1
|
Höhna S, Lower SE, Duchen P, Catalán A. Robustness of divergence time estimation despite gene tree estimation error: a case study of fireflies (Coleoptera: Lampyridae). Syst Biol 2025; 74:335-348. [PMID: 39534920 DOI: 10.1093/sysbio/syae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Genomic data have become ubiquitous in phylogenomic studies, including divergence time estimation, but provide new challenges. These challenges include, among others, biological gene tree discordance, methodological gene tree estimation error, and computational limitations on performing full Bayesian inference under complex models. In this study, we use a recently published firefly (Coleoptera: Lampyridae) anchored hybrid enrichment data set (AHE; 436 loci for 88 Lampyridae species and 10 outgroup species) as a case study to explore gene tree estimation error and the robustness of divergence time estimation. First, we explored the amount of model violation using posterior predictive simulations because model violations are likely to bias phylogenetic inferences and produce gene tree estimation error. We specifically focused on missing data (either uniformly distributed or systematically) and the distribution of highly variable and conserved sites (either uniformly distributed or clustered). Our assessment of model adequacy showed that standard phylogenetic substitution models are not adequate for any of the 436 AHE loci. We tested if the model violations and alignment errors resulted indeed in gene tree estimation error by comparing the observed gene tree discordance to simulated gene tree discordance under the multispecies coalescent model. Thus, we show that the inferred gene tree discordance is not only due to biological mechanism but primarily due to inference errors. Lastly, we explored if divergence time estimation is robust despite the observed gene tree estimation error. We selected four subsets of the full AHE data set, concatenated each subset and performed a Bayesian relaxed clock divergence estimation in RevBayes. The estimated divergence times overlapped for all nodes that are shared between the topologies. Thus, divergence time estimation is robust using any well selected data subset as long as the topology inference is robust.
Collapse
Affiliation(s)
- Sebastian Höhna
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Sarah E Lower
- Department of Biology, Bucknell University, Lewisburg, PA 17837, United States
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
| | - Ana Catalán
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- Division of Evolutionary Biology, Ludeig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Pan D, Sun Y, Shi B, Wang R, Ng PKL, Guinot D, Cumberlidge N, Sun H. Phylogenomic analysis of brachyuran crabs using transcriptome data reveals possible sources of conflicting phylogenetic relationships within the group. Mol Phylogenet Evol 2024; 201:108201. [PMID: 39278384 DOI: 10.1016/j.ympev.2024.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Despite extensive morphological and molecular studies, the phylogenetic interrelationships within the infraorder Brachyura and the phylogenetic positions of many taxa remain uncertain. Studies that used a limited number of molecular markers have often failed to provide sufficient resolution, and may be susceptible to stochastic errors and incomplete lineage sorting (ILS). Here we reconstructed the phylogenetic relationships within the Brachyura using transcriptome data of 56 brachyuran species, including 14 newly sequenced taxa. Five supermatrices were constructed in order to exclude different sources of systematic error. The results of the phylogenetic analyses indicate that Heterotremata is non-monophyletic, and that the two Old World primary freshwater crabs (Potamidae and Gecarcinucidae) and the Hymenosomatoidea form a clade that is sister to the Thoracotremata, and outside the Heterotremata. We also found that ILS is the main cause of the gene-tree discordance of these freshwater crabs. Divergence time estimations indicate that the Brachyura has an ancient origin, probably either in the Triassic or Jurassic, and that the majority of extant families and superfamilies first appeared during the Cretaceous, with a constant increase of diversity in Post-Cretaceous-Palaeogene times. The results support the hypothesis that the two Old World freshwater crab families included in this study (Potamidae and Gecarcinucidae) diverged from their marine ancestors around 120 Ma, in the Cretaceous. In addition, this work provides new insights that may aid in the reclassification of some of the more problematic brachyuran groups.
Collapse
Affiliation(s)
- Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China.
| | - Yunlong Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Boyang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ruxiao Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Danièle Guinot
- Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Institut de Systématique, Évolution, Biodiversité (ISYEB), Case Postale 53, 57 rue Cuvier, F-75231 Paris cedex 05, France
| | - Neil Cumberlidge
- Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA
| | - Hongying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Salinas NR, Eshel G, Coruzzi GM, DeSalle R, Tessler M, Little DP. BAD2matrix: Phylogenomic matrix concatenation, indel coding, and more. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11604. [PMID: 39628543 PMCID: PMC11610412 DOI: 10.1002/aps3.11604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 03/16/2024] [Indexed: 12/06/2024]
Abstract
Premise Common steps in phylogenomic matrix production include biological sequence concatenation, morphological data concatenation, insertion/deletion (indel) coding, gene content (presence/absence) coding, removing uninformative characters for parsimony analysis, recording with reduced amino acid alphabets, and occupancy filtering. Existing software does not accomplish these tasks on a phylogenomic scale using a single program. Methods and Results BAD2matrix is a Python script that performs the above-mentioned steps in phylogenomic matrix construction for DNA or amino acid sequences as well as morphological data. The script works in UNIX-like environments (e.g., LINUX, MacOS, Windows Subsystem for LINUX). Conclusions BAD2matrix helps simplify phylogenomic pipelines and can be downloaded from https://github.com/dpl10/BAD2matrix/tree/master under a GNU General Public License v2.
Collapse
Affiliation(s)
- Nelson R. Salinas
- Lewis B. and Dorothy Cullman Program for Molecular SystematicsThe New York Botanical Garden, BronxNew YorkUSA
| | - Gil Eshel
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Gloria M. Coruzzi
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Rob DeSalle
- Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Michael Tessler
- Lewis B. and Dorothy Cullman Program for Molecular SystematicsThe New York Botanical Garden, BronxNew YorkUSA
- Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- Department of Biology, Medgar Evers CollegeCity University of New YorkBrooklynNew YorkUSA
| | - Damon P. Little
- Lewis B. and Dorothy Cullman Program for Molecular SystematicsThe New York Botanical Garden, BronxNew YorkUSA
| |
Collapse
|
4
|
Suissa JS, De La Cerda GY, Graber LC, Jelley C, Wickell D, Phillips HR, Grinage AD, Moreau CS, Specht CD, Doyle JJ, Landis JB. Data-driven guidelines for phylogenomic analyses using SNP data. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11611. [PMID: 39628540 PMCID: PMC11610416 DOI: 10.1002/aps3.11611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 12/06/2024]
Abstract
Premise There is a general lack of consensus on the best practices for filtering of single-nucleotide polymorphisms (SNPs) and whether it is better to use SNPs or include flanking regions (full "locus") in phylogenomic analyses and subsequent comparative methods. Methods Using genotyping-by-sequencing data from 22 Glycine species, we assessed the effects of SNP vs. locus usage and SNP retention stringency. We compared branch length, node support, and divergence time estimation across 16 datasets with varying amounts of missing data and total size. Results Our results revealed five aspects of phylogenomic data usage that may be generally applicable: (1) tree topology is largely congruent across analyses; (2) filtering strictly for SNP retention (e.g., 90-100%) reduces support and can alter some inferred relationships; (3) absolute branch lengths vary by two orders of magnitude between SNP and locus datasets; (4) data type and branch length variation have little effect on divergence time estimation; and (5) phylograms alter the estimation of ancestral states and rates of morphological evolution. Discussion Using SNP or locus datasets does not alter phylogenetic inference significantly, unless researchers want or need to use absolute branch lengths. We recommend against using excessive filtering thresholds for SNP retention to reduce the risk of producing inconsistent topologies and generating low support.
Collapse
Affiliation(s)
- Jacob S. Suissa
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee at KnoxvilleKnoxvilleTennesseeUSA
| | - Gisel Y. De La Cerda
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew YorkUSA
| | | | - Chloe Jelley
- Department of EntomologyCornell UniversityIthacaNew YorkUSA
| | - David Wickell
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew YorkUSA
- Boyce Thompson InstituteIthacaNew YorkUSA
| | - Heather R. Phillips
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew YorkUSA
| | - Ayress D. Grinage
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew YorkUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Corrie S. Moreau
- Department of EntomologyCornell UniversityIthacaNew YorkUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew YorkUSA
| | - Jeff J. Doyle
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew YorkUSA
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew YorkUSA
- BTI Computational Biology Center, Boyce Thompson InstituteIthacaNew YorkUSA
| |
Collapse
|
5
|
Wang Z, Tian S, Pang J, Zhang X, Hao X, Zhang L, Zhao H. Comparative analysis of chromosome-level genomes provides insights into chromosomal evolution in Chiroptera. Integr Zool 2024. [PMID: 39415355 DOI: 10.1111/1749-4877.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Chiroptera (bats) presents a fascinating model due to its remarkable variation in chromosome numbers, which range from 14 to 62. This astonishing diversity makes bats an excellent subject for studying chromosome evolution. The black-bearded tomb bat (Taphozous melanopogon) occupies a pivotal phylogenetic position within Chiroptera, emphasizing its crucial role in the systematic examination of bat chromosome evolution. In this study, we present the first chromosome-level genome of T. melanopogon within the family Emballonuridae. Together with previously published genomes, we construct a strongly supported phylogenetic tree of bats, which supports that Emballonuridae forms a basal group within Yangochiroptera. Furthermore, we reconstruct ancestral karyotypes at key nodes along the bat phylogeny and conduct a synteny analysis among the genomes of 12 bat species. Our findings identified evolutionary breakpoint regions (EBRs) that are of particular interest. Notably, some bat genomes exhibit an enrichment of genes related to host defense against microbial pathogens within EBRs. Remarkably, one species possesses multiple copies of some β-defensin genes, while six other species have experienced the loss of some β-defensin genes due to EBRs. Furthermore, some olfactory receptor genes are located in EBRs of 12 species, 4 of which have a significant enrichment in sensory perception of smell. Together, our comparative genomic analysis underscores the potential link between chromosome rearrangements and the adaptation of bats to defend against microbial pathogens.
Collapse
Affiliation(s)
- Zerong Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shilin Tian
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
- Novogene Bioinformatics Institute, Beijing, China
| | - Jiaxin Pang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangyi Zhang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangyu Hao
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Libiao Zhang
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huabin Zhao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Hao X, Lu Q, Zhao H. A molecular phylogeny for all 21 families within Chiroptera (bats). Integr Zool 2024; 19:989-998. [PMID: 37853557 DOI: 10.1111/1749-4877.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bats, members of the Chiroptera order, rank as the second most diverse group among mammals. Recent molecular systematic studies on bats have successfully classified 21 families within two suborders: Yinpterochiroptera and Yangochiroptera. Nevertheless, the phylogeny within these 21 families has remained a subject of controversy. In this study, we have employed a balanced approach to establish a robust family-level phylogenetic hypothesis for bats, utilizing a more comprehensive molecular dataset. This dataset includes representative species from all 21 bat families, resulting in a reduced level of missing genetic information. The resulting phylogenetic tree comprises 21 lineages that are strongly supported, each corresponding to one of the bat families. Our findings support to place the Emballonuroidea superfamily as the basal lineage of Yangochiroptera, and that Myzopodidae should be situated as a basal lineage of Emballonuroidea, forming a sister relationship with the clade consisting of Nycteridae and Emballonuridae. Finally, we have conducted dating analyses on this newly resolved phylogenetic tree, providing divergence times for each bat family. Collectively, our study has employed a relatively comprehensive molecular dataset to establish a more robust phylogeny encompassing all 21 bat families. This improved phylogenetic framework will significantly contribute to our understanding of evolutionary processes, ecological roles, disease dynamics, and biodiversity conservation in the realm of bats.
Collapse
Affiliation(s)
- Xiangyu Hao
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Lu
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Huabin Zhao
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Rick JA, Brock CD, Lewanski AL, Golcher-Benavides J, Wagner CE. Reference Genome Choice and Filtering Thresholds Jointly Influence Phylogenomic Analyses. Syst Biol 2024; 73:76-101. [PMID: 37881861 DOI: 10.1093/sysbio/syad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Molecular phylogenies are a cornerstone of modern comparative biology and are commonly employed to investigate a range of biological phenomena, such as diversification rates, patterns in trait evolution, biogeography, and community assembly. Recent work has demonstrated that significant biases may be introduced into downstream phylogenetic analyses from processing genomic data; however, it remains unclear whether there are interactions among bioinformatic parameters or biases introduced through the choice of reference genome for sequence alignment and variant calling. We address these knowledge gaps by employing a combination of simulated and empirical data sets to investigate the extent to which the choice of reference genome in upstream bioinformatic processing of genomic data influences phylogenetic inference, as well as the way that reference genome choice interacts with bioinformatic filtering choices and phylogenetic inference method. We demonstrate that more stringent minor allele filters bias inferred trees away from the true species tree topology, and that these biased trees tend to be more imbalanced and have a higher center of gravity than the true trees. We find the greatest topological accuracy when filtering sites for minor allele count (MAC) >3-4 in our 51-taxa data sets, while tree center of gravity was closest to the true value when filtering for sites with MAC >1-2. In contrast, filtering for missing data increased accuracy in the inferred topologies; however, this effect was small in comparison to the effect of minor allele filters and may be undesirable due to a subsequent mutation spectrum distortion. The bias introduced by these filters differs based on the reference genome used in short read alignment, providing further support that choosing a reference genome for alignment is an important bioinformatic decision with implications for downstream analyses. These results demonstrate that attributes of the study system and dataset (and their interaction) add important nuance for how best to assemble and filter short-read genomic data for phylogenetic inference.
Collapse
Affiliation(s)
- Jessica A Rick
- School of Natural Resources & the Environment, University of Arizona, Tucson, AZ 85719, USA
| | - Chad D Brock
- Department of Biological Sciences, Tarleton State University, Stephenville, TX 76401, USA
| | - Alexander L Lewanski
- Department of Integrative Biology and W.K. Kellogg Biological Station, Michigan State University, East Lansing, MI 48824, USA
| | - Jimena Golcher-Benavides
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
| | - Catherine E Wagner
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82071, USA
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
8
|
Lu B. Evolutionary Insights into the Relationship of Frogs, Salamanders, and Caecilians and Their Adaptive Traits, with an Emphasis on Salamander Regeneration and Longevity. Animals (Basel) 2023; 13:3449. [PMID: 38003067 PMCID: PMC10668855 DOI: 10.3390/ani13223449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The extant amphibians have developed uncanny abilities to adapt to their environment. I compared the genes of amphibians to those of other vertebrates to investigate the genetic changes underlying their unique traits, especially salamanders' regeneration and longevity. Using the well-supported Batrachia tree, I found that salamander genomes have undergone accelerated adaptive evolution, especially for development-related genes. The group-based comparison showed that several genes are under positive selection, rapid evolution, and unexpected parallel evolution with traits shared by distantly related species, such as the tail-regenerative lizard and the longer-lived naked mole rat. The genes, such as EEF1E1, PAFAH1B1, and OGFR, may be involved in salamander regeneration, as they are involved in the apoptotic process, blastema formation, and cell proliferation, respectively. The genes PCNA and SIRT1 may be involved in extending lifespan, as they are involved in DNA repair and histone modification, respectively. Some genes, such as PCNA and OGFR, have dual roles in regeneration and aging, which suggests that these two processes are interconnected. My experiment validated the time course differential expression pattern of SERPINI1 and OGFR, two genes that have evolved in parallel in salamanders and lizards during the regeneration process of salamander limbs. In addition, I found several candidate genes responsible for frogs' frequent vocalization and caecilians' degenerative vision. This study provides much-needed insights into the processes of regeneration and aging, and the discovery of the critical genes paves the way for further functional analysis, which could open up new avenues for exploiting the genetic potential of humans and improving human well-being.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
9
|
Portik DM, Streicher JW, Wiens JJ. Frog phylogeny: A time-calibrated, species-level tree based on hundreds of loci and 5,242 species. Mol Phylogenet Evol 2023; 188:107907. [PMID: 37633542 DOI: 10.1016/j.ympev.2023.107907] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Large-scale, time-calibrated phylogenies from supermatrix studies have become crucial for evolutionary and ecological studies in many groups of organisms. However, in frogs (anuran amphibians), there is a serious problem with existing supermatrix estimates. Specifically, these trees are based on a limited number of loci (15 or fewer), and the higher-level relationships estimated are discordant with recent phylogenomic estimates based on much larger numbers of loci. Here, we attempted to rectify this problem by generating an expanded supermatrix and combining this with data from phylogenomic studies. To assist in aligning ribosomal sequences for this supermatrix, we developed a new program (TaxonomyAlign) to help perform taxonomy-guided alignments. The new combined matrix contained 5,242 anuran species with data from 307 markers, but with 95% missing data overall. This dataset represented a 71% increase in species sampled relative to the previous largest supermatrix analysis of anurans (adding 2,175 species). Maximum-likelihood analyses generated a tree in which higher-level relationships (and estimated clade ages) were generally concordant with those from phylogenomic analyses but were more discordant with the previous largest supermatrix analysis. We found few obvious problems arising from the extensive missing data in most species. We also generated a set of 100 time-calibrated trees for use in comparative analyses. Overall, we provide an improved estimate of anuran phylogeny based on the largest number of combined taxa and markers to date. More broadly, we demonstrate the potential to combine phylogenomic and supermatrix analyses in other groups of organisms.
Collapse
Affiliation(s)
- Daniel M Portik
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721 USA; California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721 USA.
| |
Collapse
|
10
|
Fonseca C, Mendonça Filho JG, Reolid M, Duarte LV, de Oliveira AD, Souza JT, Lézin C. First putative occurrence in the fossil record of choanoflagellates, the sister group of Metazoa. Sci Rep 2023; 13:1242. [PMID: 36690681 PMCID: PMC9870899 DOI: 10.1038/s41598-022-26972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023] Open
Abstract
Choanoflagellates are microeukaryotes that inhabit freshwater and marine environments and have long been regarded as the closest living relatives of Metazoa. Knowledge on the evolution of choanoflagellates is key for the understanding of the ancestry of animals, and although molecular clock evidence suggests the appearance of choanoflagellates by late Neoproterozoic, no specimens of choanoflagellates are known to occur in the fossil record. Here the first putative occurrence of choanoflagellates in sediments from the Cretaceous (Cenomanian-Turonian) is described by means of several cutting-edge petrographic techniques, and a discussion of its paleoenvironmental significance is performed. Furthermore, their placement in the organic matter classification systems is argued, with a placement in the Zoomorph Subgroup (Palynomorph Group) of the dispersed organic matter classification system being proposed. Regarding the ICCP System 1994, incorporation of choanoflagellates is, at a first glance, straightforward within the liptinite group, but the definition of a new maceral may be necessary to accommodate the genetic origin of these organisms. While modern choanoflagellates may bring light to the cellular foundations of animal origins, this discovery may provide an older term of comparison to their extant specimens and provide guidelines for possible identification of these organic components in other locations and ages throughout the geological record.
Collapse
Affiliation(s)
- Carolina Fonseca
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil.
- Universidade de Coimbra, MARE - Centro de Ciências do Mare do Ambiente, ARNET - Aquatic Research Network, Departamento de Ciências da Terra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal.
| | - João Graciano Mendonça Filho
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil
| | - Matías Reolid
- Departamento de Geología and CEACTEMA, Universidad de Jaén, Campus Las Lagunillas sn, 23071, Jaén, Spain
| | - Luís V Duarte
- Universidade de Coimbra, MARE - Centro de Ciências do Mare do Ambiente, ARNET - Aquatic Research Network, Departamento de Ciências da Terra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - António Donizeti de Oliveira
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil
| | - Jaqueline Torres Souza
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil
| | - Carine Lézin
- Université Toulouse III - Paul Sabatier, OMP, GET (Géosciences Environnement Toulouse), CNRS, IRD, 14 Avenue Édouard Belin, 31400, Toulouse, France
| |
Collapse
|
11
|
Chan KO, Hertwig ST, Neokleous DN, Flury JM, Brown RM. Widely used, short 16S rRNA mitochondrial gene fragments yield poor and erratic results in phylogenetic estimation and species delimitation of amphibians. BMC Ecol Evol 2022; 22:37. [PMID: 35346025 PMCID: PMC8959075 DOI: 10.1186/s12862-022-01994-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background The 16S mitochondrial rRNA gene is the most widely sequenced molecular marker in amphibian systematic studies, making it comparable to the universal CO1 barcode that is more commonly used in other animal groups. However, studies employ different primer combinations that target different lengths/regions of the 16S gene ranging from complete gene sequences (~ 1500 bp) to short fragments (~ 500 bp), the latter of which is the most ubiquitously used. Sequences of different lengths are often concatenated, compared, and/or jointly analyzed to infer phylogenetic relationships, estimate genetic divergence (p-distances), and justify the recognition of new species (species delimitation), making the 16S gene region, by far, the most influential molecular marker in amphibian systematics. Despite their ubiquitous and multifarious use, no studies have ever been conducted to evaluate the congruence and performance among the different fragment lengths. Results Using empirical data derived from both Sanger-based and genomic approaches, we show that full-length 16S sequences recover the most accurate phylogenetic relationships, highest branch support, lowest variation in genetic distances (pairwise p-distances), and best-scoring species delimitation partitions. In contrast, widely used short fragments produce inaccurate phylogenetic reconstructions, lower and more variable branch support, erratic genetic distances, and low-scoring species delimitation partitions, the numbers of which are vastly overestimated. The relatively poor performance of short 16S fragments is likely due to insufficient phylogenetic information content. Conclusions Taken together, our results demonstrate that short 16S fragments are unable to match the efficacy achieved by full-length sequences in terms of topological accuracy, heuristic branch support, genetic divergences, and species delimitation partitions, and thus, phylogenetic and taxonomic inferences that are predicated on short 16S fragments should be interpreted with caution. However, short 16S fragments can still be useful for species identification, rapid assessments, or definitively coupling complex life stages in natural history studies and faunal inventories. While the full 16S sequence performs best, it requires the use of several primer pairs that increases cost, time, and effort. As a compromise, our results demonstrate that practitioners should utilize medium-length primers in favor of the short-fragment primers because they have the potential to markedly improve phylogenetic inference and species delimitation without additional cost. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01994-y.
Collapse
Affiliation(s)
- Kin Onn Chan
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore.
| | - Stefan T Hertwig
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Dario N Neokleous
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Jana M Flury
- Leibniz-Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Rafe M Brown
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Dyche Hall, Lawrence, KS, 66045, USA
| |
Collapse
|
12
|
Booth DS, King N. The history of Salpingoeca rosetta as a model for reconstructing animal origins. Curr Top Dev Biol 2022; 147:73-91. [PMID: 35337467 DOI: 10.1016/bs.ctdb.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Choanoflagellates, the closest living relatives of animals, have the potential to reveal the genetic and cell biological foundations of complex multicellular development in animals. Here we describe the history of research on the choanoflagellate Salpingoeca rosetta. From its original isolation in 2000 to the establishment of CRISPR-mediated genome editing in 2020, S. rosetta provides an instructive case study in the establishment of a new model organism.
Collapse
Affiliation(s)
- David S Booth
- Chan Zuckerberg Biohub and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States.
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.
| |
Collapse
|
13
|
Soares KDA, Mathubara K. Combined phylogeny and new classification of catsharks (Chondrichthyes: Elasmobranchii: Carcharhiniformes). Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlab108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
This is the first study to combine morphological and molecular characters to infer the phylogenetic relationships among catsharks. All currently valid genera classified in the family Scyliorhinidae s.l. and representatives of other carcharhinoid families plus one lamnoid and two orectoloboids were included as terminal taxa. A total of 143 morphological characters and 44 NADH2 sequences were analysed. Parsimony analyses under different weighting schemes and strengths were used to generate hypotheses of phylogenetic relationships. The phylogenetic analysis of 78 terminal taxa, using the combined dataset and weighting each column separately (SEP; k = 3) resulted in one most-parsimonious cladogram of 4441 steps with the greatest internal resolution of clades and strongest support. The main changes in nomenclature and classification are the revised definition and scope of Scyliorhinidae, Apristurus and Pentanchus and the revalidation of Atelomycteridae. The monophyly of Pentanchidae is supported, as is that of most catshark genera. Two new subfamilies of the family Pentanchidae are defined: Halaelurinae subfam. nov. and Galeinae subfam. nov. Our analysis emphasizes the relevance of morphological characters in the inference of evolutionary history of carcharhinoids and sheds light on the taxonomic status of some genera in need of further exploration.
Collapse
Affiliation(s)
- Karla D A Soares
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| | - Kleber Mathubara
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| |
Collapse
|
14
|
Mongiardino Koch N. Phylogenomic Subsampling and the Search for Phylogenetically Reliable Loci. Mol Biol Evol 2021; 38:4025-4038. [PMID: 33983409 DOI: 10.1101/2021.02.13.431075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
15
|
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
16
|
Lahr DJ. An emerging paradigm for the origin and evolution of shelled amoebae, integrating advances from molecular phylogenetics, morphology and paleontology. Mem Inst Oswaldo Cruz 2021; 116:e200620. [PMID: 34406221 PMCID: PMC8370470 DOI: 10.1590/0074-02760200620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/05/2021] [Indexed: 11/22/2022] Open
Abstract
The phylogenetic paradigm of eukaryotic evolution has changed dramatically over the past two decades, with profound reflections on the understanding of life on earth. Arcellinida testate (shelled) amoebae lineages represent some of the oldest fossils of eukaryotes, and the elucidation of their phylogenetic relationships opened a window to the distant past, with important implications for understanding the evolution of life on earth. This four-part essay summarises advances made in the past 20 years regarding: (i) the phylogenetic relationships among amoebae with shells evolving in concert with the advances made in the phylogeny of eukaryotes; (ii) paleobiological studies unraveling the biological affinities of Neoproterozoic vase-shaped microfossils (VSMs); (iii) the interwoven interpretation of these different sets of data concluding that the Neoproterozoic contains a surprising diversity of organisms, in turn demanding a reinterpretation of the most profound events we know in the history of eukaryotes, and; (iv) a synthesis of the current knowledge about the evolution of Arcellinida, together with the possibilities and pitfalls of their interpretation.
Collapse
Affiliation(s)
- Daniel Jg Lahr
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brasil
| |
Collapse
|
17
|
Smith BT, Mauck WM, Benz BW, Andersen MJ. Uneven Missing Data Skew Phylogenomic Relationships within the Lories and Lorikeets. Genome Biol Evol 2021; 12:1131-1147. [PMID: 32470111 PMCID: PMC7486955 DOI: 10.1093/gbe/evaa113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 01/21/2023] Open
Abstract
The resolution of the Tree of Life has accelerated with advances in DNA sequencing technology. To achieve dense taxon sampling, it is often necessary to obtain DNA from historical museum specimens to supplement modern genetic samples. However, DNA from historical material is generally degraded, which presents various challenges. In this study, we evaluated how the coverage at variant sites and missing data among historical and modern samples impacts phylogenomic inference. We explored these patterns in the brush-tongued parrots (lories and lorikeets) of Australasia by sampling ultraconserved elements in 105 taxa. Trees estimated with low coverage characters had several clades where relationships appeared to be influenced by whether the sample came from historical or modern specimens, which were not observed when more stringent filtering was applied. To assess if the topologies were affected by missing data, we performed an outlier analysis of sites and loci, and a data reduction approach where we excluded sites based on data completeness. Depending on the outlier test, 0.15% of total sites or 38% of loci were driving the topological differences among trees, and at these sites, historical samples had 10.9× more missing data than modern ones. In contrast, 70% data completeness was necessary to avoid spurious relationships. Predictive modeling found that outlier analysis scores were correlated with parsimony informative sites in the clades whose topologies changed the most by filtering. After accounting for biased loci and understanding the stability of relationships, we inferred a more robust phylogenetic hypothesis for lories and lorikeets.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, New York
| | - William M Mauck
- Department of Ornithology, American Museum of Natural History, New York, New York.,New York Genome Center, New York, New York
| | - Brett W Benz
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico
| |
Collapse
|
18
|
Barrientos LS, Streicher JW, Miller EC, Pie MR, Wiens JJ, Crawford AJ. Phylogeny of terraranan frogs based on 2,665 loci and impacts of missing data on phylogenomic analyses. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1933249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lucas S. Barrientos
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Jeffrey W. Streicher
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
- Department of Life Sciences, The Natural History Museum, South Kensington, London, SW7 5BD, England, UK
| | - Elizabeth C. Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, 98195-5020, WA, USA
| | - Marcio R. Pie
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| |
Collapse
|
19
|
Almutairi ZM. Molecular characterization and expression analysis of ribosomal L18/L5e gene in Pennisetum glaucum (L.) R. Br. Saudi J Biol Sci 2021; 28:3585-3593. [PMID: 34121902 PMCID: PMC8176002 DOI: 10.1016/j.sjbs.2021.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Ribosomal L18/L5e (RL18/L5e) is a member of the ribosomal L18/L5e protein family, which has an essential function in translation of mRNA into protein in the large ribosomal subunit. In this study, RL18/L5e was isolated and sequenced from local Pennisetum glaucum (L.) R. Br. cultivar which is known to adapt to environmental stress. The obtained cDNA for PgRL18/L5e was 699 bp in length, with an open reading frame of 564 bp. The deduced protein sequence contained 187 amino acids and comprised an RL18/L5e domain, which shared high sequence identity with orthologous proteins from Viridiplantae. The obtained PgRL18/L5e cDNA contained two exons of 154 and 545 bp, respectively, and an intron of 1398 bp. Secondary and 3D structures of the deduced PgRL18/L5e protein were predicted using in silico tools. Phylogenetic analysis showed close relationships between the PgRL18/L5e protein and its orthologs from monocot species. Multiple sequence alignment showed high identity in the RL18/L5e domain sequence in all orthologous proteins in Viridiplantae. Moreover, all orthologous RL18/L5e proteins shared the same domain architecture and were nearly equal in length. Quantitative real-time PCR indicated a higher transcript abundance of PgRL18/L5e in shoots than in roots of 3-day-old seedlings. Moreover, the expression of PgRL18/L5e in seedlings under cold and drought stress was substantially lower than that in untreated seedlings, whereas the highest expression was shown under heat stress. This study provides insights into the structure and function of the RL18/L5e gene in tolerant crops, which could facilitate the understanding of the role of the various plant ribosomal proteins in adaptation to extreme environments.
Collapse
Affiliation(s)
- Zainab M. Almutairi
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box: 83, Al-kharj 11942, Saudi Arabia
| |
Collapse
|
20
|
Talavera G, Lukhtanov V, Pierce NE, Vila R. DNA barcodes combined with multi-locus data of representative taxa can generate reliable higher-level phylogenies. Syst Biol 2021; 71:382-395. [PMID: 34022059 PMCID: PMC8830075 DOI: 10.1093/sysbio/syab038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
Taxa are frequently labeled incertae sedis when their placement is debated at ranks above the species level, such as their subgeneric, generic, or subtribal placement. This is a pervasive problem in groups with complex systematics due to difficulties in identifying suitable synapomorphies. In this study, we propose combining DNA barcodes with a multilocus backbone phylogeny in order to assign taxa to genus or other higher-level categories. This sampling strategy generates molecular matrices containing large amounts of missing data that are not distributed randomly: barcodes are sampled for all representatives, and additional markers are sampled only for a small percentage. We investigate the effects of the degree and randomness of missing data on phylogenetic accuracy using simulations for up to 100 markers in 1000-tips trees, as well as a real case: the subtribe Polyommatina (Lepidoptera: Lycaenidae), a large group including numerous species with unresolved taxonomy. Our simulation tests show that when a strategic and representative selection of species for higher-level categories has been made for multigene sequencing (approximately one per simulated genus), the addition of this multigene backbone DNA data for as few as 5–10% of the specimens in the total data set can produce high-quality phylogenies, comparable to those resulting from 100% multigene sampling. In contrast, trees based exclusively on barcodes performed poorly. This approach was applied to a 1365-specimen data set of Polyommatina (including ca. 80% of described species), with nearly 8% of representative species included in the multigene backbone and the remaining 92% included only by mitochondrial COI barcodes, a phylogeny was generated that highlighted potential misplacements, unrecognized major clades, and placement for incertae sedis taxa. We use this information to make systematic rearrangements within Polyommatina, and to describe two new genera. Finally, we propose a systematic workflow to assess higher-level taxonomy in hyperdiverse groups. This research identifies an additional, enhanced value of DNA barcodes for improvements in higher-level systematics using large data sets. [Birabiro; DNA barcoding; incertae sedis; Kipepeo; Lycaenidae; missing data; phylogenomic; phylogeny; Polyommatina; supermatrix; systematics; taxonomy]
Collapse
Affiliation(s)
- Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s/n, 08038 Barcelona, Catalonia, Spain.,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
| | - Vladimir Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
New Approaches for Inferring Phylogenies in the Presence of Paralogs. Trends Genet 2021; 37:174-187. [DOI: 10.1016/j.tig.2020.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
|
22
|
Orr RJS, Sannum MM, Boessenkool S, Di Martino E, Gordon DP, Mello HL, Obst M, Ramsfjell MH, Smith AM, Liow LH. A molecular phylogeny of historical and contemporary specimens of an under-studied micro-invertebrate group. Ecol Evol 2021; 11:309-320. [PMID: 33437431 PMCID: PMC7790615 DOI: 10.1002/ece3.7042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 11/06/2022] Open
Abstract
Resolution of relationships at lower taxonomic levels is crucial for answering many evolutionary questions, and as such, sufficiently varied species representation is vital. This latter goal is not always achievable with relatively fresh samples. To alleviate the difficulties in procuring rarer taxa, we have seen increasing utilization of historical specimens in building molecular phylogenies using high throughput sequencing. This effort, however, has mainly focused on large-bodied or well-studied groups, with small-bodied and under-studied taxa under-prioritized. Here, we utilize both historical and contemporary specimens, to increase the resolution of phylogenetic relationships among a group of under-studied and small-bodied metazoans, namely, cheilostome bryozoans. In this study, we pioneer the sequencing of air-dried cheilostomes, utilizing a recently developed library preparation method for low DNA input. We evaluate a de novo mitogenome assembly and two iterative methods, using the sequenced target specimen as a reference for mapping, for our sequences. In doing so, we present mitochondrial and ribosomal RNA sequences of 43 cheilostomes representing 37 species, including 14 from historical samples ranging from 50 to 149 years old. The inferred phylogenetic relationships of these samples, analyzed together with publicly available sequence data, are shown in a statistically well-supported 65 taxa and 17 genes cheilostome tree, which is also the most broadly sampled and largest to date. The robust phylogenetic placement of historical samples whose contemporary conspecifics and/or congenerics have been sequenced verifies the appropriateness of our workflow and gives confidence in the phylogenetic placement of those historical samples for which there are no close relatives sequenced. The success of our workflow is highlighted by the circularization of a total of 27 mitogenomes, seven from historical cheilostome samples. Our study highlights the potential of utilizing DNA from micro-invertebrate specimens stored in natural history collections for resolving phylogenetic relationships among species.
Collapse
Affiliation(s)
| | | | - Sanne Boessenkool
- Department of BiosciencesCentre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | | | - Dennis P. Gordon
- National Institute of Water and Atmospheric ResearchWellingtonNew Zealand
| | - Hannah L. Mello
- Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
| | - Matthias Obst
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | | | - Abigail M. Smith
- Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
| | - Lee Hsiang Liow
- Natural History MuseumUniversity of OsloOsloNorway
- Department of BiosciencesCentre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| |
Collapse
|
23
|
Jin LQ, Xu ZW, Zhang B, Yi M, Weng CY, Lin S, Wu H, Qin XT, Xu F, Teng Y, Yuan SJ, Liu ZQ, Zheng YG. Genome sequencing and analysis of fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis. AMB Express 2020; 10:105. [PMID: 32494871 PMCID: PMC7270455 DOI: 10.1186/s13568-020-01039-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/26/2020] [Indexed: 01/09/2023] Open
Abstract
Ophiocordyceps sinensis has been used as a traditional medicine or healthy food in China for thousands of years. Hirsutella sinensis was reported as the only correct anamorph of O. sinensis. It is reported that the laboratory-grown H. sinensis mycelium has similar clinical efficacy and less associated toxicity compared to the wild O. sinensis. The research of the H. sinensis is becoming more and more important and urgent. To gain deeper insight into the biological and pharmacological mechanisms, we sequenced the genome of H. sinensis. The genome of H. sinensis (102.72 Mb) was obtained for the first time, with > 99% coverage. 10,200 protein-encoding genes were predicted based on the genome sequence. A detailed secondary metabolism analysis and structure verification of the main ingredients were performed, and the biosynthesis pathways of seven ingredients (mannitol, cordycepin, purine nucleotides, pyrimidine nucleotides, unsaturated fatty acid, cordyceps polysaccharide and sphingolipid) were predicted and drawn. Furthermore, infection process and mechanism of H. sinensis were studied and elaborated in this article. The enzymes involved in the infection mechanism were also predicted, cloned and expressed to verify the mechanism. The genes and proteins were predicted and annotated based on the genome sequence. The pathways of several active components in H. sinensis were predicted and key enzymes were confirmed. The work presented here would improve the understanding of the genetic basis of this organism, and contribute to further research, production and application of H. sinensis.
Collapse
Affiliation(s)
- Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Zhe-Wen Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Ming Yi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Chun-Yue Weng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Shan Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Hui Wu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220 China
- East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000 China
| | - Xiang-Tian Qin
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220 China
- East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000 China
| | - Feng Xu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220 China
- East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000 China
| | - Yi Teng
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220 China
- East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000 China
| | - Shui-Jin Yuan
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220 China
- East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000 China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
24
|
Hyun DY, Sebastin R, Lee KJ, Lee GA, Shin MJ, Kim SH, Lee JR, Cho GT. Genotyping-by-Sequencing Derived Single Nucleotide Polymorphisms Provide the First Well-Resolved Phylogeny for the Genus Triticum (Poaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:688. [PMID: 32625218 PMCID: PMC7311657 DOI: 10.3389/fpls.2020.00688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
Wheat (Triticum spp.) has been an important staple food crop for mankind since the beginning of agriculture. The genus Triticum L. is composed of diploid, tetraploid, and hexaploid species, majority of which have not yet been discriminated clearly, and hence their phylogeny and classification remain unresolved. Genotyping-by-sequencing (GBS) is an easy and affordable method that allows us to generate genome-wide single nucleotide polymorphism (SNP) markers. In this study, we used GBS to obtain SNPs covering all seven chromosomes from 283 accessions of Triticum-related genera. After filtering low-quality and redundant SNPs based on haplotype information, the GBS assay provided 14,188 high-quality SNPs that were distributed across the A (71%), B (26%), and D (2.4%) genomes. Cluster analysis and discriminant analysis of principal components (DAPC) allowed us to distinguish six distinct groups that matched well with Triticum species complexity. We constructed a Bayesian phylogenetic tree using 14,188 SNPs, in which 17 Triticum species and subspecies were discriminated. Dendrogram analysis revealed that the polyploid wheat species could be divided into groups according to the presence of A, B, D, and G genomes with strong nodal support and provided new insight into the evolution of spelt wheat. A total of 2,692 species-specific SNPs were identified to discriminate the common (T. aestivum) and durum (T. turgidum) wheat cultivar and landraces. In principal component analysis grouping, the two wheat species formed individual clusters and the SNPs were able to distinguish up to nine groups of 10 subspecies. This study demonstrated that GBS-derived SNPs could be used efficiently in genebank management to classify Triticum species and subspecies that are very difficult to distinguish by their morphological characters.
Collapse
|
25
|
White ND, Braun MJ. Extracting phylogenetic signal from phylogenomic data: Higher-level relationships of the nightbirds (Strisores). Mol Phylogenet Evol 2019; 141:106611. [DOI: 10.1016/j.ympev.2019.106611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
|
26
|
Ametrano CG, Grewe F, Crous PW, Goodwin SB, Liang C, Selbmann L, Lumbsch HT, Leavitt SD, Muggia L. Genome-scale data resolve ancestral rock-inhabiting lifestyle in Dothideomycetes (Ascomycota). IMA Fungus 2019; 10:19. [PMID: 32647623 PMCID: PMC7325674 DOI: 10.1186/s43008-019-0018-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Dothideomycetes is the most diverse fungal class in Ascomycota and includes species with a wide range of lifestyles. Previous multilocus studies have investigated the taxonomic and evolutionary relationships of these taxa but often failed to resolve early diverging nodes and frequently generated inconsistent placements of some clades. Here, we use a phylogenomic approach to resolve relationships in Dothideomycetes, focusing on two genera of melanized, extremotolerant rock-inhabiting fungi, Lichenothelia and Saxomyces, that have been suggested to be early diverging lineages. We assembled phylogenomic datasets from newly sequenced (4) and previously available genomes (238) of 242 taxa. We explored the influence of tree inference methods, supermatrix vs. coalescent-based species tree, and the impact of varying amounts of genomic data. Overall, our phylogenetic reconstructions provide consistent and well-supported topologies for Dothideomycetes, recovering Lichenothelia and Saxomyces among the earliest diverging lineages in the class. In addition, many of the major lineages within Dothideomycetes are recovered as monophyletic, and the phylogenomic approach implemented strongly supports their relationships. Ancestral character state reconstruction suggest that the rock-inhabiting lifestyle is ancestral within the class.
Collapse
Affiliation(s)
- Claudio G Ametrano
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - Felix Grewe
- Grainger Bioinformatics Center and Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605 USA
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85176, 3508 AD Utrecht, The Netherlands
| | - Stephen B Goodwin
- USDA-ARS, Crop Production and Pest Control Research Unit and Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 USA
| | - Chen Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109 China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell' Università, 01100 Viterbo, Italy.,Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | - H Thorsten Lumbsch
- Grainger Bioinformatics Center and Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605 USA
| | - Steven D Leavitt
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, 4102 Life Science Building, Provo, UT 84602 USA
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
27
|
Burki F, Roger AJ, Brown MW, Simpson AGB. The New Tree of Eukaryotes. Trends Ecol Evol 2019; 35:43-55. [PMID: 31606140 DOI: 10.1016/j.tree.2019.08.008] [Citation(s) in RCA: 464] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
For 15 years, the eukaryote Tree of Life (eToL) has been divided into five to eight major groupings, known as 'supergroups'. However, the tree has been profoundly rearranged during this time. The new eToL results from the widespread application of phylogenomics and numerous discoveries of major lineages of eukaryotes, mostly free-living heterotrophic protists. The evidence that supports the tree has transitioned from a synthesis of molecular phylogenetics and biological characters to purely molecular phylogenetics. Most current supergroups lack defining morphological or cell-biological characteristics, making the supergroup label even more arbitrary than before. Going forward, the combination of traditional culturing with maturing culture-free approaches and phylogenomics should accelerate the process of completing and resolving the eToL at its deepest levels.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
28
|
Abstract
It has long been appreciated that analyses of genomic data (e.g., whole genome sequencing or sequence capture) have the potential to reveal the tree of life, but it remains challenging to move from sequence data to a clear understanding of evolutionary history, in part due to the computational challenges of phylogenetic estimation using genome-scale data. Supertree methods solve that challenge because they facilitate a divide-and-conquer approach for large-scale phylogeny inference by integrating smaller subtrees in a computationally efficient manner. Here, we combined information from sequence capture and whole-genome phylogenies using supertree methods. However, the available phylogenomic trees had limited overlap so we used taxon-rich (but not phylogenomic) megaphylogenies to weave them together. This allowed us to construct a phylogenomic supertree, with support values, that included 707 bird species (~7% of avian species diversity). We estimated branch lengths using mitochondrial sequence data and we used these branch lengths to estimate divergence times. Our time-calibrated supertree supports radiation of all three major avian clades (Palaeognathae, Galloanseres, and Neoaves) near the Cretaceous-Paleogene (K-Pg) boundary. The approach we used will permit the continued addition of taxa to this supertree as new phylogenomic data are published, and it could be applied to other taxa as well.
Collapse
|
29
|
Zaher H, Murphy RW, Arredondo JC, Graboski R, Machado-Filho PR, Mahlow K, Montingelli GG, Quadros AB, Orlov NL, Wilkinson M, Zhang YP, Grazziotin FG. Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS One 2019; 14:e0216148. [PMID: 31075128 PMCID: PMC6512042 DOI: 10.1371/journal.pone.0216148] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/15/2019] [Indexed: 11/29/2022] Open
Abstract
Caenophidian snakes include the file snake genus Acrochordus and advanced colubroidean snakes that radiated mainly during the Neogene. Although caenophidian snakes are a well-supported clade, their inferred affinities, based either on molecular or morphological data, remain poorly known or controversial. Here, we provide an expanded molecular phylogenetic analysis of Caenophidia and use three non-parametric measures of support-Shimodaira-Hasegawa-Like test (SHL), Felsentein (FBP) and transfer (TBE) bootstrap measures-to evaluate the robustness of each clade in the molecular tree. That very different alternative support values are common suggests that results based on only one support value should be viewed with caution. Using a scheme to combine support values, we find 20.9% of the 1265 clades comprising the inferred caenophidian tree are unambiguously supported by both SHL and FBP values, while almost 37% are unsupported or ambiguously supported, revealing the substantial extent of phylogenetic problems within Caenophidia. Combined FBP/TBE support values show similar results, while SHL/TBE result in slightly higher combined values. We consider key morphological attributes of colubroidean cranial, vertebral and hemipenial anatomy and provide additional morphological evidence supporting the clades Colubroides, Colubriformes, and Endoglyptodonta. We review and revise the relevant caenophidian fossil record and provide a time-calibrated tree derived from our molecular data to discuss the main cladogenetic events that resulted in present-day patterns of caenophidian diversification. Our results suggest that all extant families of Colubroidea and Elapoidea composing the present-day endoglyptodont fauna originated rapidly within the early Oligocene-between approximately 33 and 28 Mya-following the major terrestrial faunal turnover known as the "Grande Coupure" and associated with the overall climate shift at the Eocene-Oligocene boundary. Our results further suggest that the caenophidian radiation originated within the Caenozoic, with the divergence between Colubroides and Acrochordidae occurring in the early Eocene, at ~ 56 Mya.
Collapse
Affiliation(s)
- Hussam Zaher
- Museu de Zoologia, Universidade de São Paulo, São Paulo, São Paulo,
Brazil
- CR2P –Centre de Recherche en Paléontologie – Muséum national d’Histoire
naturelle – Sorbonne Université, Paris, France
| | - Robert W. Murphy
- Centre for Biodiversity, Royal Ontario Museum, Toronto, Ontario,
Canada
- State Key Laboratory of Genetic Resources and Evolution, Kunming
Institute of Zoology, Kunming, China
| | | | - Roberta Graboski
- Museu de Zoologia, Universidade de São Paulo, São Paulo, São Paulo,
Brazil
- Laboratório de Herpetologia, Museu Paraense Emílio Goeldi, Belém, Pará,
Brazil
| | | | - Kristin Mahlow
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity
Science, Berlin, Germany
| | | | - Ana Bottallo Quadros
- Museu de Zoologia, Universidade de São Paulo, São Paulo, São Paulo,
Brazil
- CR2P –Centre de Recherche en Paléontologie – Muséum national d’Histoire
naturelle – Sorbonne Université, Paris, France
| | - Nikolai L. Orlov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg,
Russia
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London, United
Kingdom
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming
Institute of Zoology, Kunming, China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan
University, Kunming, China
| | - Felipe G. Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, São
Paulo, Brazil
| |
Collapse
|
30
|
Effects of missing data and data type on phylotranscriptomic analysis of stony corals (Cnidaria: Anthozoa: Scleractinia). Mol Phylogenet Evol 2019; 134:12-23. [DOI: 10.1016/j.ympev.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 01/28/2023]
|
31
|
Betancur-R R, Arcila D, Vari RP, Hughes LC, Oliveira C, Sabaj MH, Ortí G. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes. Evolution 2018; 73:329-345. [PMID: 30426469 DOI: 10.1111/evo.13649] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 11/30/2022]
Abstract
Phylogenomic studies using genome-wide datasets are quickly becoming the state of the art for systematics and comparative studies, but in many cases, they result in strongly supported incongruent results. The extent to which this conflict is real depends on different sources of error potentially affecting big datasets (assembly, stochastic, and systematic error). Here, we apply a recently developed methodology (GGI or gene genealogy interrogation) and data curation to new and published datasets with more than 1000 exons, 500 ultraconserved element (UCE) loci, and transcriptomic sequences that support incongruent hypotheses. The contentious non-monophyly of the order Characiformes proposed by two studies is shown to be a spurious outcome induced by sample contamination in the transcriptomic dataset and an ambiguous result due to poor taxonomic sampling in the UCE dataset. By exploring the effects of number of taxa and loci used for analysis, we show that the power of GGI to discriminate among competing hypotheses is diminished by limited taxonomic sampling, but not equally sensitive to gene sampling. Taken together, our results reinforce the notion that merely increasing the number of genetic loci for a few representative taxa is not a robust strategy to advance phylogenetic knowledge of recalcitrant groups. We leverage the expanded exon capture dataset generated here for Characiformes (206 species in 23 out of 24 families) to produce a comprehensive phylogeny and a revised classification of the order.
Collapse
Affiliation(s)
- Ricardo Betancur-R
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, 00931.,Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019.,Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington, DC, 20013
| | - Dahiana Arcila
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019.,Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington, DC, 20013.,Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma, 73019
| | - Richard P Vari
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma, 73019
| | - Lily C Hughes
- Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington, DC, 20013.,Department of Biological Sciences, The George Washington University, Washington, DC, 20052
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Mark H Sabaj
- Department of Ichthyology, The Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania, 19103
| | - Guillermo Ortí
- Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington, DC, 20013.,Department of Biological Sciences, The George Washington University, Washington, DC, 20052
| |
Collapse
|
32
|
Mclean BS, Bell KC, Allen JM, Helgen KM, Cook JA. Impacts of Inference Method and Data set Filtering on Phylogenomic Resolution in a Rapid Radiation of Ground Squirrels (Xerinae: Marmotini). Syst Biol 2018; 68:298-316. [DOI: 10.1093/sysbio/syy064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bryan S Mclean
- Department of Biology and Museum of Southwestern Biology, 1 University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - Kayce C Bell
- Department of Biology and Museum of Southwestern Biology, 1 University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA
- Department of Invertebrate Zoology, Smithsonian Institution National Museum of Natural History, P.O. Box 37012, MRC 163, Washington, DC 20013-7012, USA
| | - Julie M Allen
- Department of Biology, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Kristofer M Helgen
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, 1 University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA
| |
Collapse
|
33
|
Matsuda T, Kozaki T, Ishii K, Gotoh T. Phylogeny of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) inferred from RNA-Seq data. PLoS One 2018; 13:e0203136. [PMID: 30192794 PMCID: PMC6128517 DOI: 10.1371/journal.pone.0203136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/15/2018] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic trees of spider mites were previously obtained using 18S and 28S rRNA genes. Because some of the bootstrap values were relatively low, these trees were unable to completely resolve the phylogeny. Here, we obtained RNA-Seq data for the 72 known species (73 strains) of spider mites to analyze the phylogeny of the sub-family Tetranychinae. The data were de novo assembled into a total alignment length of 790,047 bases corresponding to 264,133 amino acid residues in 652 genes. The sequence dataset was 200 times larger than the data used in the previous study. The new trees were much more robust and more clearly defined the clades of the tribes and the genera of the sub-family Tetranychinae. The tribe Tetranychini was polyphyletic because a monophyletic clade of Eurytetranychini was placed inside it. The six genera from which two or more species were sampled appeared to be monophyletic, but four genera (Schizotetranychus, Eotetranychus, Oligonychus and Tetranychus) appeared to be polyphyletic. These results strongly support the previous molecular inference of the polyphyletic tribes and genera, although the molecular phylogeny of the sub-family Tetranychinae does not fully agree with the current morphology-based taxonomy. The taxonomy of the sub-family Tetranychinae should be revised according to the molecular relationships revealed by this study.
Collapse
Affiliation(s)
- Tomoko Matsuda
- Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | - Toshinori Kozaki
- Faculty of Agriculture, Tokyo University of Agriculture & Technology, Fuchu, Tokyo, Japan
| | - Kazuo Ishii
- Faculty of Agriculture, Tokyo University of Agriculture & Technology, Fuchu, Tokyo, Japan
| | - Tetsuo Gotoh
- Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
34
|
Fathinia B, Rastegar-Pouyani N, Rastegar-Pouyani E. Molecular phylogeny and historical biogeography of genera Eristicophis
and Pseudocerastes
(Ophidia, Viperidae). ZOOL SCR 2018. [DOI: 10.1111/zsc.12311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Behzad Fathinia
- Department of Biology, Faculty of Science; Yasouj University; Yasouj Iran
| | - Nasrullah Rastegar-Pouyani
- Department of Biology, Faculty of Science; Razi University; Kermanshah Iran
- Iranian Plateau Herpetology Research Group (IPHRG), Faculty of Science; Razi University; Kermanshah Iran
| | | |
Collapse
|
35
|
Sayyari E, Whitfield JB, Mirarab S. Fragmentary Gene Sequences Negatively Impact Gene Tree and Species Tree Reconstruction. Mol Biol Evol 2018; 34:3279-3291. [PMID: 29029241 DOI: 10.1093/molbev/msx261] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Species tree reconstruction from genome-wide data is increasingly being attempted, in most cases using a two-step approach of first estimating individual gene trees and then summarizing them to obtain a species tree. The accuracy of this approach, which promises to account for gene tree discordance, depends on the quality of the inferred gene trees. At the same time, phylogenomic and phylotranscriptomic analyses typically use involved bioinformatics pipelines for data preparation. Errors and shortcomings resulting from these preprocessing steps may impact the species tree analyses at the other end of the pipeline. In this article, we first show that the presence of fragmentary data for some species in a gene alignment, as often seen on real data, can result in substantial deterioration of gene trees, and as a result, the species tree. We then investigate a simple filtering strategy where individual fragmentary sequences are removed from individual genes but the rest of the gene is retained. Both in simulations and by reanalyzing a large insect phylotranscriptomic data set, we show the effectiveness of this simple filtering strategy.
Collapse
Affiliation(s)
- Erfan Sayyari
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA
| | | | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA
| |
Collapse
|
36
|
Phylogeny, ecology and taxonomy of systemic pathogens and their relatives in Ajellomycetaceae (Onygenales): Blastomyces, Emergomyces, Emmonsia, Emmonsiellopsis. FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0403-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Paps J. What Makes an Animal? The Molecular Quest for the Origin of the Animal Kingdom. Integr Comp Biol 2018; 58:654-665. [DOI: 10.1093/icb/icy036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jordi Paps
- School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
38
|
Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc Natl Acad Sci U S A 2018; 115:6249-6254. [PMID: 29760103 DOI: 10.1073/pnas.1719358115] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our understanding of phylogenetic relationships among bony fishes has been transformed by analysis of a small number of genes, but uncertainty remains around critical nodes. Genome-scale inferences so far have sampled a limited number of taxa and genes. Here we leveraged 144 genomes and 159 transcriptomes to investigate fish evolution with an unparalleled scale of data: >0.5 Mb from 1,105 orthologous exon sequences from 303 species, representing 66 out of 72 ray-finned fish orders. We apply phylogenetic tests designed to trace the effect of whole-genome duplication events on gene trees and find paralogy-free loci using a bioinformatics approach. Genome-wide data support the structure of the fish phylogeny, and hypothesis-testing procedures appropriate for phylogenomic datasets using explicit gene genealogy interrogation settle some long-standing uncertainties, such as the branching order at the base of the teleosts and among early euteleosts, and the sister lineage to the acanthomorph and percomorph radiations. Comprehensive fossil calibrations date the origin of all major fish lineages before the end of the Cretaceous.
Collapse
|
39
|
Dobrin BH, Zwickl DJ, Sanderson MJ. The prevalence of terraced treescapes in analyses of phylogenetic data sets. BMC Evol Biol 2018; 18:46. [PMID: 29618314 PMCID: PMC5885316 DOI: 10.1186/s12862-018-1162-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/22/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The pattern of data availability in a phylogenetic data set may lead to the formation of terraces, collections of equally optimal trees. Terraces can arise in tree space if trees are scored with parsimony or with partitioned, edge-unlinked maximum likelihood. Theory predicts that terraces can be large, but their prevalence in contemporary data sets has never been surveyed. We selected 26 data sets and phylogenetic trees reported in recent literature and investigated the terraces to which the trees would belong, under a common set of inference assumptions. We examined terrace size as a function of the sampling properties of the data sets, including taxon coverage density (the proportion of taxon-by-gene positions with any data present) and a measure of gene sampling "sufficiency". We evaluated each data set in relation to the theoretical minimum gene sampling depth needed to reduce terrace size to a single tree, and explored the impact of the terraces found in replicate trees in bootstrap methods. RESULTS Terraces were identified in nearly all data sets with taxon coverage densities < 0.90. They were not found, however, in high-coverage-density (i.e., ≥ 0.94) transcriptomic and genomic data sets. The terraces could be very large, and size varied inversely with taxon coverage density and with gene sampling sufficiency. Few data sets achieved a theoretical minimum gene sampling depth needed to reduce terrace size to a single tree. Terraces found during bootstrap resampling reduced overall support. CONCLUSIONS If certain inference assumptions apply, trees estimated from empirical data sets often belong to large terraces of equally optimal trees. Terrace size correlates to data set sampling properties. Data sets seldom include enough genes to reduce terrace size to one tree. When bootstrap replicate trees lie on a terrace, statistical support for phylogenetic hypotheses may be reduced. Although some of the published analyses surveyed were conducted with edge-linked inference models (which do not induce terraces), unlinked models have been used and advocated. The present study describes the potential impact of that inference assumption on phylogenetic inference in the context of the kinds of multigene data sets now widely assembled for large-scale tree construction.
Collapse
Affiliation(s)
- Barbara H. Dobrin
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St, Tucson, AZ 85721 USA
| | - Derrick J. Zwickl
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St, Tucson, AZ 85721 USA
| | - Michael J. Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St, Tucson, AZ 85721 USA
| |
Collapse
|
40
|
Brower AVZ, Garzón-Orduña IJ. Missing data, clade support and "reticulation": the molecular systematics of Heliconius and related genera (Lepidoptera: Nymphalidae) re-examined. Cladistics 2018; 34:151-166. [PMID: 34645081 DOI: 10.1111/cla.12198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2017] [Indexed: 11/30/2022] Open
Abstract
Kozak et al. (2015, Syst. Biol., 64: 505) portrayed the inference of evolutionary history among Heliconius and allied butterfly genera as a particularly difficult problem for systematics due to prevalent gene conflict caused by interspecific reticulation. To control for this, Kozak et al. conducted a series of multispecies coalescent phylogenetic analyses that they claimed revealed pervasive conflict among markers, but ultimately chose as their preferred hypothesis a phylogenetic tree generated by the traditional supermatrix approach. Intrigued by this seemingly contradictory set of conclusions, we conducted further analyses focusing on two prevalent aspects of the data set: missing data and the uneven contribution of phylogenetic signal among markers. Here, we demonstrate that Kozak et al. overstated their findings of reticulation and that evidence of gene-tree conflict is largely lacking. The distribution of intrinsic homoplasy and incongruence homoplasy in their data set does not follow the pattern expected if phylogenetic history had been obscured by pervasive horizontal gene flow; in fact, noise within individual gene partitions is ten times higher than the incongruence among gene partitions. We show that the patterns explained by Kozak et al. as a result of reticulation can be accounted for by missing data and homoplasy. We also find that although the preferred topology is resilient to missing data, measures of support are sensitive to, and strongly eroded by too many empty cells in the data matrix. Perhaps more importantly, we show that when some taxa are missing almost all characters, adding more genes to the data set provides little or no increase in support for the tree.
Collapse
Affiliation(s)
- Andrew V Z Brower
- Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Ivonne J Garzón-Orduña
- Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
41
|
Chesters D. Construction of a Species-Level Tree of Life for the Insects and Utility in Taxonomic Profiling. Syst Biol 2018; 66:426-439. [PMID: 27798407 DOI: 10.1093/sysbio/syw099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
Although comprehensive phylogenies have proven an invaluable tool in ecology and evolution, their construction is made increasingly challenging both by the scale and structure of publically available sequences. The distinct partition between gene-rich (genomic) and species-rich (DNA barcode) data is a feature of data that has been largely overlooked, yet presents a key obstacle to scaling supermatrix analysis. I present a phyloinformatics framework for draft construction of a species-level phylogeny of insects (Class Insecta). Matrix-building requires separately optimized pipelines for nuclear transcriptomic, mitochondrial genomic, and species-rich markers, whereas tree-building requires hierarchical inference in order to capture species-breadth while retaining deep-level resolution. The phylogeny of insects contains 49,358 species, 13,865 genera, 760 families. Deep-level splits largely reflected previous findings for sections of the tree that are data rich or unambiguous, such as inter-ordinal Endopterygota and Dictyoptera, the recently evolved and relatively homogeneous Lepidoptera, Hymenoptera, Brachycera (Diptera), and Cucujiformia (Coleoptera). However, analysis of bias, matrix construction and gene-tree variation suggests confidence in some relationships (such as in Polyneoptera) is less than has been indicated by the matrix bootstrap method. To assess the utility of the insect tree as a tool in query profiling several tree-based taxonomic assignment methods are compared. Using test data sets with existing taxonomic annotations, a tendency is observed for greater accuracy of species-level assignments where using a fixed comprehensive tree of life in contrast to methods generating smaller de novo reference trees. Described herein is a solution to the discrepancy in the way data are fit into supermatrices. The resulting tree facilitates wider studies of insect diversification and application of advanced descriptions of diversity in community studies, among other presumed applications. [Data integration; data mining; insects; phylogenomics; phyloinformatics; tree of life.].
Collapse
Affiliation(s)
- Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Kocot KM, Struck TH, Merkel J, Waits DS, Todt C, Brannock PM, Weese DA, Cannon JT, Moroz LL, Lieb B, Halanych KM. Phylogenomics of Lophotrochozoa with Consideration of Systematic Error. Syst Biol 2018; 66:256-282. [PMID: 27664188 DOI: 10.1093/sysbio/syw079] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/24/2016] [Indexed: 01/13/2023] Open
Abstract
Phylogenomic studies have improved understanding of deep metazoan phylogeny and show promise for resolving incongruences among analyses based on limited numbers of loci. One region of the animal tree that has been especially difficult to resolve, even with phylogenomic approaches, is relationships within Lophotrochozoa (the animal clade that includes molluscs, annelids, and flatworms among others). Lack of resolution in phylogenomic analyses could be due to insufficient phylogenetic signal, limitations in taxon and/or gene sampling, or systematic error. Here, we investigated why lophotrochozoan phylogeny has been such a difficult question to answer by identifying and reducing sources of systematic error. We supplemented existing data with 32 new transcriptomes spanning the diversity of Lophotrochozoa and constructed a new set of Lophotrochozoa-specific core orthologs. Of these, 638 orthologous groups (OGs) passed strict screening for paralogy using a tree-based approach. In order to reduce possible sources of systematic error, we calculated branch-length heterogeneity, evolutionary rate, percent missing data, compositional bias, and saturation for each OG and analyzed increasingly stricter subsets of only the most stringent (best) OGs for these five variables. Principal component analysis of the values for each factor examined for each OG revealed that compositional heterogeneity and average patristic distance contributed most to the variance observed along the first principal component while branch-length heterogeneity and, to a lesser extent, saturation contributed most to the variance observed along the second. Missing data did not strongly contribute to either. Additional sensitivity analyses examined effects of removing taxa with heterogeneous branch lengths, large amounts of missing data, and compositional heterogeneity. Although our analyses do not unambiguously resolve lophotrochozoan phylogeny, we advance the field by reducing the list of viable hypotheses. Moreover, our systematic approach for dissection of phylogenomic data can be applied to explore sources of incongruence and poor support in any phylogenomic data set. [Annelida; Brachiopoda; Bryozoa; Entoprocta; Mollusca; Nemertea; Phoronida; Platyzoa; Polyzoa; Spiralia; Trochozoa.].
Collapse
Affiliation(s)
- Kevin M Kocot
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Biological Sciences and Alabama Museum of Natural History, 307 Mary Harmon Bryant Hall, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Torsten H Struck
- Natural History Museum, Department of Research and Collections, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway
| | - Julia Merkel
- Johannes Gutenberg University, Institute of Zoology, 55099 Mainz, Germany
| | - Damien S Waits
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| | - Christiane Todt
- University Museum of Bergen, The Natural History Collections, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Pamela M Brannock
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| | - David A Weese
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Biological and Environmental Sciences, Georgia College and State University, Campus Box 81, Milledgeville, GA 31061 USA
| | - Johanna T Cannon
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Zoology, Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA
| | - Bernhard Lieb
- Johannes Gutenberg University, Institute of Zoology, 55099 Mainz, Germany
| | - Kenneth M Halanych
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
43
|
Diallo AB, Lapointe FJ, Makarenkov V. A New Effective Method for Estimating Missing Values in the Sequence Data Prior to Phylogenetic Analysis. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this article we address the problem of phylogenetic inference from nucleic acid data containing missing bases. We introduce a new effective approach, called “Probabilistic estimation of missing values” (PEMV), allowing one to estimate unknown nucleotides prior to computing the evolutionary distances between them. We show that the new method improves the accuracy of phylogenetic inference compared to the existing methods “Ignoring Missing Sites” (IMS), “Proportional Distribution of Missing and Ambiguous Bases” (PDMAB) included in the PAUP software [ 26 ]. The proposed strategy for estimating missing nucleotides is based on probabilistic formulae developed in the framework of the Jukes-Cantor [ 10 ] and Kimura 2-parameter [ 11 ] models. The relative performances of the new method were assessed through simulations carried out with the SeqGen program [ 20 ], for data generation, and the BioNJ method [ 7 ], for inferring phylogenies. We also compared the new method to the DNAML program [ 5 ] and “Matrix Representation using Parsimony” (MRP) [ 13 , 19 ] considering an example of 66 eutherian mammals originally analyzed in [ 17 ].
Collapse
Affiliation(s)
- Abdoulaye Baniré Diallo
- Département d'informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal (Québec), H3C 3P8, Canada. makarenkov.vladimir(at)uqam.ca
| | - François-Joseph Lapointe
- Département de sciences biologiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal (Québec), H3C 3J7, Canada. francois-joseph.lapointe(at)umontreal.ca
| | - Vladimir Makarenkov
- Département d'informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal (Québec), H3C 3P8, Canada. makarenkov.vladimir(at)uqam.ca
| |
Collapse
|
44
|
Ratmann O, Wymant C, Colijn C, Danaviah S, Essex M, Frost S, Gall A, Gaseitsiwe S, Grabowski MK, Gray R, Guindon S, von Haeseler A, Kaleebu P, Kendall M, Kozlov A, Manasa J, Minh BQ, Moyo S, Novitsky V, Nsubuga R, Pillay S, Quinn TC, Serwadda D, Ssemwanga D, Stamatakis A, Trifinopoulos J, Wawer M, Brown AL, de Oliveira T, Kellam P, Pillay D, Fraser C, on behalf of the PANGEA-HIV Consort. HIV-1 full-genome phylogenetics of generalized epidemics in sub-Saharan Africa: impact of missing nucleotide characters in next-generation sequences. AIDS Res Hum Retroviruses 2017; 33:1083-1098. [PMID: 28540766 PMCID: PMC5597042 DOI: 10.1089/aid.2017.0061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To characterize HIV-1 transmission dynamics in regions where the burden of HIV-1 is greatest, the “Phylogenetics and Networks for Generalised HIV Epidemics in Africa” consortium (PANGEA-HIV) is sequencing full-genome viral isolates from across sub-Saharan Africa. We report the first 3,985 PANGEA-HIV consensus sequences from four cohort sites (Rakai Community Cohort Study, n = 2,833; MRC/UVRI Uganda, n = 701; Mochudi Prevention Project, n = 359; Africa Health Research Institute Resistance Cohort, n = 92). Next-generation sequencing success rates varied: more than 80% of the viral genome from the gag to the nef genes could be determined for all sequences from South Africa, 75% of sequences from Mochudi, 60% of sequences from MRC/UVRI Uganda, and 22% of sequences from Rakai. Partial sequencing failure was primarily associated with low viral load, increased for amplicons closer to the 3′ end of the genome, was not associated with subtype diversity except HIV-1 subtype D, and remained significantly associated with sampling location after controlling for other factors. We assessed the impact of the missing data patterns in PANGEA-HIV sequences on phylogeny reconstruction in simulations. We found a threshold in terms of taxon sampling below which the patchy distribution of missing characters in next-generation sequences (NGS) has an excess negative impact on the accuracy of HIV-1 phylogeny reconstruction, which is attributable to tree reconstruction artifacts that accumulate when branches in viral trees are long. The large number of PANGEA-HIV sequences provides unprecedented opportunities for evaluating HIV-1 transmission dynamics across sub-Saharan Africa and identifying prevention opportunities. Molecular epidemiological analyses of these data must proceed cautiously because sequence sampling remains below the identified threshold and a considerable negative impact of missing characters on phylogeny reconstruction is expected.
Collapse
Affiliation(s)
- Oliver Ratmann
- MRC Centre for Outbreak Analyses and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Chris Wymant
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Caroline Colijn
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Siva Danaviah
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Max Essex
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Simon Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Astrid Gall
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Mary K. Grabowski
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Rakai Health Sciences Program, Entebbe, Uganda
| | - Ronald Gray
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Rakai Health Sciences Program, Entebbe, Uganda
| | - Stephane Guindon
- Department of Statistics, University of Auckland, Auckland, New Zealand
- Laboratoire d'Informatique, de Robotique et de Microelectronique de Montpellier–UMR 5506, CNRS & UM, Montpellier, France
| | - Arndt von Haeseler
- Centre for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | | | - Michelle Kendall
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Alexey Kozlov
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Justen Manasa
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Bui Quang Minh
- Centre for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Vlad Novitsky
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | | | - Thomas C. Quinn
- Rakai Health Sciences Program, Entebbe, Uganda
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
- Department of Medicine Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David Serwadda
- Rakai Health Sciences Program, Entebbe, Uganda
- Makerere University School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Alexandros Stamatakis
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jana Trifinopoulos
- Centre for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Maria Wawer
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Rakai Health Sciences Program, Entebbe, Uganda
| | - Andy Leigh Brown
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Tulio de Oliveira
- Nelson R. Mandela School of Medicine, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Paul Kellam
- Department of Infectious Diseases and Immunity, Imperial College London, United Kingdom
| | - Deenan Pillay
- Africa Health Research Institute, KwaZulu-Natal, South Africa
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Christophe Fraser
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
45
|
Kates HR, Soltis PS, Soltis DE. Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Mol Phylogenet Evol 2017; 111:98-109. [PMID: 28288944 DOI: 10.1016/j.ympev.2017.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 11/28/2022]
Abstract
Phylogenetics can facilitate the study of plant domestication by resolving sister relationships between crops and their wild relatives, thereby identifying the ancestors of cultivated plants. Previous phylogenetic studies of the six Cucurbita crop lineages (pumpkins and squashes) and their wild relatives suggest histories of deep coalescence that complicate uncovering the genetic origins of the six crop taxa. We investigated the evolution of wild and domesticated Cucurbita using the most comprehensive and robust molecular-based phylogeny for Cucurbita to date based on 44 loci derived from introns of single-copy nuclear genes. We discovered novel relationships among Cucurbita species and recovered the first Cucurbita tree with well-supported resolution within species. Cucurbita comprises a clade of mesophytic annual species that includes all six crop taxa and a grade of xerophytic perennial species that represent the ancestral xerophytic habit of the genus. Based on phylogenetic resolution within-species we hypothesize that the magnitude of domestication bottlenecks varies among Cucurbita crop lineages. Our phylogeny clarifies how wild Cucurbita species are related to the domesticated taxa. We find close relationships between two wild species and crop lineages not previously identified. Expanded geographic sampling of key wild species is needed for improved understanding of the evolution of domesticated Cucurbita.
Collapse
Affiliation(s)
- Heather R Kates
- Univ Florida, Genet Inst, Gainesville, FL 32611, USA; Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611, USA.
| | - Pamela S Soltis
- Univ Florida, Genet Inst, Gainesville, FL 32611, USA; Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Univ Florida, Genet Inst, Gainesville, FL 32611, USA; Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611, USA; Univ Florida, Dept Biol, Gainesville, FL 32611, USA
| |
Collapse
|
46
|
Blackwell M, Hibbett DS, Taylor JW, Spatafora JW. Research Coordination Networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 2017. [DOI: 10.1080/15572536.2006.11832613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Meredith Blackwell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - David S. Hibbett
- Department of Biology, Clark University, Worcester, Massachusetts 01610
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
47
|
Nagy LG, Szöllősi G. Fungal Phylogeny in the Age of Genomics: Insights Into Phylogenetic Inference From Genome-Scale Datasets. ADVANCES IN GENETICS 2017; 100:49-72. [DOI: 10.1016/bs.adgen.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Furukawa R, Nakagawa M, Kuroyanagi T, Yokobori SI, Yamagishi A. Quest for Ancestors of Eukaryal Cells Based on Phylogenetic Analyses of Aminoacyl-tRNA Synthetases. J Mol Evol 2016; 84:51-66. [PMID: 27889804 DOI: 10.1007/s00239-016-9768-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022]
Abstract
The three-domain phylogenetic system of life has been challenged, particularly with regard to the position of Eukarya. The recent increase of known genome sequences has allowed phylogenetic analyses of all extant organisms using concatenated sequence alignment of universally conserved genes; these data supported the two-domain hypothesis, which place eukaryal species as ingroups of the Domain Archaea. However, the origin of Eukarya is complicated: the closest archaeal species to Eukarya differs in single-gene phylogenetic analyses depending on the genes. In this report, we performed molecular phylogenetic analyses of 23 aminoacyl-tRNA synthetases (ARS). Cytoplasmic ARSs in 12 trees showed a monophyletic Eukaryotic branch. One ARS originated from TACK superphylum. One ARS originated from Euryarchaeota and three originated from DPANN superphylum. Four ARSs originated from different bacterial species. The other 8 cytoplasmic ARSs were split into two or three groups in respective trees, which suggested that the cytoplasmic ARSs were replaced by secondary ARSs, and the original ARSs have been lost during evolution of Eukarya. In these trees, one original cytoplasmic ARS was derived from Euryarchaeota and three were derived from DPANN superphylum. Our results strongly support the two-domain hypothesis. We discovered that rampant-independent lateral gene transfers from several archaeal species of DPANN superphylum have contributed to the formation of Eukaryal cells. Based on our phylogenetic analyses, we proposed a model for the establishment of Eukarya.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Mizuho Nakagawa
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Takuya Kuroyanagi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Shin-Ichi Yokobori
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| |
Collapse
|
49
|
Arbizu CI, Ellison SL, Senalik D, Simon PW, Spooner DM. Genotyping-by-sequencing provides the discriminating power to investigate the subspecies of Daucus carota (Apiaceae). BMC Evol Biol 2016; 16:234. [PMID: 27793080 PMCID: PMC5084430 DOI: 10.1186/s12862-016-0806-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/14/2016] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The majority of the subspecies of Daucus carota have not yet been discriminated clearly by various molecular or morphological methods and hence their phylogeny and classification remains unresolved. Recent studies using 94 nuclear orthologs and morphological characters, and studies employing other molecular approaches were unable to distinguish clearly many of the subspecies. Fertile intercrosses among traditionally recognized subspecies are well documented. We here explore the utility of single nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing (GBS) to serve as an effective molecular method to discriminate the subspecies of the D. carota complex. RESULTS We used GBS to obtain SNPs covering all nine Daucus carota chromosomes from 162 accessions of Daucus and two related genera. To study Daucus phylogeny, we scored a total of 10,814 or 38,920 SNPs with a maximum of 10 or 30 % missing data, respectively. To investigate the subspecies of D. carota, we employed two data sets including 150 accessions: (i) rate of missing data 10 % with a total of 18,565 SNPs, and (ii) rate of missing data 30 %, totaling 43,713 SNPs. Consistent with prior results, the topology of both data sets separated species with 2n = 18 chromosome from all other species. Our results place all cultivated carrots (D. carota subsp. sativus) in a single clade. The wild members of D. carota from central Asia were on a clade with eastern members of subsp. sativus. The other subspecies of D. carota were in four clades associated with geographic groups: (1) the Balkan Peninsula and the Middle East, (2) North America and Europe, (3) North Africa exclusive of Morocco, and (4) the Iberian Peninsula and Morocco. Daucus carota subsp. maximus was discriminated, but neither it, nor subsp. gummifer (defined in a broad sense) are monophyletic. CONCLUSIONS Our study suggests that (1) the morphotypes identified as D. carota subspecies gummifer (as currently broadly circumscribed), all confined to areas near the Atlantic Ocean and the western Mediterranean Sea, have separate origins from sympatric members of other subspecies of D. carota, (2) D. carota subsp. maximus, on two clades with some accessions of subsp. carota, can be distinguished from each other but only with poor morphological support, (3) D. carota subsp. capillifolius, well distinguished morphologically, is an apospecies relative to North African populations of D. carota subsp. carota, (4) the eastern cultivated carrots have origins closer to wild carrots from central Asia than to western cultivated carrots, and (5) large SNP data sets are suitable for species-level phylogenetic studies in Daucus.
Collapse
Affiliation(s)
- Carlos I Arbizu
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA
| | - Shelby L Ellison
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA
| | - Douglas Senalik
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA
| | - Philipp W Simon
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA
| | - David M Spooner
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA.
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA.
| |
Collapse
|
50
|
Gagnon E, Bruneau A, Hughes CE, de Queiroz LP, Lewis GP. A new generic system for the pantropical Caesalpinia group (Leguminosae). PHYTOKEYS 2016; 71:1-160. [PMID: 28814915 PMCID: PMC5558824 DOI: 10.3897/phytokeys.71.9203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/14/2016] [Indexed: 05/02/2023]
Abstract
The Caesalpinia group is a large pantropical clade of ca. 205 species in subfamily Caesalpinioideae (Leguminosae) in which generic delimitation has been in a state of considerable flux. Here we present new phylogenetic analyses based on five plastid and one nuclear ribosomal marker, with dense taxon sampling including 172 (84%) of the species and representatives of all previously described genera in the Caesalpinia group. These analyses show that the current classification of the Caesalpinia group into 21 genera needs to be revised. Several genera (Poincianella, Erythrostemon, Cenostigma and Caesalpinia sensu Lewis, 2005) are non-monophyletic and several previously unclassified Asian species segregate into clades that merit recognition at generic rank. In addition, the near-completeness of our taxon sampling identifies three species that do not belong in any of the main clades and these are recognised as new monospecific genera. A new generic classification of the Caesalpinia group is presented including a key for the identification of genera, full generic descriptions, illustrations (drawings and photo plates of all genera), and (for most genera) the nomenclatural transfer of species to their correct genus. We recognise 26 genera, with reinstatement of two previously described genera (Biancaea Tod., Denisophytum R. Vig.), re-delimitation and expansion of several others (Moullava, Cenostigma, Libidibia and Erythrostemon), contraction of Caesalpinia s.s. and description of four new ones (Gelrebia, Paubrasilia, Hererolandia and Hultholia), and make 75 new nomenclatural combinations in this new generic system.
Collapse
Affiliation(s)
- Edeline Gagnon
- Institut de recherche en biologie végétale and Département de sciences
biologiques, Université de Montréal, H1X 2B2, Montréal, Québec, Canada
| | - Anne Bruneau
- Institut de recherche en biologie végétale and Département de sciences
biologiques, Université de Montréal, H1X 2B2, Montréal, Québec, Canada
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zürich, 8008,
Zürich, Switzerland
| | - Luciano Paganucci de Queiroz
- Universidade Estadual de Feira de Santana, BR 116, Km 03, Campus Universitário,
Feira de Santana 44031-460, Bahia, Brasil
| | - Gwilym P. Lewis
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew,
Richmond, Surrey, TW9 3AB, United Kingdom
| |
Collapse
|