1
|
Feyissa BA, de Becker EM, Salesse-Smith CE, Shu M, Zhang J, Yates TB, Xie M, De K, Gotarkar D, Chen MSS, Jawdy SS, Carper DL, Barry K, Schmutz J, Weston DJ, Abraham PE, Tsai CJ, Morrell-Falvey JL, Taylor G, Chen JG, Tuskan GA, Long SP, Burgess SJ, Muchero W. An orphan gene BOOSTER enhances photosynthetic efficiency and plant productivity. Dev Cell 2025; 60:723-734.e7. [PMID: 39631390 DOI: 10.1016/j.devcel.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Organelle-to-nucleus DNA transfer is an ongoing process playing an important role in the evolution of eukaryotic life. Here, genome-wide association studies (GWAS) of non-photochemical quenching parameters in 743 Populus trichocarpa accessions identified a nuclear-encoded genomic region associated with variation in photosynthesis under fluctuating light. The identified gene, BOOSTER (BSTR), comprises three exons, two with apparent endophytic origin and the third containing a large fragment of plastid-encoded Rubisco large subunit. Higher expression of BSTR facilitated anterograde signaling between nucleus and plastid, which corresponded to enhanced expression of Rubisco, increased photosynthesis, and up to 35% greater plant height and 88% biomass in poplar accessions under field conditions. Overexpression of BSTR in Populus tremula × P. alba achieved up to a 200% in plant height. Similarly, Arabidopsis plants heterologously expressing BSTR gained up to 200% in biomass and up to 50% increase in seed.
Collapse
Affiliation(s)
- Biruk A Feyissa
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Elsa M de Becker
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Coralie E Salesse-Smith
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mengjun Shu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kuntal De
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dhananjay Gotarkar
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65201, USA
| | - Margot S S Chen
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dana L Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Chung-Jui Tsai
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Gail Taylor
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Stephen P Long
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven J Burgess
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
2
|
Xian W, Bezrukov I, Bao Z, Vorbrugg S, Gautam A, Weigel D. TIPPo: A User-Friendly Tool for De Novo Assembly of Organellar Genomes with High-Fidelity Data. Mol Biol Evol 2025; 42:msae247. [PMID: 39800935 PMCID: PMC11725521 DOI: 10.1093/molbev/msae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes. TIPPo employs a deep learning model for initial read classification and leverages k-mer counting for further refinement, significantly reducing the impact of nuclear insertions of organellar DNA on the assembly process. We used TIPPo to completely assemble a set of 54 complete chloroplast genomes. No other tool was able to completely assemble this set. TIPPo is comparable with PMAT in assembling mitochondrial genomes from most species but does achieve even higher completeness for several species. We also used the assembled organelle genomes to identify instances of nuclear plastid DNA (NUPTs) and nuclear mitochondrial DNA (NUMTs) insertions. The cumulative length of NUPTs/NUMTs positively correlates with the size of the nuclear genome, suggesting that insertions occur stochastically. NUPTs/NUMTs show predominantly C:G to T:A changes, with the mutated cytosines typically found in CG and CHG contexts, suggesting that degradation of NUPT and NUMT sequences is driven by the known elevated mutation rate of methylated cytosines. Small interfering RNA loci are enriched in NUPTs and NUMTs, consistent with the RdDM pathway mediating DNA methylation in these sequences.
Collapse
Affiliation(s)
- Wenfei Xian
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Zhigui Bao
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Sebastian Vorbrugg
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Liu S, Wu Z, Yang T, Xu J, Aishan S, Qin E, Ma K, Liu J, Qin R, Wang J, Tie J, Liu H. The Chrysosplenium sinicum genome provides insights into adaptive evolution of shade plants. Commun Biol 2024; 7:1004. [PMID: 39152309 PMCID: PMC11329650 DOI: 10.1038/s42003-024-06701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Chrysosplenium sinicum, a traditional Tibetan medicinal plant, can successfully thrive in low-light environments for long periods of time. To investigate the adaptive evolution of shade plants in low-light environments, we generated a chromosome-scale genome assembly (~320 Mb) for C. sinicum by combining PacBio sequencing and Hi-C technologies. Based on our results, gene families related to photosynthesis and cell respiration greatly expanded and evolved in C. sinicum genome due to intracellular DNA transfer from organelle genome to nuclear genome. Under positive selective pressure, adaptive evolution of light-harvesting complex II (LHCII) component protein CsLhcb1s resulted in the expansion of threonine residues at the phosphorylation site of STN7 kinase, potentially establishing a crucial genomic foundation for enhancing C. sinicum's adaptability in low-light environments. Through transcriptome and metabolome analysis, we identified chrysosplenol and chrysosplenoside as predominant flavonoid metabolites of C. sinicum and predicted their synthesis pathways. In addition, analysis of alternative splicing (AS) revealed that AS events help regulate state transition and flavonoid biosynthesis. The present study provides new insights into the genomes of shade plants exposed to low-light conditions and adaptive evolution of these genomes; in addition, the results improve our current knowledge on the biosynthetic and regulatory processes of chrysosplenol and chrysosplenoside.
Collapse
Affiliation(s)
- Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jindong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Kang Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiangqing Wang
- College of Computer Science, South-Central Minzu University, Wuhan, China
| | - Jun Tie
- College of Computer Science, South-Central Minzu University, Wuhan, China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
4
|
Kadibalban AS, Landan G, Dagan T. The extent and characteristics of DNA transfer between plasmids and chromosomes. Curr Biol 2024; 34:3189-3200.e5. [PMID: 38964320 DOI: 10.1016/j.cub.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Plasmids are extrachromosomal genetic elements that reside in prokaryotes. The acquisition of plasmids encoding beneficial traits can facilitate short-term survival in harsh environmental conditions or long-term adaptation of new ecological niches. Due to their ability to transfer between cells, plasmids are considered agents of gene transfer. Nonetheless, the frequency of DNA transfer between plasmids and chromosomes remains understudied. Using a novel approach for detection of homologous loci between genome pairs, we uncover gene sharing with the chromosome in 1,974 (66%) plasmids residing in 1,016 (78%) taxonomically diverse isolates. The majority of homologous loci correspond to mobile elements, which may be duplicated in the host chromosomes in tens of copies. Neighboring shared genes often encode similar functional categories, indicating the transfer of multigene functional units. Rare transfer events of antibiotics resistance genes are observed mainly with mobile elements. The frequent erosion of sequence similarity in homologous regions indicates that the transferred DNA is often devoid of function. DNA transfer between plasmids and chromosomes thus generates genetic variation that is akin to workings of endosymbiotic gene transfer in eukaryotic evolution. Our findings imply that plasmid contribution to gene transfer most often corresponds to transfer of the plasmid entity rather than transfer of protein-coding genes between plasmids and chromosomes.
Collapse
Affiliation(s)
- A Samer Kadibalban
- Institute of General Microbiology, Kiel University, Am Botanischen Garten 11, Kiel 24118, Germany
| | - Giddy Landan
- Institute of General Microbiology, Kiel University, Am Botanischen Garten 11, Kiel 24118, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Am Botanischen Garten 11, Kiel 24118, Germany.
| |
Collapse
|
5
|
Zhang Z, Zhao J, Li J, Yao J, Wang B, Ma Y, Li N, Wang H, Wang T, Liu B, Gong L. Evolutionary trajectory of organelle-derived nuclear DNAs in the Triticum/Aegilops complex species. PLANT PHYSIOLOGY 2024; 194:918-935. [PMID: 37847157 PMCID: PMC10828211 DOI: 10.1093/plphys/kiad552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
Organelle-derived nuclear DNAs, nuclear plastid DNAs (NUPTs), and nuclear mitochondrial DNAs (NUMTs) have been identified in plants. Most, if not all, genes residing in NUPTs/NUMTs (NUPGs/NUMGs) are known to be inactivated and pseudogenized. However, the role of epigenetic control in silencing NUPGs/NUMGs and the dynamic evolution of NUPTs/NUMTs with respect to organismal phylogeny remain barely explored. Based on the available nuclear and organellar genomic resources of wheat (genus Triticum) and goat grass (genus Aegilops) within Triticum/Aegilops complex species, we investigated the evolutionary fates of NUPTs/NUMTs in terms of their epigenetic silencing and their dynamic occurrence rates in the nuclear diploid genomes and allopolyploid subgenomes. NUPTs and NUMTs possessed similar genomic atlas, including (i) predominantly located in intergenic regions and preferential integration to gene regulation regions and (ii) generating sequence variations in the nuclear genome. Unlike nuclear indigenous genes, the alien NUPGs/NUMGs were associated with repressive epigenetic signals, namely high levels of DNA methylation and low levels of active histone modifications. Phylogenomic analyses suggested that the species-specific and gradual accumulation of NUPTs/NUMTs accompanied the speciation processes. Moreover, based on further pan-genomic analyses, we found significant subgenomic asymmetry in the NUPT/NUMT occurrence, which accumulated during allopolyploid wheat evolution. Our findings provide insight into the dynamic evolutionary fates of organelle-derived nuclear DNA in plants.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Science, Changchun 130033, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Marczuk-Rojas JP, Álamo-Sierra AM, Salmerón A, Alcayde A, Isanbaev V, Carretero-Paulet L. Spatial and temporal characterization of the rich fraction of plastid DNA present in the nuclear genome of Moringa oleifera reveals unanticipated complexity in NUPTs´ formation. BMC Genomics 2024; 25:60. [PMID: 38225585 PMCID: PMC10789010 DOI: 10.1186/s12864-024-09979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Beyond the massive amounts of DNA and genes transferred from the protoorganelle genome to the nucleus during the endosymbiotic event that gave rise to the plastids, stretches of plastid DNA of varying size are still being copied and relocated to the nuclear genome in a process that is ongoing and does not result in the concomitant shrinking of the plastid genome. As a result, plant nuclear genomes feature small, but variable, fraction of their genomes of plastid origin, the so-called nuclear plastid DNA sequences (NUPTs). However, the mechanisms underlying the origin and fixation of NUPTs are not yet fully elucidated and research on the topic has been mostly focused on a limited number of species and of plastid DNA. RESULTS Here, we leveraged a chromosome-scale version of the genome of the orphan crop Moringa oleifera, which features the largest fraction of plastid DNA in any plant nuclear genome known so far, to gain insights into the mechanisms of origin of NUPTs. For this purpose, we examined the chromosomal distribution and arrangement of NUPTs, we explicitly modeled and tested the correlation between their age and size distribution, we characterized their sites of origin at the chloroplast genome and their sites of insertion at the nuclear one, as well as we investigated their arrangement in clusters. We found a bimodal distribution of NUPT relative ages, which implies NUPTs in moringa were formed through two separate events. Furthermore, NUPTs from every event showed markedly distinctive features, suggesting they originated through distinct mechanisms. CONCLUSIONS Our results reveal an unanticipated complexity of the mechanisms at the origin of NUPTs and of the evolutionary forces behind their fixation and highlight moringa species as an exceptional model to assess the impact of plastid DNA in the evolution of the architecture and function of plant nuclear genomes.
Collapse
Affiliation(s)
- Juan Pablo Marczuk-Rojas
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
- "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Angélica María Álamo-Sierra
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
- "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Antonio Salmerón
- Department of Mathematics, University of Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Alfredo Alcayde
- Department of Engineering, University of Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Viktor Isanbaev
- Department of Engineering, University of Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Lorenzo Carretero-Paulet
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, 04120, Almería, Spain.
- "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain.
| |
Collapse
|
7
|
Tiwari LD, Bdolach E, Prusty MR, Bodenheimer S, Be'ery A, Faigenboim-Doron A, Yamamoto E, Panzarová K, Kashkush K, Shental N, Fridman E. Cytonuclear interactions modulate the plasticity of photosynthetic rhythmicity and growth in wild barley. PHYSIOLOGIA PLANTARUM 2024; 176:e14192. [PMID: 38351880 DOI: 10.1111/ppl.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
In plants, the contribution of the plasmotype (mitochondria and chloroplast) in controlling the circadian clock plasticity and possible consequences on cytonuclear genetic makeup have yet to be fully elucidated. A genome-wide association study in the wild barley (Hordeum vulgare ssp. spontaneum) B1K collection identified overlap with our previously mapped DRIVERS OF CLOCKS (DOCs) loci in wild-cultivated interspecific population. Moreover, we identified non-random segregation and epistatic interactions between nuclear DOCs loci and the chloroplastic RpoC1 gene, indicating an adaptive value for specific cytonuclear gene combinations. Furthermore, we show that DOC1.1, which harbours the candidate SIGMA FACTOR-B (SIG-B) gene, is linked with the differential expression of SIG-B and CCA1 genes and contributes to the circadian gating response to heat. High-resolution temporal growth and photosynthesis measurements of B1K also link the DOCs loci to differential growth, Chl content and quantum yield. To validate the involvement of the Plastid encoded polymerase (PEP) complex, we over-expressed the two barley chloroplastic RpoC1 alleles in Arabidopsis and identified significant differential plasticity under elevated temperatures. Finally, enhanced clock plasticity of de novo ENU (N-Ethyl-N-nitrosourea) -induced barley rpoB1 mutant further implicates the PEP complex as a key player in regulating the circadian clock output. Overall, this study highlights the contribution of specific cytonuclear interaction between rpoC1 (PEP gene) and SIG-B with distinct circadian timing regulation under heat, and their pleiotropic effects on growth implicate an adaptive value.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Schewach Bodenheimer
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avital Be'ery
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eiji Yamamoto
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Shental
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana, Israel
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
8
|
Tiwari LD, Kurtz-Sohn A, Bdolach E, Fridman E. Crops under past diversification and ongoing climate change: more than just selection of nuclear genes for flowering. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5431-5440. [PMID: 37480516 DOI: 10.1093/jxb/erad283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/21/2023] [Indexed: 07/24/2023]
Abstract
Diversification and breeding following domestication and under current climate change across the globe are the two most significant evolutionary events experienced by major crops. Diversification of crops from their wild ancestors has favored dramatic changes in the sensitivity of the plants to the environment, particularly significantly in transducing light inputs to the circadian clock, which has allowed the growth of major crops in the relatively short growing season experienced in the Northern Hemisphere. Historically, mutants and the mapping of quantitative trait loci (QTL) have facilitated the identification and the cloning of genes that underlie major changes of the clock and the regulation of flowering. Recent studies have suggested that the thermal plasticity of the circadian clock output, and not just the core genes that follow temperature compensation, has also been under selection during diversification and breeding. Wild alleles that accelerate output rhythmicity could be beneficial for crop resilience. Furthermore, wild alleles with beneficial and flowering-independent effects under stress indicate their possible role in maintaining a balanced source-sink relationship, thereby allowing productivity under climatic change. Because the chloroplast genome also regulates the plasticity of the clock output, mapping populations including cytonuclear interactions should be utilized within an integrated field and clock phenomics framework. In this review, we highlight the need to integrate physiological and developmental approaches (physio-devo) to gain a better understanding when re-domesticating wild gene alleles into modern cultivars to increase their robustness under abiotic heat and drought stresses.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Ayelet Kurtz-Sohn
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Bdolach
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Eyal Fridman
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| |
Collapse
|
9
|
Chen Y, Guo Y, Xie X, Wang Z, Miao L, Yang Z, Jiao Y, Xie C, Liu J, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Guo W. Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae. PLANT PHYSIOLOGY 2023; 193:578-594. [PMID: 37249052 PMCID: PMC10469385 DOI: 10.1093/plphys/kiad319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Payne ZL, Penny GM, Turner TN, Dutcher SK. A gap-free genome assembly of Chlamydomonas reinhardtii and detection of translocations induced by CRISPR-mediated mutagenesis. PLANT COMMUNICATIONS 2023; 4:100493. [PMID: 36397679 PMCID: PMC10030371 DOI: 10.1016/j.xplc.2022.100493] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 05/04/2023]
Abstract
Genomic assemblies of the unicellular green alga Chlamydomonas reinhardtii have provided important resources for researchers. However, assembly errors, large gaps, and unplaced scaffolds as well as strain-specific variants currently impede many types of analysis. By combining PacBio HiFi and Oxford Nanopore long-read technologies, we generated a de novo genome assembly for strain CC-5816, derived from crosses of strains CC-125 and CC-124. Multiple methods of evaluating genome completeness and base-pair error rate suggest that the final telomere-to-telomere assembly is highly accurate. The CC-5816 assembly enabled previously difficult analyses that include characterization of the 17 centromeres, rDNA arrays on three chromosomes, and 56 insertions of organellar DNA into the nuclear genome. Using Nanopore sequencing, we identified sites of cytosine (CpG) methylation, which are enriched at centromeres. We analyzed CRISPR-Cas9 insertional mutants in the PF23 gene. Two of the three alleles produced progeny that displayed patterns of meiotic inviability that suggested the presence of a chromosomal aberration. Mapping Nanopore reads from pf23-2 and pf23-3 onto the CC-5816 genome showed that these two strains each carry a translocation that was initiated at the PF23 gene locus on chromosome 11 and joined with chromosomes 5 or 3, respectively. The translocations were verified by demonstrating linkage between loci on the two translocated chromosomes in meiotic progeny. The three pf23 alleles display the expected short-cilia phenotype, and immunoblotting showed that pf23-2 lacks the PF23 protein. Our CC-5816 genome assembly will undoubtedly provide an important tool for the Chlamydomonas research community.
Collapse
Affiliation(s)
- Zachary L Payne
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Gervette M Penny
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
11
|
Laczkó L, Jordán S, Sramkó G. The
RadOrgMiner
pipeline: Automated genotyping of organellar loci from
RADseq
data. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Levente Laczkó
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research Group, Egyetem tér 1 H‐4032 Debrecen Hungary
- Department of Botany University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
- ELKH‐ DE Conservation Biology Research Group, Egyetem tér 1, Debrecen, H‐4032 Hungary
- Department of Metagenomics University of Debrecen Nagyerdei körút 98., Debrecen, H‐4032 Hungary
| | - Sándor Jordán
- Department of Botany University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
- Juhász‐Nagy Pál Doctoral School University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
| | - Gábor Sramkó
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research Group, Egyetem tér 1 H‐4032 Debrecen Hungary
- Department of Botany University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
- ELKH‐ DE Conservation Biology Research Group, Egyetem tér 1, Debrecen, H‐4032 Hungary
| |
Collapse
|
12
|
Fischer A, Dotzek J, Walther D, Greiner S. Graph-based models of the Oenothera mitochondrial genome capture the enormous complexity of higher plant mitochondrial DNA organization. NAR Genom Bioinform 2022; 4:lqac027. [PMID: 35372837 PMCID: PMC8969700 DOI: 10.1093/nargab/lqac027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022] Open
Abstract
Plant mitochondrial genomes display an enormous structural complexity, as recombining repeat-pairs lead to the generation of various sub-genomic molecules, rendering these genomes extremely challenging to assemble. We present a novel bioinformatic data-processing pipeline called SAGBAC (Semi-Automated Graph-Based Assembly Curator) that identifies recombinogenic repeat-pairs and reconstructs plant mitochondrial genomes. SAGBAC processes assembly outputs and applies our novel ISEIS (Iterative Sequence Ends Identity Search) algorithm to obtain a graph-based visualization. We applied this approach to three mitochondrial genomes of evening primrose (Oenothera), a plant genus used for cytoplasmic genetics studies. All identified repeat pairs were found to be flanked by two alternative and unique sequence-contigs defining so-called 'double forks', resulting in four possible contig-repeat-contig combinations for each repeat pair. Based on the inferred structural models, the stoichiometry of the different contig-repeat-contig combinations was analyzed using Illumina mate-pair and PacBio RSII data. This uncovered a remarkable structural diversity of the three closely related mitochondrial genomes, as well as substantial phylogenetic variation of the underlying repeats. Our model allows predicting all recombination events and, thus, all possible sub-genomes. In future work, the proposed methodology may prove useful for the investigation of the sub-genome organization and dynamics in different tissues and at various developmental stages.
Collapse
Affiliation(s)
- Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jana Dotzek
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stephan Greiner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
13
|
Andersen LW, Jacobsen MW, Frydenberg J, Møller JD, Jensen TS. Phylogeography using mitogenomes: A rare Dipodidae,
Sicista betulina
, in North‐western Europe. Ecol Evol 2022; 12:e8865. [PMID: 35475180 PMCID: PMC9022092 DOI: 10.1002/ece3.8865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Repeated climatic and vegetation changes during the Pleistocene have shaped biodiversity in Northern Europe including Denmark. The Northern Birch Mouse (Sicista betulina) was one of the first small rodent species to colonize Denmark after the Late Glacial Maximum. This study analyses complete mitochondrial genomes and two nuclear genes of the Northern Birch Mouse to investigate the phylogeographical pattern in North‐western Europe and test whether the species colonized Denmark through several colonization events. The latter was prompt by (i) the present‐day distinct northern and southern Danish distribution and (ii) the subfossil record of Northern Birch Mouse, supporting early Weichselian colonization. Samples from Denmark, Norway, Sweden, Russia, Latvia, Estonia, and Slovakia were included. Mitogenomes were obtained from 54 individuals, all representing unique mitogenomes supporting high genetic variation. Bayesian phylogenetic analysis identified two distinct evolutionary linages in Northern Europe diverging within the Elster glaciation period. The results of the two nuclear genomes showed lower genetic differentiation but supported the same evolutionary history. This suggests an allopatric origin of the clades followed by secondary contact. Individuals from southern Denmark were only found in one clade, while individuals from other areas, including northern Denmark, were represented in both clades. Nevertheless, we found no evidence for repeated colonization's explaining the observed fragmented distribution of the species today. The results indicated that the mitogenome pattern of the Northern Birch Mouse population in southern Denmark was either (i) due to the population being founded from northern Denmark, (ii) a result of climatic and anthropogenic effects reducing population size increasing genetic drift or (iii) caused by sampling bias.
Collapse
Affiliation(s)
| | - Magnus W. Jacobsen
- Department of Ecoscience Aarhus University Aarhus C Denmark
- Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | | | | | | |
Collapse
|
14
|
Groen K, Trimbos KB, Hein S, Blaauw AI, van Bodegom PM, Hahne J, Jacob J. Establishment of a fecal DNA quantification technique for rare and cryptic diet constituents in small mammals. Mol Ecol Resour 2022; 22:2220-2231. [PMID: 35297564 DOI: 10.1111/1755-0998.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022]
Abstract
DNA-based approaches have highly improved the applicability of dietary studies aimed at investigating ecological processes. These studies have provided direct insights into, otherwise difficult to measure, interactions between species and trophic levels, food web structure and ecosystem functioning. However, despite these advances, DNA-based methods have been struggling to accurately quantify the whole breadth of diet constituents because of methodological biases, such as amplification bias and digestive processes. This study is, to our knowledge, the first diet study that used droplet digital PCR to quantify diet constituents. We manipulated the diet of wild caught wood mice (Apodemus sylvaticus) by feeding them with a known amount of small vegetable seeds (onion and carrot) and quantified the DNA traces of these diet constituents in fecal samples. The sensitivity of the technique combined with the control on the experimental design allowed mitigation of methodological bias. We were able to accurately determine DNA concentrations of small vegetable seeds in the diet of wood mice. Quantification of target DNA demonstrated significant differences in DNA content when one vs. five seeds were consumed. These differences remained significant when the age, sex, and other diet constituents of the mice were altered. Different DNA markers, targeting different parts of the chloroplast, influenced onion DNA detectability. However, all onion and carrot markers showed higher DNA content for higher seed numbers. Overall, the sensitive DNA based approach developed in this study allows for minimally-invasive quantification of small diet constituents in feces, which would otherwise be undetectable with traditional methods.
Collapse
Affiliation(s)
- Kevin Groen
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, Van Steenis Building Einsteinweg 2, 2333 CC, The Netherlands
| | - Krijn B Trimbos
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, Van Steenis Building Einsteinweg 2, 2333 CC, The Netherlands
| | - Susanne Hein
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute (JKI) Federal Research Institute for Cultivated Plants, Toppheideweg 88, 48161, Münster, Germany.,Present address: BASF SE, Agricultural Solutions - Global Ecotoxicology, Limburgerhof, Germany
| | - Astrid I Blaauw
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, Van Steenis Building Einsteinweg 2, 2333 CC, The Netherlands
| | - Peter M van Bodegom
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, Van Steenis Building Einsteinweg 2, 2333 CC, The Netherlands
| | - Joerg Hahne
- Bayer AG, Crop Science Division, Terrestrial Vertebrates, Monheim am Rhein, Germany
| | - Jens Jacob
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute (JKI) Federal Research Institute for Cultivated Plants, Toppheideweg 88, 48161, Münster, Germany
| |
Collapse
|
15
|
Kim H, Kim J. Structural Mutations in the Organellar Genomes of Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara Show Dynamic Gene Transfer. Int J Mol Sci 2021; 22:ijms22073770. [PMID: 33916499 PMCID: PMC8038606 DOI: 10.3390/ijms22073770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara is a broad-leaved valerian endemic to Ulleung Island, a noted hot spot of endemism in Korea. However, despite its widespread pharmacological use, this plant remains comparatively understudied. Plant cells generally contain two types of organellar genomes (the plastome and the mitogenome) that have undergone independent evolution, which accordingly can provide valuable information for elucidating the phylogenetic relationships and evolutionary histories of terrestrial plants. Moreover, the extensive mega-data available for plant genomes, particularly those of plastomes, can enable researchers to gain an in-depth understanding of the transfer of genes between different types of genomes. In this study, we analyzed two organellar genomes (the 155,179 bp plastome and the 1,187,459 bp mitogenome) of V. sambucifolia f. dageletiana and detected extensive changes throughout the plastome sequence, including rapid structural mutations associated with inverted repeat (IR) contraction and genetic variation. We also described features characterizing the first reported mitogenome sequence obtained for a plant in the order Dipsacales and confirmed frequent gene transfer in this mitogenome. We identified eight non-plastome-originated regions (NPRs) distributed within the plastome of this endemic plant, for six of which there were no corresponding sequences in the current nucleotide sequence databases. Indeed, one of these unidentified NPRs unexpectedly showed certain similarities to sequences from bony fish. Although this is ostensibly difficult to explain, we suggest that this surprising association may conceivably reflect the occurrence of gene transfer from a bony fish to the plastome of an ancestor of V. sambucifolia f. dageletiana mediated by either fungi or bacteria.
Collapse
Affiliation(s)
- Hyoungtae Kim
- Institute of Agriculture Science and Technology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Jungsung Kim
- Department of Forest Science, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
- Correspondence: ; Tel.: +82-43-261-2535
| |
Collapse
|
16
|
Ma X, Fan J, Wu Y, Zhao S, Zheng X, Sun C, Tan L. Whole-genome de novo assemblies reveal extensive structural variations and dynamic organelle-to-nucleus DNA transfers in African and Asian rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:596-612. [PMID: 32748498 PMCID: PMC7693357 DOI: 10.1111/tpj.14946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 05/05/2023]
Abstract
Asian cultivated rice (Oryza sativa) and African cultivated rice (Oryza glaberrima) originated from the wild rice species Oryza rufipogon and Oryza barthii, respectively. The genomes of both cultivated species have undergone profound changes during domestication. Whole-genome de novo assemblies of O. barthii, O. glaberrima, O. rufipogon and Oryza nivara, produced using PacBio single-molecule real-time (SMRT) and next-generation sequencing (NGS) technologies, showed that Gypsy-like retrotransposons are the major contributors to genome size variation in African and Asian rice. Through the detection of genome-wide structural variations (SVs), we observed that besides 28 shared SV hot spots, another 67 hot spots existed in either the Asian or African rice genomes. Based on gene annotation information of the SVs, we established that organelle-to-nucleus DNA transfers resulted in numerous SVs that participated in the nuclear genome divergence of rice species and subspecies. We detected 52 giant nuclear integrants of organelle DNA (NORGs, defined as >10 kb) in six Oryza AA genomes. In addition, we developed an effective method to genotype giant NORGs, based on genome assembly, and first showed the dynamic change in the distribution of giant NORGs in rice natural population. Interestingly, 16 highly differentiated giant NORGs tended to accumulate in natural populations of Asian rice from higher latitude regions, grown at lower temperatures and light intensities. Our study provides new insight into the genome divergence of African and Asian rice, and establishes that organelle-to-nucleus DNA transfers, as potentially powerful contributors to environmental adaptation during rice evolution, play a major role in producing SVs in rice genomes.
Collapse
Affiliation(s)
- Xin Ma
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jinjian Fan
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijing100193China
| | - Yongzhen Wu
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Shuangshuang Zhao
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xu Zheng
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Chuanqing Sun
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
| | - Lubin Tan
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
17
|
Evolutionary analysis of the Moringa oleifera genome reveals a recent burst of plastid to nucleus gene duplications. Sci Rep 2020; 10:17646. [PMID: 33077763 PMCID: PMC7573628 DOI: 10.1038/s41598-020-73937-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
It is necessary to identify suitable alternative crops to ensure the nutritional demands of a growing global population. The genome of Moringa oleifera, a fast-growing drought-tolerant orphan crop with highly valuable agronomical, nutritional and pharmaceutical properties, has recently been reported. We model here gene family evolution in Moringa as compared with ten other flowering plant species. Despite the reduced number of genes in the compact Moringa genome, 101 gene families, grouping 957 genes, were found as significantly expanded. Expanded families were highly enriched for chloroplastidic and photosynthetic functions. Indeed, almost half of the genes belonging to Moringa expanded families grouped with their Arabidopsis thaliana plastid encoded orthologs. Microsynteny analysis together with modeling the distribution of synonymous substitutions rates, supported most plastid duplicated genes originated recently through a burst of simultaneous insertions of large regions of plastid DNA into the nuclear genome. These, together with abundant short insertions of plastid DNA, contributed to the occurrence of massive amounts of plastid DNA in the Moringa nuclear genome, representing 4.71%, the largest reported so far. Our study provides key genetic resources for future breeding programs and highlights the potential of plastid DNA to impact the structure and function of nuclear genes and genomes.
Collapse
|
18
|
Tracking the Distribution and Burst of Nuclear Mitochondrial DNA Sequences (NUMTs) in Fig Wasp Genomes. INSECTS 2020; 11:insects11100680. [PMID: 33036463 PMCID: PMC7600805 DOI: 10.3390/insects11100680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Nuclear mitochondrial DNA sequences (NUMTs), which result from the insertion of exogenous mtDNA into the nuclear genome, are widely distributed in eukaryotes. However, how NUMTs are inserted into the nuclear genome and their post-insertion fates remain a mystery. Previous studies have suggested that Hymenoptera may be a group rich in NUMTs, which will be helpful to study the biological issues of NUMTs. We here select 11 species of fig wasps (Chalcidoidea, Hymenoptera) to analyze the distribution and evolution of NUMTs at the genomic level. The results show that the distributions of NUMTs are species- or lineage-specific. Furthermore, genomic environmental factors such as genome size, the damage-prone regions, and the mode of TE dynamics can determine the insertion and post-insertion fate of NUMTs. Especially because of TEs, the fragmentation and duplication of NUMTs, and thus their burst, are common. This is a relatively comprehensive investigation of the specific distribution of NUMTs and its influencing factors. Our study will help people to understand the evolution of exogenous fragments in the nuclear genome. Abstract Mitochondrial DNA sequences can be transferred into the nuclear genome, giving rise to nuclear mitochondrial DNA sequences (NUMTs). NUMTs have been described in numerous eukaryotes. However, the studies on the distribution of NUMTs and its influencing factors are still inadequate and even controversial. Previous studies have suggested that Hymenoptera may be a group rich in NUMTs, in which we selected 11 species of fig wasps (Chalcidoidea, Hymenoptera) to analyze the distribution and evolution of NUMTs at the genomic level. The results showed that the contents of NUMTs varied greatly in these species, and bursts of NUMTs existed in some species or lineages. Further detailed analyses showed that the large number of NUMTs might be related to the large genomes; NUMTs tended to be inserted into unstable regions of the genomes; and the inserted NUMTs might also be affected by transposable elements (TEs) in the neighbors, leading to fragmentations and duplications, followed by bursts of NUMTs. In summary, our results suggest that a variety of genomic environmental factors can determine the insertion and post-insertion fate of NUMTs, resulting in their species- or lineage-specific distribution patterns, and that studying the evolution of NUMTs can provide good evidence and theoretical basis for exploring the dynamics of exogenous DNA entering into the nuclear genome.
Collapse
|
19
|
Roy AS, Woehle C, LaRoche J. The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus Thalassiosira. Front Microbiol 2020; 11:523689. [PMID: 33123095 PMCID: PMC7566914 DOI: 10.3389/fmicb.2020.523689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/07/2020] [Indexed: 11/24/2022] Open
Abstract
Ferredoxins are iron–sulfur proteins essential for a wide range of organisms because they are an electron transfer mediator involved in multiple metabolic pathways. In phytoplankton, these proteins are active in the mature chloroplasts, but the petF gene, encoding for ferredoxin, has been found either to be in the chloroplast genome or transferred to the nuclear genome as observed in the green algae and higher plant lineage. We experimentally determined the location of the petF gene in 12 strains of Thalassiosira covering three species using DNA sequencing and qPCR assays. The results showed that petF gene is located in the nuclear genome of all confirmed Thalassiosira oceanica strains (CCMP0999, 1001, 1005, and 1006) tested. In contrast, all Thalassiosira pseudonana (CCMP1012, 1013, 1014, and 1335) and Thalassiosira weissflogii (CCMP1010, 1049, and 1052) strains studied retained the gene in the chloroplast genome, as generally observed for Bacillariophyceae. Our evolutionary analyses further extend the dataset on the localization of the petF gene in the Thalassiosirales. The realization that the petF gene is nuclear-encoded in the Skeletonema genus allowed us to trace the petF gene transfer back to a single event that occurred within the paraphyletic genus Thalassiosira. Phylogenetic analyses revealed the need to reassess the taxonomic assignment of the Thalassiosira strain CCMP1616, since the genes used in our study did not cluster within the T. oceanica lineage. Our results suggest that this strains’ diversification occurred prior to the ferredoxin gene transfer event. The functional transfer of petF genes provides insight into the evolutionary processes leading to chloroplast genome reduction and suggests ecological adaptation as a driving force for such chloroplast to nuclear gene transfer.
Collapse
Affiliation(s)
- Alexandra-Sophie Roy
- Genomic Microbiology, Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Christian Woehle
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
20
|
Folk RA, Sewnath N, Xiang CL, Sinn BT, Guralnick RP. Degradation of key photosynthetic genes in the critically endangered semi-aquatic flowering plant Saniculiphyllum guangxiense (Saxifragaceae). BMC PLANT BIOLOGY 2020; 20:324. [PMID: 32640989 PMCID: PMC7346412 DOI: 10.1186/s12870-020-02533-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plastid gene loss and pseudogenization has been widely documented in parasitic and mycoheterotrophic plants, which have relaxed selective constraints on photosynthetic function. More enigmatic are sporadic reports of pseudogenization and loss of important photosynthesis genes in lineages thought to be fully photosynthetic. Here we report the complete plastid genome of Saniculiphyllum guangxiense, a critically endangered and phylogenetically isolated plant lineage, along with genomic evidence of reduced chloroplast function. We also report 22 additional plastid genomes representing the diversity of its containing clade Saxifragales, characterizing gene content and placing variation in a broader phylogenetic context. RESULTS We find that the plastid genome of Saniculiphyllum has experienced pseudogenization of five genes of the ndh complex (ndhA, ndhB, ndhD, ndhF, and ndhK), previously reported in flowering plants with an aquatic habit, as well as the surprising pseudogenization of two genes more central to photosynthesis (ccsA and cemA), contrasting with strong phylogenetic conservatism of plastid gene content in all other sampled Saxifragales. These genes participate in photooxidative protection, cytochrome synthesis, and carbon uptake. Nuclear paralogs exist for all seven plastid pseudogenes, yet these are also unlikely to be functional. CONCLUSIONS Saniculiphyllum appears to represent the greatest degree of plastid gene loss observed to date in any fully photosynthetic lineage, perhaps related to its extreme habitat specialization, yet plastid genome length, structure, and substitution rate are within the variation previously reported for photosynthetic plants. These results highlight the increasingly appreciated dynamism of plastid genomes, otherwise highly conserved across a billion years of green plant evolution, in plants with highly specialized life history traits.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi, Mississippi State, USA.
| | - Neeka Sewnath
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
| | - Brandon T Sinn
- Department of Biology & Earth Science, Otterbein University, Westerville, OH, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
21
|
Li X, Fang C, Zhao JP, Zhou XY, Ni Z, Niu DK. Desiccation does not drastically increase the accessibility of exogenous DNA to nuclear genomes: evidence from the frequency of endosymbiotic DNA transfer. BMC Genomics 2020; 21:452. [PMID: 32611311 PMCID: PMC7329468 DOI: 10.1186/s12864-020-06865-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/23/2020] [Indexed: 12/04/2022] Open
Abstract
Background Although horizontal gene transfer (HGT) is a widely accepted force in the evolution of prokaryotic genomes, its role in the evolution of eukaryotic genomes remains hotly debated. Some bdelloid rotifers that are resistant to extreme desiccation and radiation undergo a very high level of HGT, whereas in another desiccation-resistant invertebrate, the tardigrade, the pattern does not exist. Overall, the DNA double-strand breaks (DSBs) induced by prolonged desiccation have been postulated to open a gateway to the nuclear genome for exogenous DNA integration and thus to facilitate the HGT process, thereby enhancing the rate of endosymbiotic DNA transfer (EDT). Results We first surveyed the abundance of nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs) in five eukaryotes that are highly resistant to desiccation: the bdelloid rotifers Adineta vaga and Adineta ricciae, the tardigrade Ramazzottius varieornatus, and the resurrection plants Dorcoceras hygrometricum and Selaginella tamariscina. Excessive NUMTs or NUPTs were not detected. Furthermore, we compared 24 groups of desiccation-tolerant organisms with their relatively less desiccation-tolerant relatives but did not find a significant difference in NUMT/NUPT contents. Conclusions Desiccation may induce DSBs, but it is unlikely to dramatically increase the frequency of exogenous sequence integration in most eukaryotes. The capture of exogenous DNA sequences is possible only when DSBs are repaired through a subtype of non-homologous end joining, named alternative end joining (alt-EJ). Due to the deleterious effects of the resulting insertion mutations, alt-EJ is less frequently initiated than other mechanisms.
Collapse
Affiliation(s)
- Xixi Li
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Cheng Fang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun-Peng Zhao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao-Yu Zhou
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhihua Ni
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
22
|
Zhang GJ, Dong R, Lan LN, Li SF, Gao WJ, Niu HX. Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants. Int J Mol Sci 2020; 21:ijms21030707. [PMID: 31973163 PMCID: PMC7037861 DOI: 10.3390/ijms21030707] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ran Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| | - Hong-Xing Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| |
Collapse
|
23
|
Zhang F, Li W, Gao CW, Zhang D, Gao LZ. Deciphering tea tree chloroplast and mitochondrial genomes of Camellia sinensis var. assamica. Sci Data 2019; 6:209. [PMID: 31624267 PMCID: PMC6797725 DOI: 10.1038/s41597-019-0201-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/10/2019] [Indexed: 11/10/2022] Open
Abstract
Tea is the most popular non-alcoholic caffeine-containing and the oldest beverage in the world. In this study, we de novo assembled the chloroplast (cp) and mitochondrial (mt) genomes of C. sinensis var. assamica cv. Yunkang10 into a circular contig of 157,100 bp and two complete circular scaffolds (701719 bp and 177329 bp), respectively. We correspondingly annotated a total of 141 cp genes and 71 mt genes. Comparative analysis suggests repeat-rich nature of the mt genome compared to the cp genome, for example, with the characterization of 37,878 bp and 149 bp of long repeat sequences and 665 and 214 SSRs, respectively. We also detected 478 RNA-editing sites in 42 protein-coding mt genes, which are ~4.4-fold more than 54 RNA-editing sites detected in 21 protein-coding cp genes. The high-quality cp and mt genomes of C. sinensis var. assamica presented in this study will become an important resource for a range of genetic, functional, evolutionary and comparative genomic studies in tea tree and other Camellia species of the Theaceae family.
Collapse
Affiliation(s)
- Fen Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China
| | - Cheng-Wen Gao
- Affiliated Hospital, Qingdao University, Qingdao, 266003, China
| | - Dan Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China.
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
24
|
de Santana Lopes A, Gomes Pacheco T, Nascimento da Silva O, Magalhães Cruz L, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. The plastomes of Astrocaryum aculeatum G. Mey. and A. murumuru Mart. show a flip-flop recombination between two short inverted repeats. PLANTA 2019; 250:1229-1246. [PMID: 31222493 DOI: 10.1007/s00425-019-03217-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
The plastomes of Astrocaryum murumuru and A. aculeatum revealed a lineage-specific structural feature originated by flip-flop recombination, non-synonymous substitutions in conserved genes and several molecular markers. Astrocaryum murumuru Mart. and A. aculeatum G.Mey. are two palm species of Amazon forest that are economically important as source of food, oil and raw material for several applications. Genetic studies aiming to establish strategies for conservation and domestication of both species are still in the beginning given that the exploitation is mostly by extractive activity. The identification and characterization of molecular markers are essential to assess the genetic diversity of natural populations of both species. Therefore, we sequenced and characterized in detail the plastome of both species. We compared both species and identified 32 polymorphic SSR loci, 150 SNPs, 46 indels and eight hotspots of nucleotide diversity. Additionally, we reported a specific RNA editing site found in the ccsA gene, which is exclusive to A. murumuru. Moreover, the structural analysis in the plastomes of both species revealed a 4.6-kb inversion encompassing a set of genes involved in chlororespiration and plastid translation. This 4.6-kb inversion is a lineage-specific structural feature of the genus Astrocaryum originated by flip-flop recombination between two short inverted repeats. Furthermore, our phylogenetic analysis using whole plastomes of 39 Arecaceae species placed the Astrocaryum species sister to Acrocomia within the tribe Cocoseae. Finally, our data indicated substantial changes in the plastome structure and sequence of both species of the genus Astrocaryum, bringing new molecular markers, several structural and evolving features, which can be applied in several areas such as genetic, evolution, breeding, phylogeny and conservation strategies for both species.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Odyone Nascimento da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leonardo Magalhães Cruz
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
25
|
Li SF, Li JR, Wang J, Dong R, Jia KL, Zhu HW, Li N, Yuan JH, Deng CL, Gao WJ. Cytogenetic and genomic organization analyses of chloroplast DNA invasions in the nuclear genome of Asparagus officinalis L. provides signatures of evolutionary complexity and informativity in sex chromosome evolution. BMC PLANT BIOLOGY 2019; 19:361. [PMID: 31419941 PMCID: PMC6698032 DOI: 10.1186/s12870-019-1975-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/13/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The transfer of chloroplast DNA into nuclear genome is a common process in plants. These transfers form nuclear integrants of plastid DNAs (NUPTs), which are thought to be driving forces in genome evolution, including sex chromosome evolution. In this study, NUPTs in the genome of a dioecious plant Asparagus officinalis L. were systematically analyzed, in order to investigate the characteristics of NUPTs in the nuclear genome and the relationship between NUPTs and sex chromosome evolution in this species. RESULTS A total of 3155 NUPT insertions were detected, and they represented approximated 0.06% of the nuclear genome. About 45% of the NUPTs were organized in clusters. These clusters were derived from various evolutionary events. The Y chromosome contained the highest number and largest proportion of NUPTs, suggesting more accumulation of NUPTs on sex chromosomes. NUPTs were distributed widely in all of the chromosomes, and some regions preferred these insertions. The highest density of NUPTs was found in a 47 kb region in the Y chromosome; more than 75% of this region was occupied by NUPTs. Further cytogenetic and sequence alignment analysis revealed that this region was likely the centromeric region of the sex chromosomes. On the other hand, the male-specific region of the Y chromosome (MSY) and the adjacent regions did not have NUPT insertions. CONCLUSIONS These results indicated that NUPTs were involved in shaping the genome of A. officinalis through complicated process. NUPTs may play important roles in the centromere shaping of the sex chromosomes of A. officinalis, but were not implicated in MSY formation.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Jia-Rong Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Jin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Ran Dong
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Ke-Li Jia
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
- SanQuan Medical College, Xinxiang Medical University, Xinxiang, 453003 China
| | - Hong-Wei Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Jin-Hong Yuan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| |
Collapse
|
26
|
Balciuniene J, Balciunas D. A Nuclear mtDNA Concatemer (Mega-NUMT) Could Mimic Paternal Inheritance of Mitochondrial Genome. Front Genet 2019; 10:518. [PMID: 31244882 PMCID: PMC6563850 DOI: 10.3389/fgene.2019.00518] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Darius Balciunas
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Comparative assessment shows the reliability of chloroplast genome assembly using RNA-seq. Sci Rep 2018; 8:17404. [PMID: 30479362 PMCID: PMC6258696 DOI: 10.1038/s41598-018-35654-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022] Open
Abstract
Chloroplast genomes (cp genomes) are widely used in comparative genomics, population genetics, and phylogenetic studies. Obtaining chloroplast genomes from RNA-Seq data seems feasible due to the almost full transcription of cpDNA. However, the reliability of chloroplast genomes assembled from RNA-Seq instead of genomic DNA libraries remains to be thoroughly verified. In this study, we assembled chloroplast genomes for three Erysimum (Brassicaceae) species from three RNA-Seq replicas and from one genomic library of each species, using a streamlined bioinformatics protocol. We compared these assembled genomes, confirming that assembled cp genomes from RNA-Seq data were highly similar to each other and to those from genomic libraries in terms of overall structure, size, and composition. Although post-transcriptional modifications, such as RNA-editing, may introduce variations in the RNA-seq data, the assembly of cp genomes from RNA-seq appeared to be reliable. Moreover, RNA-Seq assembly was less sensitive to sources of error such as the recovery of nuclear plastid DNAs (NUPTs). Although some precautions should be taken when producing reference genomes in non-model plants, we conclude that assembling cp genomes from RNA-Seq data is a fast, accurate, and reliable strategy.
Collapse
|
28
|
Kim HT, Kim KJ. Evolution of six novel ORFs in the plastome of Mankyua chejuense and phylogeny of eusporangiate ferns. Sci Rep 2018; 8:16466. [PMID: 30405200 PMCID: PMC6220310 DOI: 10.1038/s41598-018-34825-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
In this paper, three plastomes of Mankyua chejuense, Helminthostachys zeylanica, and Botrychium ternatum in Ophioglossaceae were completely sequenced in order to investigate the plastome evolution and phylogeny of eusporangiate ferns. They were similar to each other in terms of length and the gene orders; however, six unknown open reading frames (ORFs) were found between rps4 and trnL-UAA genes in M. chejuense. Similar sequence regions of six ORFs of M. chejuense were found at the plastomes of Ophioglossum californicum and H. zeylanica, as well as the mitochondrial genome (mitogenome) of H. zeylanica, but not in B. ternatum. Interestingly, the translated amino acid sequences of three ORFs were more similar to the proteins of distantly related taxa such as algae and bacteria than they were to proteins in land plants. It is likely that the six ORFs region arose from endosymbiotic gene transfer (EGT) or horizontal gene transfer (HGT), but further study is needed to verify this. Phylogenetic analyses suggested that Mankyua was resolved as the earliest diverging lineage and that Ophioglossum was subsequently diverged in Ophioglossaceae. This result supports why the plastome of M. chejuense have contained the most ancestral six ORFs in the family.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea
- Institute of Agricultural Science and Technology, Chungbuk National University, Chengju, 41566, Korea
| | - Ki-Joong Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
29
|
Portugez S, Martin WF, Hazkani-Covo E. Mosaic mitochondrial-plastid insertions into the nuclear genome show evidence of both non-homologous end joining and homologous recombination. BMC Evol Biol 2018; 18:162. [PMID: 30390623 PMCID: PMC6215612 DOI: 10.1186/s12862-018-1279-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mitochondrial and plastid DNA fragments are continuously transferred into eukaryotic nuclear genomes, giving rise to nuclear copies of mitochondrial DNA (numts) and nuclear copies of plastid DNA (nupts). Numts and nupts are classified as simple if they are composed of a single organelle fragment or as complex if they are composed of multiple fragments. Mosaic insertions are complex insertions composed of fragments of both mitochondrial and plastid DNA. Simple numts and nupts in eukaryotes have been extensively studied, their mechanism of insertion involves non-homologous end joining (NHEJ). Mosaic insertions have been less well-studied and their mechanisms of integration are unknown. Results Here we estimated the number of nuclear mosaic insertions (numins) in nine plant genomes. We show that numins compose up to 10% of the total nuclear insertions of organelle DNA in these plant genomes. The NHEJ hallmarks typical for numts and nupts were also identified in mosaic insertions. However, the number of identified insertions that integrated via NHEJ mechanism is underestimated, as NHEJ signatures are conserved only in recent insertions and mutationally eroded in older ones. A few complex insertions show signatures of long homology that cannot be attributed to NHEJ, a novel observation that implicates gene conversion or single strand annealing mechanisms in organelle nuclear insertions. Conclusions The common NHEJ signature that was identified here reveals that, in plant cells, mitochondria and plastid fragments in numins must meet during or prior to integration into the nuclear genome. Electronic supplementary material The online version of this article (10.1186/s12862-018-1279-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shir Portugez
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.,School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
30
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
31
|
Kim HT, Lee JM. Organellar genome analysis reveals endosymbiotic gene transfers in tomato. PLoS One 2018; 13:e0202279. [PMID: 30183712 PMCID: PMC6124701 DOI: 10.1371/journal.pone.0202279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/13/2023] Open
Abstract
We assembled three complete mitochondrial genomes (mitogenomes), two of Solanum lycopersicum and one of Solanum pennellii, and analyzed their intra- and interspecific variations. The mitogenomes were 423,596-446,257 bp in length. Despite numerous rearrangements between the S. lycopersicum and S. pennellii mitogenomes, over 97% of the mitogenomes were similar to each other. These mitogenomes were compared with plastid and nuclear genomes to investigate genetic material transfers among DNA-containing organelles in tomato. In all mitogenomes, 9,598 bp of plastome sequences were found. Numerous nuclear copies of mitochondrial DNA (NUMTs) and plastid DNA (NUPTs) were observed in the S. lycopersicum and S. pennellii nuclear genomes. Several long organellar DNA fragments were tightly clustered in the nuclear genome; however, the NUMT and NUPT locations differed between the two species. Our results demonstrate the recent occurrence of frequent endosymbiotic gene transfers in tomato genomes.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
32
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
33
|
Wang D, Gu J, David R, Wang Z, Yang S, Searle IR, Zhu JK, Timmis JN. Experimental reconstruction of double-stranded break repair-mediated plastid DNA insertion into the tobacco nucleus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:227-234. [PMID: 29155472 DOI: 10.1111/tpj.13769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
The mitochondria and plastids of eukaryotic cells evolved from endosymbiotic prokaryotes. DNA from the endosymbionts has bombarded nuclei since the ancestral prokaryotes were engulfed by a precursor of the nucleated eukaryotic host. An experimental confirmation regarding the molecular mechanisms responsible for organelle DNA incorporation into nuclei has not been performed until the present analysis. Here we introduced double-stranded DNA breaks into the nuclear genome of tobacco through inducible expression of I-SceI, and showed experimentally that tobacco chloroplast DNAs insert into nuclear genomes through double-stranded DNA break repair. Microhomology-mediated linking of disparate segments of chloroplast DNA occurs frequently during healing of induced nuclear double-stranded breaks (DSB) but the resulting nuclear integrants are often immediately unstable. Non-Mendelian inheritance of a selectable marker (neo), used to identify plastid DNA transfer, was observed in the progeny of about 50% of lines emerging from the screen. The instability of these de novo nuclear insertions of plastid DNA (nupts) was shown to be associated with deletion not only of the nupt itself but also of flanking nuclear DNA within one generation of transfer. This deletion of pre-existing nuclear DNA suggests that the genetic impact of organellar DNA transfer to the nucleus is potentially far greater than previously thought.
Collapse
Affiliation(s)
- Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi, 330031, China
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jinbao Gu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rakesh David
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zhen Wang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Songtao Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Iain R Searle
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeremy N Timmis
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
34
|
Hazkani-Covo E, Martin WF. Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health. Genome Biol Evol 2017; 9:1190-1203. [PMID: 28444372 PMCID: PMC5570036 DOI: 10.1093/gbe/evx078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2017] [Indexed: 12/28/2022] Open
Abstract
Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health.
Collapse
Affiliation(s)
- Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
35
|
Shi H, Xing Y, Mao X. The little brown bat nuclear genome contains an entire mitochondrial genome: Real or artifact? Gene 2017; 629:64-67. [PMID: 28754635 DOI: 10.1016/j.gene.2017.07.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Nuclear mitochondrial DNA sequences (NUMTs) have been documented in almost all eukaryotic genomes studied. Recently, with the number of sequenced genomes increasing, extremely large NUMTs, even a nearly entire mitochondrial genome, have been reported in some plants and animals. However, few such studies provided strong experimental evidences for these important discoveries. In this study using a computer-based search method an entire mitochondrial genome (NUMT-1) was found in the nuclear genome of a bat species (Myotis lucifugus). This super-large NUMT shared a same scaffold with a 754bp nuclear genomic sequence and a second NUMT (NUMT-2, 3292bp). If NUMT-1 was real, it will be the largest NUMT found in animals and this finding will provide valuable insights into the mode of generation of NUMTs in the nuclear genome. Unfortunately, although the initial sequencing technology of the published M. lucifugus genome makes the possibility of artifact less likely, our results from both the PCR amplification followed by Sanger sequencing and mapping method based on the whole-genome resequencing datasets suggested that the scaffold containing the entire mitochondrial genome was artifact possibly due to a misassembly of mitochondrial and the nuclear DNA sequences. Our current study highlights the necessity to validate the authenticity of extremely large NUMTs identified in previous searches on whole-genome sequence assemblies.
Collapse
Affiliation(s)
- Huizhen Shi
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Yutong Xing
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiuguang Mao
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
36
|
Drezen JM, Gauthier J, Josse T, Bézier A, Herniou E, Huguet E. Foreign DNA acquisition by invertebrate genomes. J Invertebr Pathol 2017; 147:157-168. [DOI: 10.1016/j.jip.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
|
37
|
Wang XC, Chen H, Yang D, Liu C. Diversity of mitochondrial plastid DNAs (MTPTs) in seed plants. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:635-642. [PMID: 28573928 DOI: 10.1080/24701394.2017.1334772] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mitochondrial plastid DNAs (MTPTs) refer to plastid-derived DNA fragments in mitochondrial genomes. While the MTPTs have been described for numerous species, its overall patterns have not been examined in details. Here, we carried out a systematic analysis of MTPTs among 73 plant species, including 28 algae, 1 liverwort, 2 moss, 1 lycophyte, 1 gymnosperm, 1 magnoliid, 12 monocots, 26 eudicots and 1 relic angiosperm Amborella trichopoda. A total of 300 MTPT gene clusters were found in 39 seed plants, which represented 144 MTPT gene cluster types. The detected MTPT gene clusters were evaluated in seven aspects, and they were found to be enriched particularly in monocots and asterids of eudicots. Some MTPT gene clusters were found to be shared by closely related species. All chloroplast genes were found in MTPTs, suggesting that there is no functional relevancy for genes that were transferred. However, after calculation of the frequency of the 115 chloroplast genes, five hot spots and three cold spots were discovered in chloroplast genome. In summary, this study demonstrated the high degree of diversity in MTPTs. The discovered MTPTs would facilitate the accurate assembly of chloroplast and mitochondrial genomes as well as the understanding of organelle genome evolution.
Collapse
Affiliation(s)
- Xin-Cun Wang
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , P.R. China
| | - Haimei Chen
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , P.R. China
| | - Dan Yang
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , P.R. China
| | - Chang Liu
- a Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , P.R. China
| |
Collapse
|
38
|
Qiu H, Lee JM, Yoon HS, Bhattacharya D. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction. JOURNAL OF PHYCOLOGY 2017; 53:715-719. [PMID: 28095611 DOI: 10.1111/jpy.12514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non-photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage.
Collapse
Affiliation(s)
- Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Jun Mo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
39
|
Leister D. Towards understanding the evolution and functional diversification of DNA-containing plant organelles. F1000Res 2016; 5. [PMID: 26998248 PMCID: PMC4792205 DOI: 10.12688/f1000research.7915.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/27/2022] Open
Abstract
Plastids and mitochondria derive from prokaryotic symbionts that lost most of their genes after the establishment of endosymbiosis. In consequence, relatively few of the thousands of different proteins in these organelles are actually encoded there. Most are now specified by nuclear genes. The most direct way to reconstruct the evolutionary history of plastids and mitochondria is to sequence and analyze their relatively small genomes. However, understanding the functional diversification of these organelles requires the identification of their complete protein repertoires – which is the ultimate goal of organellar proteomics. In the meantime, judicious combination of proteomics-based data with analyses of nuclear genes that include interspecies comparisons and/or predictions of subcellular location is the method of choice. Such genome-wide approaches can now make use of the entire sequences of plant nuclear genomes that have emerged since 2000. Here I review the results of these attempts to reconstruct the evolution and functions of plant DNA-containing organelles, focusing in particular on data from nuclear genomes. In addition, I discuss proteomic approaches to the direct identification of organellar proteins and briefly refer to ongoing research on non-coding nuclear DNAs of organellar origin (specifically, nuclear mitochondrial DNA and nuclear plastid DNA).
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität, Planegg-Martinsried, 82152, Germany; Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
40
|
Garaycochea S, Speranza P, Alvarez-Valin F. A strategy to recover a high-quality, complete plastid sequence from low-coverage whole-genome sequencing. APPLICATIONS IN PLANT SCIENCES 2015; 3:apps1500022. [PMID: 26504677 PMCID: PMC4610308 DOI: 10.3732/apps.1500022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY We developed a bioinformatic strategy to recover and assemble a chloroplast genome using data derived from low-coverage 454 GS FLX/Roche whole-genome sequencing. METHODS A comparative genomics approach was applied to obtain the complete chloroplast genome from a weedy biotype of rice from Uruguay. We also applied appropriate filters to discriminate reads representing novel DNA transfer events between the chloroplast and nuclear genomes. RESULTS From a set of 295,159 reads (96 Mb data), we assembled the chloroplast genome into two contigs. This weedy rice was classified based on 23 polymorphic regions identified by comparison with reference chloroplast genomes. We detected recent and past events of genetic material transfer between the chloroplast and nuclear genomes and estimated their occurrence frequency. DISCUSSION We obtained a high-quality complete chloroplast genome sequence from low-coverage sequencing data. Intergenome DNA transfer appears to be more frequent than previously thought.
Collapse
Affiliation(s)
- Silvia Garaycochea
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria (INIA), Rincón del Colorado, Canelones, Uruguay
| | - Pablo Speranza
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
41
|
Clanton R, Saucier D, Ford J, Akabani G. Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature. ENVIRONMENTAL RESEARCH 2015; 142:239-256. [PMID: 26183884 DOI: 10.1016/j.envres.2015.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Utilization of environmental stimuli for growth is the main factor contributing to the evolution of prokaryotes and eukaryotes, independently and mutualistically. Epigenetics describes an organism's ability to vary expression of certain genes based on their environmental stimuli. The diverse degree of dose-dependent responses based on their variances in expressed genetic profiles makes it difficult to ascertain whether hormesis or oncogenesis has or is occurring. In the medical field this is shown where survival curves used in determining radiotherapeutic doses have substantial uncertainties, some as large as 50% (Barendsen, 1990). Many in-vitro radiobiological studies have been limited by not taking into consideration the innate presence of microbes in biological systems, which have either grown symbiotically or pathogenically. Present in-vitro studies neglect to take into consideration the varied responses that commensal and opportunistic pathogens will have when exposed to the same stimuli and how such responses could act as stimuli for their macro/microenvironment. As a result many theories such as radiation carcinogenesis explain microscopic events but fail to describe macroscopic events (Cohen, 1995). As such, this review shows how microorganisms have the ability to perturb risks of cancer and enhance hormesis after irradiation. It will also look at bacterial significance in the microenvironment of the tumor before and during treatment. In addition, bacterial systemic communication after irradiation and the host's immune responses to infection could explain many of the phenomena associated with bystander effects. Therefore, the present literature review considers the paradigms of hormesis and oncogenesis in order to find a rationale that ties them all together. This relationship was thus characterized to be the microbiome.
Collapse
Affiliation(s)
- Ryan Clanton
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843, USA
| | - David Saucier
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA
| | - John Ford
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Gamal Akabani
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
42
|
Scarcelli N, Mariac C, Couvreur TLP, Faye A, Richard D, Sabot F, Berthouly‐Salazar C, Vigouroux Y. Intra‐individual polymorphism in chloroplasts from
NGS
data: where does it come from and how to handle it? Mol Ecol Resour 2015; 16:434-45. [DOI: 10.1111/1755-0998.12462] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/07/2015] [Accepted: 08/21/2015] [Indexed: 01/11/2023]
Affiliation(s)
- N. Scarcelli
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - C. Mariac
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - T. L. P. Couvreur
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
- Département des Sciences Biologiques Laboratoire de Botanique Systématique et d'Ecologie Ecole Normale Supérieure Université de Yaoundé I BP 047 Yaoundé Cameroon
| | - A. Faye
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - D. Richard
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - F. Sabot
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - C. Berthouly‐Salazar
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
- Route des Hydrocarbures Centre de Recherche de Bel‐Air IRD/ISRA BP 1386 – 18524 Dakar Senegal
| | - Y. Vigouroux
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| |
Collapse
|
43
|
Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize. G3-GENES GENOMES GENETICS 2015; 5:2229-39. [PMID: 26333837 PMCID: PMC4632043 DOI: 10.1534/g3.115.020677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transfer of mitochondrial DNA (mtDNA) into nuclear genomes is a regularly occurring process that has been observed in many species. Few studies, however, have focused on the variation of nuclear-mtDNA sequences (NUMTs) within a species. This study examined mtDNA insertions within chromosomes of a diverse set of Zea mays ssp. mays (maize) inbred lines by the use of fluorescence in situ hybridization. A relatively large NUMT on the long arm of chromosome 9 (9L) was identified at approximately the same position in four inbred lines (B73, M825, HP301, and Oh7B). Further examination of the similarly positioned 9L NUMT in two lines, B73 and M825, indicated that the large size of these sites is due to the presence of a majority of the mitochondrial genome; however, only portions of this NUMT (~252 kb total) were found in the publically available B73 nuclear sequence for chromosome 9. Fiber-fluorescence in situ hybridization analysis estimated the size of the B73 9L NUMT to be ~1.8 Mb and revealed that the NUMT is methylated. Two regions of mtDNA (2.4 kb and 3.3 kb) within the 9L NUMT are not present in the B73 mitochondrial NB genome; however, these 2.4-kb and 3.3-kb segments are present in other Zea mitochondrial genomes, including that of Zea mays ssp. parviglumis, a progenitor of domesticated maize.
Collapse
|
44
|
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 2015; 112:10231-8. [PMID: 26286985 DOI: 10.1073/pnas.1500012112] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.
Collapse
|
45
|
Abstract
Plastid-to-nucleus DNA transfer provides a rich genetic resource to the complexity of plant nuclear genome architecture. To date, the evolutionary route of nuclear plastid DNA (nupt) remain unknown in conifers. We have sequenced the complete plastomes of two yews, Amentotaxus formosana and Taxus mairei (Taxaceae of coniferales). Our comparative genomic analyses recovered an evolutionary scenario for plastomic reorganization from ancestral to extant plastomes in the three sampled Taxaceae genera, Amentotaxus, Cephalotaxus, and Taxus. Specific primers were designed to amplify nonsyntenic regions between ancestral and extant plastomes, and 12.6 kb of nupts were identified based on phylogenetic analyses. These nupts have significantly accumulated GC-to-AT mutations, reflecting a nuclear mutational environment shaped by spontaneous deamination of 5-methylcytosin. The ancestral initial codon of rps8 is retained in the T. nupts, but its corresponding extant codon is mutated and requires C-to-U RNA-editing. These findings suggest that nupts can help recover scenarios of the nucleotide mutation process. We show that the Taxaceae nupts we retrieved may have been retained because the Cretaceous and they carry information of both ancestral genomic organization and nucleotide composition, which offer clues for understanding the plastome evolution in conifers.
Collapse
Affiliation(s)
- Chih-Yao Hsu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
46
|
A census of nuclear cyanobacterial recruits in the plant kingdom. PLoS One 2015; 10:e0120527. [PMID: 25794152 PMCID: PMC4368824 DOI: 10.1371/journal.pone.0120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/01/2015] [Indexed: 11/19/2022] Open
Abstract
The plastids and mitochondria of the eukaryotic cell are of endosymbiotic origin. These events occurred ~2 billion years ago and produced significant changes in the genomes of the host and the endosymbiont. Previous studies demonstrated that the invasion of land affected plastids and mitochondria differently and that the paths of mitochondrial integration differed between animals and plants. Other studies examined the reasons why a set of proteins remained encoded in the organelles and were not transferred to the nuclear genome. However, our understanding of the functional relations of the transferred genes is insufficient. In this paper, we report a high-throughput phylogenetic analysis to identify genes of cyanobacterial origin for plants of different levels of complexity: Arabidopsis thaliana, Chlamydomonas reinhardtii, Physcomitrella patens, Populus trichocarpa, Selaginella moellendorffii, Sorghum bicolor, Oryza sativa, and Ostreococcus tauri. Thus, a census of cyanobacterial gene recruits and a study of their function are presented to better understand the functional aspects of plastid symbiogenesis. From algae to angiosperms, the GO terms demonstrated a gradual expansion over functionally related genes in the nuclear genome, beginning with genes related to thylakoids and photosynthesis, followed by genes involved in metabolism, and finally with regulation-related genes, primarily in angiosperms. The results demonstrate that DNA is supplied to the nuclear genome on a permanent basis with no regard to function, and only what is needed is kept, which thereby expands on the GO space along the related genes.
Collapse
|
47
|
Park S, Jansen RK, Park S. Complete plastome sequence of Thalictrum coreanum (Ranunculaceae) and transfer of the rpl32 gene to the nucleus in the ancestor of the subfamily Thalictroideae. BMC PLANT BIOLOGY 2015; 15:40. [PMID: 25652741 PMCID: PMC4329224 DOI: 10.1186/s12870-015-0432-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/20/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plastids originated from cyanobacteria and the majority of the ancestral genes were lost or functionally transferred to the nucleus after endosymbiosis. Comparative genomic investigations have shown that gene transfer from plastids to the nucleus is an ongoing evolutionary process but molecular evidence for recent functional gene transfers among seed plants have only been documented for the four genes accD, infA, rpl22, and rpl32. RESULTS The complete plastid genome of Thalictrum coreanum, the first from the subfamily Thalictroideae (Ranunculaceae), was sequenced and revealed the losses of two genes, infA and rpl32. The functional transfer of these two genes to the nucleus in Thalictrum was verified by examination of nuclear transcriptomes. A survey of the phylogenetic distribution of the rpl32 loss was performed using 17 species of Thalictrum and representatives of related genera in the subfamily Thalictroideae. The plastid-encoded rpl32 gene is likely nonfunctional in members of the subfamily Thalictroideae (Aquilegia, Enemion, Isopyrum, Leptopyrum, Paraquilegia, and Semiaquilegia) including 17 Thalictrum species due to the presence of indels that disrupt the reading frame. A nuclear-encoded rpl32 with high sequence identity was identified in both Thalictrum and Aquilegia. The phylogenetic distribution of this gene loss/transfer and the high level of sequence similarity in transit peptides suggest a single transfer of the plastid-encoded rpl32 to the nucleus in the ancestor of the subfamily Thalictroideae approximately 20-32 Mya. CONCLUSIONS The genome sequence of Thalictrum coreanum provides valuable information for improving the understanding of the evolution of plastid genomes within Ranunculaceae and across angiosperms. Thalictrum is unusual among the three sequenced Ranunculaceae plastid genomes in the loss of two genes infA and rpl32, which have been functionally transferred to the nucleus. In the case of rpl32 this represents the third documented independent transfer from the plastid to the nucleus with the other two transfers occurring in the unrelated angiosperm families Rhizophoraceae and Salicaceae. Furthermore, the transfer of rpl32 provides additional molecular evidence for the monophyly of the subfamily Thalictroideae.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX, 78712, USA.
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX, 78712, USA.
- Department of Biological Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, 712-749, Korea.
| |
Collapse
|
48
|
Bhattacharya D, Qiu H, Price DC, Yoon HS. Why we need more algal genomes. JOURNAL OF PHYCOLOGY 2015; 51:1-5. [PMID: 26986254 DOI: 10.1111/jpy.12267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/10/2014] [Indexed: 06/05/2023]
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Huan Qiu
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Dana C Price
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, Korea
| |
Collapse
|
49
|
Sloan DB, Wu Z. History of plastid DNA insertions reveals weak deletion and at mutation biases in angiosperm mitochondrial genomes. Genome Biol Evol 2014; 6:3210-21. [PMID: 25416619 PMCID: PMC4986453 DOI: 10.1093/gbe/evu253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Angiosperm mitochondrial genomes exhibit many unusual properties, including heterogeneous nucleotide composition and exceptionally large and variable genome sizes. Determining the role of nonadaptive mechanisms such as mutation bias in shaping the molecular evolution of these unique genomes has proven challenging because their dynamic structures generally prevent identification of homologous intergenic sequences for comparative analyses. Here, we report an analysis of angiosperm mitochondrial DNA sequences that are derived from inserted plastid DNA (mtpts). The availability of numerous completely sequenced plastid genomes allows us to infer the evolutionary history of these insertions, including the specific nucleotide substitutions and indels that have occurred because their incorporation into the mitochondrial genome. Our analysis confirmed that many mtpts have a complex history, including frequent gene conversion and multiple examples of horizontal transfer between divergent angiosperm lineages. Nevertheless, it is clear that the majority of extant mtpt sequence in angiosperms is the product of recent transfer (or gene conversion) and is subject to rapid loss/deterioration, suggesting that most mtpts are evolving relatively free from functional constraint. The evolution of mtpt sequences reveals a pattern of biased mutational input in angiosperm mitochondrial genomes, including an excess of small deletions over insertions and a skew toward nucleotide substitutions that increase AT content. However, these mutation biases are far weaker than have been observed in many other cellular genomes, providing insight into some of the notable features of angiosperm mitochondrial architecture, including the retention of large intergenic regions and the relatively neutral GC content found in these regions.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins
| |
Collapse
|
50
|
Huang DI, Hefer CA, Kolosova N, Douglas CJ, Cronk QCB. Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae). THE NEW PHYTOLOGIST 2014; 204:693-703. [PMID: 25078531 DOI: 10.1111/nph.12956] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/16/2014] [Indexed: 05/03/2023]
Abstract
As molecular phylogenetic analyses incorporate ever-greater numbers of loci, cases of cytonuclear discordance - the phenomenon in which nuclear gene trees deviate significantly from organellar gene trees - are being reported more frequently. Plant examples of topological discordance, caused by recent hybridization between extant species, are well known. However, examples of branch-length discordance are less reported in plants relative to animals. We use a combination of de novo assembly and reference-based mapping using short-read shotgun sequences to construct a robust phylogeny of the plastome for multiple individuals of all the common Populus species in North America. We demonstrate a case of strikingly high plastome divergence, in contrast to little nuclear genome divergence, in two closely related balsam poplars, Populus balsamifera and Populus trichocarpa (Populus balsamifera ssp. trichocarpa). Previous studies with nuclear loci indicate that the two species (or subspecies) diverged since the late Pleistocene, whereas their plastomes indicate deep divergence, dating to at least the Pliocene (6-7 Myr ago). Our finding is in marked contrast to the estimated Pleistocene divergence of the nuclear genomes, previously calculated at 75 000 yr ago, suggesting plastid capture from a 'ghost lineage' of a now-extinct North American poplar.
Collapse
Affiliation(s)
- Daisie I Huang
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Beaty Biodiversity Research Centre, University of British Columbia, Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Charles A Hefer
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Beaty Biodiversity Research Centre, University of British Columbia, Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Natalia Kolosova
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Beaty Biodiversity Research Centre, University of British Columbia, Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|