1
|
Engelberth J. Green Leaf Volatiles: A New Player in the Protection against Abiotic Stresses? Int J Mol Sci 2024; 25:9471. [PMID: 39273416 PMCID: PMC11395555 DOI: 10.3390/ijms25179471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
To date, the role of green leaf volatiles (GLVs) has been mainly constrained to protecting plants against pests and pathogens. However, increasing evidence suggests that among the stresses that can significantly harm plants, GLVs can also provide significant protection against heat, cold, drought, light, and salinity stress. But while the molecular basis for this protection is still largely unknown, it seems obvious that a common theme in the way GLVs work is that most, if not all, of these stresses are associated with physical damage to the plants, which, in turn, is the major event responsible for the production of GLVs. Here, I summarize the current state of knowledge on GLVs and abiotic stresses and provide a model explaining the multifunctionality of these compounds.
Collapse
Affiliation(s)
- Jurgen Engelberth
- Department of Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78247, USA
| |
Collapse
|
2
|
Teng Z, Chen C, He Y, Pan S, Liu D, Zhu L, Liang K, Li Y, Huang L. Melatonin confers thermotolerance and antioxidant capacity in Chinese cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108736. [PMID: 38797006 DOI: 10.1016/j.plaphy.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Due to the damaging effect of high temperatures on plant development, global warming is predicted to increase agricultural risks. Chinese cabbage holds considerable importance as a leafy vegetable that is extensively consumed and cultivated worldwide. Its year-round production also encounters severe challenges in the face of high temperatures. In this study, melatonin (MT), a pivotal multifunctional signaling molecule that coordinates responses to diverse environmental stressors was used to mitigate the harmful effects of high temperatures on Chinese cabbage. Through the utilization of growth indices, cytological morphology, physiological and biochemical responses, and RNA-Seq analysis, alongside an examination of the influence of crucial enzymes in the endogenous MT synthesis pathway on the thermotolerance of Chinese cabbage, we revealed that MT pretreatment enhanced photosynthetic activity, maintained signaling pathways associated with endoplasmic reticulum protein processing, and preserved circadian rhythm in Chinese cabbage under high temperatures. Furthermore, pretreatment with MT resulted in increased levels of soluble sugar, vitamin C, proteins, and antioxidant enzyme activity, along with decreased levels of malondialdehyde, nitrate, flavonoids, and bitter glucosinolates, ultimately enhancing the capacity of the organism to mitigate oxidative stress. The knockdown of the tryptophan decarboxylase gene, which encodes a key enzyme responsible for MT biosynthesis, resulted in a significant decline in the ability of transgenic Chinese cabbage to alleviate oxidative damage under high temperatures, further indicating an important role of MT in establishing the thermotolerance. Taken together, these results provide a mechanism for MT to improve the antioxidant capacity of Chinese cabbage under high temperatures and suggest beneficial implications for the management of other plants subjected to global warming.
Collapse
Affiliation(s)
- Zhiyan Teng
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Caizhi Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Yuanrong He
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Shihui Pan
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Dandan Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Luyu Zhu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Kexin Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Yufei Li
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China.
| |
Collapse
|
3
|
Sun Y, Fernie AR. Plant secondary metabolism in a fluctuating world: climate change perspectives. TRENDS IN PLANT SCIENCE 2024; 29:560-571. [PMID: 38042677 DOI: 10.1016/j.tplants.2023.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
Climate changes have unpredictable effects on ecosystems and agriculture. Plants adapt metabolically to overcome these challenges, with plant secondary metabolites (PSMs) being crucial for plant-environment interactions. Thus, understanding how PSMs respond to climate change is vital for future cultivation and breeding strategies. Here, we review PSM responses to climate changes such as elevated carbon dioxide, ozone, nitrogen deposition, heat and drought, as well as a combinations of different factors. These responses are complex, depending on stress dosage and duration, and metabolite classes. We finally identify mechanisms by which climate change affects PSM production ecologically and molecularly. While these observations provide insights into PSM responses to climate changes and the underlying regulatory mechanisms, considerable further research is required for a comprehensive understanding.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Portillo-Estrada M. Limitations of Plant Stress Tolerance upon Heat and CO 2 Exposure in Black Poplar: Assessment of Photosynthetic Traits and Stress Volatile Emissions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1165. [PMID: 38674574 PMCID: PMC11054441 DOI: 10.3390/plants13081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Volatile organic compounds (VOCs) emitted by plants may help in understanding the status of a plant's physiology and its coping with mild to severe stress. Future climatic projections reveal that shifts in temperature and CO2 availability will occur, and plants may incur the uncoupling of carbon assimilation and synthesis of key molecules. This study explores the patterns of emissions of key VOCs (isoprene, methanol, acetaldehyde, and acetic acid) emitted by poplar leaves (more than 350) under a combined gradient of temperature (12-42 °C) and air CO2 concentration (400-1500 ppm), along with measurements of photosynthetic rates and stomatal conductance. Isoprene emission exhibited a rise with temperature and CO2 availability, peaking at 39 °C, the temperature at which methanol emission started to peak, illustrating the limit of stress tolerance to severe damage. Isoprene emission was uncoupled from the photosynthesis rate, indicating a shift from the carbon source for isoprene synthesis, while assimilation was decreased. Methanol and acetaldehyde emissions were correlated with stomatal conductance and peaked at 25 °C and 1200 ppm CO2. Acetic acid emissions lacked a clear correlation with stomatal conductance and the emission pattern of its precursor acetaldehyde. This study offers crucial insights into the limitations of photosynthetic carbon and stress tolerance.
Collapse
|
5
|
Sulaiman HY, Liu B, Abiola YO, Kaurilind E, Niinemets Ü. Impact of heat priming on heat shock responses in Origanum vulgare: Enhanced foliage photosynthetic tolerance and biphasic emissions of volatiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:567-579. [PMID: 36774912 DOI: 10.1016/j.plaphy.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Climate change enhances the frequency of heatwaves that negatively affect photosynthesis and can alter constitutive volatile emissions and elicit emissions of stress volatiles, but how pre-exposure to mildly warmer temperatures affects plant physiological responses to subsequent severe heat episodes remains unclear, especially for aromatic plants with high and complex volatile defenses. We studied the impact of heat shock (45 °C/5 min) applied alone and after exposure to moderate heat stress (35 °C/1 h, priming) on foliage photosynthesis and volatile emissions in the aromatic plant Origanum vulgare through 72 h recovery period. Heat stress decreased photosynthesis rates and stomatal conductance, whereas the reductions in photosynthesis were primarily due to non-stomatal factors. In non-primed plants, heat shock-induced reductions in photosynthetic activity were the greatest, but photosynthetic activity completely recovered by the end of the experiment. In primed plants, a certain inhibition of photosynthetic activity remained, suggesting a sustained priming effect. Heat shock enhanced the emissions of volatiles including lipoxygenase pathway volatiles, long-chained fatty acid-derived compounds, mono- and sesquiterpenes, geranylgeranyl diphosphate pathway volatiles, and benzenoids, whereas different heat treatments resulted in unique emission blends. In non-primed plants, stress-elicited emissions recovered at 72 h. In primed plants, volatile emissions were multiphasic, the first phase, between 0.5 and 10 h, reflected the primary stress response, whereas the secondary rise, between 24 and 72 h, indicated activations of different defense metabolic pathways. Our results demonstrate that exposure to mild heat leads to a sustained physiological stress memory that enhances plant resistance to subsequent severe heat stress episodes.
Collapse
Affiliation(s)
- Hassan Yusuf Sulaiman
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
| | - Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
| | - Yusuph Olawale Abiola
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
6
|
Lysenko EA, Kozuleva MA, Klaus AA, Pshybytko NL, Kusnetsov VV. Lower air humidity reduced both the plant growth and activities of photosystems I and II under prolonged heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:246-262. [PMID: 36436415 DOI: 10.1016/j.plaphy.2022.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The warming is global problem. In natural environments, heat stress is usually accompanied by drought. Under drought conditions, water content decreases in both soil and air; yet,the effect of lower air humidity remains obscure. We supplied maize and barley plants with an unlimited source of water for the root uptake and studied the effect of relative air humidity under heat stress. Young plants were subjected for 48 h to several degrees of heat stress: moderate (37 °C), genuine (42 °C), and nearly lethal (46 °C). The conditions of lower air humidity decreased the photochemical activities of photosystem I and photosystem II. The small effect was revealed in the control (24 °C). Elevating temperature to 37 °C and 42 °C increased the relative activities of both photosystems; the photosystem II was activated more. Probably, this is why the effect of air humidity disappeared at 37 °C; the small inhibiting effect was observed at 42 °C. At 46 °C, lower air humidity substantially magnified the inhibitory effect of heat. As a result, the maximal and relative activities of both photosystems decreased in maize and barley; the photosystem II was inhibited more. Under the conditions of 46 °C at lower air humidity, the plant growth was greatly reduced. Maize plants increased water uptake by roots and survived; barley plants were unable to increase water uptake and died. Therefore, air humidity is an important component of environmental heat stress influencing activities of photosystem I and photosystem II and thereby plant growth and viability under severe stress conditions.
Collapse
Affiliation(s)
- Eugene A Lysenko
- Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia.
| | - Marina A Kozuleva
- Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia.
| | - Alexander A Klaus
- Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia.
| | - Natallia L Pshybytko
- Biological Faculty, Belarusian State University, 4 Independence Avenue, 220030, Minsk, Belarus.
| | - Victor V Kusnetsov
- Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia.
| |
Collapse
|
7
|
Chen C, Yu F, Wen X, Chen S, Wang K, Wang F, Zhang J, Wu Y, He P, Tu Y, Li B. Characterization of a new (Z)-3:(E)-2-hexenal isomerase from tea (Camellia sinensis) involved in the conversion of (Z)-3-hexenal to (E)-2-hexenal. Food Chem 2022; 383:132463. [PMID: 35183969 DOI: 10.1016/j.foodchem.2022.132463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/04/2022]
Abstract
Two major green leaf volatiles (GLVs) in tea that contribute greatly to tea aroma, particularly the green odor, are (E)-2-hexenal and (Z)-3-hexenal. Until now, their formation and related mechanisms during tea manufacture have remained unclear. Our data showed that the contents of (E)-2-hexenal and (Z)-3-hexenal increased more than 1000-fold after live tea leaves were torn. Subsequently, a new (Z)-3:(E)-2-hexenal isomerase (CsHI) was identified in Camellia sinensis. CsHI irreversibly catalyzed the conversion of (Z)-3-hexenal to (E)-2-hexenal. Abiotic stresses including low temperature, dehydration, and mechanical wounding, did not influence the (E)-2-hexenal content in intact tea leaves during withering, but regulated the proportions of (Z)-3-hexenal and (E)-2-hexenal in torn leaves by modulating CsHI at the transcript level. For the first time, this work reveals the formation of (E)-2-hexenal during tea processing and suggests that CsHI may play a pivotal role in tea flavor development as well as in plant defense against abiotic stresses.
Collapse
Affiliation(s)
- Cong Chen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fei Yu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xinli Wen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shuna Chen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kaixi Wang
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Feiquan Wang
- College of Tea and Food Science, Wuyi University, 358 Baihua Road, Wuyishan 354300, China
| | - Jianming Zhang
- College of Tea and Food Science, Wuyi University, 358 Baihua Road, Wuyishan 354300, China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
8
|
Jiang Y, Ye J, Liu B, Rikisahedew JJ, Tosens T, Niinemets Ü. Acute methyl jasmonate exposure results in major bursts of stress volatiles, but in surprisingly low impact on specialized volatile emissions in the fragrant grass Cymbopogon flexuosus. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153721. [PMID: 35597107 DOI: 10.1016/j.jplph.2022.153721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Methyl jasmonate (MeJA) is an airborne hormonal elicitor that induces a fast rise of emissions of characteristic stress marker compounds methanol and green leaf volatiles (GLV), and a longer-term release of volatile terpenoids, but there is limited information of how terpene emissions respond to MeJA in terpene-storing species. East-Indian lemongrass (Cymbopogon flexuosus), an aromatic herb with a large terpenoid storage pool in idioblasts, was used to investigate the short- (0-1 h) and long-term (1-16 h) responses of leaf net assimilation rate (A), stomatal conductance (Gs) and volatile emissions to MeJA concentrations ranging from moderate to lethal. Both A and Gs were increasingly inhibited with increasing MeJA concentration in both short and long term. MeJA exposure resulted in a rapid elicitation, within 1 h after exposure, of methanol and GLV emissions. Subsequently, a secondary rise of GLV emissions was observed, peaking at 2 h after MeJA exposure for the highest and at 8 h for the lowest application concentration. The total amount and maximum emission rate of methanol and the first and second GLV emission bursts were positively correlated with MeJA concentration. Unexpectedly, no de novo elicitation of terpene emissions was observed through the experiment. Although high MeJA application concentrations led to visible lesions and desiccation in extensive leaf regions, this did not result in breakage of terpene-storing idioblasts. The study highlights an overall insensitivity of lemongrass to MeJA and indicates that differently from mechanical wounding, MeJA-driven cellular death does not break terpene-storing cells. Further studies are needed to characterize the sensitivity of induced defense responses in species with strongly developed constitutive defenses.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Jesamine Jöneva Rikisahedew
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
9
|
Liu B, Kaurilind E, Zhang L, Okereke CN, Remmel T, Niinemets Ü. Improved plant heat shock resistance is introduced differently by heat and insect infestation: the role of volatile emission traits. Oecologia 2022; 199:53-68. [PMID: 35471619 DOI: 10.1007/s00442-022-05168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Heat stress is one of the most important abiotic stresses confronted by plants under global climate change. Plant exposure to abiotic or biotic stress can improve its tolerance to subsequent severe episodes of the same or different stress (stress priming), but so far there is limited comparative information about how pre-exposures to different abiotic and biotic elicitors alter plant resistance to severe heat stress. We exposed the perennial herb Melilotus albus Medik., a species rich in secondary metabolites, to moderate heat stress (35 °C) and greenhouse whitefly (Trialeurodes vaporariorum West.) infestation to comparatively determine whether both pre-treatments could enhance plant tolerance to the subsequent heat shock (45 °C) stress. Plant physiological responses to stress were characterized by photosynthetic traits and volatile organic compound emissions through 72 h recovery. Heat shock treatment reduced net assimilation rate (A) and stomatal conductance in all plants, but heat-primed plants had significantly faster rates of recovery of A than other plants. By the end of the recovery period, A in none of the three heat shock-stressed groups recovered to the control level, but in whitefly-infested plants it reached the pre-heat shock level. In heat-primed plants, the heat shock treatment was associated with a fast rise of monoterpene emissions, and in whitefly-infested plants with benzenoid emissions and an increase in total phenolic content.
Collapse
Affiliation(s)
- Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Lu Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Chikodinaka N Okereke
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Triinu Remmel
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.,Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
10
|
Sun H, Zuo X, Zhang Q, Gao J, Kai G. Elicitation of ( E)-2-Hexenal and 2,3-Butanediol on the Bioactive Compounds in Adventitious Roots of Astragalus membranaceus var. mongholicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:470-479. [PMID: 34985895 DOI: 10.1021/acs.jafc.1c05813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the elicitation of volatile organic compounds (E)-2-hexenal and 2,3-butanediol on bioactive metabolites in Astragalus membranaceus var. mongholicus adventitious root cultures by adding them into the medium. The experiment was performed for 72 h and the roots were dynamically sampled for quantification of representative astragaloside IV, calycosin-7-O-β-d-glucoside (CG), ononin, and the gene expression. Compared with the controls, the combination of 2,3-butanediol and (E)-2-hexenal advanced the peak accumulation of astragaloside IV and was the most effective, but their individual application delayed it. Meanwhile, 2,3-butanediol and (E)-2-hexenal had no obviously promoting effect on the production of CG and ononin but chronologically changed their accumulation patterns. The underlying mechanism was uncovered by the correlation analysis between the metabolites and the gene expression, as did the identification of the target genes. Collectively, 2,3-butanediol and (E)-2-hexenal were important cues shaping the production of bioactive products in the herbal plant.
Collapse
Affiliation(s)
- Haifeng Sun
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xinyu Zuo
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qingqing Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianping Gao
- College of Pharmacy, Shanxi Medical University, Jinzhong, Shanxi 030060, China
| | - Guoyin Kai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
11
|
Secondary Metabolites Coordinately Protect Grapes from Excessive Light and Sunburn Damage during Development. Biomolecules 2021; 12:biom12010042. [PMID: 35053190 PMCID: PMC8773587 DOI: 10.3390/biom12010042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Sunburn is a physiological disorder that reduces grape quality and vineyard yield. It is the result of excessive sunlight and high temperatures. As climate change continues to increase air temperatures, reports of sunburn damage in vineyards worldwide are becoming more frequent. Grapes produce secondary metabolites (carotenoids, polyphenols and aroma compounds) to counter photooxidative stress and acclimate to higher radiation environments. This study evaluated changes in these compounds in during ripening when grapes were exposed post-flowering (ED) and at véraison (LD), and compared them to a nondefoliated control (ND). ND contained more α-terpineol and violaxanthin, and the defoliated treatments contained more zeaxanthin, β-carotene, C6 compounds and flavonoids. ED berries adapted better to higher-light environments, displayed larger changes in secondary metabolite concentrations and lower levels of sunburn damage than LD berries did. The composition of berries with increasing sunburn damage was evaluated for the first time. Berries with no damage had the lowest concentrations of flavonoids and oxidized glutathione, and the highest concentrations of chlorophyll and α-terpineol. As damage increased, destruction of photosynthetic pigments, increase in polyphenols and loss of aroma compounds were evidenced. A significant effect of temperature and developmental stage on grape composition was also observed. This study provides a holistic overview of changes in secondary metabolites experienced by grape berries when exposed to excessive light, how these vary along development and how they affect sunburn incidence.
Collapse
|
12
|
Effah E, Barrett DP, Peterson PG, Potter MA, Holopainen JK, Clavijo McCormick A. Seasonal Volatile Emission Patterns of the Endemic New Zealand Shrub Dracophyllum subulatum on the North Island Central Plateau. FRONTIERS IN PLANT SCIENCE 2021; 12:734531. [PMID: 34721463 PMCID: PMC8553956 DOI: 10.3389/fpls.2021.734531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) produced by plants are essential indicators of their physiological response to environmental conditions. But evidence of natural variation in VOC emissions and their contributing factors is still limited, especially for non-cultivated species. Here we explored the natural volatile emissions of Dracophyllum subulatum Hook.f., an endemic shrub to the North Island Central Plateau of New Zealand, and determined some environmental factors driving the plant's emissions. Volatile emissions of D. subulatum were measured on four separate occasions from December 2017 to September 2018 using the "push-pull" headspace sampling technique and analyzed using gas chromatography-mass spectrometry (GC-MS). D. subulatum was classified based on the volatiles measured on each sampling occasion using linear discriminant analysis (LDA). On each sampling occasion, we also recorded and compared ambient air temperature, herbivory damage, total soil nitrogen (N), available phosphorus (P), potassium (K), and soil moisture content. The relationship between environmental variables that differed significantly between sampling occasions and volatile emissions were estimated using generalized linear models (GLMs). Based on VOCs measured on each sampling occasion, we were able to distinguish different chemical profiles. Overall, we found that total emission and the relative proportions of all major chemical classes released by D. subulatum were significantly higher during summer. The GLMs reveal that differences in environmental factors between the four sampling occasions are highly associated with changing emissions. Higher temperatures in summer had a consistently strong positive relationship with emissions, while the impacts of soil moisture content, P and K were variable and depended on the chemical class. These results are discussed, particularly how high temperature (warming) may shape volatile emissions and plants' ecology.
Collapse
Affiliation(s)
- Evans Effah
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - D. Paul Barrett
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Paul G. Peterson
- Manaaki Whenua - Landcare Research, Massey University, Palmerston North, New Zealand
| | - Murray A. Potter
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Jarmo K. Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
13
|
Jiang Y, Ye J, Veromann-Jürgenson LL, Niinemets Ü. Gall- and erineum-forming Eriophyes mites alter photosynthesis and volatile emissions in an infection severity-dependent manner in broad-leaved trees Alnus glutinosa and Tilia cordata. TREE PHYSIOLOGY 2021; 41:1122-1142. [PMID: 33367874 DOI: 10.1093/treephys/tpaa173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Highly host-specific eriophyoid gall- and erineum-forming mites infest a limited range of broadleaf species, with the mites from the genus Eriophyes particularly widespread on Alnus spp. and Tilia spp. Once infected, the infections can be massive, covering a large part of leaf area and spreading through the plant canopy, but the effects of Eriophyes mite gall formation on the performance of host leaves are poorly understood. We studied the influence of three frequent Eriophyes infections, E. inangulis gall-forming mites on Alnus glutinosa, and E. tiliae gall-forming and E. exilis erineum-forming mites on Tilia cordata, on foliage morphology, chemistry, photosynthetic characteristics, and constitutive and induced volatile emissions. For all types of infections, leaf dry mass per unit area, net assimilation rate per area and stomatal conductance strongly decreased with increasing severity of infection. Mite infections resulted in enhancement or elicitation of emissions of fatty acid-derived volatiles, isoprene, benzenoids and carotenoid breakdown products in an infection severity-dependent manner for all different infections. Monoterpene emissions were strongly elicited in T. cordata mite infections, but these emissions were suppressed in E. inangulis-infected A. glutinosa. Although the overall level of mite-induced emissions was surprisingly low, these results highlight the uniqueness of the volatile profiles and offer opportunities for using volatile fingerprints and overall emission rates to diagnose infections by Eriophyes gall- and erineum-forming mites on temperate trees and assess their impact on the physiology of the affected trees.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- College of Horticulture, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, China
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Linda-Liisa Veromann-Jürgenson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
14
|
Liu B, Zhang L, Rusalepp L, Kaurilind E, Sulaiman HY, Püssa T, Niinemets Ü. Heat priming improved heat tolerance of photosynthesis, enhanced terpenoid and benzenoid emission and phenolics accumulation in Achillea millefolium. PLANT, CELL & ENVIRONMENT 2021; 44:2365-2385. [PMID: 32583881 DOI: 10.1111/pce.13830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/16/2020] [Indexed: 05/21/2023]
Abstract
The mechanism of heat priming, triggering alteration of secondary metabolite pathway fluxes and pools to enhance heat tolerance is not well understood. Achillea millefolium is an important medicinal herbal plant, rich in terpenoids and phenolics. In this study, the potential of heat priming treatment (35°C for 1 hr) to enhance tolerance of Achillea plants upon subsequent heat shock (45°C for 5 min) stress was investigated through recovery (0.5-72 hr). The priming treatment itself had minor impacts on photosynthesis, led to moderate increases in the emission of lipoxygenase (LOX) pathway volatiles and isoprene, and to major elicitation of monoterpene and benzaldehyde emissions in late stages of recovery. Upon subsequent heat shock, in primed plants, the rise in LOX and reduction in photosynthetic rate (A) was much less, stomatal conductance (gs ) was initially enhanced, terpene emissions were greater and recovery of A occurred faster, indicating enhanced heat tolerance. Additionally, primed plants accumulated higher contents of total phenolics and condensed tannins at the end of the recovery. These results collectively indicate that heat priming improved photosynthesis upon subsequent heat shock by enhancing gs and synthesis of volatile and non-volatile secondary compounds with antioxidative characteristics, thereby maintaining the integrity of leaf membranes under stress.
Collapse
Affiliation(s)
- Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Linda Rusalepp
- Chair of Food Hygiene and Veterinary Public Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Hassan Yusuf Sulaiman
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Tõnu Püssa
- Chair of Food Hygiene and Veterinary Public Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
- School of Forestry and Bio-Technology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
15
|
Kask K, Kaurilind E, Talts E, Kännaste A, Niinemets Ü. Combined Acute Ozone and Water Stress Alters the Quantitative Relationships between O 3 Uptake, Photosynthetic Characteristics and Volatile Emissions in Brassica nigra. Molecules 2021; 26:molecules26113114. [PMID: 34070994 PMCID: PMC8197083 DOI: 10.3390/molecules26113114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Ozone (O3) entry into plant leaves depends on atmospheric O3 concentration, exposure time and openness of stomata. O3 negatively impacts photosynthesis rate (A) and might induce the release of reactive volatile organic compounds (VOCs) that can quench O3, and thereby partly ameliorate O3 stress. Water stress reduces stomatal conductance (gs) and O3 uptake and can affect VOC release and O3 quenching by VOC, but the interactive effects of O3 exposure and water stress, as possibly mediated by VOC, are poorly understood. Well-watered (WW) and water-stressed (WS) Brassica nigra plants were exposed to 250 and 550 ppb O3 for 1 h, and O3 uptake rates, photosynthetic characteristics and VOC emissions were measured through 22 h recovery. The highest O3 uptake was observed in WW plants exposed to 550 ppb O3 with the greatest reduction and poorest recovery of gs and A, and elicitation of lipoxygenase (LOX) pathway volatiles 10 min-1.5 h after exposure indicating cellular damage. Ozone uptake was similar in 250 ppb WW and 550 ppb WS plants and, in both treatments, O3-dependent reduction in photosynthetic characteristics was moderate and fully reversible, and VOC emissions were little affected. Water stress alone did not affect the total amount and composition of VOC emissions. The results indicate that drought ameliorated O3 stress by reducing O3 uptake through stomatal closure and the two stresses operated in an antagonistic manner in B. nigra.
Collapse
Affiliation(s)
- Kaia Kask
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
- Correspondence:
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
| | - Eero Talts
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
| | - Astrid Kännaste
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
16
|
Birami B, Bamberger I, Ghirardo A, Grote R, Arneth A, Gaona-Colmán E, Nadal-Sala D, Ruehr NK. Heatwave frequency and seedling death alter stress-specific emissions of volatile organic compounds in Aleppo pine. Oecologia 2021; 197:939-956. [PMID: 33835242 PMCID: PMC8591014 DOI: 10.1007/s00442-021-04905-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Biogenic volatile organic compounds (BVOC) play important roles in plant stress responses and can serve as stress indicators. While the impacts of gradual environmental changes on BVOCs have been studied extensively, insights in emission responses to repeated stress and recovery are widely absent. Therefore, we studied the dynamics of shoot gas exchange and BVOC emissions in Pinus halepensis seedlings during an induced moderate drought, two four-day-long heatwaves, and the combination of drought and heatwaves. We found clear stress-specific responses of BVOC emissions. Reductions in acetone emissions with declining soil water content and transpiration stood out as a clear drought indicator. All other measured BVOC emissions responded exponentially to rising temperatures during heat stress (maximum of 43 °C), but monoterpenes and methyl salicylate showed a reduced temperature sensitivity during the second heatwave. We found that these decreases in monoterpene emissions between heatwaves were not reflected by similar declines in their internal storage pools. Because stress intensity was extremely severe, most of the seedlings in the heat-drought treatment died at the end of the second heatwave (dark respiration ceased). Interestingly, BVOC emissions (methanol, monoterpenes, methyl salicylate, and acetaldehyde) differed between dying and surviving seedlings, already well before indications of a reduced vitality became visible in gas exchange dynamics. In summary, we could clearly show that the dynamics of BVOC emissions are sensitive to stress type, stress frequency, and stress severity. Moreover, we found indications that stress-induced seedling mortality was preceded by altered methanol, monoterpene, and acetaldehyde emission dynamics.
Collapse
Affiliation(s)
- Benjamin Birami
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany. .,University of Bayreuth, Chair of Plant Ecology, Universitätsstraße 30, 95440, Bayreuth, Germany.
| | - Ines Bamberger
- University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Atmospheric Chemistry, Dr.-Hans-Frisch-Straße 1-3, 95448, Bayreuth, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Almut Arneth
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Elizabeth Gaona-Colmán
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Daniel Nadal-Sala
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
17
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Influence of Brevibacterium linens RS16 on foliage photosynthetic and volatile emission characteristics upon heat stress in Eucalyptus grandis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134453. [PMID: 31670196 DOI: 10.1016/j.scitotenv.2019.134453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Heat stress induces secondary metabolic changes in plants, channeling photosynthetic carbon and energy, away from primary metabolic processes, including, growth. Use of ACC (1-aminocyclopropane-1-carboxylate) deaminase containing plant growth promoting bacteria (PGPB) in conferring heat resistance in plants and the role of PGPB, in altering net carbon assimilation, constitutive and stress volatile emissions has not been studied yet. We exposed leaves of Eucalyptus grandis inoculated and non-inoculated with PGPB Brevibacterium linens RS16 to two levels of heat stress (37 °C and 41 °C for 5 min) and quantified temporal changes in foliage photosynthetic characteristics and volatile emission rates at 0.5 h, day 1 and day 5 after the stress application. Heat stress resulted in immediate reductions in dark-adapted photosystem II (PSII) quantum yield (Fv/Fm), net assimilation rate (A), stomatal conductance to water vapor (gs), and enhancement of stress volatile emissions, including enhanced emissions of green leaf volatiles (GLV), mono- and sesquiterpenes, light weight oxygenated volatile organic compounds (LOC), geranyl-geranyl diphosphate pathway volatiles (GGDP), saturated aldehydes, and benzenoids, with partial recovery by day 5. Changes in stress-induced volatiles were always less in leaves inoculated with B. linens RS16. However, net assimilation rate was enhanced by bacterial inoculation only in the 37 °C treatment and overall reduction of isoprene emissions was observed in bacterially-treated leaves. Principal component analysis (PCA), correlation analysis and partial least squares discriminant analysis (PLS-DA) indicated that different stress applications influenced specific volatile organic compounds. In addition, changes in the expression analysis of heat shock protein 70 gene (DnaK) gene in B. linens RS16 upon exposure to higher temperatures further indicated that B. linens RS16 has developed its own heat resistance mechanism to survive under higher temperature regimes. Taken together, this study demonstrates that foliar application of ACC deaminase containing PGPB can ameliorate heat stress effects in realistic biological settings.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; FARCE Lab, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea; Department of Land, Air, and Water Resources, University of California, Davis, California 95616, USA
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|