1
|
Alibardi L. NOGO-A immunolabeling is present in glial cells and some neurons of the recovering lumbar spinal cord in lizards. J Morphol 2020; 281:1260-1270. [PMID: 32770765 DOI: 10.1002/jmor.21245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
The transected lumbar spinal cord of lizards was studied for its ability to recover after paralysis. At 34 days post-lesion about 50% of lizards were capable of walking with a limited coordination, likely due to the regeneration of few connecting axons crossing the transection site of the spinal cord. This region, indicated as "bridge", contains glial cells among which oligodendrocytes and their elongation that are immunolabeled for NOGO-A. A main reactive protein band occurs at 100-110 kDa but a weaker band is also observed around 240 kDa, suggesting fragmentation of the native protein due to extraction or to physiological processing of the original protein. Most of the cytoplasmic immunolabeling observed in oligodendrocytes is associated with vesicles of the endoplasmic reticulum. Also, the nucleus is labeled in some oligodendrocytes that are myelinating sparse axons observed within the bridge at 22-34 days post-transection. This suggests that axonal regeneration is present within the bridge region. Immunolabeling for NOGO-A shows that the protein is also present in numerous reactive neurons, in particular motor-neurons localized in the proximal stump of the transected spinal cord. Ultrastructural immunolocalization suggests that NOGO is synthesized in the ribosomes of these neurons and becomes associated with the cisternae of the endoplasmic reticulum, probably following a secretory pathway addressed toward the axon. The present observations suggest that, like for the regenerating spinal cord of fish and amphibians, also in lizard NOGO-A is present in reactive neurons and appears associated to axonal regeneration and myelination.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Lang DM, Romero-Alemán MDM, Dobson B, Santos E, Monzón-Mayor M. Nogo-A does not inhibit retinal axon regeneration in the lizardGallotia galloti. J Comp Neurol 2016; 525:936-954. [DOI: 10.1002/cne.24112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/19/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Dirk M. Lang
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Maria del Mar Romero-Alemán
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Bryony Dobson
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Elena Santos
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Maximina Monzón-Mayor
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| |
Collapse
|
3
|
Zupanc GKH, Sîrbulescu RF. Cell replacement therapy: lessons from teleost fish. Exp Neurol 2014; 263:272-6. [PMID: 25448008 DOI: 10.1016/j.expneurol.2014.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/06/2014] [Accepted: 10/11/2014] [Indexed: 12/01/2022]
Abstract
Many disorders of the CNS are characterized by a massive loss of neurons. A promising therapeutic strategy to cure such conditions is based on the activation of endogenous stem cells. Implementation of this strategy will benefit from a better understanding of stem cell dynamics and the local CNS microenvironment in regeneration-competent vertebrate model systems. Using a spinal cord injury paradigm in zebrafish larvae, Briona and Dorsky (2014) have provided evidence for the existence of two distinct neural stem cell populations. One population has the characteristics of radial glia and expresses the homeobox transcription factor Dbx. The other lacks Dbx but expresses Olig2. These results are placed in the context of other studies that also support the notion of heterogeneity of adult stem cells in the CNS. The implication that differences among stem cell populations, in combination with specific factors from the local cellular microenvironment, might have a decisive impact on the fate choices of the new cells, is discussed. Reviewed evidence suggests that rather few modifications in the signaling pathways involved in the control of stem cell behavior have led, in the course of evolution, to the pronounced differences between mammals and regeneration-competent organisms. As a consequence, rather minor pharmacological manipulations may be sufficient to reactivate the hidden neurogenic potential of the mammalian CNS, and thus make it available for therapeutic applications.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Ruxandra F Sîrbulescu
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Becker T, Becker CG. Axonal regeneration in zebrafish. Curr Opin Neurobiol 2014; 27:186-91. [DOI: 10.1016/j.conb.2014.03.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
|
5
|
Pinzón-Olejua A, Welte C, Abdesselem H, Málaga-Trillo E, Stuermer CA. Essential roles of zebrafish rtn4/Nogo paralogues in embryonic development. Neural Dev 2014; 9:8. [PMID: 24755266 PMCID: PMC4113184 DOI: 10.1186/1749-8104-9-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 03/25/2014] [Indexed: 01/08/2023] Open
Abstract
Background As a consequence of gene/genome duplication, the RTN4/Nogo gene has two counterparts in zebrafish: rtn4a and rtn4b. The shared presence of four specific amino acid motifs—M1 to M4—in the N-terminal region of mammalian RTN4, and zebrafish Rtn4b suggests that Rtn4b is the closest homologue of mammalian Nogo-A. Results To explore their combined roles in zebrafish development, we characterized the expression patterns of rtn4a and rtn4b in a comparative manner and performed morpholino-mediated knockdowns. Although both genes were coexpressed in the neural tube and developing brain at early stages, they progressively acquired distinct expression domains such as the spinal cord (rtn4b) and somites (rtn4a). Downregulation of rtn4a and rtn4b caused severe brain abnormalities, with rtn4b knockdown severely affecting the spinal cord and leading to immobility. In addition, the retinotectal projection was severely affected in both morphants, as the retina and optic tectum appeared smaller and only few retinal axons reached the abnormally reduced tectal neuropil. The neuronal defects were more persistent in rtn4b morphants. Moreover, the latter often lacked pectoral fins and lower jaws and had malformed branchial arches. Notably, these defects led to larval death in rtn4b, but not in rtn4a morphants. Conclusions In contrast to mammalian Nogo-A, its zebrafish homologues, rtn4a and particularly rtn4b, are essential for embryonic development and patterning of the nervous system.
Collapse
Affiliation(s)
| | | | | | - Edward Málaga-Trillo
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78476 Konstanz, Germany.
| | | |
Collapse
|
6
|
Han HW, Chou CM, Chu CY, Cheng CH, Yang CH, Hung CC, Hwang PP, Lee SJ, Liao YF, Huang CJ. The Nogo-C2/Nogo receptor complex regulates the morphogenesis of zebrafish lateral line primordium through modulating the expression of dkk1b, a Wnt signal inhibitor. PLoS One 2014; 9:e86345. [PMID: 24466042 PMCID: PMC3897714 DOI: 10.1371/journal.pone.0086345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022] Open
Abstract
The fish lateral line (LL) is a mechanosensory system closely related to the hearing system of higher vertebrates, and it is composed of several neuromasts located on the surface of the fish. These neuromasts can detect changes in external water flow, to assist fish in maintaining a stationary position in a stream. In the present study, we identified a novel function of Nogo/Nogo receptor signaling in the formation of zebrafish neuromasts. Nogo signaling in zebrafish, like that in mammals, involves three ligands and four receptors, as well as three co-receptors (TROY, p75, and LINGO-1). We first demonstrated that Nogo-C2, NgRH1a, p75, and TROY are able to form a Nogo-C2 complex, and that disintegration of this complex causes defective neuromast formation in zebrafish. Time-lapse recording of the CldnB::lynEGFP transgenic line revealed that functional obstruction of the Nogo-C2 complex causes disordered morphogenesis, and reduces rosette formation in the posterior LL (PLL) primordium during migration. Consistent with these findings, hair-cell progenitors were lost from the PLL primordium in p75, TROY, and Nogo-C2/NgRH1a morphants. Notably, the expression levels of pea3, a downstream marker of Fgf signaling, and dkk1b, a Wnt signaling inhibitor, were both decreased in p75, TROY, and Nogo-C2/NgRH1a morphants; moreover, dkk1b mRNA injection could rescue the defects in neuromast formation resulting from knockdown of p75 or TROY. We thus suggest that a novel Nogo-C2 complex, consisting of Nogo-C2, NgRH1a, p75, and TROY, regulates Fgf signaling and dkk1b expression, thereby ensuring stable organization of the PLL primordium.
Collapse
Affiliation(s)
- Hao-Wei Han
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Ming Chou
- Department of Biochemistry, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry, Taipei Medical University, Taipei, Taiwan
| | | | - Chin-Chun Hung
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shyh-Jye Lee
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (CJH); (YFL)
| | - Chang-Jen Huang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail: (CJH); (YFL)
| |
Collapse
|
7
|
Hui SP, Monaghan JR, Voss SR, Ghosh S. Expression pattern of Nogo-A, MAG, and NgR in regenerating urodele spinal cord. Dev Dyn 2013; 242:847-60. [DOI: 10.1002/dvdy.23976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 11/10/2022] Open
Affiliation(s)
- Subhra Prakash Hui
- Department of Biophysics; Molecular Biology and Bioinformatics; University of Calcutta; Kolkata India
| | - James R. Monaghan
- Department of Biology; Northeastern University; Boston Massachusetts
| | - S. Randal Voss
- Department of Biology; University of Kentucky; Lexington Kentucky
| | - Sukla Ghosh
- Department of Biophysics; Molecular Biology and Bioinformatics; University of Calcutta; Kolkata India
| |
Collapse
|
8
|
Inhibition of retinal ganglion cell axonal outgrowth through the Amino-Nogo-A signaling pathway. Neurochem Res 2013; 38:1365-74. [PMID: 23579387 DOI: 10.1007/s11064-013-1032-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/03/2013] [Accepted: 03/26/2013] [Indexed: 01/10/2023]
Abstract
Nogo-A is a myelin-derived inhibitor playing a pivotal role in the prevention of axonal regeneration. A functional domain of Nogo-A, Amino-Nogo, exerts an inhibitory effect on axonal regeneration, although the mechanism is unclear. The present study investigated the role of the Amino-Nogo-integrin signaling pathway in primary retinal ganglion cells (RGCs) with respect to axonal outgrowth, which is required for axonal regeneration. Immunohistochemistry showed that integrin αv, integrin α5 and FAK were widely expressed in the visual system. Thy-1 and GAP-43 immunofluorescence showed that axonal outgrowth of RGCs was promoted by Nogo-A siRNA and a peptide antagonist of the Nogo-66 functional domain of Nogo-A (Nep1-40), and inhibited by a recombinant rat Nogo-A-Fc chimeric protein (Δ20). Western blotting revealed increased integrin αv and p-FAK expression in Nogo-A siRNA group, decreased integrin αv expression in Δ20 group and decreased p-FAK expression in Nep1-40 group. Integrin α5 expression was not changed in any group. RhoA G-LISA showed that RhoA activation was inhibited by Nogo-A siRNA and Δ20, but increased by Nep1-40 treatment. These results suggest that Amino-Nogo inhibits RGC axonal outgrowth primarily through the integrin αv signaling pathway.
Collapse
|
9
|
Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem J 2013; 451:353-64. [DOI: 10.1042/bj20121807] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Major trauma to the mammalian spinal cord often results in irreversible loss of function, i.e. paralysis, and current therapies ranging from drugs, implantations of stem cells and/or biomaterials, and electrically stimulated nerve regrowth, have so far offered very limited success in improving quality-of-life. However, in marked contrast with this basic shortcoming of ours, certain vertebrate species, including fish and salamanders, display the amazing ability to faithfully regenerate various complex body structures after injury or ablation, restoring full functionality, even in the case of the spinal cord. Despite the inherently strong and obvious translational potential for improving treatment strategies for human patients, our in-depth molecular-level understanding of these decidedly more advanced repair systems remains in its infancy. In the present review, we will discuss the current state of this field, focusing on recent progress in such molecular analyses using various regenerative species, and how these so far relate to the mammalian situation.
Collapse
|
10
|
Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 2011; 138:4831-41. [PMID: 22007133 DOI: 10.1242/dev.072587] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe traumatic injury to the adult mammalian CNS leads to life-long loss of function. By contrast, several non-mammalian vertebrate species, including adult zebrafish, have a remarkable ability to regenerate injured organs, including the CNS. However, the cellular and molecular mechanisms that enable or prevent CNS regeneration are largely unknown. To study brain regeneration mechanisms in adult zebrafish, we developed a traumatic lesion assay, analyzed cellular reactions to injury and show that adult zebrafish can efficiently regenerate brain lesions and lack permanent glial scarring. Using Cre-loxP-based genetic lineage-tracing, we demonstrate that her4.1-positive ventricular radial glia progenitor cells react to injury, proliferate and generate neuroblasts that migrate to the lesion site. The newly generated neurons survive for more than 3 months, are decorated with synaptic contacts and express mature neuronal markers. Thus, regeneration after traumatic lesion of the adult zebrafish brain occurs efficiently from radial glia-type stem/progenitor cells.
Collapse
Affiliation(s)
- Volker Kroehne
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universitat Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
11
|
Semavina M, Saha N, Kolev MV, Goldgur Y, Giger RJ, Himanen JP, Nikolov DB. Crystal structure of the Nogo-receptor-2. Protein Sci 2011; 20:684-9. [PMID: 21308849 DOI: 10.1002/pro.597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The inhibition of axon regeneration upon mechanical injury is dependent on interactions between Nogo receptors (NgRs) and their myelin-derived ligands. NgRs are composed of a leucine-rich repeat (LRR) region, thought to be structurally similar among the different isoforms of the receptor, and a divergent "stalk" region. It has been shown by others that the LRR and stalk regions of NgR1 and NgR2 have distinct roles in conferring binding affinity to the myelin associated glycoprotein (MAG) in vivo. Here, we show that purified recombinant full length NgR1 and NgR2 maintain significantly higher binding affinity for purified MAG as compared to the isolated LRR region of either NgR1 or NgR2. We also present the crystal structure of the LRR and part of the stalk regions of NgR2 and compare it to the previously reported NgR1 structure with respect to the distinct signaling properties of the two receptor isoforms.
Collapse
Affiliation(s)
- Mariya Semavina
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Schwab ME. Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 2010; 11:799-811. [PMID: 21045861 DOI: 10.1038/nrn2936] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The membrane protein Nogo-A was initially characterized as a CNS-specific inhibitor of axonal regeneration. Recent studies have uncovered regulatory roles of Nogo proteins and their receptors--in precursor migration, neurite growth and branching in the developing nervous system--as well as a growth-restricting function during CNS maturation. The function of Nogo in the adult CNS is now understood to be that of a negative regulator of neuronal growth, leading to stabilization of the CNS wiring at the expense of extensive plastic rearrangements and regeneration after injury. In addition, Nogo proteins interact with various intracellular components and may have roles in the regulation of endoplasmic reticulum (ER) structure, processing of amyloid precursor protein and cell survival.
Collapse
Affiliation(s)
- Martin E Schwab
- University of Zurich and ETH, Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
13
|
Chen YC, Wu BK, Chu CY, Cheng CH, Han HW, Chen GD, Lee MT, Hwang PP, Kawakami K, Chang CC, Huang CJ. Identification and characterization of alternative promoters of zebrafish Rtn-4/Nogo genes in cultured cells and zebrafish embryos. Nucleic Acids Res 2010; 38:4635-50. [PMID: 20378713 PMCID: PMC2919723 DOI: 10.1093/nar/gkq230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In mammals, the Nogo family consists of Nogo-A, Nogo-B and Nogo-C. However, there are three Rtn-4/Nogo-related transcripts were identified in zebrafish. In addition to the common C-terminal region, the N-terminal regions of Rtn4-n/Nogo-C1, Rtn4-m/Nogo-C2 and Rtn4-l/Nogo-B, respectively, contain 9, 25 and 132 amino acid residues. In this study, we isolated the 5'-upstream region of each gene from a BAC clone and demonstrated that the putative promoter regions, P1-P3, are functional in cultured cells and zebrafish embryos. A transgenic zebrafish Tg(Nogo-B:GFP) line was generated using P1 promoter region to drive green fluorescent protein (GFP) expression through Tol2-mediated transgenesis. This line recapitulates the endogenous expression pattern of Rtn4-l/Nogo-B mRNA in the brain, brachial arches, eyes, muscle, liver and intestines. In contrast, GFP expressions by P2 and P3 promoters were localized to skeletal muscles of zebrafish embryos. Several GATA and E-box motifs are found in these promoter regions. Using morpholino knockdown experiments, GATA4 and GATA6 were involved in the control of P1 promoter activity in the liver and intestine, while Myf5 and MyoD for the control of P1 and P3 promoter activities in muscles. These data demonstrate that zebrafish Rtn4/Nogo transcripts might be generated by coupling mechanisms of alternative first exons and alternative promoter usage.
Collapse
Affiliation(s)
- Yi-Chung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
No Nogo66- and NgR-mediated inhibition of regenerating axons in the zebrafish optic nerve. J Neurosci 2010; 29:15489-98. [PMID: 20007473 DOI: 10.1523/jneurosci.3561-09.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In contrast to mammals, lesioned axons in the zebrafish (ZF) optic nerve regenerate and restore vision. This correlates with the absence of the NogoA-specific N-terminal domains from the ZF nogo/rtn-4 (reticulon-4) gene that inhibits regeneration in mammals. However, mammalian nogo/rtn-4 carries a second inhibitory C-terminal domain, Nogo-66, being 70% identical with ZF-Nogo66. The present study examines, (1) whether ZF-Nogo66 is inhibitory and effecting similar signaling pathways upon Nogo66-binding to the Nogo66 receptor NgR and its coreceptors, and (2) whether Rat-Nogo66 on fish, and ZF-Nogo66 on mouse neurons, cause inhibition via NgR. Our results from "outgrowth, collapse and contact assays" suggest, surprisingly, that ZF-Nogo66 is growth-permissive for ZF and mouse neurons, quite in contrast to its Rat-Nogo66 homolog which inhibits growth. The opposite effects of ZF- and Rat-Nogo66 are, in both fish and mouse, transmitted by GPI (glycosylphosphatidylinositol)-anchored receptors, including NgR. The high degree of sequence homology in the predicted binding site is consistent with the ability of ZF- and mammalian-Nogo66 to bind to NgRs of both species. Yet, Rat-Nogo66 elicits phosphorylation of the downstream effector cofilin whereas ZF-Nogo66 has no influence on cofilin phosphorylation--probably because of significantly different Rat- versus ZF-Nogo66 sequences outside of the receptor-binding region effecting, by speculation, recruitment of a different set of coreceptors or microdomain association of NgR. Thus, not only was the NogoA-specific domain lost in fish, but Nogo66, the second inhibitory domain in mammals, and its signaling upon binding to NgR, was modified so that ZF-Nogo/RTN-4 does not impair axon regeneration.
Collapse
|
15
|
O’Brien GS, Martin SM, Söllner C, Wright GJ, Becker CG, Portera-Cailliau C, Sagasti A. Developmentally regulated impediments to skin reinnervation by injured peripheral sensory axon terminals. Curr Biol 2009; 19:2086-90. [PMID: 19962310 PMCID: PMC2805760 DOI: 10.1016/j.cub.2009.10.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022]
Abstract
The structural plasticity of neurites in the central nervous system (CNS) diminishes dramatically after initial development, but the peripheral nervous system (PNS) retains substantial plasticity into adulthood. Nevertheless, functional reinnervation by injured peripheral sensory neurons is often incomplete [1-6]. To investigate the developmental control of skin reinnervation, we imaged the regeneration of trigeminal sensory axon terminals in live zebrafish larvae following laser axotomy. When axons were injured during early stages of outgrowth, regenerating and uninjured axons grew into denervated skin and competed with one another for territory. At later stages, after the establishment of peripheral arbor territories, the ability of uninjured neighbors to sprout diminished severely, and although injured axons reinitiated growth, they were repelled by denervated skin. Regenerating axons were repelled specifically by their former territories, suggesting that local inhibitory factors persist in these regions. Antagonizing the function of several members of the Nogo receptor (NgR)/RhoA pathway improved the capacity of injured axons to grow into denervated skin. Thus, as in the CNS, impediments to reinnervation in the PNS arise after initial establishment of axon arbor structure.
Collapse
Affiliation(s)
- Georgeann S. O’Brien
- Department of Molecular Cell and Developmental Biology, University
of California, Los Angeles, California, 90095, USA
| | - Seanna M. Martin
- Department of Molecular Cell and Developmental Biology, University
of California, Los Angeles, California, 90095, USA
| | - Christian Söllner
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger
Institute, Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger
Institute, Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Catherina G. Becker
- Centre for Neuroregeneration, School of Biomedical Sciences,
University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Carlos Portera-Cailliau
- Departments of Neurology and Neurobiology, David Geffen School of
Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Alvaro Sagasti
- Department of Molecular Cell and Developmental Biology, University
of California, Los Angeles, California, 90095, USA
| |
Collapse
|
16
|
Cuoghi B, Mola L. Macroglial cells of the teleost central nervous system: a survey of the main types. Cell Tissue Res 2009; 338:319-32. [PMID: 19865831 DOI: 10.1007/s00441-009-0870-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/31/2009] [Indexed: 12/31/2022]
Abstract
Following our previous review of teleost microglia, we focus here on the morphological and histochemical features of the three principal macroglia types in the teleost central nervous system (ependymal cells, astrocyte-like cells/radial glia and oligodendrocytes). This review is concerned with recent literature and not only provides insights into the various individual aspects of the different types of macroglial cells plus a comparison with mammalian glia, but also indicates the several potentials that the neural tissue of teleosts exhibits in neurobiological research. Indeed, some areas of the teleost brain are particularly suitable in terms of the establishment of a "simple" but complete research model (i.e. the visual pathway complex and the supramedullary neuron cluster in puffer fish). The relationships between neurons and glial cells are considered in fish, with the aim of providing an integrated picture of the complex ways in which neurons and glia communicate and collaborate in normal and injured neural tissues. The recent setting up of successful protocols for fish glia and mixed neuron-glia cultures, together with the molecular facilities offered by the knowledge of some teleost genomes, should allow consistent input towards the achievement of this aim.
Collapse
Affiliation(s)
- Barbara Cuoghi
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41100 Modena, Italy
| | | |
Collapse
|
17
|
Diekmann H, Stuermer CAO. Zebrafish neurolin-a and -b, orthologs of ALCAM, are involved in retinal ganglion cell differentiation and retinal axon pathfinding. J Comp Neurol 2009; 513:38-50. [PMID: 19107846 DOI: 10.1002/cne.21928] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurolin-a and Neurolin-b (also called alcam and nlcam, respectively) are zebrafish orthologs of human ALCAM, an adhesion protein of the immunoglobulin superfamily with functions in axon growth and guidance. Within the developing zebrafish retina, onset and progression of Neurolin-a expression parallels the pattern of retinal ganglion cell (RGC) differentiation. By using a morpholino-based knockdown approach, we show that Neurolin-a (but not Neurolin-b) is necessary for a crucial step in RGC differentiation. Without Neurolin-a, a large proportion of RGCs fail to develop, and RGC axons are absent or reduced in number. Subsequently, Neurolin-a is required for RGC survival and for the differentiation of all other retinal neurons. Neurolin-b is expressed later in well-differentiated RGCs and is required for RGC axon pathfinding. Without Neurolin-b, RGC axons grow in highly aberrant routes along the optic tract and/or fail to reach the optic tectum. Thus, the zebrafish Neurolin paralogs are involved in distinct steps of retinotectal development.
Collapse
Affiliation(s)
- Heike Diekmann
- Department of Biology, Universität Konstanz, Konstanz, Germany
| | | |
Collapse
|
18
|
Richard M, Sacquet J, Jourdan F, Pellier-Monnin V. Spatio-temporal expression pattern of receptors for myelin-associated inhibitors in the developing rat olfactory system. Brain Res 2008; 1252:52-65. [PMID: 19063867 DOI: 10.1016/j.brainres.2008.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 12/11/2022]
Abstract
The myelin-associated inhibitory proteins (Nogo-A, MAG and OMgp) that prevent axon regeneration in adult CNS, mediate their effects via a receptor referred as NgR1. Beside their inhibitory role in the adult CNS, Nogo-A and NgR1 might also be functionally involved in the developing nervous system. At the present time, no detailed study is available regarding either the onset of NgR1 expression during development or its spatio-temporal pattern of expression relative to the presence of Nogo-A. Two homologs of NgR1, NgR2 and NgR3, have been recently identified, but their function in the nervous system is still unknown in adult as well as during development. We have examined the spatio-temporal expression pattern of both NgR1, NgR2 and NgR3 mRNAs and corresponding proteins in the developing rat olfactory system using in situ hybridization and immunohistochemistry. From E15-E16 onwards, NgR1 mRNA was expressed by differentiating neurons in both the olfactory epithelium and the olfactory bulb. At all developmental stages, including adult animals, NgR1 protein was preferentially targeted to olfactory axons emerging from the olfactory epithelium. Using double-immunostainings in the postnatal olfactory mucosa, we confirm the neuronal localization of NgR1 and its preferential distribution along the olfactory axons. The NgR2 and NgR3 transcripts and their proteins display similar expression profiles in the olfactory system. Together, our data suggest that, in non-pathological conditions, NgR1 and its homologs may play a role in axon outgrowth in the rat olfactory system and may be relevant for the confinement of neural projections within the developing olfactory bulb.
Collapse
Affiliation(s)
- Marion Richard
- Laboratoire Neurosciences Sensorielles, Comportement, Cognition, CNRS-UMR 5020, Université de Lyon, Lyon 1, F-69366, France.
| | | | | | | |
Collapse
|
19
|
Brösamle C, Halpern ME. Nogo-Nogo receptor signalling in PNS axon outgrowth and pathfinding. Mol Cell Neurosci 2008; 40:401-9. [PMID: 19041397 DOI: 10.1016/j.mcn.2008.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/17/2008] [Accepted: 10/15/2008] [Indexed: 12/16/2022] Open
Abstract
The Nogo/Nogo66 receptor signaling pathway has been characterized as inhibitory for axon growth, regeneration, and structural plasticity in the adult mammalian central nervous system. Nogo and its receptor are highly expressed when axon growth is abundant, however, the function of this pathway in neural development is unclear. We have characterized zebrafish Nogo pathway members and examined their role in the developing nervous system using anti-sense morpholinos that inhibit protein synthesis. Depletion of the Nogo66 receptor or a Nogo isoform causes truncated outgrowth of peripheral nervous system (PNS) axons of the head and lateral line. PNS nerves also show increased defasciculation and numerous guidance defects, including axons invading regions along the body flank that are normally avoided. We propose that localized Nogo expression defines inhibitory territories that through repulsion restrict axon growth to permissive regions.
Collapse
Affiliation(s)
- Christian Brösamle
- Carnegie Institution of Washington, Department of Embryology, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| | | |
Collapse
|
20
|
Lang DM, Monzon-Mayor M, del Mar Romero-Aleman M, Yanes C, Santos E, Pesheva P. Tenascin-R and axon growth-promoting molecules are up-regulated in the regenerating visual pathway of the lizard (Gallotia galloti). Dev Neurobiol 2008; 68:899-916. [DOI: 10.1002/dneu.20624] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
NOGO-A induction and localization during chick brain development indicate a role disparate from neurite outgrowth inhibition. BMC DEVELOPMENTAL BIOLOGY 2007; 7:32. [PMID: 17433109 PMCID: PMC1865376 DOI: 10.1186/1471-213x-7-32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 04/14/2007] [Indexed: 11/12/2022]
Abstract
Background Nogo-A, a myelin-associated protein, inhibits neurite outgrowth and abates regeneration in the adult vertebrate central nervous system (CNS) and may play a role in maintaining neural pathways once established. However, the presence of Nogo-A during early CNS development is counterintuitive and hints at an additional role for Nogo-A beyond neurite inhibition. Results We isolated chicken NOGO-A and determined its sequence. A multiple alignment of the amino acid sequence across divergent species, identified five previously undescribed, Nogo-A specific conserved regions that may be relevant for development. NOGO gene transcripts (NOGO-A, NOGO-B and NOGO-C) were differentially expressed in the CNS during development and a second NOGO-A splice variant was identified. We further localized NOGO-A expression during key phases of CNS development by in situ hybridization. CNS-associated NOGO-A was induced coincident with neural plate formation and up-regulated by FGF in the transformation of non-neural ectoderm into neural precursors. NOGO-A expression was diffuse in the neuroectoderm during the early proliferative phase of development, and migration, but localized to large projection neurons of the optic tectum and tectal-associated nuclei during architectural differentiation, lamination and network establishment. Conclusion These data suggest Nogo-A plays a functional role in the determination of neural identity and/or differentiation and also appears to play a later role in the networking of large projection neurons during neurite formation and synaptogenesis. These data indicate that Nogo-A is a multifunctional protein with additional roles during CNS development that are disparate from its later role of neurite outgrowth inhibition in the adult CNS.
Collapse
|
22
|
Schweigreiter R, Roots BI, Bandtlow CE, Gould RM. Understanding Myelination Through Studying Its Evolution. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:219-73. [PMID: 16737906 DOI: 10.1016/s0074-7742(06)73007-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rüdiger Schweigreiter
- Medical University Innsbruck, Biocenter Innsbruck, Division of Neurobiochemistry, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
23
|
Venkatesh K, Chivatakarn O, Lee H, Joshi PS, Kantor DB, Newman BA, Mage R, Rader C, Giger RJ. The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J Neurosci 2005; 25:808-22. [PMID: 15673660 PMCID: PMC6725623 DOI: 10.1523/jneurosci.4464-04.2005] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Nogo-66 receptor (NgR1) is a promiscuous receptor for the myelin inhibitory proteins Nogo/Nogo-66, myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp). NgR1, an axonal glycoprotein, is the founding member of a protein family composed of the structurally related molecules NgR1, NgR2, and NgR3. Here we show that NgR2 is a novel receptor for MAG and acts selectively to mediate MAG inhibitory responses. MAG binds NgR2 directly and with greater affinity than NgR1. In neurons NgR1 and NgR2 support MAG binding in a sialic acid-dependent Vibrio cholerae neuraminidase-sensitive manner. Forced expression of NgR2 is sufficient to impart MAG inhibition to neonatal sensory neurons. Soluble NgR2 has MAG antagonistic capacity and promotes neuronal growth on MAG and CNS myelin substrate in vitro. Structural studies have revealed that the NgR2 leucine-rich repeat cluster and the NgR2 "unique" domain are necessary for high-affinity MAG binding. Consistent with its role as a neuronal MAG receptor, NgR2 is an axonassociated glycoprotein. In postnatal brain NgR1 and NgR2 are strongly enriched in Triton X-100-insoluble lipid rafts. Neural expression studies of NgR1 and NgR2 have revealed broad and overlapping, yet distinct, distribution in the mature CNS. Taken together, our studies identify NgRs as a family of receptors (or components of receptors) for myelin inhibitors and provide insights into how interactions between MAG and members of the Nogo receptor family function to coordinate myelin inhibitory responses.
Collapse
Affiliation(s)
- Karthik Venkatesh
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Diekmann H, Klinger M, Oertle T, Heinz D, Pogoda HM, Schwab ME, Stuermer CAO. Analysis of the Reticulon Gene Family Demonstrates the Absence of the Neurite Growth Inhibitor Nogo-A in Fish. Mol Biol Evol 2005; 22:1635-48. [PMID: 15858203 DOI: 10.1093/molbev/msi158] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reticulons (RTNs) are a family of evolutionary conserved proteins with four RTN paralogs (RTN1, RTN2, RTN3, and RTN4) present in land vertebrates. While the exact functions of RTN1 to RTN3 are unknown, mammalian RTN4-A/Nogo-A was shown to inhibit the regeneration of severed axons in the mammalian central nervous system (CNS). This inhibitory function is exerted via two distinct regions, one within the Nogo-A-specific N-terminus and the other in the conserved reticulon homology domain (RHD). In contrast to mammals, fish are capable of CNS axon regeneration. We performed detailed analyses of the fish rtn gene family to determine whether this regeneration ability correlates with the absence of the neurite growth inhibitory protein Nogo-A. A total of 7 rtn genes were identified in zebrafish, 6 in pufferfish, and 30 in eight additional fish species. Phylogenetic and syntenic relationships indicate that the identified fish rtn genes are orthologs of mammalian RTN1, RTN2, RTN3, and RTN4 and that several paralogous fish genes (e.g., rtn4 and rtn6) resulted from genome duplication events early in actinopterygian evolution. Accordingly, sequences homologous to the conserved RTN4/Nogo RHD are present in two fish genes, rtn4 and rtn6. However, sequences comparable to the first approximately 1,000 amino acids of mammalian Nogo-A including a major neurite growth inhibitory region are absent in zebrafish. This result is in accordance with functional data showing that axon growth inhibitory molecules are less prominent in fish oligodendrocytes and CNS myelin compared to mammals.
Collapse
Affiliation(s)
- Heike Diekmann
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
O'Neill P, Whalley K, Ferretti P. Nogo and Nogo-66 receptor in human and chick: implications for development and regeneration. Dev Dyn 2005; 231:109-21. [PMID: 15305291 DOI: 10.1002/dvdy.20116] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Antibodies to the myelin protein Nogo increase axonal regrowth after central nervous system injury. We have investigated whether Nogo expression contributes to loss of regenerative potential during development by using chick embryos, which regenerate their spinal cord until embryonic day (E) 13, when myelination begins. We show that Nogo-A and the Nogo receptor (NgR) are developmentally regulated both in chick and human embryos, are first detected at developmental stages when the chick spinal cord regenerates, and are not down-regulated after injury at permissive stages for regeneration. Therefore, expression of Nogo-A and NgR in pre-E13 chick spinal cords is not sufficient to inhibit regeneration. Nogo-A expression in the chick early embryo is primarily observed in axons, whereas NgR is mainly located on neuronal cell bodies, both in spinal cord and eye, and in striated muscle including the heart. With the onset of myelination, there is down-regulation of Nogo-A expression in neurons. Therefore, loss of regenerative potential might be linked to changes in its cellular localization. The possibility that only Nogo expressed in mature oligodendrocytes can exercise inhibitory effects would reconcile the lack of inhibition we observe in developing chick spinal cords before the onset of myelination with evidence from other laboratories on the inhibitory effects of Nogo in mature central nervous system. The distinctive and complementary patterns of Nogo-A and NgR expression and their conservation throughout evolution support the view that Nogo signaling represents a key pathway in nervous system and striated muscle development. Its putative role in target innervation and establishment of neural circuitry is discussed.
Collapse
Affiliation(s)
- Paul O'Neill
- Developmental Biology Unit, Institute of Child Health, UCL, London United Kingdom
| | | | | |
Collapse
|
26
|
Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 2004; 20:481-90. [PMID: 15363902 DOI: 10.1016/j.tig.2004.08.001] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Half of all vertebrate species are teleost fish. What accounts for this explosion of biodiversity? Recent evidence and advances in evolutionary theory suggest that genomic features could have played a significant role in the teleost radiation. This review examines evidence for an ancient whole-genome duplication (tetraploidization) event that probably occurred just before the teleost radiation. The partitioning of ancestral subfunctions between gene copies arising from this duplication could have contributed to the genetic isolation of populations, to lineage-specific diversification of developmental programs, and ultimately to phenotypic variation among teleost fish. Beyond its importance for understanding mechanisms that generate biodiversity, the partitioning of subfunctions between teleost co-orthologs of human genes can facilitate the identification of tissue-specific conserved noncoding regions and can simplify the analysis of ancestral gene functions obscured by pleiotropy or haploinsufficiency. Applying these principles on a genomic scale can accelerate the functional annotation of the human genome and understanding of the roles of human genes in health and disease.
Collapse
Affiliation(s)
- John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|