1
|
Mielcarska MB, Rouse BT. Viruses and the Brain-A Relationship Prone to Trouble. Viruses 2025; 17:203. [PMID: 40006958 PMCID: PMC11860391 DOI: 10.3390/v17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurological disorders, some of which are associated with viral infections, are growing due to the aging and expanding population. Despite strong defenses of the central nervous system, some viruses have evolved ways to breach them, which often result in dire consequences. In this review, we recount the various ways by which different viruses can enter the CNS, and we describe the consequences of such invasions. Consequences may manifest as acute disease, such as encephalitis, meningitis, or result in long-term effects, such as neuromuscular dysfunction, as occurs in poliomyelitis. We discuss evidence for viral involvement in the causation of well-known chronic neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, as well as vascular dementia in the elderly. We also describe the approaches currently available to control a few of the neural viral infections. These include antivirals that are effective against human immunodeficiency virus and herpes simplex virus, as well as vaccines valuable for controlling rabies virus, poliomyelitis virus, and some flavivirus infections. There is an urgent need to better understand, at a molecular level, how viruses contribute to acute and, especially, chronic neurological diseases and to develop more precise and effective vaccines and therapies.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Pramono D, Sugimoto K, Kimura T, Miyake A, Nishigaki K. Characterization of the endogenous retrovirus-derived placenta-specific soluble protein EnvV-Fca from domestic cats. FEBS Lett 2024; 598:1792-1806. [PMID: 38604984 DOI: 10.1002/1873-3468.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Endogenous retroviruses (ERVs) are remnants of ancestral viruses in the host genome. The present study identified the expression of a defective retroviral env gene belonging to the ERV group V member Env (EnvV) in Felis catus (EnvV-Fca). EnV-Fca was specifically detected in the placental trophoblast syncytiotrophobic layer and expressed as a secreted protein in cultured cells. Genetic analyses indicated that EnvV2 genes are widely present in vertebrates and are under purifying selection among carnivores, suggesting a potential benefit for the host. This study suggests that birds, bats, and rodents carrying EnvV2 may play significant roles as intermediate vectors in spreading or cross-transmitting viruses among species. Our findings provide valuable insights into the evolution of ERV in vertebrate hosts.
Collapse
Affiliation(s)
- Didik Pramono
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Japan
| | - Kenji Sugimoto
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
| | - Tohru Kimura
- The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Japan
| |
Collapse
|
3
|
Blanco-Melo D, Campbell MA, Zhu H, Dennis TPW, Modha S, Lytras S, Hughes J, Gatseva A, Gifford RJ. A novel approach to exploring the dark genome and its application to mapping of the vertebrate virus fossil record. Genome Biol 2024; 25:120. [PMID: 38741126 PMCID: PMC11089739 DOI: 10.1186/s13059-024-03258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Genomic regions that remain poorly understood, often referred to as the dark genome, contain a variety of functionally relevant and biologically informative features. These include endogenous viral elements (EVEs)-virus-derived sequences that can dramatically impact host biology and serve as a virus fossil record. In this study, we introduce a database-integrated genome screening (DIGS) approach to investigate the dark genome in silico, focusing on EVEs found within vertebrate genomes. RESULTS Using DIGS on 874 vertebrate genomes, we uncover approximately 1.1 million EVE sequences, with over 99% originating from endogenous retroviruses or transposable elements that contain EVE DNA. We show that the remaining 6038 sequences represent over a thousand distinct horizontal gene transfer events across 10 virus families, including some that have not previously been reported as EVEs. We explore the genomic and phylogenetic characteristics of non-retroviral EVEs and determine their rates of acquisition during vertebrate evolution. Our study uncovers novel virus diversity, broadens knowledge of virus distribution among vertebrate hosts, and provides new insights into the ecology and evolution of vertebrate viruses. CONCLUSIONS We comprehensively catalog and analyze EVEs within 874 vertebrate genomes, shedding light on the distribution, diversity, and long-term evolution of viruses and reveal their extensive impact on vertebrate genome evolution. Our results demonstrate the power of linking a relational database management system to a similarity search-based screening pipeline for in silico exploration of the dark genome.
Collapse
Affiliation(s)
- Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | | | - Henan Zhu
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Tristan P W Dennis
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Anna Gatseva
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK.
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
4
|
Ngo MH, AbuEed L, Kawasaki J, Oishi N, Pramono D, Kimura T, Sakurai M, Watanabe K, Mizukami Y, Ochi H, Anai Y, Odahara Y, Umehara D, Kawamura M, Watanabe S, Miyake A, Nishigaki K. Multiple recombination events between endogenous retroviral elements and feline leukemia virus. J Virol 2024; 98:e0140023. [PMID: 38240589 PMCID: PMC10878261 DOI: 10.1128/jvi.01400-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
Feline leukemia virus (FeLV) is an exogenous retrovirus that causes malignant hematopoietic disorders in domestic cats, and its virulence may be closely associated with viral sequences. FeLV is classified into several subgroups, including A, B, C, D, E, and T, based on viral receptor interference properties or receptor usage. However, the transmission manner and disease specificity of the recombinant viruses FeLV-D and FeLV-B remain unclear. The aim of this study was to understand recombination events between exogenous and endogenous retroviruses within a host and elucidate the emergence and transmission of recombinant viruses. We observed multiple recombination events involving endogenous retroviruses (ERVs) in FeLV from a family of domestic cats kept in one house; two of these cats (ON-T and ON-C) presented with lymphoma and leukemia, respectively. Clonal integration of FeLV-D was observed in the ON-T case, suggesting an association with FeLV-D pathogenesis. Notably, the receptor usage of FeLV-B observed in ON-T was mediated by feline Pit1 and feline Pit2, whereas only feline Pit1 was used in ON-C. Furthermore, XR-FeLV, a recombinant FeLV containing an unrelated sequence referred to the X-region, which is homologous to a portion of the 5'-leader sequence of Felis catus endogenous gammaretrovirus 4 (FcERV-gamma4), was isolated. Genetic analysis suggested that most recombinant viruses occurred de novo; however, the possibility of FeLV-B transmission was also recognized in the family. This study demonstrated the occurrence of multiple recombination events between exogenous and endogenous retroviruses in domestic cats, highlighting the contribution of ERVs to pathogenic recombinant viruses.IMPORTANCEFeline leukemia virus subgroup A (FeLV-A) is primarily transmitted among cats. During viral transmission, genetic changes in the viral genome lead to the emergence of novel FeLV subgroups or variants with altered virulence. We isolated three FeLV subgroups (A, B, and D) and XR-FeLV from two cats and identified multiple recombination events in feline endogenous retroviruses (ERVs), such as enFeLV, ERV-DC, and FcERV-gamma4, which are present in the cat genome. This study highlights the pathogenic contribution of ERVs in the emergence of FeLV-B, FeLV-D, and XR-FeLV in a feline population.
Collapse
Affiliation(s)
- Minh Ha Ngo
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Loai AbuEed
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Junna Kawasaki
- Faculty of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, Japan
| | | | - Didik Pramono
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Tohru Kimura
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Kenji Watanabe
- Institute of Gene Research, Science Research Center, Yamaguchi University, Minami-kogushi, Ube, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Science Research Center, Yamaguchi University, Minami-kogushi, Ube, Japan
| | - Haruyo Ochi
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Yukari Anai
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Yuka Odahara
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Daigo Umehara
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Maki Kawamura
- Life Science Division, Advanced Technology Institute, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Shinya Watanabe
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
| |
Collapse
|
5
|
Jern P, Greenwood AD. Wildlife endogenous retroviruses: colonization, consequences, and cooption. Trends Genet 2024; 40:149-159. [PMID: 37985317 DOI: 10.1016/j.tig.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Endogenous retroviruses (ERVs) are inherited genomic remains of past germline retroviral infections. Research on human ERVs has focused on medical implications of their dysregulation on various diseases. However, recent studies incorporating wildlife are yielding remarkable perspectives on long-term retrovirus-host interactions. These initial forays into broader taxonomic analysis, including sequencing of multiple individuals per species, show the incredible plasticity and variation of ERVs within and among wildlife species. This demonstrates that stochastic processes govern much of the vertebrate genome. In this review, we elaborate on discoveries pertaining to wildlife ERV origins and evolution, genome colonization, and consequences for host biology.
Collapse
Affiliation(s)
- Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; School of Veterinary Medicine, Freie Unversität Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Simula ER, Zarbo IR, Arru G, Sechi E, Meloni R, Deiana GA, Solla P, Sechi LA. Antibody Response to HERV-K and HERV-W Envelope Epitopes in Patients with Myasthenia Gravis. Int J Mol Sci 2023; 25:446. [PMID: 38203616 PMCID: PMC10778599 DOI: 10.3390/ijms25010446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Myasthenia gravis is an antibody-mediated autoimmune neurological disorder characterized by impaired neuromuscular junction transmission, resulting in muscle weakness. Recently, the involvement of Human Endogenous Retroviruses (HERVs) in the pathophysiology of different immune-mediated and neurodegenerative diseases, such as multiple sclerosis, has been demonstrated. We aimed to investigate potential immune system involvement related to humoral responses targeting specific epitopes of HERV-K and HERV-W envelope proteins in myasthenia gravis. Myasthenia gravis patients were recruited in the Neurology Unit, while healthy controls were selected from the Blood Transfusion Center, both affiliated with AOU Sassari. Highly immunogenic antigens of HERV-K and HERV-W envelope proteins were identified using the Immune Epitope Database (IEDB) online tool. These epitopes were utilized in enzyme-linked immunosorbent assays (ELISA) to detect autoantibodies in serum directed against these sequences. The study involved 39 Healthy Donors and 47 MG patients, further categorized into subgroups based on the presence of autoantibodies: MG-AchR Ab+ (n = 17), MG-MuSK Ab+ (n = 7), double seronegative patients (MG-DSN, n = 18), MG-LRP4 Ab + (n = 4), and one patient with no antibodies data (n = 1). Our findings revealed high levels of autoantibodies in myasthenia gravis patients directed against the HERV-K-env-su(19-37), HERV-K-env-su(109-126), HERV-K-env-su(164-186), HERV-W-env(93-108), HERV-W-env(129-14), and HERV-W-env(248-262) epitopes. Notably, these results remained highly significant even when patients were subdivided into MG-AchR Ab+ and MG-DSN subgroups. Correlation analysis further revealed significant positive associations between the antibody levels against HERV-K and HERV-W families in patients, suggesting a synergistic action of the two HERVs in the pathology context since this correlation is absent in the control group. This study marks the first identification of a specific humoral response directed against defined epitopes of HERV-K and HERV-W envelope proteins in myasthenia gravis patients. These findings lay the foundation for future investigations aimed at elucidating the molecular mechanisms driving this immune response. The detection of these autoantibodies suggests the potential for novel biomarkers, especially within the MG-DSN patient subgroup, addressing the need for new biomarkers in this population.
Collapse
Affiliation(s)
- Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
| | - Ignazio Roberto Zarbo
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Giannina Arru
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Elia Sechi
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Rossella Meloni
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Giovanni Andrea Deiana
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
7
|
Shimode S. Acquisition and Exaptation of Endogenous Retroviruses in Mammalian Placenta. Biomolecules 2023; 13:1482. [PMID: 37892164 PMCID: PMC10604696 DOI: 10.3390/biom13101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) are retrovirus-like sequences that were previously integrated into the host genome. Although most ERVs are inactivated by mutations, deletions, or epigenetic regulation, some remain transcriptionally active and impact host physiology. Several ERV-encoded proteins, such as Syncytins and Suppressyn, contribute to placenta acquisition, a crucial adaptation in mammals that protects the fetus from external threats and other risks while enabling the maternal supply of oxygen, nutrients, and antibodies. In primates, Syncytin-1 and Syncytin-2 facilitate cell-cell fusion for placental formation. Suppressyn is the first ERV-derived protein that inhibits cell fusion by binding to ASCT2, the receptor for Syncytin-1. Furthermore, Syncytin-2 likely inserted into the genome of the common ancestor of Anthropoidea, whereas Syncytin-1 and Suppressyn likely inserted into the ancestor of catarrhines; however, they were inactivated in some lineages, suggesting that multiple exaptation events had occurred. This review discusses the role of ERV-encoded proteins, particularly Syncytins and Suppressyn, in placental development and function, focusing on the integration of ERVs into the host genome and their contribution to the genetic mechanisms underlying placentogenesis. This review provides valuable insights into the molecular and genetic aspects of placentation, potentially shedding light on broader evolutionary and physiological processes in mammals.
Collapse
Affiliation(s)
- Sayumi Shimode
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan;
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
8
|
Endogenous Retroviruses as Modulators of Innate Immunity. Pathogens 2023; 12:pathogens12020162. [PMID: 36839434 PMCID: PMC9963469 DOI: 10.3390/pathogens12020162] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Endogenous retroviruses (ERVs), or LTR retrotransposons, are a class of transposable elements that are highly represented in mammalian genomes. Human ERVs (HERVs) make up roughly 8.3% of the genome and over the course of evolution, HERV elements underwent positive selection and accrued mutations that rendered them non-infectious; thereby, the genome could co-opt them into constructive roles with important biological functions. In the past two decades, with the help of advances in sequencing technology, ERVs are increasingly considered to be important components of the innate immune response. While typically silenced, expression of HERVs can be induced in response to traumatic, toxic, or infection-related stress, leading to a buildup of viral transcripts and under certain circumstances, proteins, including functionally active reverse transcriptase and viral envelopes. The biological activity of HERVs in the context of the innate immune response can be based on the functional effect of four major viral components: (1) HERV LTRs, (2) HERV-derived RNAs, (3) HERV-derived RNA:DNA duplexes and cDNA, and (4) HERV-derived proteins and ribonucleoprotein complexes. In this review, we will discuss the implications of HERVs in all four contexts in relation to innate immunity and their association with various pathological disease states.
Collapse
|
9
|
Devaux CA, Pontarotti P, Nehari S, Raoult D. 'Cannibalism' of exogenous DNA sequences: The ancestral form of adaptive immunity which entails recognition of danger. Front Immunol 2022; 13:989707. [PMID: 36618387 PMCID: PMC9816338 DOI: 10.3389/fimmu.2022.989707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Adaptive immunity is a sophisticated form of immune response capable of retaining the molecular memory of a very great diversity of target antigens (epitopes) as non-self. It is capable of reactivating itself upon a second encounter with an immunoglobulin or T-cell receptor antigen-binding site with a known epitope that had previously primed the host immune system. It has long been considered that adaptive immunity is a highly evolved form of non-self recognition that appeared quite late in speciation and complemented a more generalist response called innate immunity. Innate immunity offers a relatively non-specific defense (although mediated by sensors that could specifically recognize virus or bacteria compounds) and which does not retain a memory of the danger. But this notion of recent acquisition of adaptive immunity is challenged by the fact that another form of specific recognition mechanisms already existed in prokaryotes that may be able to specifically auto-protect against external danger. This recognition mechanism can be considered a primitive form of specific (adaptive) non-self recognition. It is based on the fact that many archaea and bacteria use a genome editing system that confers the ability to appropriate viral DNA sequences allowing prokaryotes to prevent host damage through a mechanism very similar to adaptive immunity. This is indistinctly called, 'endogenization of foreign DNA' or 'viral DNA predation' or, more pictorially 'DNA cannibalism'. For several years evidence has been accumulating, highlighting the crucial role of endogenization of foreign DNA in the fundamental processes related to adaptive immunity and leading to a change in the dogma that adaptive immunity appeared late in speciation.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France,*Correspondence: Christian A. Devaux,
| | - Pierre Pontarotti
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Sephora Nehari
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
10
|
Cipriani C, Giudice M, Petrone V, Fanelli M, Minutolo A, Miele MT, Toschi N, Maracchioni C, Siracusano M, Benvenuto A, Coniglio A, Curatolo P, Mazzone L, Sandro G, Garaci E, Sinibaldi-Vallebona P, Matteucci C, Balestrieri E. Modulation of human endogenous retroviruses and cytokines expression in peripheral blood mononuclear cells from autistic children and their parents. Retrovirology 2022; 19:26. [PMID: 36451209 PMCID: PMC9709758 DOI: 10.1186/s12977-022-00603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Putative pathogenic effects mediated by human endogenous retroviruses (HERVs) in neurological and psychiatric disorders in humans have been extensively described. HERVs may alter the development of the brain by means of several mechanisms, including modulation of gene expression, alteration of DNA stability, and activation of immune system. We recently demonstrated that autistic children and their mothers share high expression levels of some HERVs and cytokines in peripheral blood mononuclear cells (PBMCs) ex vivo, suggesting a close mother-child association in Autism Spectrum Disorder (ASD). RESULTS In the present study, PBMCs from autistic children and their parents were exposed to stimulating factors (Interleukin-2/Phytohaemagglutinin) or drugs, as Valproic acid and Efavirenz. The results show that HERVs and cytokines expression can be modulated in vitro by different stimuli in PBMCs from autistic children and their mothers, while no significant changes were found in PBMCs ASD fathers or in controls individuals. In particular, in vitro exposure to interleukin-2/Phytohaemagglutinin or valproic acid induces the expression of several HERVs and cytokines while Efavirenz inhibits them. CONCLUSION Herein we show that autistic children and their mothers share an intrinsic responsiveness to in vitro microenvironmental changes in expressing HERVs and pro-inflammatory cytokines. Remarkably, the antiretroviral drug Efavirenz restores the expression of specific HERV families to values similar to those of the controls, also reducing the expression of proinflammatory cytokines but keeping the regulatory ones high. Our findings open new perspectives to study the role of HERVs in the biological mechanisms underlying Autism.
Collapse
Affiliation(s)
- Chiara Cipriani
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Giudice
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Vita Petrone
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marialaura Fanelli
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Minutolo
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martino T. Miele
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Toschi
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy ,grid.38142.3c000000041936754XMartinos Center for Biomedical Imaging and Harvard Medical School, Boston, USA
| | - Christian Maracchioni
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Siracusano
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Arianna Benvenuto
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Antonella Coniglio
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Paolo Curatolo
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Luigi Mazzone
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Grelli Sandro
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,Virology Unit, Policlinic of Tor Vergata, 00133 Rome, Italy
| | - Enrico Garaci
- University San Raffaele, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Pisana, 00133 Rome, Italy
| | - Paola Sinibaldi-Vallebona
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Claudia Matteucci
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Emanuela Balestrieri
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Bamford CGG, de Souza WM, Parry R, Gifford RJ. Comparative analysis of genome-encoded viral sequences reveals the evolutionary history of flavivirids (family Flaviviridae). Virus Evol 2022; 8:veac085. [PMID: 36533146 PMCID: PMC9752770 DOI: 10.1093/ve/veac085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 01/24/2023] Open
Abstract
Flavivirids (family Flaviviridae) are a group of positive-strand ribonucleic acid (RNA) viruses that pose serious risks to human and animal health on a global scale. Here, we use flavivirid-derived deoxyribonucleic acid (DNA) sequences, identified in animal genomes, to reconstruct the long-term evolutionary history of family Flaviviridae. We demonstrate that flavivirids are >100 million years old and show that this timing can be combined with dates inferred from co-phyletic analysis to produce a cohesive overview of their evolution, distribution, and diversity wherein the main flavivirid subgroups originate in early animals and broadly co-diverge with major animal phyla. In addition, we reveal evidence that the 'classical flaviviruses' of vertebrates, most of which are transmitted via blood-feeding arthropod vectors, originally evolved in haematophagous arachnids and later acquired the capacity to be transmitted by insects. Our findings imply that the biological properties of flavivirids have been acquired gradually over the course of animal evolution. Thus, broad-scale comparative analysis will likely reveal fundamental insights into their biology. We therefore published our results via an open, extensible, database (Flavivirid-GLUE), which we constructed to facilitate the wider utilisation of genomic data and evolution-related domain knowledge in flavivirid research.
Collapse
|
12
|
Convergent evolution of antiviral machinery derived from endogenous retrovirus truncated envelope genes in multiple species. Proc Natl Acad Sci U S A 2022; 119:e2114441119. [PMID: 35749360 PMCID: PMC9245640 DOI: 10.1073/pnas.2114441119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Host genetic resistance to viral infection controls the pathogenicity and epidemic dynamics of infectious diseases. Refrex-1 is a restriction factor against feline leukemia virus subgroup D (FeLV-D) and an endogenous retrovirus (ERV) in domestic cats (ERV-DC). Refrex-1 is encoded by a subset of ERV-DC loci with truncated envelope genes and secreted from cells as a soluble protein. Here, we identified the copper transporter CTR1 as the entry receptor for FeLV-D and genotype I ERV-DCs. We also identified CTR1 as a receptor for primate ERVs from crab-eating macaques and rhesus macaques, which were found in a search of intact envelope genes capable of forming infectious viruses. Refrex-1 counteracted infection by FeLV-D and ERV-DCs via competition for the entry receptor CTR1; the antiviral effects extended to primate ERVs with CTR1-dependent entry. Furthermore, truncated ERV envelope genes found in chimpanzee, bonobo, gorilla, crab-eating macaque, and rhesus macaque genomes could also block infection by feline and primate retroviruses. Genetic analyses showed that these ERV envelope genes were acquired in a species- or genus-specific manner during host evolution. These results indicated that soluble envelope proteins could suppress retroviral infection across species boundaries, suggesting that they function to control retroviral spread. Our findings revealed that several mammalian species acquired antiviral machinery from various ancient retroviruses, leading to convergent evolution for host defense.
Collapse
|
13
|
Sacco MA, Lau J, Godinez-Vidal D, Kaloshian I. Non-canonical nematode endogenous retroviruses resulting from RNA virus glycoprotein gene capture by a metavirus. J Gen Virol 2022; 103. [PMID: 35550022 DOI: 10.1099/jgv.0.001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reverse-transcribing retroviruses exist as horizontally transmitted infectious agents or vertically transmitted endogenous retroviruses (ERVs) resident in eukaryotic genomes, and they are phylogenetically related to the long terminal repeat (LTR) class of retrotransposons. ERVs and retrotransposons are often distinguished only by the presence or absence of a gene encoding the envelope glycoprotein (env). Endogenous elements of the virus family Metaviridae include the insect-restricted Errantivirus genus of ERVs, for which some members possess env, and the pan-eukaryotic Metavirus genus that lacks an envelope glycoprotein gene. Here we report a novel Nematoda endogenous retrovirus (NERV) clade with core retroviral genes arranged uniquely as a continuous gag-env-pro-pol ORF. Reverse transcriptase sequences were phylogenetically related to metaviruses, but envelope glycoprotein sequences resembled those of the Nyamiviridae and Chrysoviridae RNA virus families, suggesting env gene capture during host cell infection by an RNA virus. NERVs were monophyletic, restricted to the nematode subclass Chromadoria, and included additional ORFs for a small hypothetical protein or a large Upf1-like RNA-dependent AAA-ATPase/helicase indicative of viral transduction of a host gene. Provirus LTR identity, low copy number, ORF integrity and segregation of three loci in Meloidogyne incognita, taken together with detection of NERV transcriptional activity, support potential infectivity of NERVs, along with their recent emergence and integration. Altogether, NERVs constitute a new and distinct Metaviridae lineage demonstrating retroviral evolution through sequential heterologous gene capture events.
Collapse
Affiliation(s)
- Melanie Ann Sacco
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Jonathan Lau
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Damaris Godinez-Vidal
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Isgouhi Kaloshian
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
14
|
van der Kuyl AC. Analysis of Simian Endogenous Retrovirus (SERV) Full-Length Proviruses in Old World Monkey Genomes. Genes (Basel) 2022; 13:119. [PMID: 35052460 PMCID: PMC8775094 DOI: 10.3390/genes13010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Simian endogenous retrovirus, SERV, is a successful germ line invader restricted to Old World monkey (OWM) species. (1) Background: The availability of high-quality primate genomes warrants a study of the characteristics, evolution, and distribution of SERV proviruses. (2) Methods: Cercopithecinae OWM genomes from public databases were queried for the presence of full-length SERV proviruses. A dataset of 81 Cer-SERV genomes was generated and analyzed. (3) Results: Full-length Cer-SERV proviruses were mainly found in terrestrial OWM, and less so in arboreal, forest- dwelling monkeys. Phylogenetic analysis confirmed the existence of two genotypes, Cer-SERV-1 and Cer-SERV-2, with Cer-SERV-1 showing evidence of recent germ-line expansions. Long Terminal Repeat (LTR) variation indicated that most proviruses were of a similar age and were estimated to be between <0.3 and 10 million years old. Integrations shared between species were relatively rare. Sequence analysis further showed extensive CpG methylation-associated mutations, variable Primer Binding Site (PBS) use with Cer-SERV-1 using PBSlys3 and Cer-SERV-2 using PBSlys1,2, and the recent gain of LTR motifs for transcription factors active during embryogenesis in Cer-SERV-1. (4) Conclusions: sequence analysis of 81 SERV proviruses from Cercopithecinae OWM genomes provides evidence for the adaptation of this retrovirus to germ line reproduction.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
16
|
Zheng J, Wei Y, Han GZ. The diversity and evolution of retroviruses: perspectives from viral “fossils”. Virol Sin 2022; 37:11-18. [PMID: 35234634 PMCID: PMC8922424 DOI: 10.1016/j.virs.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology. Recent advances in understanding the diversity and evolution of retroviruses. Methods to analyze ERVs. The effects of ERVs on the evolution of host biology.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yutong Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Jorritsma RN. How Well Does Evolution Explain Endogenous Retroviruses?-A Lakatosian Assessment. Viruses 2021; 14:v14010014. [PMID: 35062218 PMCID: PMC8781664 DOI: 10.3390/v14010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most sophisticated philosophies of science is the methodology of scientific research programmes (MSRP), developed by Imre Lakatos. According to MSRP, scientists are working within so-called research programmes, consisting of a hard core of fixed convictions and a flexible protective belt of auxiliary hypotheses. Anomalies are accommodated by changes to the protective belt that do not affect the hard core. Under MSRP, research programmes are appraised as 'progressive' if they successfully predict novel facts but are judged as 'degenerative' if they merely offer ad hoc solutions to anomalies. This paper applies these criteria to the evolutionary research programme as it has performed during half a century of ERV research. It describes the early history of the field and the emergence of the endogenization-amplification theory on the origins of retroviral-like sequences. It then discusses various predictions and postdictions that were generated by the programme, regarding orthologous ERVs in different species, the presence of target site duplications and the divergence of long terminal repeats, and appraises how the programme has dealt with data that did not conform to initial expectations. It is concluded that the evolutionary research programme has been progressive with regard to the issues here examined.
Collapse
Affiliation(s)
- Ruben N Jorritsma
- Philosophy Group, Wageningen University & Research, 6700 EW Wageningen, The Netherlands
| |
Collapse
|
18
|
Yang L, Malhotra R, Chikhi R, Elleder D, Kaiser T, Rong J, Medvedev P, Poss M. Recombination marks the evolutionary dynamics of a recently endogenized retrovirus. Mol Biol Evol 2021; 38:5423-5436. [PMID: 34480565 PMCID: PMC8662619 DOI: 10.1093/molbev/msab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
All vertebrate genomes have been colonized by retroviruses along their evolutionary trajectory. Although endogenous retroviruses (ERVs) can contribute important physiological functions to contemporary hosts, such benefits are attributed to long-term coevolution of ERV and host because germline infections are rare and expansion is slow, and because the host effectively silences them. The genomes of several outbred species including mule deer (Odocoileus hemionus) are currently being colonized by ERVs, which provides an opportunity to study ERV dynamics at a time when few are fixed. We previously established the locus-specific distribution of cervid ERV (CrERV) in populations of mule deer. In this study, we determine the molecular evolutionary processes acting on CrERV at each locus in the context of phylogenetic origin, genome location, and population prevalence. A mule deer genome was de novo assembled from short- and long-insert mate pair reads and CrERV sequence generated at each locus. We report that CrERV composition and diversity have recently measurably increased by horizontal acquisition of a new retrovirus lineage. This new lineage has further expanded CrERV burden and CrERV genomic diversity by activating and recombining with existing CrERV. Resulting interlineage recombinants then endogenize and subsequently expand. CrERV loci are significantly closer to genes than expected if integration were random and gene proximity might explain the recent expansion of one recombinant CrERV lineage. Thus, in mule deer, retroviral colonization is a dynamic period in the molecular evolution of CrERV that also provides a burst of genomic diversity to the host population.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Raunaq Malhotra
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rayan Chikhi
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Elleder
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 1083, 14220, Czech Republic Vídeňská Prague
| | - Theodora Kaiser
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse Rong
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Paul Medvedev
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mary Poss
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
19
|
Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021; 12:708404. [PMID: 34434177 PMCID: PMC8381357 DOI: 10.3389/fmicb.2021.708404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.
Collapse
Affiliation(s)
- Tiffany R. Frey
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Ibukun A. Akinyemi
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Michael T. McIntosh
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Zheng J, Wang J, Gong Z, Han GZ. Molecular fossils illuminate the evolution of retroviruses following a macroevolutionary transition from land to water. PLoS Pathog 2021; 17:e1009730. [PMID: 34252162 PMCID: PMC8297934 DOI: 10.1371/journal.ppat.1009730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/22/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
21
|
Abstract
Mavericks are virus-like mobile genetic elements found in the genomes of eukaryotes. Although Mavericks encode capsid morphogenesis homologs, their viral particles have not been observed. Here, we provide new evidence supporting the viral nature of Mavericks and the potential existence of virions. To this end, we conducted a phylogenomic analysis of Mavericks in hundreds of vertebrate genomes, discovering 134 elements with an intact coding capacity in 17 host species. We reveal an extensive genomic fossil record in 143 species and date three groups of elements to the Late Cretaceous. Bayesian phylogenetic analysis using genomic fossil orthologs suggests that Mavericks have infected osteichthyans for ∼419 My. They have undergone frequent cross-species transmissions in cyprinid fish and all core genes are subject to strong purifying selection. We conclude that vertebrate Mavericks form an ancient lineage of aquatic dsDNA viruses which are probably still functional in some vertebrate lineages.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Engel K, Wieland L, Krüger A, Volkmer I, Cynis H, Emmer A, Staege MS. Identification of Differentially Expressed Human Endogenous Retrovirus Families in Human Leukemia and Lymphoma Cell Lines and Stem Cells. Front Oncol 2021; 11:637981. [PMID: 33996550 PMCID: PMC8117144 DOI: 10.3389/fonc.2021.637981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/13/2021] [Indexed: 12/29/2022] Open
Abstract
Endogenous retroviruses (ERVs) are becoming more and more relevant in cancer research and might be potential targets. The oncogenic potential of human ERVs (HERVs) has been recognized and includes immunosuppression, cell fusion, antigenicity of viral proteins, and regulation of neighboring genes. To decipher the role of HERVs in human cancers, we used a bioinformatics approach and analyzed RNA sequencing data from the LL-100 panel, covering 22 entities of hematopoietic neoplasias including T cell, B cell and myeloid malignancies. We compared HERV expression in this panel with hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and normal blood cells. RNA sequencing data were mapped against a comprehensive synthetic viral metagenome with 116 HERV sequences from 14 different HERV families. Of these, 13 HERV families and elements were differently expressed in malignant hematopoietic cells and stem cells. We found transcriptional upregulation of HERVE family in acute megakaryocytic and erythroid leukemia and of HERVFc family in multiple myeloma/plasma cell leukemia (PCL). The HERVFc member HERVFc-1 was found transcriptionally active in the multiple myeloma cell line OPM-2 and also in the Hodgkin lymphoma cell line L-428. The expression of HERVFc-1 in L-428 cells was validated by qRT-PCR. We also confirm transcriptional downregulation of ERV3 in acute megakaryocytic and erythroid leukemia, and HERVK in acute monocytic and myelocytic leukemia and a depression of HERVF in all malignant entities. Most of the higher expressed HERV families could be detected in stem cells including HERVK (HML-2), HERV-like, HERVV, HERVT, ERV9, HERVW, HERVF, HERVMER, ERV3, HERVH and HERVPABLB.
Collapse
Affiliation(s)
- Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lisa Wieland
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
23
|
Weber M, Padmanabhan Nair V, Bauer T, Sprinzl MF, Protzer U, Vincendeau M. Increased HERV-K(HML-2) Transcript Levels Correlate with Clinical Parameters of Liver Damage in Hepatitis C Patients. Cells 2021; 10:cells10040774. [PMID: 33807462 PMCID: PMC8065411 DOI: 10.3390/cells10040774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is closely associated with a plethora of diseases, including cancers and autoimmune disorders. However, the distinct triggers and cellular networks leading to such HCV-derived diseases are poorly understood. Around 8% of the human genome consists of human endogenous retroviruses. They are usually silenced but can be reactivated by environmental conditions, including viral infections. Our current understanding indicates that the activation of one specific family-namely, HERV-K(HML-2)-is linked to distinct pathologies, including cancer and autoimmunity. In this study, we analyzed the transcription levels of HERV-K(HML-2) in 42 HCV-infected patients receiving direct-acting antiviral therapies. Samples from the start of treatment until 12 weeks post-treatment were investigated. Our results show increased HERV-K(HML-2) transcript levels in patients with HCV-derived liver cirrhosis throughout the observation period. Several clinical parameters specifying poor liver function are positively correlated with HERV-K(HML-2) expression. Of note, patients without a sustained viral clearance showed a drastic increase in HERV-K(HML-2) transcript levels. Together, our data suggest that increased HERV-K(HML-2) expression is correlated with reduced liver function as well as therapy success in HCV-infected patients.
Collapse
Affiliation(s)
- Melanie Weber
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
| | - Vidya Padmanabhan Nair
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
| | - Tanja Bauer
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
- Institute of Virology, Technische Universität München, Munich 81675, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich 81675, Germany
| | - Martin F. Sprinzl
- Medical Department, University Hospital Mainz, Mainz 55131, Germany;
| | - Ulrike Protzer
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
- Institute of Virology, Technische Universität München, Munich 81675, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich 81675, Germany
- Correspondence: (U.P.); (M.V.)
| | - Michelle Vincendeau
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
- Correspondence: (U.P.); (M.V.)
| |
Collapse
|
24
|
Gröger V, Emmer A, Staege MS, Cynis H. Endogenous Retroviruses in Nervous System Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010070. [PMID: 33467098 PMCID: PMC7829834 DOI: 10.3390/ph14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERV) have been implicated in the pathogenesis of several nervous system disorders including multiple sclerosis and amyotrophic lateral sclerosis. The toxicity of HERV-derived RNAs and proteins for neuronal cells has been demonstrated. The involvement of HERV in the pathogenesis of currently incurable diseases might offer new treatment strategies based on the inhibition of HERV activities by small molecules or therapeutic antibodies.
Collapse
Affiliation(s)
- Victoria Gröger
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| |
Collapse
|
25
|
Guo L, Gu F, Xu Y, Zhou C. Increased copy number of syncytin-1 in the trophectoderm is associated with implantation of the blastocyst. PeerJ 2020; 8:e10368. [PMID: 33240670 PMCID: PMC7678462 DOI: 10.7717/peerj.10368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background A key step in embryo implantation is the adhesion to and invasion of the endometrium by the blastocyst trophectoderm. The envelope proteins of HERV-W and -FRD (human endogenous retrovirus-W and -FRD), syncytin-1 and syncytin-2, are mainly distributed in the placenta, and play important roles in the development of the placenta. The placenta originates from the trophectoderm of the blastocyst. It is unclear whether the envelope proteins of HERV-W and -FRD have an effect on the development of the trophectoderm and whether they have any association with the implantation of the blastocyst. Methods The whole-genome amplification products of the human blastocyst trophectoderm were used to measure the copy number of syncytin-1 and syncytin-2 using real time qPCR. In addition, clinical data associated with the outcome of pregnancies was collected, and included age, body mass index (BMI), basic follicle stimulating hormone(bFSH), rate of primary infertility and oligo-astheno-teratospermia, the thickness of the endometrium on the day of endometrial transformation, the levels of estrogen and progestin on the transfer day, the days and the morphological scores of the blastocysts. The expression of mRNA and the copy numbers of syncytin-1 and syncytin-2 in H1 stem cells, and in differentiated H1 cells, induced by BMP4, were measured using real time qPCR. Results The relative copy number of syncytin-1 in the pregnant group (median: 424%, quartile: 232%-463%, p < 0.05) was significantly higher than in the non-pregnant group (median: 100%, quartile: 81%-163%). There was a correlation (r s = 0.681, p < 0.001) between the copy number of syncytin-1 and blastocyst implantation after embryo transfer. As the stem cells differentiated, the expression of NANOG mRNA decreased, and the expression of caudal type homeobox 2(CDX2) and β-human chorionic gonadotropin (β-hCG) mRNAs increased. Compared to the undifferentiated cells, the relative expression of the syncytin-1 mRNA was 1.63 (quartile: 0.59-6.37, p > 0.05), 3.36 (quartile: 0.85-14.80, p > 0.05), 10.85 (quartile: 3.39-24.46, p < 0.05) and 67.81 (quartile: 54.07-85.48, p < 0.05) on day 1, 3, 5 and 7, respectively, after the differentiation. The relative expression of syncytin-2 was 5.34 (quartile: 4.50-10.30), 7.90 (quartile: 2.46-14.01), 57.44 (quartile: 38.35-103.87) and 344.76 (quartile: 267.72-440.10) on day 1, 3, 5 and 7, respectively, after the differentiation (p < 0.05). The copy number of syncytin-1 increased significantly during differentiation. Conclusion Preceding the transfer of frozen embryos, the increased copy number of syncytin-1 in the blastocyst trophectoderm was associated with good outcomes of pregnancies.
Collapse
Affiliation(s)
- Luyan Guo
- Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Fang Gu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Canquan Zhou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Dechaumes A, Bertin A, Sane F, Levet S, Varghese J, Charvet B, Gmyr V, Kerr-Conte J, Pierquin J, Arunkumar G, Pattou F, Perron H, Hober D. Coxsackievirus-B4 Infection Can Induce the Expression of Human Endogenous Retrovirus W in Primary Cells. Microorganisms 2020; 8:E1335. [PMID: 32883004 PMCID: PMC7563422 DOI: 10.3390/microorganisms8091335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Human Endogenous Retrovirus W Envelope (HERV-W ENV) mRNA or protein can be found in peripheral blood mononuclear cells (PBMCs) and exocrine pancreas of patients with type 1 diabetes (T1D). Further, previous observations have shown an association between enteroviral infection and development of T1D; specifically, coxsackievirus-B (CV-B) has been detected in the blood and pancreas of patients with T1D. Notably, viruses can activate HERV-W expression. Hence, we evaluated the effect of CV-B4 infection on HERV-W ENV mRNA expression. Primary human pancreatic ductal cells were obtained from five brain-dead donors. In the pancreatic cells of three donors, the HERV-W ENV mRNA level measured using RT-qPCR was upregulated upon CV-B4 infection. The HERV-W ENV protein was detected in the infected cells using the immunoblot assay. In human PBMCs inoculated with CV-B4 or when CV-B4 was incubated with an enhancing serum, the HERV-W ENV mRNA level was higher than the background RNA level. In monocyte-derived macrophages obtained from 5 of 13 donors, the HERV-W ENV mRNA level was higher in cultures inoculated with CV-B4 than in the control. Therefore, CV-B4 can upregulate or induce the transcription of a certain HERV-W ENV copy (or copies) in primary cell cultures, such as monocytes, macrophages, and pancreatic cells.
Collapse
Affiliation(s)
- Arthur Dechaumes
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Antoine Bertin
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Famara Sane
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Sandrine Levet
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | - Jennifer Varghese
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
- Manipal Institute of Virology, Manipal Academy of Higher Education, Karnataka 576104, India;
| | - Benjamin Charvet
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | - Valéry Gmyr
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Julie Kerr-Conte
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Justine Pierquin
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | | | - François Pattou
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Hervé Perron
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
- Geneuro SA, 1228 Geneva, Switzerland
- Faculté de Médecine Laënnec, Université de Lyon, 69008 Lyon, France
| | - Didier Hober
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| |
Collapse
|
27
|
van der Kuyl AC, Berkhout B. Viruses in the reproductive tract: On their way to the germ line? Virus Res 2020; 286:198101. [PMID: 32710926 DOI: 10.1016/j.virusres.2020.198101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/13/2023]
Abstract
Studies of vertebrate genomes have indicated that all species contain in their chromosomes stretches of DNA with sequence similarity to viral genomes. How such 'endogenous' viral elements (EVEs) ended up in host genomes is usually explained in general terms such as 'they entered the germ line at some point during evolution'. This seems a correct statement, but is also rather imprecise. The vast number of endogenous viral sequences suggest that common routes to the 'germ line' may exist, as relying on chance alone may not easily explain the abundance of EVEs in modern mammalian genomes. An increasing number of virus types have been detected in human semen and a growing number of studies have reported on viral infections that cause male infertility or subfertility and on viral infections that threaten in vitro fertilisation practices. Thus, it is timely to survey the pathway(s) that viruses can use to gain access to the human germ line. Embryo transfer and semen quality studies in livestock form another source of relevant information because virus infection during reproduction is clearly unwanted, as is the case for the human situation. In this review, studies on viruses in the male and female reproductive tract and in the early embryo will be discussed to propose a plausible viral route to the mammalian germ line.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Talotta R, Atzeni F, Laska MJ. Retroviruses in the pathogenesis of systemic lupus erythematosus: Are they potential therapeutic targets? Autoimmunity 2020; 53:177-191. [PMID: 32321325 DOI: 10.1080/08916934.2020.1755962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is characterised by the hyper-activation of immunologic pathways related to the antiviral response. Exogenous and endogenous retroviruses, by integrating their DNA templates in the host cell genome, may epigenetically control the transcription of genes involved in the immune response. Furthermore, their nucleic acids or neo-synthesized proteins could stimulate the sensor molecules placed upstream the inflammatory cascade. Exogenous retroviruses, like human immunodeficiency virus, have been associated to SLE-like manifestations or to a fair SLE diagnosis. In addition, there is some evidence confirming a pathogenic role of human endogenous retroviruses in SLE. In line with these data, the use of antiretroviral agents could represent an attractive opportunity in the future therapeutic algorithms of this disease, but studies are still missing.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | | |
Collapse
|
29
|
Abstract
Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus-host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.
Collapse
|
30
|
Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. Int J Mol Sci 2019; 20:ijms20236050. [PMID: 31801288 PMCID: PMC6928979 DOI: 10.3390/ijms20236050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic elements resulting from relics of ancestral infection of germline cells, now recognized as cofactors in the etiology of several complex diseases. Here we present a review of findings supporting the role of the abnormal HERVs activity in neurodevelopmental disorders. The derailment of brain development underlies numerous neuropsychiatric conditions, likely starting during prenatal life and carrying on during subsequent maturation of the brain. Autism spectrum disorders, attention deficit hyperactivity disorders, and schizophrenia are neurodevelopmental disorders that arise clinically during early childhood or adolescence, currently attributed to the interplay among genetic vulnerability, environmental risk factors, and maternal immune activation. The role of HERVs in human embryogenesis, their intrinsic responsiveness to external stimuli, and the interaction with the immune system support the involvement of HERVs in the derailed neurodevelopmental process. Although definitive proofs that HERVs are involved in neurobehavioral alterations are still lacking, both preclinical models and human studies indicate that the abnormal expression of ERVs could represent a neurodevelopmental disorders-associated biological trait in affected individuals and their parents.
Collapse
|
31
|
Abstract
PURPOSE OF THE REVIEW The aim of this review is to discuss recent data pointing at an involvement of human endogenous retroviruses (HERVs) in type 1 diabetes (T1D) onset and progression. RECENT FINDINGS The envelope protein of HERV-W family, named HERV-W-Env, was detected in pancreata from T1D patients and was shown to display pro-inflammatory properties and direct toxicity toward pancreatic beta cells. The etiopathogenesis of T1D remains elusive, even if conventional environmental viral infections have been recurrently involved. Nonetheless, a new category of pathogens may provide the missing link between genetic susceptibility and environmental factors long thought to contribute to T1D onset. A number of studies have now shown that HERV sequences, which are normally inactivated or repressed in the human genome, could be activated by environmental viruses. Thus, if similarly activated by viruses associated with T1D, disregarded HERV genes may underlie T1D genetic susceptibility. Moreover, once expressed, HERV elements may display broad pathogenic properties, which identify them as potential new therapeutic targets.
Collapse
Affiliation(s)
- Sandrine Levet
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
| | - B. Charvet
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
| | - A. Bertin
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| | - A. Deschaumes
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| | - H. Perron
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
- Laboratoire des déficits immunitaires, University of Lyon, Lyon, France
- Plan-les-Ouates, GeNeuro SA, Geneva, Switzerland
| | - D. Hober
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| |
Collapse
|
32
|
Sarker N, Fabijan J, Seddon J, Tarlinton R, Owen H, Simmons G, Thia J, Blanchard AM, Speight N, Kaler J, Emes RD, Woolford L, Trott D, Hemmatzadeh F, Meers J. Genetic diversity of Koala retrovirus env gene subtypes: insights into northern and southern koala populations. J Gen Virol 2019; 100:1328-1339. [PMID: 31329088 DOI: 10.1099/jgv.0.001304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Koala retrovirus (KoRV) is a recently endogenized retrovirus associated with neoplasia and immunosuppression in koala populations. The virus is known to display sequence variability and to be present at varying prevalence in different populations, with animals in southern Australia displaying lower prevalence and viral loads than northern animals. This study used a PCR and next-generation sequencing strategy to examine the diversity of the KoRV env gene in both proviral DNA and viral RNA forms in two distinct populations representative of the 'northern' and 'southern' koala genotypes. The current study demonstrated that the full range of KoRV subtypes is present across both populations, and in both healthy and sick animals. KoRV-A was the predominant proviral subtype in both populations, but there was marked diversity of DNA and RNA subtypes within individuals. Many of the northern animals displayed a higher RNA viral diversity than evident in their proviral DNA, indicating relatively higher replication efficiency of non-KoRV-A subtypes. The southern animals displayed a lower absolute copy number of KoRV than the northern animals as reported previously and a higher preponderance of KoRV-A in individual animals. These discrepancies in viral replication and diversity remain unexplained but may indicate relative protection of the southern population from KoRV replication due to either viral or host factors and may represent an important protective effect for the host in KoRV's ongoing entry into the koala genome.
Collapse
Affiliation(s)
- Nishat Sarker
- Laboratory Sciences & Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh.,School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Jessica Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Jennifer Seddon
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Helen Owen
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Greg Simmons
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Joshua Thia
- School of Biological Sciences, The University of Queensland, Queensland, Australia
| | - Adam Mark Blanchard
- School of Animal, Rural and. Environmental Sciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Jasmeet Kaler
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Richard David Emes
- Advanced Data Analysis Centre (ADAC), University of Nottingham, Nottingham, UK.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Darren Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Joanne Meers
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| |
Collapse
|
33
|
Gemmell P, Hein J, Katzourakis A. The Exaptation of HERV-H: Evolutionary Analyses Reveal the Genomic Features of Highly Transcribed Elements. Front Immunol 2019; 10:1339. [PMID: 31338090 PMCID: PMC6629862 DOI: 10.3389/fimmu.2019.01339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/28/2019] [Indexed: 12/25/2022] Open
Abstract
HERV-H endogenous retroviruses are thought to be essential to stem cell identity in humans. We embrace several decades of HERV-H research in order to relate the transcription of HERV-H loci to their genomic structure. We find that highly transcribed HERV-H loci are younger, more fragmented, and less likely to be present in other primate genomes. We also show that repeats in HERV-H LTRs are correlated to where loci are transcribed: type-I LTRs associate with stem cells while type-II repeats associate with embryonic cells. Our findings are generally in line with what is known about endogenous retrovirus biology but we find that the presence of the zinc finger motif containing region of gag is positively correlated with transcription. This leads us to suggest a possible explanation for why an unusually large proportion of HERV-H loci have been preserved in non-solo-LTR form.
Collapse
Affiliation(s)
- Patrick Gemmell
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jotun Hein
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Greenig M. HERVs, immunity, and autoimmunity: understanding the connection. PeerJ 2019; 7:e6711. [PMID: 30984482 PMCID: PMC6452852 DOI: 10.7717/peerj.6711] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/28/2019] [Indexed: 12/30/2022] Open
Abstract
Since their discovery in the 1960s, further investigation into endogenous retroviruses (ERVs) has challenged the conventional view of viral sequences as exclusively parasitic elements. Once presumed to be a group of passive genetic relics, it is becoming increasingly clear that this view of ERVs, while generally accurate, is incorrect in many specific cases. Research has identified ERV genes that appear to be co-opted by their mammalian hosts, but the biological function of ERV elements in humans remains a controversial subject. One area that has attracted some attention in this domain is the role of co-opted ERV elements in mammalian immune systems. The relationship between ERVs and human autoimmune diseases has also been investigated, but has historically been treated as a separate topic. This review will summarize the current evidence concerning the phenotypic significance of ERVs, both in the healthy immune system and in manifestations of autoimmunity. Furthermore, it will evaluate the relationship between these fields of study, and propose previously-unexplored molecular mechanisms through which human endogenous retroviruses might contribute to certain autoimmune pathologies. Investigation into these novel mechanisms could further our understanding of the molecular basis of autoimmune disease, and may one day provide new targets for treatment.
Collapse
Affiliation(s)
- Matthew Greenig
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
35
|
Halo JV, Pendleton AL, Jarosz AS, Gifford RJ, Day ML, Kidd JM. Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids. Retrovirology 2019; 16:6. [PMID: 30845962 PMCID: PMC6407205 DOI: 10.1186/s12977-019-0468-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/20/2023] Open
Abstract
Background Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs. Electronic supplementary material The online version of this article (10.1186/s12977-019-0468-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Abigail S Jarosz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Robert J Gifford
- Centre for Virus Research, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Malika L Day
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
36
|
Gorillas have been infected with the HERV-K (HML-2) endogenous retrovirus much more recently than humans and chimpanzees. Proc Natl Acad Sci U S A 2019; 116:1337-1346. [PMID: 30610173 DOI: 10.1073/pnas.1814203116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retrovirus-K (HERV-K) human mouse mammary tumor virus-like 2 (HML-2) is the most recently active endogenous retrovirus group in humans, and the only group with human-specific proviruses. HML-2 expression is associated with cancer and other diseases, but extensive searches have failed to reveal any replication-competent proviruses in humans. However, HML-2 proviruses are found throughout the catarrhine primates, and it is possible that they continue to infect some species today. To investigate this possibility, we searched for gorilla-specific HML-2 elements using both in silico data mining and targeted deep-sequencing approaches. We identified 150 gorilla-specific integrations, including 31 2-LTR proviruses. Many of these proviruses have identical LTRs, and are insertionally polymorphic, consistent with very recent integration. One identified provirus has full-length ORFs for all genes, and thus could potentially be replication-competent. We suggest that gorillas may still harbor infectious HML-2 virus and could serve as a model for understanding retrovirus evolution and pathogenesis in humans.
Collapse
|
37
|
Li F, Sabunciyan S, Yolken RH, Lee D, Kim S, Karlsson H. Transcription of human endogenous retroviruses in human brain by RNA-seq analysis. PLoS One 2019; 14:e0207353. [PMID: 30605476 PMCID: PMC6317784 DOI: 10.1371/journal.pone.0207353] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
Background Human endogenous retroviruses (HERV) comprise 8% of the human genome and can be classified into at least 31 families. Increased levels of transcripts from the W and H families of HERV have been observed in association with human diseases, such as multiple sclerosis and schizophrenia. Although HERV transcripts have been detected in many tissues and cell-types based on microarray and PCR studies, the extent of HERV expression in different cell-types and diseases state has been less comprehensively studied. Results We examined overall transcription of HERV, and particularly of HERV-W and HERV-H elements in human postmortem brain samples obtained from individuals with psychiatric diagnoses (n = 111) and healthy controls (n = 51) by analyzing publicly available RNA sequencing datasets. Sequence reads were aligned to prototypical sequences representing HERV, downloaded from Repbase. We reported a consistent expression (0.1~0.2% of mappable reads) of different HERV families across three regions of human brains. Spearman correlations revealed highly correlated expression levels between three brain regionsacross 475 consensus sequences. By mapping sequences that aligned to the consensus sequences of HERV-W and HERV-H families to individual loci on chromosome 7, more than 60 loci from each family were identified, part of which are being transcribed. The ERVWE1, locus located at chr7q21.2, exhibited high levels of transcription across the three datasets. Notably, we demonstrated a trend of increased expression of overall HERV, as well as HERV-W family in samples from both schizophrenia and bipolar disorder patients. Conclusions The current analyses indicate that RNA sequencing is a useful approach for investigating global expression of repetitive elements, such as HERV, in the human genome. HERV-W/H with the tendency of transcription up-regulation in patients suggests potential implication of HERV-W/H in psychiatric diseases.
Collapse
MESH Headings
- Bipolar Disorder/genetics
- Bipolar Disorder/virology
- Brain/metabolism
- Brain/virology
- Chromosomes, Human, Pair 7/genetics
- Depression/genetics
- Depression/virology
- Endogenous Retroviruses/genetics
- Gene Expression Regulation, Viral
- Genetic Loci
- Genome, Human
- Humans
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Schizophrenia/genetics
- Schizophrenia/virology
- Sequence Analysis, RNA
- Statistics, Nonparametric
- Transcription, Genetic
Collapse
Affiliation(s)
- Fang Li
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (FL); (HK)
| | - Sarven Sabunciyan
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Sanghyeon Kim
- Stanley Medical Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (FL); (HK)
| |
Collapse
|
38
|
Zhu H, Gifford RJ, Murcia PR. Distribution, Diversity, and Evolution of Endogenous Retroviruses in Perissodactyl Genomes. J Virol 2018; 92:e00927-18. [PMID: 30209175 PMCID: PMC6232481 DOI: 10.1128/jvi.00927-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/01/2018] [Indexed: 01/01/2023] Open
Abstract
The evolution of mammalian genomes has been shaped by interactions with endogenous retroviruses (ERVs). In this study, we investigated the distribution and diversity of ERVs in the mammalian order Perissodactyla, with a view to understanding their impact on the evolution of modern equids (family Equidae). We characterize the major ERV lineages in the horse genome in terms of their genomic distribution, ancestral genome organization, and time of activity. Our results show that subsequent to their ancestral divergence from rhinoceroses and tapirs, equids acquired four novel ERV lineages. We show that two of these ERV lineages proliferated extensively in the lineage leading to modern horses, and one contains loci that are actively transcribed in specific tissues. In addition, we show that the white rhinoceros has resisted germ line colonization by retroviruses for more than 54 million years-longer than any other extant mammalian species. The map of equine ERVs that we provide here will be of great utility to future studies aiming to investigate the potential functional roles of equine ERVs and their impact on equine evolution.IMPORTANCE ERVs in the host genome are highly informative about the long-term interactions of retroviruses and hosts. They are also interesting because they have influenced the evolution of mammalian genomes in various ways. In this study, we derive a calibrated timeline describing the process through which ERV diversity has been generated in the equine germ line. We determined the distribution and diversity of perissodactyl ERV lineages and inferred their retrotranspositional activity during evolution, thereby gaining insight into the long-term coevolutionary history of retroviruses and mammals. Our study provides a platform for future investigations to identify equine ERV loci involved in physiological processes and/or pathological conditions.
Collapse
Affiliation(s)
- Henan Zhu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
39
|
Klag T, Courth L, Ostaff MJ, Ott G, Stange EF, Malek NP, Seifarth W, Wehkamp J. Human Endogenous Retroviruses: Residues of Ancient Times Are Differentially Expressed in Crohn's Disease. Inflamm Intest Dis 2018; 3:125-137. [PMID: 30820434 DOI: 10.1159/000494026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/22/2018] [Indexed: 12/12/2022] Open
Abstract
Background Eight percent of the human genome consists of human endogenous retroviruses (HERV). These genetic elements are remnants of ancient retroviral germ-line infections. Altered HERV expression is associated with several chronic inflammatory diseases. A physiological role of the HERV-derived proteins syncytin-1 and -2 has been described for the integrity of the human placental cell layer in terms of maintaining feto-maternal tolerance. The aim of this project was to investigate HERV expression in Crohn's disease (CD) with a further focus on syncytins in the gut. Material and Methods Seventy-four ileal and colonic tissue samples of CD patients and healthy controls have been investigated for mRNA expression of major HERV groups by a comprehensive microarray screening. The most prominent differences have been validated by qRT-PCR. Immunohistochemistry (IHC), Western Blot (WB) and qRT-PCR were performed for syncytin-1 and -2. Results HERV microarray screening revealed a distinct expression profile in ileal and colonic tissue, as well as differential expression in CD compared to healthy controls. qRT-PCR validated differential expression of at least 3 HERV-groups in CD. qRT-PCR, IHC and WB showed a tissue-dependent diminished epithelial expression of syncytins in inflamed CD. Conclusion For the first time, HERV expression has been comprehensively studied in the gut. Between CD and healthy controls we could show a tissue dependent differential HERV expression profile. Notably, we could show that syncytin-1 and -2 are expressed in the epithelial layer in ileal and colonic tissue samples, whereas their diminished tissue-dependent expression in inflamed CD might modulate inflammatory processes at the gut barrier.
Collapse
Affiliation(s)
- Thomas Klag
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Lioba Courth
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Maureen J Ostaff
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - German Ott
- Department of Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Eduard F Stange
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Wolfgang Seifarth
- Department of Internal Medicine III, University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Jan Wehkamp
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Gifford RJ, Blomberg J, Coffin JM, Fan H, Heidmann T, Mayer J, Stoye J, Tristem M, Johnson WE. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology 2018; 15:59. [PMID: 30153831 PMCID: PMC6114882 DOI: 10.1186/s12977-018-0442-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
Retroviral integration into germline DNA can result in the formation of a vertically inherited proviral sequence called an endogenous retrovirus (ERV). Over the course of their evolution, vertebrate genomes have accumulated many thousands of ERV loci. These sequences provide useful retrospective information about ancient retroviruses, and have also played an important role in shaping the evolution of vertebrate genomes. There is an immediate need for a unified system of nomenclature for ERV loci, not only to assist genome annotation, but also to facilitate research on ERVs and their impact on genome biology and evolution. In this review, we examine how ERV nomenclatures have developed, and consider the possibilities for the implementation of a systematic approach for naming ERV loci. We propose that such a nomenclature should not only provide unique identifiers for individual loci, but also denote orthologous relationships between ERVs in different species. In addition, we propose that-where possible-mnemonic links to previous, well-established names for ERV loci and groups should be retained. We show how this approach can be applied and integrated into existing taxonomic and nomenclature schemes for retroviruses, ERVs and transposable elements.
Collapse
Affiliation(s)
- Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Hung Fan
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697, USA
| | - Thierry Heidmann
- Department of Molecular Physiology and Pathology of Infectious and Endogenous Retroviruses, CNRS UMR 9196, Institut Gustave Roussy, 94805, Villejuif, France
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany
| | - Jonathan Stoye
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Michael Tristem
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, 02467, USA.
| |
Collapse
|
41
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
42
|
Skarlis C, Gontika M, Katsavos S, Velonakis G, Toulas P, Anagnostouli M. Multiple Sclerosis and Subsequent Human Immunodeficiency Virus Infection: A Case with the Rare Comorbidity, Focus on Novel Treatment Issues and Review of the Literature. ACTA ACUST UNITED AC 2018; 31:1041-1046. [PMID: 28882979 DOI: 10.21873/invivo.11167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND The comorbidity between Multiple Sclerosis (MS) and Human Immunodeficiency Virus (HIV) infection is particularly rare. Only a few cases of comorbidity of Clinically Definite(CD)-MS and HIV have been documented worldwide, while the potential beneficial role of antiretroviral therapy regarding MS activity has long been an area of debate. CASE REPORT We present a 36-year old male, bearing a diagnosis of CD-MS for twelve years. He had been treated for ten years with interferon-beta-1b, when he voluntarily discontinued therapy, claiming clinical stability. One year later he was diagnosed positive for HIV and he started and continued only on efavirenz/emricitabine/tenofovir-disoproxil fumarate (ATRIPLA®), remaining relapse-free until today. CONCLUSION This fact, in combination with the unique pharmaceutical composition of the drug, which contains a component similar to a newly-approved agent for MS, dimethyl fumarate, prompted us to review the literature regarding this rare comorbidity and to suggest that the role of the antiretroviral therapy should be further explored in MS.
Collapse
Affiliation(s)
- Charalampos Skarlis
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | - Maria Gontika
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | - Serafeim Katsavos
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | - Giorgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Medical School of National and Kapodistrian University of Athens, Eugenidion Hospital, Athens, Greece
| | - Panagiotis Toulas
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Medical School of National and Kapodistrian University of Athens, Eugenidion Hospital, Athens, Greece
| | - Maria Anagnostouli
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece .,Outpatient Section of Demyelinating Diseases Clinic, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| |
Collapse
|
43
|
Mercorio R, Bonzini M, Angelici L, Iodice S, Delbue S, Mariani J, Apostoli P, Pesatori AC, Bollati V. Effects of metal-rich particulate matter exposure on exogenous and endogenous viral sequence methylation in healthy steel-workers. ENVIRONMENTAL RESEARCH 2017; 159:452-457. [PMID: 28858759 DOI: 10.1016/j.envres.2017.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. RESULTS Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (meanbaseline = 56.7%5mC; meanpost-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: β = 5.99, p-value < 0.038; nickel: β = 17.82, p-value = 0.02; arsenic: β = 13.59, p-value < 0.015). CONCLUSIONS The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate possible mechanisms and their role in pro-inflammatory pathways leading to systemic health effects.
Collapse
Affiliation(s)
- Roberta Mercorio
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Angelici
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy
| | - Simona Iodice
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36-20133 Milan, Italy
| | - Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy
| | - Pietro Apostoli
- Occupational Medicine and Industrial Hygiene, University of Brescia, Department of Experimental and Applied Medicine, Brescia, Italy
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy.
| |
Collapse
|
44
|
Bhetariya PJ, Kriesel JD, Fischer KF. Analysis of Human Endogenous Retrovirus Expression in Multiple Sclerosis Plaques. JOURNAL OF EMERGING DISEASES AND VIROLOGY 2017; 3:10.16966/2473-1846.133. [PMID: 28868516 PMCID: PMC5580941 DOI: 10.16966/2473-1846.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND It has been suggested that Human endogenous retroviruses (HERVs) are associated with multiple sclerosis (MS) pathogenesis. The objective of this study was to broadly evaluate the expression of HERV core (GAG) and envelope (ENV) genes in diseased brain white matter samples from MS patients compared to normal controls. METHODS Twenty-eight HERV GAG and 88 ENV gene sequences were retrieved, classified by phylogeny, and grouped into clades. Consensus qPCR primers were designed for each clade, and quantitative PCR was performed on 33 MS and 9 normal control frozen brain samples. MS samples included chronic progressive (n=5), primary progressive (n=4), secondary progressive (n=14), relapsing remitting (n=3) and unclassified confirmed MS cases (n=7). The levels of GAG and ENV RNA within each of the samples were quantitated and normalized using the neuronal reference gene RPL19. Expression differences were analyzed for MS vs control. RESULTS Expression of GAG clades 1A, 3B, and 3C mapping to HERV-E and HERV-K were significantly increased compared to controls, while GAG clade 3A expression was decreased. Expression of HERV ENV clades 2, 3A, 3B, mapping to RTVL, HERV-E and HERV-K and MSRV (HERV-W), were significantly increased in the MS group. However, the relative expression differences between the MS and control groups were small, differing less than 1.5-fold. CONCLUSION Expression of GAG and ENV mapping to HERV-E, RTVL and HERV-K10 families were significantly increased in the MS group. However, the relative expression differences between the MS and control groups were small, differing less than 1.5-fold. These results indicate that the expression of HERV GAG and ENV regions do not differ greatly between MS and controls in these frozen brain samples.
Collapse
Affiliation(s)
- PJ Bhetariya
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - JD Kriesel
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - KF Fischer
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
45
|
Ellul P, Groc L, Leboyer M. [Implication of human endogenous retroviruses in schizophrenia and bipolar disorder]. Med Sci (Paris) 2017; 33:404-409. [PMID: 28497736 DOI: 10.1051/medsci/20173304010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Schizophrenia and bipolar disorder are neuropsychiatric disorders of unknown origin. It seems that these two disorders share some common etiopathogenic mechanisms including genetic, environmental and inflammatory ones. Reactivation of the human endogenous retrovirus type W (HERV-W) can be a shared element in the pathophysiology of schizophrenia and bipolar disorder, linked to immuno-genetic and environment risk factors. We will present studies that have highlighted the presence of HERV-W in schizophrenic and bipolar disorder patients. We will then describe a two-hit model which could explain the common pathophysiological mechanism of affective and non-affective psychosis. Identification of immuno-inflammatory mediated subgroup of schizophrenia and bipolar disorder associated to HERV-W reactivation might open the way for the development of diagnostic biomarker and more targeted treatments. These new tools pave the way towards personalized psychiatry for a better care of patients.
Collapse
Affiliation(s)
- Pierre Ellul
- Pôle psychiatrie des hôpitaux universitaires Henri Mondor, AP-HP, université Paris-Est, DHU PePSY, hôpital Albert Chenevier, 40, rue de Mesly, 94000 Créteil, France - Inserm U955, équipe 15, psychiatrie translationnelle, 94000 Créteil, France - Fondation FondaMental, 94000 Créteil, France
| | - Laurent Groc
- Institut interdisciplinaire de neuroscience, CNRS UMR 5297, Université de Bordeaux, 33076 Bordeaux, France - Fondation FondaMental, 94000 Créteil, France
| | - Marion Leboyer
- Pôle psychiatrie des hôpitaux universitaires Henri Mondor, AP-HP, université Paris-Est, DHU PePSY, hôpital Albert Chenevier, 40, rue de Mesly, 94000 Créteil, France - Inserm U955, équipe 15, psychiatrie translationnelle, 94000 Créteil, France - Fondation FondaMental, 94000 Créteil, France
| |
Collapse
|
46
|
Medina J, Perron H. [DNA sequences from mobile genetic elements, a hidden half of the human genome]. Med Sci (Paris) 2017; 33:151-158. [PMID: 28240206 DOI: 10.1051/medsci/20173302010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Current data estimate that mobile genetic elements represent more than one-half of the human genome. The literature is constantly updating data following the evolution of sequencing techniques and of algorithms for genome analyses. This review aims to provide an overview of the topic showing the complexity given by the various designations and classifications found in scientific papers. A particular focus is made on retrotransposons, including Endogenous RetroViruses (ERV), to introduce a second article focusing on their activation and their involvement in physiological functions and/or pathological mechanisms associated with diseases like multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Julie Medina
- GeNeuro Innovation, Bioparc Laënnec, 60, avenue Rockefeller, 69008 Lyon, France
| | - Hervé Perron
- GeNeuro Innovation, Bioparc Laënnec, 60, avenue Rockefeller, 69008 Lyon, France - GeNeuro, 18, chemin des Aulx, 1228 Plan-Les-Ouates, Genève, Suisse - Université Lyon-1, Faculté de Médecine Laënnec, 69008 Lyon, France
| |
Collapse
|
47
|
Strategies to identify natural antisense transcripts. Biochimie 2017; 132:131-151. [DOI: 10.1016/j.biochi.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
|
48
|
Contribution of Syncytins and Other Endogenous Retroviral Envelopes to Human Placenta Pathologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:111-162. [DOI: 10.1016/bs.pmbts.2016.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Are human endogenous retroviruses triggers of autoimmune diseases? Unveiling associations of three diseases and viral loci. Immunol Res 2016; 64:55-63. [PMID: 26091722 PMCID: PMC4726719 DOI: 10.1007/s12026-015-8671-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases encompass a plethora of conditions in which the immune system attacks its own tissue, identifying them as foreign. Multiple factors are thought to contribute to the development of immune response to self, including differences in genotypes, hormonal milieu, and environmental factors. Viruses including human endogenous retroviruses have long been linked to the occurrence of autoimmunity, but never proven to be causative factors. Endogenous viruses are retroviral sequences embedded in the host germline DNA and transmitted vertically through successive generations in a Mendelian manner. In this study by means of genetic epidemiology, we have searched for the involvement of endogenous retroviruses in three selected autoimmune diseases: multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. We found that at least one human endogenous retroviral locus was associated with each of the three diseases. Although there was a significant overlap, most loci only occurred in one of the studied disease. Remarkably, within each disease, there was a statistical interaction (synergy) between two loci. Additional synergy between retroviral loci and human lymphocyte antigens is reported for multiple sclerosis. We speculate the possibility that recombinants or mixed viral particles are formed and that the resulting viruses stimulate the innate immune system, thereby initiating the autoimmune response.
Collapse
|
50
|
Nascimento FF, Rodrigo AG. Computational Evaluation of the Strict Master and Random Template Models of Endogenous Retrovirus Evolution. PLoS One 2016; 11:e0162454. [PMID: 27649303 PMCID: PMC5029938 DOI: 10.1371/journal.pone.0162454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 08/02/2016] [Indexed: 02/05/2023] Open
Abstract
Transposable elements (TEs) are DNA sequences that are able to replicate and move within and between host genomes. Their mechanism of replication is also shared with endogenous retroviruses (ERVs), which are also a type of TE that represent an ancient retroviral infection within animal genomes. Two models have been proposed to explain TE proliferation in host genomes: the strict master model (SMM), and the random template (or transposon) model (TM). In SMM only a single copy of a given TE lineage is able to replicate, and all other genomic copies of TEs are derived from that master copy. In TM, any element of a given family is able to replicate in the host genome. In this paper, we simulated ERV phylogenetic trees under variations of SMM and TM. To test whether current phylogenetic programs can recover the simulated ERV phylogenies, DNA sequence alignments were simulated and maximum likelihood trees were reconstructed and compared to the simulated phylogenies. Results indicate that visual inspection of phylogenetic trees alone can be misleading. However, if a set of statistical summaries is calculated, we are able to distinguish between models with high accuracy by using a data mining algorithm that we introduce here. We also demonstrate the use of our data mining algorithm with empirical data for the porcine endogenous retrovirus (PERV), an ERV that is able to replicate in human and pig cells in vitro.
Collapse
Affiliation(s)
| | - Allen G. Rodrigo
- National Evolutionary Synthesis Center, Durham, NC, United States of America
| |
Collapse
|