 and RbIDL4, the more prominently expressed IDL genes in rose, can complement the abscission defect of the Arabidopsis ida-2 mutant; while, promoters of both genes can drive AZ-specific expression in an ethylene-responsive manner even in Arabidopsis silique AZs indicating recognition of AZ-specific and ethylene-responsive cis elements in their promoters by the abscission machinery of rose as well as Arabidopsis.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Kumar Maurya
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, Kishori Raman (PG) College, Mathura, India
| | - Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Wang P, Wu T, Jiang C, Huang B, Li Z. Brt9SIDA/IDALs as peptide signals mediate diverse biological pathways in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111642. [PMID: 36804389 DOI: 10.1016/j.plantsci.2023.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
As signal molecules, plant peptides play key roles in intercellular communication during growth and development, as well as stress responses. The 14-amino-acid (aa) INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide was originally identified to play an essential role in the floral organ abscission of Arabidopsis. It is synthesized from its precursor, a small protein containing 77-aa residues with an N-terminal signal peptide sequence. Recently, the IDA/IDA-like (IDLs) genes are isolated in several angiosperms and are highly conserved in land plants. In addition, IDA/IDLs are not only involved in organ abscission but also function in multiple biological processes, including biotic and abiotic stress responses. Here, we summarize the post-translational modification and proteolytic processing, the evolutionary conservation, and the potential regulatory function of IDA/IDLs, and also present future perspectives to investigate the IDA/IDLs signaling pathway. We anticipate that this detailed knowledge will help to improve the understanding of the molecular mechanism of plant peptide signaling.
Collapse
Affiliation(s)
- Pingyu Wang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Ting Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Chen Jiang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
11
|
Tano DW, Kozlowska MA, Easter RA, Woodson JD. Multiple pathways mediate chloroplast singlet oxygen stress signaling. PLANT MOLECULAR BIOLOGY 2023; 111:167-187. [PMID: 36266500 DOI: 10.1007/s11103-022-01319-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast singlet oxygen initiates multiple pathways to control chloroplast degradation, cell death, and nuclear gene expression. Chloroplasts can respond to stress and changes in the environment by producing reactive oxygen species (ROS). Aside from being cytotoxic, ROS also have signaling capabilities. For example, the ROS singlet oxygen (1O2) can initiate nuclear gene expression, chloroplast degradation, and cell death. To unveil the signaling mechanisms involved, researchers have used several 1O2-producing Arabidopsis thaliana mutants as genetic model systems, including plastid ferrochelatase two (fc2), fluorescent in blue light (flu), chlorina 1 (ch1), and accelerated cell death 2 (acd2). Here, we compare these 1O2-producing mutants to elucidate if they utilize one or more signaling pathways to control cell death and nuclear gene expression. Using publicly available transcriptomic data, we demonstrate fc2, flu, and ch1 share a core response to 1O2 accumulation, but maintain unique responses, potentially tailored to respond to their specific stresses. Subsequently, we used a genetic approach to determine if these mutants share 1O2 signaling pathways by testing the ability of genetic suppressors of one 1O2 producing mutant to suppress signaling in a different 1O2 producing mutant. Our genetic analyses revealed at least two different chloroplast 1O2 signaling pathways control cellular degradation: one specific to the flu mutant and one shared by fc2, ch1, and acd2 mutants, but with life-stage-specific (seedling vs. adult) features. Overall, this work reveals chloroplast stress signaling involving 1O2 is complex and may allow cells to finely tune their physiology to environmental inputs.
Collapse
Affiliation(s)
- David W Tano
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Marta A Kozlowska
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Robert A Easter
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA.
| |
Collapse
|
12
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
13
|
Rutter WB, Franco J, Gleason C. Rooting Out the Mechanisms of Root-Knot Nematode-Plant Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:43-76. [PMID: 35316614 DOI: 10.1146/annurev-phyto-021621-120943] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) engage in complex parasitic interactions with many different host plants around the world, initiating elaborate feeding sites and disrupting host root architecture. Although RKNs have been the focus of research for many decades, new molecular tools have provided useful insights into the biological mechanisms these pests use to infect and manipulate their hosts. From identifying host defense mechanisms underlying resistance to RKNs to characterizing nematode effectors that alter host cellular functions, the past decade of research has significantly expanded our understanding of RKN-plant interactions, and the increasing number of quality parasite and host genomes promises to enhance future research efforts into RKNs. In this review, we have highlighted recent discoveries, summarized the current understanding within the field, and provided links to new and useful resources for researchers. Our goal is to offer insights and tools to support the study of molecular RKN-plant interactions.
Collapse
Affiliation(s)
- William B Rutter
- US Vegetable Laboratory, USDA Agricultural Research Service, Charleston, South Carolina, USA
| | - Jessica Franco
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA;
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA;
| |
Collapse
|
14
|
Rzemieniewski J, Stegmann M. Regulation of pattern-triggered immunity and growth by phytocytokines. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102230. [PMID: 35588597 DOI: 10.1016/j.pbi.2022.102230] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Endogenous signalling peptides play diverse roles during plant growth, development and stress responses. Research in recent years has unravelled peptides with previously known growth-regulatory function as immune-modulatory agents that fine-tune pattern-triggered immunity (PTI). Moreover, peptides that are long known as endogenous danger signals were recently implicated in growth and development. In analogy to metazoan systems these peptides are referred to as phytocytokines. In this review we will highlight recent progress made on our understanding of phytocytokines simultaneously regulating growth and PTI which shows the complex interplay of peptide signalling pathways regulating multiple aspects of a plant's life.
Collapse
Affiliation(s)
- Jakub Rzemieniewski
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Martin Stegmann
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
15
|
Faragó D, Zsigmond L, Benyó D, Alcazar R, Rigó G, Ayaydin F, Rabilu SA, Hunyadi‐Gulyás É, Szabados L. Small paraquat resistance proteins modulate paraquat and ABA responses and confer drought tolerance to overexpressing Arabidopsis plants. PLANT, CELL & ENVIRONMENT 2022; 45:1985-2003. [PMID: 35486392 PMCID: PMC9324991 DOI: 10.1111/pce.14338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 05/13/2023]
Abstract
Adaptation of higher plants to extreme environmental conditions is under complex regulation. Several small peptides have recently been described to modulate responses to stress conditions. The Small Paraquat resistance protein (SPQ) of Lepidium crassifolium has previously been identified due to its capacity to confer paraquat resistance to overexpressing transgenic Arabidopsis plants. Here, we show that overexpression of the closely related Arabidopsis SPQ can also enhance resistance to paraquat, while the Arabidopsis spq1 mutant is slightly hypersensitive to this herbicide. Besides being implicated in paraquat response, overexpression of SPQs enhanced sensitivity to abscisic acid (ABA), and the knockout spq1 mutant was less sensitive to ABA. Both Lepidium- and Arabidopsis-derived SPQs could improve drought tolerance by reducing water loss, stabilizing photosynthetic electron transport and enhancing plant viability and survival in a water-limited environment. Enhanced drought tolerance of SPQ-overexpressing plants could be confirmed by characterizing various parameters of growth, morphology and photosynthesis using an automatic plant phenotyping platform with RGB and chlorophyll fluorescence imaging. Our results suggest that SPQs can be regulatory small proteins connecting ROS and ABA regulation and through that influence responses to certain stresses.
Collapse
Affiliation(s)
- Dóra Faragó
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Dániel Benyó
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Rubén Alcazar
- Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd.SzegedHungary
- Cellular Imaging Laboratory, Biological Research CentreSzegedHungary
| | - Sahilu Ahmad Rabilu
- Institute of Plant Biology, Biological Research CentreSzegedHungary
- Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | | | - László Szabados
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| |
Collapse
|
16
|
Guo C, Li X, Zhang Z, Wang Q, Zhang Z, Wen L, Liu C, Deng Z, Chu Y, Liu T, Guo Y. The INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 Peptide Functions as a Positive Modulator of Leaf Senescence in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:909378. [PMID: 35845701 PMCID: PMC9280484 DOI: 10.3389/fpls.2022.909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a highly coordinated process and has a significant impact on agriculture. Plant peptides are known to act as important cell-to-cell communication signals that are involved in multiple biological processes such as development and stress responses. However, very limited number of peptides has been reported to be associated with leaf senescence. Here, we report the characterization of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 (IDL6) peptide as a regulator of leaf senescence. The expression of IDL6 was up-regulated in senescing leaves. Exogenous application of synthetic IDL6 peptides accelerated the process of leaf senescence. The idl6 mutant plants showed delayed natural leaf senescence as well as senescence included by darkness, indicating a regulatory role of IDL6 peptides in leaf senescence. The role of IDL6 as a positive regulator of leaf senescence was further supported by the results of overexpression analysis and complementation test. Transcriptome analysis revealed differential expression of phytohormone-responsive genes in idl6 mutant plants. Further analysis indicated that altered expression of IDL6 led to changes in leaf senescence phenotypes induced by ABA and ethylene treatments. The results from this study suggest that the IDL6 peptide positively regulates leaf senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Cun Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zenglin Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Qi Wang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Zhenbiao Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Wen
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- QuJing Tobacco Company, Qujing, China
| | - Zhichao Deng
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumeng Chu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Tao Liu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| |
Collapse
|
17
|
Poosapati S, Poretsky E, Dressano K, Ruiz M, Vazquez A, Sandoval E, Estrada-Cardenas A, Duggal S, Lim JH, Morris G, Szczepaniec A, Walse SS, Ni X, Schmelz EA, Huffaker A. A sorghum genome-wide association study (GWAS) identifies a WRKY transcription factor as a candidate gene underlying sugarcane aphid (Melanaphis sacchari) resistance. PLANTA 2022; 255:37. [PMID: 35020066 DOI: 10.1007/s00425-021-03814-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
A WRKY transcription factor identified through forward genetics is associated with sorghum resistance to the sugarcane aphid and through heterologous expression reduces aphid populations in multiple plant species. Crop plant resistance to insect pests is based on genetically encoded traits which often display variability across diverse germplasm. In a comparatively recent event, a predominant sugarcane aphid (SCA: Melanaphis sacchari) biotype has become a significant agronomic pest of grain sorghum (Sorghum bicolor). To uncover candidate genes underlying SCA resistance, we used a forward genetics approach combining the genetic diversity present in the Sorghum Association Panel (SAP) and the Bioenergy Association Panel (BAP) for a genome-wide association study, employing an established SCA damage rating. One major association was found on Chromosome 9 within the WRKY transcription factor 86 (SbWRKY86). Transcripts encoding SbWRKY86 were previously identified as upregulated in SCA-resistant germplasm and the syntenic ortholog in maize accumulates following Rhopalosiphum maidis infestation. Analyses of SbWRKY86 transcripts displayed patterns of increased SCA-elicited accumulation in additional SCA-resistant sorghum lines. Heterologous expression of SbWRKY86 in both tobacco (Nicotiana benthamiana) and Arabidopsis resulted in reduced population growth of green peach aphid (Myzus persicae). Comparative RNA-Seq analyses of Arabidopsis lines expressing 35S:SbWRKY86-YFP identified changes in expression for a small network of genes associated with carbon-nitrogen metabolism and callose deposition, both contributing factors to defense against aphids. As a test of altered plant responses, 35S:SbWRKY86-YFP Arabidopsis lines were activated using the flagellin epitope elicitor, flg22, and displayed significant increases in callose deposition. Our findings indicate that both heterologous and increased native expression of the transcription factor SbWRKY86 contributes to reduced aphid levels in diverse plant models.
Collapse
Affiliation(s)
- Sowmya Poosapati
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Elly Poretsky
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Keini Dressano
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Miguel Ruiz
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Armando Vazquez
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Evan Sandoval
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Adelaida Estrada-Cardenas
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Sarthak Duggal
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Jia-Hui Lim
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Geoffrey Morris
- Soil and Crop Sciences, Colorado State University, 307 University Ave., Fort Collins, CO, 80523-1177, USA
| | - Adrianna Szczepaniec
- Agricultural Biology, Colorado State University, 307 University Ave., Fort Collins, CO, 80523-1177, USA
| | - Spencer S Walse
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, USDA-ARS, 115 Coastal Way, Tifton, GA, 31793, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA.
| |
Collapse
|
18
|
Kim JS, Jeon BW, Kim J. Signaling Peptides Regulating Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704490. [PMID: 34349774 PMCID: PMC8326967 DOI: 10.3389/fpls.2021.704490] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 05/23/2023]
Abstract
As sessile organisms, plants are exposed to constantly changing environments that are often stressful for their growth and development. To cope with these stresses, plants have evolved complex and sophisticated stress-responsive signaling pathways regulating the expression of transcription factors and biosynthesis of osmolytes that confer tolerance to plants. Signaling peptides acting like phytohormones control various aspects of plant growth and development via cell-cell communication networks. These peptides are typically recognized by membrane-embedded receptor-like kinases, inducing activation of cellular signaling to control plant growth and development. Recent studies have revealed that several signaling peptides play important roles in plant responses to abiotic stress. In this mini review, we provide recent findings on the roles and signaling pathways of peptides that are involved in coordinating plant responses to abiotic stresses, such as dehydration, high salinity, reactive oxygen species, and heat. We also discuss recent developments in signaling peptides that play a role in plant adaptation responses to nutrient deficiency stress, focusing on nitrogen and phosphate deficiency responses.
Collapse
Affiliation(s)
- Jin Sun Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Technology, Chonnam National University, Gwangju, South Korea
| | - Byeong Wook Jeon
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
19
|
Guo C, Wang Q, Li Z, Sun J, Zhang Z, Li X, Guo Y. Bioinformatics and Expression Analysis of IDA-Like Genes Reveal Their Potential Functions in Flower Abscission and Stress Response in Tobacco ( Nicotiana tabacum L.). Front Genet 2021; 12:670794. [PMID: 33986773 PMCID: PMC8110903 DOI: 10.3389/fgene.2021.670794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/04/2022] Open
Abstract
The inflorescence deficient in abscission-like (IDL) genes have been shown to play critical roles in floral organ abscission, lateral root formation and various stress responses in Arabidopsis. The IDL gene family has been characterized in a number of plant species, while limited information is available about IDL genes of tobacco. In the current study, 15 NtIDL members were identified in the tobacco genome, and were classified into six groups together with IDL members from other species. Evolution analysis suggested that the NtIDL members form group VI might have originated from duplication events. Notably, NtIDL06 shared high similarities with AtIDA in the EPIP sequence, and its encoding gene was highly expressed in the abscission zone of flowers at late developmental stages, implying that NtIDL06 might regulate tobacco flower abscission. In addition, the results from cis-elements analysis of promoters and expression after stress treatments suggested that NtIDL members might be involved in various stress responses of tobacco. The results from this study provide information for further functional analysis related to flower abscission and stress responses of NtIDL genes.
Collapse
Affiliation(s)
- Cun Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinhao Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
20
|
Jiménez-Morales E, Aguilar-Hernández V, Aguilar-Henonin L, Guzmán P. Molecular basis for neofunctionalization of duplicated E3 ubiquitin ligases underlying adaptation to drought tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:474-492. [PMID: 33164265 DOI: 10.1111/tpj.14938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.
Collapse
Affiliation(s)
- Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| |
Collapse
|
21
|
Wang R, Shi C, Wang X, Li R, Meng Y, Cheng L, Qi M, Xu T, Li T. Tomato SlIDA has a critical role in tomato fertilization by modifying reactive oxygen species homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2100-2118. [PMID: 32573872 DOI: 10.1111/tpj.14886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 05/25/2023]
Abstract
Anther development and pollen tube elongation are key steps for pollination and fertilization. The timing and spatial distribution of reactive oxygen species (ROS) and programmed cell death are central to these processes, but the regulatory mechanism of ROS production is not well understood. Inflorescence deficient in abscission (IDA) is implicated in many plant development and responses to environmental stimuli. However, their role in reproductive development is still unknown. We generated tomato knockout lines (CR-slida) of an IDA homolog (SlIDA), which is expressed in the tapetum, septum and pollen tube, and observed a severe defect in male gametes. Further analysis indicated that there was a programmed cell death defect in the tapetum and septum and a failure of anther dehiscence in the CR-slida lines, likely related to insufficient ROS signal. Liquid chromatography-tandem mass spectrometry identified mature SlIDA as a 14-mer EPIP peptide, which was shown to be secreted, and a complementation experiment showed that application of a synthetic 14-mer EPIP peptide rescued the CR-slida defect and enhanced the ROS signal. Moreover, the application of the ROS scavengers diphenyleneiodonium or Mn-TMPP suppressed peptide function. Collectively, our results revealed that SlIDA plays an essential role in pollen development and pollen tube elongation by modulating ROS homeostasis.
Collapse
Affiliation(s)
- Rong Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - ChunLin Shi
- Department of Biosciences, University of Oslo, Blindern, Oslo, 0316, Norway
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yan Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
22
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
23
|
Ventimilla D, Domingo C, González-Ibeas D, Talon M, Tadeo FR. Differential expression of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like genes in Nicotiana benthamiana during corolla abscission, stem growth and water stress. BMC PLANT BIOLOGY 2020; 20:34. [PMID: 31959115 PMCID: PMC6971993 DOI: 10.1186/s12870-020-2250-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce. In this work, we determined the conservation and phylogeny of the IDA-like and HAE-like gene families in relevant species of the Solanaceae family and analyzed the expression of these genes in the allopolyploid Nicotiana benthamiana, in order to identify members involved in abscission, stem growth and in the response to drought conditions. RESULTS The phylogenetic relationships among the IDA-like members of the Solanaceae studied, grouped the two pairs of NbenIDA1 and NbenIDA2 protein homeologs with the Arabidopsis prepropeptides related to abscission. Analysis of promoter regions searching for regulatory elements showed that these two pairs of homeologs contained both hormonal and drought response elements, although NbenIDA2A lacked the hormonal regulatory elements. Expression analyses showed that the pair of NbenIDA1 homeologs were upregulated during corolla abscission. NbenIDA1 and NbenIDA2 pairs showed tissue differential expression under water stress conditions, since NbenIDA1 homeologs were highly expressed in stressed leaves while NbenIDA2 homeologs, especially NbenIDA2B, were highly expressed in stressed roots. In non-stressed active growing plants, nodes and internodes were the tissues with the highest expression levels of all members of the IDA-like family and their putative HAE-like receptors. CONCLUSION Our results suggest that the pair of NbenIDA1 homeologs are involved in the natural process of corolla abscission while both pairs of NbenIDA1 and NbenIDA2 homeologs are implicated in the response to water stress. The data also suggest that IDA peptides may be important during stem growth and development. These results provide additional evidence that the functional module formed by IDA peptides and its receptor kinases, as defined in Arabidopsis, may also be conserved in Solanaceae.
Collapse
Affiliation(s)
- Daniel Ventimilla
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Concha Domingo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Daniel González-Ibeas
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Francisco R. Tadeo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| |
Collapse
|
24
|
Ventimilla D, Domingo C, González-Ibeas D, Talon M, Tadeo FR. Differential expression of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like genes in Nicotiana benthamiana during corolla abscission, stem growth and water stress. BMC PLANT BIOLOGY 2020; 20:34. [PMID: 31959115 DOI: 10.1186/s12870-020-2250-2258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce. In this work, we determined the conservation and phylogeny of the IDA-like and HAE-like gene families in relevant species of the Solanaceae family and analyzed the expression of these genes in the allopolyploid Nicotiana benthamiana, in order to identify members involved in abscission, stem growth and in the response to drought conditions. RESULTS The phylogenetic relationships among the IDA-like members of the Solanaceae studied, grouped the two pairs of NbenIDA1 and NbenIDA2 protein homeologs with the Arabidopsis prepropeptides related to abscission. Analysis of promoter regions searching for regulatory elements showed that these two pairs of homeologs contained both hormonal and drought response elements, although NbenIDA2A lacked the hormonal regulatory elements. Expression analyses showed that the pair of NbenIDA1 homeologs were upregulated during corolla abscission. NbenIDA1 and NbenIDA2 pairs showed tissue differential expression under water stress conditions, since NbenIDA1 homeologs were highly expressed in stressed leaves while NbenIDA2 homeologs, especially NbenIDA2B, were highly expressed in stressed roots. In non-stressed active growing plants, nodes and internodes were the tissues with the highest expression levels of all members of the IDA-like family and their putative HAE-like receptors. CONCLUSION Our results suggest that the pair of NbenIDA1 homeologs are involved in the natural process of corolla abscission while both pairs of NbenIDA1 and NbenIDA2 homeologs are implicated in the response to water stress. The data also suggest that IDA peptides may be important during stem growth and development. These results provide additional evidence that the functional module formed by IDA peptides and its receptor kinases, as defined in Arabidopsis, may also be conserved in Solanaceae.
Collapse
Affiliation(s)
- Daniel Ventimilla
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Concha Domingo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Daniel González-Ibeas
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Francisco R Tadeo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain.
| |
Collapse
|
25
|
Liu XS, Liang CC, Hou SG, Wang X, Chen DH, Shen JL, Zhang W, Wang M. The LRR-RLK Protein HSL3 Regulates Stomatal Closure and the Drought Stress Response by Modulating Hydrogen Peroxide Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:548034. [PMID: 33329622 PMCID: PMC7728693 DOI: 10.3389/fpls.2020.548034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/26/2020] [Indexed: 05/14/2023]
Abstract
Guard cells shrink in response to drought stress and abscisic acid (ABA) signaling, thereby reducing stomatal aperture. Hydrogen peroxide (H2O2) is an important signaling molecule acting to induce stomatal closure. As yet, the molecular basis of control over the level of H2O2 in the guard cells remains largely unknown. Here, the leucine-rich repeat (LRR)-receptor-like kinase (RLK) protein HSL3 has been shown to have the ability to negatively regulate stomatal closure by modulating the level of H2O2 in the guard cells. HSL3 was markedly up-regulated by treating plants with either ABA or H2O2, as well as by dehydration. In the loss-of-function hsl3 mutant, both stomatal closure and the activation of anion currents proved to be hypersensitive to ABA treatment, and the mutant was more tolerant than the wild type to moisture deficit; the overexpression of HSL3 had the opposite effect. In the hsl3 mutant, the transcription of NADPH oxidase gene RbohF involved in H2O2 production showed marked up-regulation, as well as the level of catalase activity was weakly inducible by ABA, allowing H2O2 to accumulate in the guard cells. HSL3 was concluded to participate in the regulation of the response to moisture deficit through ABA-induced stomatal closure triggered by the accumulation of H2O2 in the guard cells.
Collapse
Affiliation(s)
- Xuan-shan Liu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chao-chao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shu-guo Hou
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Xin Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dong-hua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jian-lin Shen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Mei Wang,
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Wei Zhang,
| |
Collapse
|
26
|
Segonzac C, Monaghan J. Modulation of plant innate immune signaling by small peptides. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:22-28. [PMID: 31026543 DOI: 10.1016/j.pbi.2019.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
Small peptides regulate the cellular coordination of growth, development, and stress tolerance in plants. In addition to direct antimicrobial activities, small secreted peptides have emerged as key signaling molecules in the plant immune response. Here, we highlight recent discoveries of several small peptides that amplify and fine-tune immune signaling.
Collapse
Affiliation(s)
- Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| | | |
Collapse
|
27
|
Shi CL, Alling RM, Hammerstad M, Aalen RB. Control of Organ Abscission and Other Cell Separation Processes by Evolutionary Conserved Peptide Signaling. PLANTS (BASEL, SWITZERLAND) 2019; 8:225. [PMID: 31311120 PMCID: PMC6681299 DOI: 10.3390/plants8070225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023]
Abstract
Plants both generate and shed organs throughout their lifetime. Cell separation is in function during opening of anthers to release pollen; floral organs are detached after pollination when they have served their purpose; unfertilized flowers are shed; fruits and seeds are abscised from the mother plant to secure the propagation of new generations. Organ abscission takes place in specialized abscission zone (AZ) cells where the middle lamella between adjacent cell files is broken down. The plant hormone ethylene has a well-documented promoting effect on abscission, but mutation in ethylene receptor genes in Arabidopsis thaliana only delays the abscission process. Microarray and RNA sequencing have identified a large number of genes differentially expressed in the AZs, especially genes encoding enzymes involved in cell wall remodelling and disassembly. Mutations in such genes rarely give a phenotype, most likely due to functional redundancy. In contrast, mutation in the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) blocks floral organ abscission in Arabidopsis. IDA encodes a small peptide that signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAE-LIKE2 (HSL2) to control floral organ abscission and facilitate lateral root emergence. Untimely abscission is a severe problem in many crops, and in a more applied perspective, it is of interest to investigate whether IDA-HAE/HSL2 is involved in other cell separation processes and other species. Genes encoding IDA and HSL2 orthologues have been identified in all orders of flowering plants. Angiosperms have had enormous success, with species adapted to all kinds of environments, adaptations which include variation with respect to which organs they shed. Here we review, from an evolutionary perspective, the properties of the IDA-HAE/HSL2 signaling module and the evidence for its hypothesized involvement in various cell separation processes in angiosperms.
Collapse
Affiliation(s)
- Chun-Lin Shi
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Renate Marie Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Marta Hammerstad
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Reidunn B Aalen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway.
| |
Collapse
|
28
|
Courville KJ, Frantzeskakis L, Gul S, Haeger N, Kellner R, Heßler N, Day B, Usadel B, Gupta YK, van Esse HP, Brachmann A, Kemen E, Feldbrügge M, Göhre V. Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus Thecaphora thlaspeos reveal functionally conserved and novel effectors. THE NEW PHYTOLOGIST 2019; 222:1474-1492. [PMID: 30663769 DOI: 10.1111/nph.15692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 05/25/2023]
Abstract
Biotrophic fungal plant pathogens can balance their virulence and form intricate relationships with their hosts. Sometimes, this leads to systemic host colonization over long time scales without macroscopic symptoms. However, how plant-pathogenic endophytes manage to establish their sustained systemic infection remains largely unknown. Here, we present a genomic and transcriptomic analysis of Thecaphora thlaspeos. This relative of the well studied grass smut Ustilago maydis is the only smut fungus adapted to Brassicaceae hosts. Its ability to overwinter with perennial hosts and its systemic plant infection including roots are unique characteristics among smut fungi. The T. thlaspeos genome was assembled to the chromosome level. It is a typical smut genome in terms of size and genome characteristics. In silico prediction of candidate effector genes revealed common smut effector proteins and unique members. For three candidates, we have functionally demonstrated effector activity. One of these, TtTue1, suggests a potential link to cold acclimation. On the plant side, we found evidence for a typical immune response as it is present in other infection systems, despite the absence of any macroscopic symptoms during infection. Our findings suggest that T. thlaspeos distinctly balances its virulence during biotrophic growth ultimately allowing for long-lived infection of its perennial hosts.
Collapse
Affiliation(s)
- Kaitlyn J Courville
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Lamprinos Frantzeskakis
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Summia Gul
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Natalie Haeger
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Ronny Kellner
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Natascha Heßler
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Brad Day
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824-6254, USA
| | - Björn Usadel
- Unit of Botany and Molecular Genetics, Institute for Biology I, BioSC, RWTH Aachen University, 52074, Aachen, Germany
| | | | | | - Andreas Brachmann
- Faculty of Biology, Genetics, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Eric Kemen
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Vera Göhre
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr. 1, Düsseldorf, 40225, Germany
| |
Collapse
|
29
|
Gheysen G, Mitchum MG. Phytoparasitic Nematode Control of Plant Hormone Pathways. PLANT PHYSIOLOGY 2019; 179:1212-1226. [PMID: 30397024 PMCID: PMC6446774 DOI: 10.1104/pp.18.01067] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/24/2018] [Indexed: 05/17/2023]
Abstract
Phytoparasitic nematodes use multiple tactics to influence phytohormone physiology and alter plant developmental programs to establish feeding sites.
Collapse
Affiliation(s)
- Godelieve Gheysen
- Ghent University, Department of Biotechnology, Coupure Links 653, 9000 Ghent, Belgium
| | - Melissa G Mitchum
- University of Missouri, Division of Plant Sciences and Bond Life Sciences Center, Columbia, Missouri 65211
| |
Collapse
|
30
|
Kim J, Yang R, Chang C, Park Y, Tucker ML. The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3009-3021. [PMID: 29648636 PMCID: PMC5972575 DOI: 10.1093/jxb/ery135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/27/2018] [Indexed: 05/12/2023]
Abstract
INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is a signaling peptide that regulates cell separation in Arabidopsis including floral organ abscission and lateral root emergence. IDA is highly conserved in dicotyledonous flowering plant genomes. IDA-like sequences were also found in the genomic sequences of root-knot nematodes, Meloidogyne spp., which are globally deleterious pathogens of agriculturally important plants, but the role of these genes is unknown. Exogenous treatment of the Arabidopsis ida mutant with synthetic peptide identical to the M. incognita IDA-like 1 (MiIDL1) protein sequence minus its N-terminal signal peptide recovered both the abscission and root architecture defects. Constitutive expression of the full-length MiIDL1 open reading frame in the ida mutant substantially recovered the delayed floral organ abscission phenotype whereas transformants expressing a construct missing the MiIDL1 signal peptide retained the delayed abscission phenotype. Importantly, wild-type Arabidopsis plants harboring an MiIDL1-RNAi construct and infected with nematodes had approximately 40% fewer galls per root than control plants. Thus, the MiIDL1 gene produces a functional IDA mimic that appears to play a role in successful gall development on Arabidopsis roots.
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
- Department of Cell Biology and Molecular Genetics, Bioscience Research Bldg, University of Maryland, MD, USA
- Life and Industry Convergence Research Institute, Department of Horticulture Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Ronghui Yang
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, Bioscience Research Bldg, University of Maryland, MD, USA
| | - Younghoon Park
- Life and Industry Convergence Research Institute, Department of Horticulture Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
- Correspondence:
| |
Collapse
|
31
|
Cui J, Xu P, Meng J, Li J, Jiang N, Luan Y. Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:787-800. [PMID: 29234827 DOI: 10.1007/s00122-017-3035-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/01/2017] [Indexed: 05/22/2023]
Abstract
SpWRKY3 was identified as a resistance gene to Phytophthora infestans from Solanum pimpinellifolium L3708 and its transgenic tomato showed a significant resistance to P. infestans. This finding reveals the potential application of SpWRKY3 in future molecular breeding. Transcription factors (TFs) play crucial roles in the plant response to various pathogens. In this present study, we used comparative transcriptome analysis of tomatoes inoculated with and without Phytophthora infestans to identify 1103 differentially expressed genes. Seven enrichment GO terms (level 4) associated with the plant resistance to pathogens were identified. It was found that thirty-five selected TF genes from GO enriched term, sequence-specific DNA binding transcription factor activity (GO: 0003700), were induced by P. infestans. Of these TFs, the accumulation of a homologous gene of WRKY (SpWRKY3) was significantly changed after P. infestans induction, and it was also isolated form P. infestans-resistant tomato, Solanum pimpinellifolium L3708. Overexpression of SpWRKY3 in tomato positively modulated P. infestans defense response as shown by decreased number of necrotic cells, lesion sizes and disease index, while the resistance was impaired after SpWRKY3 silencing. After P. infestans infection, the expression levels of PR genes in transgenic tomato plants overexpressed SpWRKY3 were significantly higher than those in WT, while the number of necrotic cells and the reactive oxygen species (ROS) accumulation were fewer and lower. These results suggest that SpWRKY3 induces PR gene expression and reduces the ROS accumulation to protect against cell membrane injury, leading to enhanced resistance to P. infestans. Our results provide insight into SpWRKY3 as a positive regulator involved in tomato-P. infestans interaction, and its function may enhance tomato resistance to P. infestans.
Collapse
Affiliation(s)
- Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Pinsan Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jingbin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|