1
|
Su H, Hao T, Yu M, Zhou W, Wu L, Sheng Y, Yi Z. Complex evolutionary patterns within the tubulin gene family of ciliates, unicellular eukaryotes with diverse microtubular structures. BMC Biol 2024; 22:170. [PMID: 39135200 PMCID: PMC11321004 DOI: 10.1186/s12915-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Tubulins are major components of the eukaryotic cytoskeletons that are crucial in many cellular processes. Ciliated protists comprise one of the oldest eukaryotic lineages possessing cilia over their cell surface and assembling many diverse microtubular structures. As such, ciliates are excellent model organisms to clarify the origin and evolution of tubulins in the early stages of eukaryote evolution. Nonetheless, the evolutionary history of the tubulin subfamilies within and among ciliate classes is unclear. RESULTS We analyzed the evolutionary pattern of ciliate tubulin gene family based on genomes/transcriptomes of 60 species covering 10 ciliate classes. Results showed: (1) Six tubulin subfamilies (α_Tub, β_Tub, γ_Tub, δ_Tub, ε_Tub, and ζ_Tub) originated from the last eukaryotic common ancestor (LECA) were observed within ciliates. Among them, α_Tub, β_Tub, and γ_Tub were present in all ciliate species, while δ_Tub, ε_Tub, and ζ_Tub might be independently lost in some species. (2) The evolutionary history of the tubulin subfamilies varied. Evolutionary history of ciliate γ_Tub, δ_Tub, ε_Tub, and ζ_Tub showed a certain degree of consistency with the phylogeny of species after the divergence of ciliate classes, while the evolutionary history of ciliate α_Tub and β_Tub varied among different classes. (3) Ciliate α- and β-tubulin isoforms could be classified into an "ancestral group" present in LECA and a "divergent group" containing only ciliate sequences. Alveolata-specific expansion events probably occurred within the "ancestral group" of α_Tub and β_Tub. The "divergent group" might be important for ciliate morphological differentiation and wide environmental adaptability. (4) Expansion events of the tubulin gene family appeared to be consistent with whole genome duplication (WGD) events in some degree. More Paramecium-specific tubulin expansions were detected than Tetrahymena-specific ones. Compared to other Paramecium species, the Paramecium aurelia complex underwent a more recent WGD which might have experienced more tubulin expansion events. CONCLUSIONS Evolutionary history among different tubulin gene subfamilies seemed to vary within ciliated protists. And the complex evolutionary patterns of tubulins among different ciliate classes might drive functional diversification. Our investigation provided meaningful information for understanding the evolution of tubulin gene family in the early stages of eukaryote evolution.
Collapse
Affiliation(s)
- Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Tingting Hao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Minjie Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wuyu Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lei Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
- School of Marine and Fisheries, Guangdong Eco-engineering Polytechnic, Guangzhou, 510320, China
| | - Yalan Sheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Wang P, Driscoll WW, Travisano M. Genomic sequencing reveals convergent adaptation during experimental evolution in two budding yeast species. Commun Biol 2024; 7:825. [PMID: 38971878 PMCID: PMC11227552 DOI: 10.1038/s42003-024-06485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
Convergent evolution is central in the origins of multicellularity. Identifying the basis for convergent multicellular evolution is challenging because of the diverse evolutionary origins and environments involved. Haploid Kluyveromyces lactis populations evolve multicellularity during selection for increased settling in liquid media. Strong genomic and phenotypic convergence is observed between K. lactis and previously selected S. cerevisiae populations under similar selection, despite their >100-million-year divergence. We find K. lactis multicellularity is conferred by mutations in genes ACE2 or AIM44, with ACE2 being predominant. They are a subset of the six genes involved in the S. cerevisiae multicellularity. Both ACE2 and AIM44 regulate cell division, indicating that the genetic convergence is likely due to conserved cellular replication mechanisms. Complex population dynamics involving multiple ACE2/AIM44 genotypes are found in most K. lactis lineages. The results show common ancestry and natural selection shape convergence while chance and contingency determine the degree of divergence.
Collapse
Affiliation(s)
- Pu Wang
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - William W Driscoll
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
- Biology Department, Penn State Harrisburg, Harrisburg, PA, 17057, USA
| | - Michael Travisano
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, 55108, USA
| |
Collapse
|
3
|
Maurer-Alcalá XX, Cote-L’Heureux A, Kosakovsky Pond SL, Katz LA. Somatic genome architecture and molecular evolution are decoupled in "young" linage-specific gene families in ciliates. PLoS One 2024; 19:e0291688. [PMID: 38271450 PMCID: PMC10810533 DOI: 10.1371/journal.pone.0291688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/02/2023] [Indexed: 01/27/2024] Open
Abstract
The evolution of lineage-specific gene families remains poorly studied across the eukaryotic tree of life, with most analyses focusing on the recent evolution of de novo genes in model species. Here we explore the origins of lineage-specific genes in ciliates, a ~1 billion year old clade of microeukaryotes that are defined by their division of somatic and germline functions into distinct nuclei. Previous analyses on conserved gene families have shown the effect of ciliates' unusual genome architecture on gene family evolution: extensive genome processing-the generation of thousands of gene-sized somatic chromosomes from canonical germline chromosomes-is associated with larger and more diverse gene families. To further study the relationship between ciliate genome architecture and gene family evolution, we analyzed lineage specific gene families from a set of 46 transcriptomes and 12 genomes representing x species from eight ciliate classes. We assess how the evolution lineage-specific gene families occurs among four groups of ciliates: extensive fragmenters with gene-size somatic chromosomes, non-extensive fragmenters with "large'' multi-gene somatic chromosomes, Heterotrichea with highly polyploid somatic genomes and Karyorelictea with 'paradiploid' somatic genomes. Our analyses demonstrate that: 1) most lineage-specific gene families are found at shallow taxonomic scales; 2) extensive genome processing (i.e., gene unscrambling) during development likely influences the size and number of young lineage-specific gene families; and 3) the influence of somatic genome architecture on molecular evolution is increasingly apparent in older gene families. Altogether, these data highlight the influences of genome architecture on the evolution of lineage-specific gene families in eukaryotes.
Collapse
Affiliation(s)
- Xyrus X. Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
4
|
Zhang X, Zhao Y, Zheng W, Nan B, Fu J, Qiao Y, Zufall RA, Gao F, Yan Y. Genome-wide identification of ATP-binding cassette transporter B subfamily, focusing on its structure, evolution and rearrangement in ciliates. Open Biol 2023; 13:230111. [PMID: 37788709 PMCID: PMC10547551 DOI: 10.1098/rsob.230111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
ATP-binding cassette subfamily B (ABCB) has been implicated in various essential functions such as multidrug resistance, auxin transport and heavy metal tolerance in animals and plants. However, the functions, the genomic distribution and the evolutionary history have not been characterized systematically in lower eukaryotes. As a lineage of highly specialized unicellular eukaryotes, ciliates have extremely diverse genomic features including nuclear dimorphism. To further understand the genomic structure and evolutionary history of this gene family, we investigated the ABCB gene subfamily in 11 ciliates. The results demonstrate that there is evidence of substantial gene duplication, which has occurred by different mechanisms in different species. These gene duplicates show consistent purifying selection, suggesting functional constraint, in all but one species, where positive selection may be acting to generate novel function. We also compare the gene structures in the micronuclear and macronuclear genomes and find no gene scrambling during genome rearrangement, despite the abundance of such scrambling in two of our focal species. These results lay the foundation for future analyses of the function of these genes and the mechanisms responsible for their evolution across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Yan Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, People's Republic of China
| | - Weibo Zheng
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, People's Republic of China
| | - Bei Nan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Jinyu Fu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Yu Qiao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| |
Collapse
|
5
|
Li J, Li S, Su H, Yu M, Xu J, Yi Z. Comprehensive phylogenomic analyses reveal that order Armophorida is most closely related to class Armophorea (Protista, Ciliophora). Mol Phylogenet Evol 2023; 182:107737. [PMID: 36841269 DOI: 10.1016/j.ympev.2023.107737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Ciliate species within the class Armophorea are widely distributed in various anaerobic environments, hence they are of great interest to researchers studying evolution and adaptation of eukaryotes to extreme habitats. However, phylogenetic relationships within the class remain largely elusive, most especially assignment of the order Armophorida and classification within the family Metopidae. In this study, we newly sequenced transcriptomes and the SSU rDNA of five armophorean species, Sulfonecta cf. uniserialis (order Armophorida), Nyctotheroides sp. (order Clevelandellida), and Metopus major, M. paraes, and Brachonella contorta (order Metopida). Comprehensive phylogenomic analyses revealed that Armophorea was most closely related to Muranotrichea and Parablepharismea. Our results indicate that the order Armophorida either belongs to Armophorea or represents a new class within APM (Armophorea-Parablepharismea-Muranotrichea). Analyses combining ecological niches and molecular trees showed that APM species might descend from an anaerobic free-living ciliate species. Existing molecular phylogenomic/phylogenetic and morphological evidence indicate that the family Metopidae is non-monophyletic and should be further classified with inclusion of additional lines of evidences. Our results provide new insights into the long-debated relationships within Armophorea.
Collapse
Affiliation(s)
- Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Song Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Minjie Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
6
|
Su H, Xu J, Li J, Yi Z. Four ciliate-specific expansion events occurred during actin gene family evolution of eukaryotes. Mol Phylogenet Evol 2023; 184:107789. [PMID: 37105243 DOI: 10.1016/j.ympev.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Actin gene family is a divergent and ancient eukaryotic cellular cytoskeletal gene family, and participates in many essential cellular processes. Ciliated protists offer us an excellent opportunity to investigate gene family evolution, since their gene families evolved faster in ciliates than in other eukaryotes. Nonetheless, actin gene family is well studied in few model ciliate species but little is known about its evolutionary patterns in ciliates. Here, we analyzed the evolutionary pattern of eukaryotic actin gene family based on genomes/transcriptomes of 36 species covering ten ciliate classes, as well as those of nine non-ciliate eukaryotic species. Results showed: (1) Except for conventional actins and actin-related proteins (Arps) shared by various eukaryotes, at least four ciliate-specific subfamilies occurred during evolution of actin gene family. Expansions of Act2 and ArpC were supposed to have happen in the ciliate common ancestor, while expansions of ActI and ActII may have occurred in the ancestor of Armophorea, Muranotrichea, and Spirotrichea. (2) The number of actin isoforms varied greatly among ciliate species. Environmental adaptability, whole genome duplication (WGD) or segmental duplication events, distinct spatial and temporal patterns of expression might play driving forces for the increasement of isoform numbers. (3) The 'birth and death' model of evolution could explain the evolution of actin gene family in ciliates. And actin genes have been generally under strong negative selection to maintain protein structures and physiological functions. Collectively, we provided meaningful information for understanding the evolution of eukaryotic actin gene family.
Collapse
Affiliation(s)
- Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
7
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|
8
|
Yan Y, Maurer-Alcalá XX, Knight R, Kosakovsky Pond SL, Katz LA. Single-Cell Transcriptomics Reveal a Correlation between Genome Architecture and Gene Family Evolution in Ciliates. mBio 2019; 10:e02524-19. [PMID: 31874915 PMCID: PMC6935857 DOI: 10.1128/mbio.02524-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Ciliates, a eukaryotic clade that is over 1 billion years old, are defined by division of genome function between transcriptionally inactive germline micronuclei and functional somatic macronuclei. To date, most analyses of gene family evolution have been limited to cultivable model lineages (e.g., Tetrahymena, Paramecium, Oxytricha, and Stylonychia). Here, we focus on the uncultivable Karyorelictea and its understudied sister class Heterotrichea, which represent two extremes in genome architecture. Somatic macronuclei within the Karyorelictea are described as nearly diploid, while the Heterotrichea have hyperpolyploid somatic genomes. Previous analyses indicate that genome architecture impacts ciliate gene family evolution as the most diverse and largest gene families are found in lineages with extensively processed somatic genomes (i.e., possessing thousands of gene-sized chromosomes). To further assess ciliate gene family evolution, we analyzed 43 single-cell transcriptomes from 33 ciliate species representing 10 classes. Focusing on conserved eukaryotic genes, we use estimates of transcript diversity as a proxy for the number of paralogs in gene families among four focal clades: Karyorelictea, Heterotrichea, extensive fragmenters (with gene-size somatic chromosomes), and non-extensive fragmenters (with more traditional somatic chromosomes), the latter two within the subphylum Intramacronucleata. Our results show that (i) the Karyorelictea have the lowest average transcript diversity, while Heterotrichea are highest among the four groups; (ii) proteins in Karyorelictea are under the highest functional constraints, and the patterns of selection in ciliates may reflect genome architecture; and (iii) stop codon reassignments vary among members of the Heterotrichea and Spirotrichea but are conserved in other classes.IMPORTANCE To further our understanding of genome evolution in eukaryotes, we assess the relationship between patterns of molecular evolution within gene families and variable genome structures found among ciliates. We combine single-cell transcriptomics with bioinformatic tools, focusing on understudied and uncultivable lineages selected from across the ciliate tree of life. Our analyses show that genome architecture correlates with patterns of protein evolution as lineages with more canonical somatic genomes, such as the class Karyorelictea, have more conserved patterns of molecular evolution compared to other classes. This study showcases the power of single-cell transcriptomics for investigating genome architecture and evolution in uncultivable microbial lineages and provides transcriptomic resources for further research on genome evolution.
Collapse
Affiliation(s)
- Ying Yan
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
| | - Xyrus X Maurer-Alcalá
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Rob Knight
- University of California San Diego, Department of Pediatrics, San Diego, California, USA
- University of California San Diego, Department of Computer Science and Engineering, San Diego, California, USA
- University of California San Diego, Center for Microbiome Innovation, San Diego, California, USA
| | - Sergei L Kosakovsky Pond
- Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, Pennsylvania, USA
| | - Laura A Katz
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Maurer-Alcalá XX, Nowacki M. Evolutionary origins and impacts of genome architecture in ciliates. Ann N Y Acad Sci 2019; 1447:110-118. [PMID: 31074010 PMCID: PMC6767857 DOI: 10.1111/nyas.14108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023]
Abstract
Genome architecture is well diversified among eukaryotes in terms of size and content, with many being radically shaped by ancient and ongoing genome conflicts with transposable elements (e.g., the large transposon‐rich genomes common among plants). In ciliates, a group of microbial eukaryotes with distinct somatic and germ‐line genomes present in a single cell, the consequences of these genome conflicts are most apparent in their developmentally programmed genome rearrangements. This complicated developmental phenomenon has largely overshadowed and outpaced our understanding of how germ‐line and somatic genome architectures have influenced the evolutionary dynamism and potential in these taxa. In our review, we highlight three central concepts: how the evolution of atypical ciliate germ‐line genome architectures is linked to ancient genome conflicts; how the complex, epigenetically guided transformation of germline to soma during development can generate widespread genetic variation; and how these features, coupled with their unusual life cycle, have increased the rate of molecular evolution linked to genome architecture in these taxa.
Collapse
Affiliation(s)
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Rajter Ľ, Vďačný P. Selection and paucity of phylogenetic signal challenge the utility of alpha-tubulin in reconstruction of evolutionary history of free-living litostomateans (Protista, Ciliophora). Mol Phylogenet Evol 2018; 127:534-544. [PMID: 29763665 DOI: 10.1016/j.ympev.2018.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 11/26/2022]
Abstract
The class Litostomatea represents a highly diverse but monophyletic group, uniting both free-living and endosymbiotic ciliates. Ribosomal RNA genes and ITS-region sequences helped to recognize and define the main litostomatean lineages, but did not provide enough phylogenetic signal to unambiguously resolve their interrelationships. In this study, we attempted to improve the resolution among main free-living predatory lineages by adding the gene coding for alpha-tubulin. However, our phylogenetic analyses challenged the performance of alpha-tubulin in reconstruction of evolutionary history of free-living litostomateans. We identified several mutually interconnected problems associated with the ciliate alpha-tubulin gene: the paucity of phylogenetic signal, molecular homoplasies and non-neutral evolution. Positive selection may generate molecular homoplasies (parallel evolution), while negative selection may cause a small number of changes and hence little phylogenetic informativness. Both problems were encountered in nucleotide and amino acid alpha-tubulin alignments, indicating an action of various selective pressures. Taking into account the involvement of alpha-tubulin in many essential biological processes, this protein could be so strongly affected by purifying selection that it even might have become an inappropriate molecular marker for reconstruction of phylogenetic relationships. Therefore, a great caution should be paid when tubulin genes are included in phylogenetic and/or phylogenomic analyses.
Collapse
Affiliation(s)
- Ľubomír Rajter
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Further consideration on the phylogeny of the Ciliophora: Analyses using both mitochondrial and nuclear data with focus on the extremely confused class Phyllopharyngea. Mol Phylogenet Evol 2017; 112:96-106. [DOI: 10.1016/j.ympev.2017.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 11/17/2022]
|
12
|
Lhuillier-Akakpo M, Guérin F, Frapporti A, Duharcourt S. DNA deletion as a mechanism for developmentally programmed centromere loss. Nucleic Acids Res 2015; 44:1553-65. [PMID: 26503246 PMCID: PMC4770206 DOI: 10.1093/nar/gkv1110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
A hallmark of active centromeres is the presence of the histone H3 variant CenH3 in the centromeric chromatin, which ensures faithful genome distribution at each cell division. A functional centromere can be inactivated, but the molecular mechanisms underlying the process of centromere inactivation remain largely unknown. Here, we describe the loss of CenH3 protein as part of a developmental program leading to the formation of the somatic nucleus in the eukaryote Paramecium. We identify two proteins whose depletion prevents developmental loss of CenH3: the domesticated transposase Pgm involved in the formation of DNA double strand cleavages and the Polycomb-like lysine methyltransferase Ezl1 necessary for trimethylation of histone H3 on lysine 9 and lysine 27. Taken together, our data support a model in which developmentally programmed centromere loss is caused by the elimination of DNA sequences associated with CenH3.
Collapse
Affiliation(s)
- Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205 France
| | - Frédéric Guérin
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205 France
| | - Andrea Frapporti
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205 France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205 France
| |
Collapse
|
13
|
Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages. Mol Phylogenet Evol 2014; 78:36-42. [DOI: 10.1016/j.ympev.2014.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/18/2014] [Accepted: 04/18/2014] [Indexed: 11/19/2022]
|
14
|
Aeschlimann SH, Jönsson F, Postberg J, Stover NA, Petera RL, Lipps HJ, Nowacki M, Swart EC. The draft assembly of the radically organized Stylonychia lemnae macronuclear genome. Genome Biol Evol 2014; 6:1707-23. [PMID: 24951568 PMCID: PMC4122937 DOI: 10.1093/gbe/evu139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2014] [Indexed: 12/19/2022] Open
Abstract
Stylonychia lemnae is a classical model single-celled eukaryote, and a quintessential ciliate typified by dimorphic nuclei: A small, germline micronucleus and a massive, vegetative macronucleus. The genome within Stylonychia's macronucleus has a very unusual architecture, comprised variably and highly amplified "nanochromosomes," each usually encoding a single gene with a minimal amount of surrounding noncoding DNA. As only a tiny fraction of the Stylonychia genes has been sequenced, and to promote research using this organism, we sequenced its macronuclear genome. We report the analysis of the 50.2-Mb draft S. lemnae macronuclear genome assembly, containing in excess of 16,000 complete nanochromosomes, assembled as less than 20,000 contigs. We found considerable conservation of fundamental genomic properties between S. lemnae and its close relative, Oxytricha trifallax, including nanochromosomal gene synteny, alternative fragmentation, and copy number. Protein domain searches in Stylonychia revealed two new telomere-binding protein homologs and the presence of linker histones. Among the diverse histone variants of S. lemnae and O. trifallax, we found divergent, coexpressed variants corresponding to four of the five core nucleosomal proteins (H1.2, H2A.6, H2B.4, and H3.7) suggesting that these ciliates may possess specialized nucleosomes involved in genome processing during nuclear differentiation. The assembly of the S. lemnae macronuclear genome demonstrates that largely complete, well-assembled highly fragmented genomes of similar size and complexity may be produced from one library and lane of Illumina HiSeq 2000 shotgun sequencing. The provision of the S. lemnae macronuclear genome sets the stage for future detailed experimental studies of chromatin-mediated, RNA-guided developmental genome rearrangements.
Collapse
Affiliation(s)
| | - Franziska Jönsson
- Centre for Biological Research and Education (ZBAF), Institute of Cell Biology, Witten/Herdecke University, Wuppertal, Germany
| | - Jan Postberg
- Centre for Biological Research and Education (ZBAF), Institute of Cell Biology, Witten/Herdecke University, Wuppertal, GermanyDepartment of Neonatology, HELIOS Children's Hospital, Witten/Herdecke University, Wuppertal, Germany
| | | | | | - Hans-Joachim Lipps
- Centre for Biological Research and Education (ZBAF), Institute of Cell Biology, Witten/Herdecke University, Wuppertal, Germany
| | | | | |
Collapse
|
15
|
Chi J, Mahé F, Loidl J, Logsdon J, Dunthorn M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol Biol Evol 2013; 31:660-72. [PMID: 24336924 DOI: 10.1093/molbev/mst258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.
Collapse
Affiliation(s)
- Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
16
|
da Silva Paiva T, do Nascimento Borges B, da Silva-Neto ID. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data. Genet Mol Biol 2013; 36:571-85. [PMID: 24385862 PMCID: PMC3873190 DOI: 10.1590/s1415-47572013000400017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/18/2013] [Indexed: 11/25/2022] Open
Abstract
The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.
Collapse
Affiliation(s)
- Thiago da Silva Paiva
- Laboratório de Protistologia, Departamento de Zoologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ,
Brazil
- Laboratório de Biologia Molecular “Francisco Mauro Salzano”, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA,
Brazil
| | | | - Inácio Domingos da Silva-Neto
- Laboratório de Protistologia, Departamento de Zoologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ,
Brazil
| |
Collapse
|
17
|
Stoeck T, Przybos E, Dunthorn M. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates. Mol Ecol Resour 2013; 14:458-68. [DOI: 10.1111/1755-0998.12195] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
Affiliation(s)
- T. Stoeck
- Department of Ecology; University of Kaiserslautern; 67663 Kaiserslautern Germany
| | - E. Przybos
- Institute of Systematics and Evolution of Animals; Polish Academy of Sciences; 31-016 Kraków Poland
| | - M. Dunthorn
- Department of Ecology; University of Kaiserslautern; 67663 Kaiserslautern Germany
| |
Collapse
|
18
|
Assessing whether alpha-tubulin sequences are suitable for phylogenetic reconstruction of Ciliophora with insights into its evolution in euplotids. PLoS One 2012; 7:e40635. [PMID: 22808216 PMCID: PMC3393704 DOI: 10.1371/journal.pone.0040635] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/11/2012] [Indexed: 11/19/2022] Open
Abstract
The current understanding of ciliate phylogeny is mainly based on analyses of a single gene, the small subunit ribosomal RNA (SSU-rDNA). However, phylogenetic trees based on single gene sequence are not reliable estimators of species trees, and SSU-rDNA genealogies are not useful for resolution of some branches within Ciliophora. Since congruence between multiple loci is the best tool to determine evolutionary history, we assessed the usefulness of alpha-tubulin gene, a protein-coding gene that is frequently sequenced, for ciliate phylogeny. Here, we generate alpha-tubulin gene sequences of 12 genera and 30 species within the order Euplotida, one of the most frequently encountered ciliate clades with numerous apparently cosmopolitan species, as well as four genera within its putative sister order Discocephalida. Analyses of the resulting data reveal that: 1) the alpha-tubulin gene is suitable phylogenetic marker for euplotids at the family level, since both nucleotide and amino acid phylogenies recover all monophyletic euplotid families as defined by both morphological criteria and SSU-rDNA trees; however, alpha-tubulin gene is not a good marker for defining species, order and subclass; 2) for seven out of nine euplotid species for which paralogs are detected, gene duplication appears recent as paralogs are monophyletic; 3) the order Euplotida is non-monophyletic, and the family Uronychiidae with sequences from four genera, is non-monophyletic; and 4) there is more genetic diversity within the family Euplotidae than is evident from dargyrome (geometrical pattern of dorsal “silverline system” in ciliates) patterns, habit and SSU-rDNA phylogeny, which indicates the urgent need for taxonomic revision in this area.
Collapse
|
19
|
Katz LA, DeBerardinis J, Hall MS, Kovner AM, Dunthorn M, Muse SV. Heterogeneous rates of molecular evolution among cryptic species of the ciliate morphospecies Chilodonella uncinata. J Mol Evol 2012; 73:266-72. [PMID: 22258433 DOI: 10.1007/s00239-011-9468-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 10/24/2011] [Indexed: 11/27/2022]
Abstract
While molecular analyses have provided insight into the phylogeny of ciliates, the few studies assessing intraspecific variation have largely relied on just a single locus [e.g., nuclear small subunit rDNA (nSSU-rDNA) or mitochondrial cytochrome oxidase I]. In this study, we characterize the diversity of several nuclear protein-coding genes plus both nSSU-rDNA and mitochondrial small subunit rDNA (mtSSU-rDNA) of five isolates of the ciliate morphospecies Chilodonella uncinata. Although these isolates have nearly identical nSSU-rDNA sequences, they differ by up to 8.0% in mtSSU-rDNA. Comparative analyses of all loci, including β-tubulin paralogs, indicate a lack of recombination between strains, demonstrating that the morphospecies C. uncinata consists of multiple cryptic species. Further, there is considerable variation in substitution rates among loci as some protein-coding domains are nearly identical between isolates, while others differ by up to 13.2% at the amino acid level. Combining insights on macronuclear variation among isolates, the focus of this study, with published data from the micronucleus of two of these isolates, indicates that C. uncinata lineages are able to maintain both highly divergent and highly conserved genes within a rapidly evolving germline genome.
Collapse
Affiliation(s)
- Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Tetrahymena typically is found in freshwater lakes, ponds, and streams in association with submerged or emergent vegetation. The genus consists of numerous breeding species with micronuclei and many asexual species without micronuclei. In summer months when most populations are at their peak, 30-50% of water samples may yield one or more species of Tetrahymena. This chapter describes both bulk and trapping procedures for collecting Tetrahymena and also evaluates barcode methods for species identification. The history and inbreeding of the laboratory model Tetrahymena thermophila is also discussed. There are numerous unresolved questions about Tetrahymena evolution and biogeography that may be solved by additional collecting.
Collapse
Affiliation(s)
- F Paul Doerder
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, USA
| | | |
Collapse
|
21
|
Zhou Y, Wubneh H, Schwarz C, Landweber LF. A chimeric chromosome in the ciliate oxytricha resulting from duplication. J Mol Evol 2011; 73:70-3. [PMID: 22037698 DOI: 10.1007/s00239-011-9464-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 09/16/2011] [Indexed: 10/16/2022]
Abstract
In a process similar to exon splicing, ciliates use DNA splicing to produce a new somatic macronuclear genome from their germline micronuclear genome after sexual reproduction. This extra layer of DNA rearrangement permits novel mechanisms to create genetic complexity during both evolution and development. Here we describe a chimeric macronuclear chromosome in Oxytricha trifallax constructed from two smaller macronuclear chromosomes. To determine how the chimera was generated, we cloned and sequenced the corresponding germline loci. The chimera derives from a novel locus in the micronucleus that arose by partial duplication of the loci for the two smaller chromosomes. This suggests that an exon shuffling-like process, which we call MDS shuffling, enables ciliates to generate novel genetic material and gene products using different combinations of genomic DNA segments.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
22
|
Dunthorn M, Foissner W, Katz LA. Expanding character sampling for ciliate phylogenetic inference using mitochondrial SSU-rDNA as a molecular marker. Protist 2011; 162:85-99. [PMID: 20708960 PMCID: PMC3272410 DOI: 10.1016/j.protis.2010.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 06/12/2010] [Indexed: 11/28/2022]
Abstract
Molecular systematics of ciliates, particularly at deep nodes, has largely focused on increasing taxon sampling using the nuclear small subunit rDNA (nSSU-rDNA) locus. These previous analyses have generally been congruent with morphologically-based classifications, although there is extensive non-monophyly at many levels. However, caution is needed in interpreting these results as nSSU-rDNA is just a single molecular marker. Here the mitochondrial small subunit rDNA (mtSSU-rDNA) is evaluated for deep ciliate nodes using the Colpodea as an example. Overall, well-supported nodes in the mtSSU-rDNA and concatenated topologies are well supported in the nSSU-rDNA topology; e.g., the non-monophyly of the Cyrtolophosidida. The two moderately- to well-supported incongruences between the loci are the placement of the Sorogenida andColpoda aspera.Our analyses of mtSSU-rDNA support the conclusion, originally derived from nSSU-rDNA, that the morphological characters used in taxonomic circumscriptions of the Colpodea represent a mixture of ancestral and derived states. This demonstration of the efficacy of the mtSSU-rDNA will enable phylogenetic reconstructions of deep nodes in the ciliate tree of life to move from a single-locus to a multi-locus approach.
Collapse
|
23
|
Nei M, Suzuki Y, Nozawa M. The neutral theory of molecular evolution in the genomic era. Annu Rev Genomics Hum Genet 2010; 11:265-89. [PMID: 20565254 DOI: 10.1146/annurev-genom-082908-150129] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neutral theory of molecular evolution has been widely accepted and is the guiding principle for studying evolutionary genomics and the molecular basis of phenotypic evolution. Recent data on genomic evolution are generally consistent with the neutral theory. However, many recently published papers claim the detection of positive Darwinian selection via the use of new statistical methods. Examination of these methods has shown that their theoretical bases are not well established and often result in high rates of false-positive and false-negative results. When the deficiencies of these statistical methods are rectified, the results become largely consistent with the neutral theory. At present, genome-wide analyses of natural selection consist of collections of single-locus analyses. However, because phenotypic evolution is controlled by the interaction of many genes, the study of natural selection ought to take such interactions into account. Experimental studies of evolution will also be crucial.
Collapse
Affiliation(s)
- Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
24
|
Abstract
Histones wrap DNA to form nucleosome particles that compact eukaryotic genomes. Variant histones have evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, sperm packaging and other processes. 'Universal' histone variants emerged early in eukaryotic evolution and were later displaced for bulk packaging roles by the canonical histones (H2A, H2B, H3 and H4), the synthesis of which is coupled to DNA replication. Further specializations of histone variants have evolved in some lineages to perform additional tasks. Differences among histone variants in their stability, DNA wrapping, specialized domains that regulate access to DNA, and post-translational modifications, underlie the diverse functions that histones have acquired in evolution.
Collapse
|
25
|
Fu C, Xiong J, Miao W. Genome-wide identification and characterization of cytochrome P450 monooxygenase genes in the ciliate Tetrahymena thermophila. BMC Genomics 2009; 10:208. [PMID: 19409101 PMCID: PMC2691746 DOI: 10.1186/1471-2164-10-208] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 05/01/2009] [Indexed: 12/24/2022] Open
Abstract
Background Cytochrome P450 monooxygenases play key roles in the metabolism of a wide variety of substrates and they are closely associated with endocellular physiological processes or detoxification metabolism under environmental exposure. To date, however, none has been systematically characterized in the phylum Ciliophora. T. thermophila possess many advantages as a eukaryotic model organism and it exhibits rapid and sensitive responses to xenobiotics, making it an ideal model system to study the evolutionary and functional diversity of the P450 monooxygenase gene family. Results A total of 44 putative functional cytochrome P450 genes were identified and could be classified into 13 families and 21 sub-families according to standard nomenclature. The characteristics of both the conserved intron-exon organization and scaffold localization of tandem repeats within each P450 family clade suggested that the enlargement of T. thermophila P450 families probably resulted from recent separate small duplication events. Gene expression patterns of all T. thermophila P450s during three important cell physiological stages (vegetative growth, starvation and conjugation) were analyzed based on EST and microarray data, and three main categories of expression patterns were postulated. Evolutionary analysis including codon usage preference, site-specific selection and gene-expression evolution patterns were investigated and the results indicated remarkable divergences among the T. thermophila P450 genes. Conclusion The characterization, expression and evolutionary analysis of T. thermophila P450 monooxygenase genes in the current study provides useful information for understanding the characteristics and diversities of the P450 genes in the Ciliophora, and provides the baseline for functional analyses of individual P450 isoforms in this model ciliate species.
Collapse
Affiliation(s)
- Chengjie Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| | | | | |
Collapse
|
26
|
Dunthorn M, Eppinger M, Schwarz MVJ, Schweikert M, Boenigk J, Katz LA, Stoeck T. Phylogenetic placement of the Cyrtolophosididae Stokes, 1888 (Ciliophora; Colpodea) and neotypification of Aristerostoma marinum Kahl, 1931. Int J Syst Evol Microbiol 2009; 59:167-80. [DOI: 10.1099/ijs.0.000935-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Abstract
Analyses of diverse eukaryotes reveal that genomes are dynamic, sometimes dramatically so. In numerous lineages across the eukaryotic tree of life, DNA content varies within individuals throughout life cycles and among individuals within species. Discovery of examples of genome dynamism is accelerating as genome sequences are completed from diverse eukaryotes. Though much is known about genomes in animals, fungi, and plants, these lineages represent only 3 of the 60-200 lineages of eukaryotes. Here, we discuss diverse genomic strategies in exemplar eukaryotic lineages, including numerous microbial eukaryotes, to reveal dramatic variation that challenges established views of genome evolution. For example, in the life cycle of some members of the "radiolaria," ploidy increases from haploid (N) to approximately 1,000N, whereas intrapopulation variability of the enteric parasite Entamoeba ranges from 4N to 40N. Variation has also been found within our own species, with substantial differences in both gene content and chromosome lengths between individuals. Data on the dynamic nature of genomes shift the perception of the genome from being fixed and characteristic of a species (typological) to plastic due to variation within and between species.
Collapse
|
28
|
Yoon HS, Grant J, Tekle YI, Wu M, Chaon BC, Cole JC, Logsdon JM, Patterson DJ, Bhattacharya D, Katz LA. Broadly sampled multigene trees of eukaryotes. BMC Evol Biol 2008; 8:14. [PMID: 18205932 PMCID: PMC2249577 DOI: 10.1186/1471-2148-8-14] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 01/18/2008] [Indexed: 11/17/2022] Open
Abstract
Background Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the 'Amoebozoa', 'Chromalveolata', 'Excavata', 'Opisthokonta', 'Plantae', and 'Rhizaria'. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1) to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2) to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches. Results The inferred trees reveal strong support for many clades that also have defining ultrastructural or molecular characters. In contrast, we find limited to no support for most of the putative supergroups as only the 'Opisthokonta' receive strong support in our analyses. The supergroup 'Amoebozoa' has only moderate support, whereas the 'Chromalveolata', 'Excavata', 'Plantae', and 'Rhizaria' receive very limited or no support. Conclusion Our analytical approach substantiates the power of increased taxon sampling in placing diverse eukaryotic lineages within well-supported clades. At the same time, this study indicates that the six supergroup hypothesis of higher-level eukaryotic classification is likely premature. The use of a taxon-rich data set with 105 lineages, which still includes only a small fraction of the diversity of microbial eukaryotes, fails to resolve deeper phylogenetic relationships and reveals no support for four of the six proposed supergroups. Our analyses provide a point of departure for future taxon- and gene-rich analyses of the eukaryotic tree of life, which will be critical for resolving their phylogenetic interrelationships.
Collapse
Affiliation(s)
- Hwan Su Yoon
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zufall RA, Katz LA. Micronuclear and macronuclear forms of beta-tubulin genes in the ciliate Chilodonella uncinata reveal insights into genome processing and protein evolution. J Eukaryot Microbiol 2007; 54:275-82. [PMID: 17552983 DOI: 10.1111/j.1550-7408.2007.00267.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chilodonella uncinata, like all ciliates, contains two distinct nuclei in every cell: a germline micronucleus and a somatic macronucleus. During development of the macronucleus from a zygotic nucleus, the genome is processed in several ways, including elimination of internal sequences. In this study, we analyze micronuclear and macronuclear copies of beta-tubulin in C. uncinata and find at least four divergent paralogs of beta-tubulin in the macronucleus. We characterize the micronuclear version of one paralog and compare its internally eliminated sequences (IESs) with previously described IESs in this species. These comparisons reveal the presence of a conserved sequence motif within IESs. In addition, we compare the sequences of beta-tubulin from C. uncinata with other ciliates and to other alveolates in order to test the hypothesis that the mode of molecular evolution in ciliates obscures phylogenetic signal in protein-coding genes. We find that heterogeneous rates of substitution in beta-tubulin across ciliates result in unstable genealogies that are inconsistent with phylogenies based on small subunit rDNA genes and on ultrastructure. We discuss the implications of our findings for genome processing and protein evolution in ciliates.
Collapse
Affiliation(s)
- Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA.
| | | |
Collapse
|
30
|
Zufall RA, McGrath CL, Muse SV, Katz LA. Genome architecture drives protein evolution in ciliates. Mol Biol Evol 2006; 23:1681-7. [PMID: 16760419 DOI: 10.1093/molbev/msl032] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies of microbial eukaryotes have been pivotal in the discovery of biological phenomena, including RNA editing, self-splicing RNA, and telomere addition. Here we extend this list by demonstrating that genome architecture, namely the extensive processing of somatic (macronuclear) genomes in some ciliate lineages, is associated with elevated rates of protein evolution. Using newly developed likelihood-based procedures for studying molecular evolution, we investigate 6 genes to compare 1) ciliate protein evolution to that of 3 other clades of eukaryotes (plants, animals, and fungi) and 2) protein evolution in ciliates with extensively processed macronuclear genomes to that of other ciliate lineages. In 5 of the 6 genes, ciliates are estimated to have a higher ratio of nonsynonymous/synonymous substitution rates, consistent with an increase in the rate of protein diversification in ciliates relative to other eukaryotes. Even more striking, there is a significant effect of genome architecture within ciliates as the most divergent proteins are consistently found in those lineages with the most highly processed macronuclear genomes. We propose a model whereby genome architecture-specifically chromosomal processing, amitosis within macronuclei, and epigenetics-allows ciliates to explore protein space in a novel manner. Further, we predict that examination of diverse eukaryotes will reveal additional evidence of the impact of genome architecture on molecular evolution.
Collapse
|
31
|
Möllenbeck M, Cavalcanti ARO, Jönsson F, Lipps HJ, Landweber LF. Interconversion of germline-limited and somatic DNA in a scrambled gene. J Mol Evol 2006; 63:69-73. [PMID: 16755354 DOI: 10.1007/s00239-005-0166-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 02/02/2006] [Indexed: 11/28/2022]
Abstract
Ciliates have a somatic and a germline nucleus; after sexual conjugation a new somatic nucleus forms from the new zygotic germline nucleus. Formation of the somatic nucleus involves precise elimination of a large portion of DNA sequences from the germline. Here we compare the architecture of the germline and somatic versions of the actin I gene in two geographically isolated strains of Stylonychia lemnae. We show that the structure of the germline gene is surprisingly mercurial, with the distinction between germline-limited and somatic sequences variable over the course of evolution. This is, to our knowledge, the first example of evolutionary swapping of retained versus deleted sequences during ciliate development, with sequences deleted during development that are specifically retained in another strain.
Collapse
Affiliation(s)
- Matthias Möllenbeck
- Institute of Cell Biology, Witten/Herdecke University, 58448, Witten, Germany
| | | | | | | | | |
Collapse
|
32
|
Cervantes MD, Xi X, Vermaak D, Yao MC, Malik HS. The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus. Mol Biol Cell 2006; 17:485-97. [PMID: 16251352 PMCID: PMC1345684 DOI: 10.1091/mbc.e05-07-0698] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 10/18/2005] [Indexed: 11/11/2022] Open
Abstract
Ciliated protozoans present several features of chromosome segregation that are unique among eukaryotes, including their maintenance of two nuclei: a germline micronucleus, which undergoes conventional mitosis and meiosis, and a somatic macronucleus that divides by an amitotic process. To study ciliate chromosome segregation, we have identified the centromeric histone gene in the Tetrahymena thermophila genome (CNA1). CNA1p specifically localizes to peripheral centromeres in the micronucleus but is absent in the macronucleus during vegetative growth. During meiotic prophase of the micronucleus, when chromosomes are stretched to twice the length of the cell, CNA1p is found localized in punctate spots throughout the length of the chromosomes. As conjugation proceeds, CNA1p appears initially diffuse, but quickly reverts to discrete dots in those nuclei destined to become micronuclei, whereas it remains diffuse and is gradually lost in developing macronuclei. In progeny of germline CNA1 knockouts, we see no defects in macronuclear division or viability of the progeny cells immediately following the knockout. However, within a few divisions, progeny show abnormal mitotic segregation of their micronucleus, with most cells eventually losing their micronucleus entirely. This study reveals a strong dependence of the germline micronucleus on centromeric histones for proper chromosome segregation.
Collapse
Affiliation(s)
- Marcella D Cervantes
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
33
|
Katz LA, Snoeyenbos-West O, Doerder FP. Patterns of protein evolution in Tetrahymena thermophila: implications for estimates of effective population size. Mol Biol Evol 2005; 23:608-14. [PMID: 16308338 DOI: 10.1093/molbev/msj067] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High levels of synonymous substitutions among alleles of the surface antigen SerH led to the hypothesis that Tetrahymena thermophila has a tremendously large effective population size, one that is greater than estimated for many prokaryotes (Lynch, M., and J. S. Conery. 2003. Science 302:1401-1404.). Here we show that SerH is unusual as there are substantially lower levels of synonymous variation at five additional loci (four nuclear and one mitochondrial) characterized from T. thermophila populations. Hence, the effective population size of T. thermophila, a model single-celled eukaryote, is lower and more consistent with estimates from other microbial eukaryotes. Moreover, reanalysis of SerH polymorphism data indicates that this protein evolves through a combination of vertical transmission of alleles and concerted evolution of repeat units within alleles. SerH may be under balancing selection due to a mechanism analogous to the maintenance of antigenic variation in vertebrate immune systems. Finally, the dual nature of ciliate genomes and particularly the amitotic divisions of processed macronuclear genomes may make it difficult to estimate accurately effective population size from synonymous polymorphisms. This is because selection and drift operate on processed chromosomes in macronuclei, where assortment of alleles, disruption of linkage groups, and recombination can alter the genetic landscape relative to more canonical eukaryotic genomes.
Collapse
Affiliation(s)
- Laura A Katz
- Department of Biological Sciences, Smith College, Northampton.
| | | | | |
Collapse
|
34
|
Johnson MD, Tengs T, Oldach DW, Delwiche CF, Stoecker DK. Highly divergent SSU rRNA genes found in the marine ciliates Myrionecta rubra and Mesodinium pulex. Protist 2005; 155:347-59. [PMID: 15552061 DOI: 10.1078/1434461041844222] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myrionecta rubra and Mesodinium pulex are among the most commonly encountered planktonic ciliates in coastal marine and estuarine regions throughout the world. Despite their widespread distribution, both ciliates have received little attention by taxonomists. In order to better understand the phylogenetic position of these ciliates, we determined the SSU rRNA gene sequence from cultures of M. rubra and M. pulex. Partial sequence data were also generated from isolated cells of M. rubra from Chesapeake Bay. The M. rubra and M. pulex sequences were very divergent from all other ciliates, but shared a branch with 100% bootstrap support. Both species had numerous deletions and substitutions in their SSU rRNA gene, resulting in a long branch for the clade. This made the sequences prone to spurious phylogenetic affiliations when using simple phylogenetic methods. Maximum likelihood analysis placed M. rubra and M. pulex on the basal ciliate branch, following removal of ambiguously aligned regions. Fluorescent in situ hybridization probes were used with confocal laser scanning microscopy to confirm that these divergent sequences were both expressed in the cytoplasm and nucleolus of M. ruisra and M. pulex. We found that our sequence data matched several recently discovered unidentified eukaryotes in Genbank from diverse marine habitats, all of which had apparently been misattributed to highly divergent amoeboid organisms.
Collapse
Affiliation(s)
- Matthew D Johnson
- Horn Point Laboratory, University of Maryland, Center for Environmental Science, PO Box 775, Cambridge, MD 21613, USA.
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Snoeyenbos-West OLO, Cole J, Campbell A, Coats DW, Katz LA. Molecular Phylogeny of Phyllopharyngean Ciliates and their Group I Introns. J Eukaryot Microbiol 2004; 51:441-50. [PMID: 15352327 DOI: 10.1111/j.1550-7408.2004.tb00392.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We analyzed small subunit ribosomal DNA (ssu-rDNA) sequences to evaluate both the monophyly of the ciliate class Phyllopharyngea de Puytorac et al. (1974), and relationships among subclasses. Classifications based on morphology and ultrastructure divide the Phyllopharyngea into four subclasses, the Phyllopharyngia, Chonotrichia, Rhynchodia, and Suctoria. Our analyses of ssu-rDNA genealogies derived from sequence data collected from diverse members representing three of the four subclasses of Phyllopharyngea (Suctoria: Ephelota spp., Prodiscophyra collini, Acineta sp.; Phyllopharyngia: Chlamydodon exocellatus, Chlamydodon triquetrus, Dysteria sp.; and Chonotrichia: Isochona sp.) provide strong support for the monophyly of the Phyllopharyngea, and show that the Chonotrichia emerge from within the Phyllopharyngia. Based on this initial sampling, suctorian budding types are monophyletic, and exogenous budding appears to be basal to evaginative and endogenous budding. Further, we report the discovery of a group I intron at position 891 in the Suctoria Acineta sp. and Tokophrya lemnarum, and a second group I intron at position 1506 in T. lemnarum. These introns represent only the second examples of group I introns in a ciliate ribosomal gene, since the discovery of ribozymes in the LSU rRNA gene of Tetrahymena thermophila. Phylogenetic analyses of Group I introns suggest a complex evolutionary history involving either multiple loses or gains of introns within endogenously budding Suctoria.
Collapse
|