1
|
Lucek K, Flury JM, Willi Y. Genomic implications of the repeated shift to self-fertilization across a species' geographic distribution. J Hered 2025; 116:43-53. [PMID: 39171640 DOI: 10.1093/jhered/esae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
The ability to self-fertilize often varies among closely related hermaphroditic plant species, though, variation can also exist within species. In the North American Arabidopsis lyrata, the shift from self-incompatibility (SI) to selfing established in multiple regions independently, mostly since recent postglacial range expansion. This has made the species an ideal model for the investigation of the genomic basis of the breakdown of SI and its population genetic consequences. By comparing nearby selfing and outcrossing populations across the entire species' geographic distribution, we investigated variation at the self-incompatibility (S-)locus and across the genome. Furthermore, a diallel crossing experiment on one mixed-mating population was performed to gain insight into the inheritance of mating system variation. We confirmed that the breakdown of SI had evolved in several S-locus backgrounds. The diallel suggested the involvement of biparental contributions with dominance relations. Though, the population-level genome-wide association study did not single out clear-cut candidate genes but several regions with one near the S-locus. On the implication side, selfing as compared to outcrossing populations had less than half of the genomic diversity, while the number and length of runs of homozygosity (ROHs) scaled with the degree of inbreeding. Selfing populations with a history of long expansion had the longest ROHs. The results highlight that mating system shift to selfing, its genetic underpinning and the likely negative genomic consequences for evolutionary potential can be strongly interlinked with past range dynamics.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Jana M Flury
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Xue J, Du Q, Yang F, Chen LY. The emerging role of cysteine-rich peptides in pollen-pistil interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6228-6243. [PMID: 39126383 DOI: 10.1093/jxb/erae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Unlike early land plants, flowering plants have evolved a pollen tube that transports a pair of non-motile sperm cells to the female gametophyte. This process, known as siphonogamy, was first observed in gymnosperms and later became prevalent in angiosperms. However, the precise molecular mechanisms underlying the male-female interactions remain enigmatic. From the landing of the pollen grain on the stigma to gamete fusion, the male part needs to pass various tests: how does the stigma distinguish between compatible and incompatible pollen? what mechanisms guide the pollen tube towards the ovule? what factors trigger pollen tube rupture? how is polyspermy prevented? and how does the sperm cell ultimately reach the egg? Successful male-female communication is essential for surmounting these challenges, with cysteine-rich peptides (CRPs) playing a pivotal role in this dialogue. In this review, we summarize the characteristics of four distinct classes of CRPs, systematically review recent progress in the role of CRPs in four crucial stages of pollination and fertilization, consider potential applications of this knowledge in crop breeding, and conclude by suggesting avenues for future research.
Collapse
Affiliation(s)
- Jiao Xue
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Du
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangfang Yang
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Yu Chen
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Le Veve A, Genete M, Lepers-Blassiau C, Ponitzki C, Poux C, Vekemans X, Durand E, Castric V. The genetic architecture of the load linked to dominant and recessive self-incompatibility alleles in Arabidopsis halleri and Arabidopsis lyrata. eLife 2024; 13:RP94972. [PMID: 39222005 PMCID: PMC11368402 DOI: 10.7554/elife.94972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them. We first experimentally measured the phenotypic manifestation of the linked load at three different levels of the dominance hierarchy. We then sequenced and phased polymorphisms in the chromosomal regions linked to 126 distinct copies of S-alleles in two populations of Arabidopsis halleri and three populations of Arabidopsis lyrata. We find that linkage to the S-locus locally distorts phylogenies over about 10-30 kb along the chromosome. The more intense balancing selection on dominant S-alleles results in greater fixation of linked deleterious mutations, while recessive S-alleles accumulate more linked deleterious mutations that are segregating. Hence, the structure rather than the overall magnitude of the linked genetic load differs between dominant and recessive S-alleles. Our results have consequences for the long-term evolution of new S-alleles, the evolution of dominance modifiers between them, and raise the question of why the non-recombining regions of some sex and mating type chromosomes expand over evolutionary times while others, such as the S-locus of the Brassicaceae, remain restricted to small chromosomal regions.
Collapse
Affiliation(s)
| | | | | | | | - Céline Poux
- Univ. Lille, CNRS, UMR 8198 – Evo-Eco-PaleoLilleFrance
| | | | | | | |
Collapse
|
4
|
Brainard SH, Sanders DM, Bruna T, Shu S, Dawson JC. The first two chromosome-scale genome assemblies of American hazelnut enable comparative genomic analysis of the genus Corylus. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:472-483. [PMID: 37870930 PMCID: PMC10826982 DOI: 10.1111/pbi.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
The native, perennial shrub American hazelnut (Corylus americana) is cultivated in the Midwestern United States for its significant ecological benefits, as well as its high-value nut crop. Implementation of modern breeding methods and quantitative genetic analyses of C. americana requires high-quality reference genomes, a resource that is currently lacking. We therefore developed the first chromosome-scale assemblies for this species using the accessions 'Rush' and 'Winkler'. Genomes were assembled using HiFi PacBio reads and Arima Hi-C data, and Oxford Nanopore reads and a high-density genetic map were used to perform error correction. N50 scores are 31.9 Mb and 35.3 Mb, with 90.2% and 97.1% of the total genome assembled into the 11 pseudomolecules, for 'Rush' and 'Winkler', respectively. Gene prediction was performed using custom RNAseq libraries and protein homology data. 'Rush' has a BUSCO score of 99.0 for its assembly and 99.0 for its annotation, while 'Winkler' had corresponding scores of 96.9 and 96.5, indicating high-quality assemblies. These two independent assemblies enable unbiased assessment of structural variation within C. americana, as well as patterns of syntenic relationships across the Corylus genus. Furthermore, we identified high-density SNP marker sets from genotyping-by-sequencing data using 1343 C. americana, C. avellana and C. americana × C. avellana hybrids, in order to assess population structure in natural and breeding populations. Finally, the transcriptomes of these assemblies, as well as several other recently published Corylus genomes, were utilized to perform phylogenetic analysis of sporophytic self-incompatibility (SSI) in hazelnut, providing evidence of unique molecular pathways governing self-incompatibility in Corylus.
Collapse
Affiliation(s)
- Scott H. Brainard
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Dean M. Sanders
- University of Wisconsin Biotechnology CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tomas Bruna
- U.S. Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Julie C. Dawson
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
5
|
Yew CL, Tsuchimatsu T, Shimizu-Inatsugi R, Yasuda S, Hatakeyama M, Kakui H, Ohta T, Suwabe K, Watanabe M, Takayama S, Shimizu KK. Dominance in self-compatibility between subgenomes of allopolyploid Arabidopsis kamchatica shown by transgenic restoration of self-incompatibility. Nat Commun 2023; 14:7618. [PMID: 38030610 PMCID: PMC10687001 DOI: 10.1038/s41467-023-43275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
The evolutionary transition to self-compatibility facilitates polyploid speciation. In Arabidopsis relatives, the self-incompatibility system is characterized by epigenetic dominance modifiers, among which small RNAs suppress the expression of a recessive SCR/SP11 haplogroup. Although the contribution of dominance to polyploid self-compatibility is speculated, little functional evidence has been reported. Here we employ transgenic techniques to the allotetraploid plant A. kamchatica. We find that when the dominant SCR-B is repaired by removing a transposable element insertion, self-incompatibility is restored. This suggests that SCR was responsible for the evolution of self-compatibility. By contrast, the reconstruction of recessive SCR-D cannot restore self-incompatibility. These data indicate that the insertion in SCR-B conferred dominant self-compatibility to A. kamchatica. Dominant self-compatibility supports the prediction that dominant mutations increasing selfing rate can pass through Haldane's sieve against recessive mutations. The dominance regulation between subgenomes inherited from progenitors contrasts with previous studies on novel epigenetic mutations at polyploidization termed genome shock.
Collapse
Grants
- JPMJCR16O3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- 310030_212551, 31003A_182318, 31003A_159767, 31003A_140917, 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- grant numbers 16H06469, 16K21727, 22H02316, 22K21352, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- Postdoctoral fellowship, 22K21352, 16H06467 and 17H05833 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H02162, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H04711 and 21H05030 MEXT | Japan Society for the Promotion of Science (JSPS)
- URPP Evolutoin in Action, Global Strategy and Partnerships Funding Scheme Universität Zürich (University of Zurich)
- URPP Evolutoini in Action Universität Zürich (University of Zurich)
- fellowship European Molecular Biology Organization (EMBO)
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Takashi Tsuchimatsu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Department of Biological Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Shinsuke Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Functional Genomics Center Zurich, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
- Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo, 188-0002, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takuma Ohta
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|
6
|
Sawa T, Moriwaki Y, Jiang H, Murase K, Takayama S, Shimizu K, Terada T. Comprehensive computational analysis of the SRK-SP11 molecular interaction underlying self-incompatibility in Brassicaceae using improved structure prediction for cysteine-rich proteins. Comput Struct Biotechnol J 2023; 21:5228-5239. [PMID: 37928947 PMCID: PMC10624595 DOI: 10.1016/j.csbj.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Plants employ self-incompatibility (SI) to promote cross-fertilization. In Brassicaceae, this process is regulated by the formation of a complex between the pistil determinant S receptor kinase (SRK) and the pollen determinant S-locus protein 11 (SP11, also known as S-locus cysteine-rich protein, SCR). In our previous study, we used the crystal structures of two eSRK-SP11 complexes in Brassica rapa S8 and S9 haplotypes and nine computationally predicted complex models to demonstrate that only the SRK ectodomain (eSRK) and SP11 pairs derived from the same S haplotype exhibit high binding free energy. However, predicting the eSRK-SP11 complex structures for the other 100 + S haplotypes and genera remains difficult because of SP11 polymorphism in sequence and structure. Although protein structure prediction using AlphaFold2 exhibits considerably high accuracy for most protein monomers and complexes, 46% of the predicted SP11 structures that we tested showed < 75 mean per-residue confidence score (pLDDT). Here, we demonstrate that the use of curated multiple sequence alignment (MSA) for cysteine-rich proteins significantly improved model accuracy for SP11 and eSRK-SP11 complexes. Additionally, we calculated the binding free energies of the predicted eSRK-SP11 complexes using molecular dynamics (MD) simulations and observed that some Arabidopsis haplotypes formed a binding mode that was critically different from that of B. rapa S8 and S9. Thus, our computational results provide insights into the haplotype-specific eSRK-SP11 binding modes in Brassicaceae at the residue level. The predicted models are freely available at Zenodo, https://doi.org/10.5281/zenodo.8047768.
Collapse
Affiliation(s)
- Tomoki Sawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshitaka Moriwaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hanting Jiang
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kohji Murase
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Seiji Takayama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Bala M, Rehana S, Singh MP. Self-incompatibility: a targeted, unexplored pre-fertilization barrier in flower crops of Asteraceae. JOURNAL OF PLANT RESEARCH 2023; 136:587-612. [PMID: 37452973 DOI: 10.1007/s10265-023-01480-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Asteraceae (synonym as Compositae) is one of the largest angiosperm families among flowering plants comprising one-tenth of all agri-horticultural species grown across various habitats except in Antarctica. These are commercially utilized as cut and loose flowers as well as pot and bedding plants in landscape gardens due to their unique floral traits. Consequently, ineffective seed setting and presence of an intraspecific reproductive barrier known as self-incompatibility (SI) severely reduces the effectiveness of hybridization and self-fertilization by traditional crossing. There have been very few detailed studies of pollen-stigma interactions in this family. Moreover, about 63% of Aster species can barely self-fertilize due to self-incompatibility (SI). The chrysanthemum (Chrysanthemum × morifolium) is one of the most economically important ornamental plants in the Asteraceae family which hugely shows incompatibility. Reasons for the low fertility and reproductive capacity of species are still indefinite or not clear. Hence, the temporal pattern of inheritance of self-incompatibility and its effect on reproductive biology needs to be investigated further to improve the breeding efficiency. This review highlights the self-incompatible (SI) system operating in important Astraceous (ornamental) crops which are adversely affected by this mechanism along with different physiological and molecular techniques involved in breaking down self-incompatibility.
Collapse
Affiliation(s)
- Madhu Bala
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India.
| | - Shaik Rehana
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Mohini Prabha Singh
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| |
Collapse
|
8
|
Kolesnikova UK, Scott AD, Van de Velde JD, Burns R, Tikhomirov NP, Pfordt U, Clarke AC, Yant L, Seregin AP, Vekemans X, Laurent S, Novikova PY. Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes. Mol Biol Evol 2023; 40:msad122. [PMID: 37432770 PMCID: PMC10335350 DOI: 10.1093/molbev/msad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.
Collapse
Affiliation(s)
- Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jozefien D Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nikita P Tikhomirov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Ursula Pfordt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrew C Clarke
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey P Seregin
- Herbarium (MW), Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Xavier Vekemans
- University Lille, CNRS, UMR 8198—Evo-Eco-Paleo, Lille, France
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
9
|
Li Y, Mamonova E, Köhler N, van Kleunen M, Stift M. Breakdown of self-incompatibility due to genetic interaction between a specific S-allele and an unlinked modifier. Nat Commun 2023; 14:3420. [PMID: 37296115 PMCID: PMC10256779 DOI: 10.1038/s41467-023-38802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Breakdown of self-incompatibility has frequently been attributed to loss-of-function mutations of alleles at the locus responsible for recognition of self-pollen (i.e. the S-locus). However, other potential causes have rarely been tested. Here, we show that self-compatibility of S1S1-homozygotes in selfing populations of the otherwise self-incompatible Arabidopsis lyrata is not due to S-locus mutation. Between-breeding-system cross-progeny are self-compatible if they combine S1 from the self-compatible cross-partner with recessive S1 from the self-incompatible cross-partner, but self-incompatible with dominant S-alleles. Because S1S1 homozygotes in outcrossing populations are self-incompatible, mutation of S1 cannot explain self-compatibility in S1S1 cross-progeny. This supports the hypothesis that an S1-specific modifier unlinked to the S-locus causes self-compatibility by functionally disrupting S1. Self-compatibility in S19S19 homozygotes may also be caused by an S19-specific modifier, but we cannot rule out a loss-of-function mutation of S19. Taken together, our findings indicate that breakdown of self-incompatibility is possible without disruptive mutations at the S-locus.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| | - Ekaterina Mamonova
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Nadja Köhler
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| |
Collapse
|
10
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
11
|
Homology-Based Interactions between Small RNAs and Their Targets Control Dominance Hierarchy of Male Determinant Alleles of Self-Incompatibility in Arabidopsis lyrata. Int J Mol Sci 2021; 22:ijms22136990. [PMID: 34209661 PMCID: PMC8268441 DOI: 10.3390/ijms22136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Self-incompatibility (SI) is conserved among members of the Brassicaceae plant family. This trait is controlled epigenetically by the dominance hierarchy of the male determinant alleles. We previously demonstrated that a single small RNA (sRNA) gene is sufficient to control the linear dominance hierarchy in Brassica rapa and proposed a model in which a homology-based interaction between sRNAs and target sites controls the complicated dominance hierarchy of male SI determinants. In Arabidopsis halleri, male dominance hierarchy is reported to have arisen from multiple networks of sRNA target gains and losses. Despite these findings, it remains unknown whether the molecular mechanism underlying the dominance hierarchy is conserved among Brassicaceae. Here, we identified sRNAs and their target sites that can explain the linear dominance hierarchy of Arabidopsis lyrata, a species closely related to A. halleri. We tested the model that we established in Brassica to explain the linear dominance hierarchy in A. lyrata. Our results suggest that the dominance hierarchy of A. lyrata is also controlled by a homology-based interaction between sRNAs and their targets.
Collapse
|
12
|
Genete M, Castric V, Vekemans X. Genotyping and De Novo Discovery of Allelic Variants at the Brassicaceae Self-Incompatibility Locus from Short-Read Sequencing Data. Mol Biol Evol 2021; 37:1193-1201. [PMID: 31688901 DOI: 10.1093/molbev/msz258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant self-incompatibility (SI) is a genetic system that prevents selfing and enforces outcrossing. Because of strong balancing selection, the genes encoding SI are predicted to maintain extraordinarily high levels of polymorphism, both in terms of the number of functionally distinct S-alleles that segregate in SI species and in terms of their nucleotide sequence divergence. However, because of these two combined features, documenting polymorphism of these genes also presents important methodological challenges that have so far largely prevented the comprehensive analysis of complete allelic series in natural populations, and also precluded the obtention of complete genic sequences for many S-alleles. Here, we develop a powerful methodological approach based on a computationally optimized comparison of short Illumina sequencing reads from genomic DNA to a database of known nucleotide sequences of the extracellular domain of SRK (eSRK). By examining mapping patterns along the reference sequences, we obtain highly reliable predictions of S-genotypes from individuals collected from natural populations of Arabidopsis halleri. Furthermore, using a de novo assembly approach of the filtered short reads, we obtain full-length sequences of eSRK even when the initial sequence in the database was only partial, and we discover putative new SRK alleles that were not initially present in the database. When including those new alleles in the reference database, we were able to resolve the complete diploid SI genotypes of all individuals. Beyond the specific case of Brassicaceae S-alleles, our approach can be readily applied to other polymorphic loci, given reference allelic sequences are available.
Collapse
Affiliation(s)
- Mathieu Genete
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
13
|
Li Q, Zhao T, Liang L, Hou S, Wang G, Ma Q. Molecular cloning and expression analysis of hybrid hazelnut (Corylus heterophylla × Corylus avellana) ChaSRK1/2 genes and their homologs from other cultivars and species. Gene 2020; 756:144917. [PMID: 32590104 DOI: 10.1016/j.gene.2020.144917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/22/2020] [Accepted: 06/17/2020] [Indexed: 12/01/2022]
Abstract
The self-incompatibility system of Corylus is a sporophytic type that is phenotypically similar to that of Brassica. While the molecular mechanism of sporophytic self-incompatibility (SSI) has been investigated extensively in Brassica (Brassicaceae), little is known about the corresponding mechanism in Corylus (Betulaceae). Here, we discuss the SSI mechanism with respect to S-locus receptor kinase (SRK) gene homologs. To obtain two SRK candidate unigenes, we compared all of the unigenes in a transcriptional protein database from our previous study with BnSRK-1 (AB270767) using BLASTX with a cutoff e-value of 10-5. We then cloned the full-length cDNA of ChaSRK1 and ChaSRK2 genes from Ping'ou hybrid hazelnut (Corylus heterophylla × Corylus avellana) using RACE techniques. Bioinformatics approaches were used to analyze the cDNA sequences, protein sequences, and domains of the encoded proteins. The full-length ChaSRK1 cDNA was 2883 base pairs (bp) with a coding sequence (CDS) of 2,547 bp encoding 849 amino acid residues. The full-length ChaSRK2 cDNA was 2,693 bp, with a CDS of 2,433 bp encoding 811 amino acids. The ChaSRK1/2 proteins contained an S-domain (extracellular domain), a transmembrane domain, a Ser/Thr protein kinase active site (kinase domain), and DUF3660 and/or DUF3403 domains. The lengths of 18 partial SRK homologs ranged from 1347 to 1451 bp, and they contained the same structural domains as ChaSRK1 and ChaSRK2. Phylogenetic analysis revealed that all SRK homologs could be divided into two categories that were similar to the classification of SRKs in Brassica. The expression patterns of ChaSRK1 and ChaSRK2 differed: ChaSRK2 was predominantly expressed in mature stigmatic styles, while ChaSRK1 was expressed in other tissues with the highest in the root tips of Corylus. Using dual-color fluorescence in situ hybridization, ChaSRK1/2 expression was found to be localized in papillar cells. Collectively, these results revealed that SRKs from Corylus had similar characteristics to SRKs from Brassica. We therefore speculated that the SSI mechanism in Corylus might be more similar to the Brassica mechanism than to other SSI types.
Collapse
Affiliation(s)
- Qing Li
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Tiantian Zhao
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Lisong Liang
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Sihao Hou
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Guixi Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Qinghua Ma
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China.
| |
Collapse
|
14
|
Base-Pairing Requirements for Small RNA-Mediated Gene Silencing of Recessive Self-Incompatibility Alleles in Arabidopsis halleri. Genetics 2020; 215:653-664. [PMID: 32461267 DOI: 10.1534/genetics.120.303351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
Small noncoding RNAs are central regulators of genome activity and stability. Their regulatory function typically involves sequence similarity with their target sites, but understanding the criteria by which they specifically recognize and regulate their targets across the genome remains a major challenge in the field, especially in the face of the diversity of silencing pathways involved. The dominance hierarchy among self-incompatibility alleles in Brassicaceae is controlled by interactions between a highly diversified set of small noncoding RNAs produced by dominant S-alleles and their corresponding target sites on recessive S-alleles. By controlled crosses, we created numerous heterozygous combinations of S-alleles in Arabidopsis halleri and developed an real-time quantitative PCR assay to compare allele-specific transcript levels for the pollen determinant of self-incompatibility (SCR). This provides the unique opportunity to evaluate the precise base-pairing requirements for effective transcriptional regulation of this target gene. We found strong transcriptional silencing of recessive SCR alleles in all heterozygote combinations examined. A simple threshold model of base pairing for the small RNA-target interaction captures most of the variation in SCR transcript levels. For a subset of S-alleles, we also measured allele-specific transcript levels of the determinant of pistil specificity (SRK), and found sharply distinct expression dynamics throughout flower development between SCR and SRK In contrast to SCR, both SRK alleles were expressed at similar levels in the heterozygote genotypes examined, suggesting no transcriptional control of dominance for this gene. We discuss the implications for the evolutionary processes associated with the origin and maintenance of the dominance hierarchy among self-incompatibility alleles.
Collapse
|
15
|
Parallel evolution of dominant pistil-side self-incompatibility suppressors in Arabidopsis. Nat Commun 2020; 11:1404. [PMID: 32179752 PMCID: PMC7075917 DOI: 10.1038/s41467-020-15212-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/24/2020] [Indexed: 01/09/2023] Open
Abstract
Selfing is a frequent evolutionary trend in angiosperms, and is a suitable model for studying the recurrent patterns underlying adaptive evolution. Many plants avoid self-fertilization by physiological processes referred to as self-incompatibility (SI). In the Brassicaceae, direct and specific interactions between the male ligand SP11/SCR and the female receptor kinase SRK are required for the SI response. Although Arabidopsis thaliana acquired autogamy through loss of these genes, molecular evolution contributed to the spread of self-compatibility alleles requires further investigation. We show here that in this species, dominant SRK silencing genes have evolved at least twice. Different inverted repeat sequences were found in the relic SRK region of the Col-0 and C24 strains. Both types of inverted repeats suppress the functional SRK sequence in a dominant fashion with different target specificities. It is possible that these dominant suppressors of SI contributed to the rapid fixation of self-compatibility in A. thaliana. In Brassicaceae, interaction between the pollen-derived peptide ligand SP11 and the pistil-expressed receptor kinase SRK leads to self-incompatibility. Here the authors provide evidence that in Arabidopsis dominant self-compatibility inducers evolved at least twice via insertion of inverted repeats in the SRK locus.
Collapse
|
16
|
Czuppon P, Constable GWA. Invasion and Extinction Dynamics of Mating Types Under Facultative Sexual Reproduction. Genetics 2019; 213:567-580. [PMID: 31391266 PMCID: PMC6781889 DOI: 10.1534/genetics.119.302306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023] Open
Abstract
In sexually reproducing isogamous species, syngamy between gametes is generally not indiscriminate, but rather restricted to occurring between complementary self-incompatible mating types. A longstanding question regards the evolutionary pressures that control the number of mating types observed in natural populations, which ranges from two to many thousands. Here, we describe a population genetic null model of this reproductive system, and derive expressions for the stationary probability distribution of the number of mating types, the establishment probability of a newly arising mating type, and the mean time to extinction of a resident type. Our results yield that the average rate of sexual reproduction in a population correlates positively with the expected number of mating types observed. We further show that the low number of mating types predicted in the rare-sex regime is primarily driven by low invasion probabilities of new mating type alleles, with established resident alleles being very stable over long evolutionary periods. Moreover, our model naturally exhibits varying selection strength dependent on the number of resident mating types. This results in higher extinction and lower invasion rates for an increasing number of residents.
Collapse
Affiliation(s)
- Peter Czuppon
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, 75231 Paris, France
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, UPEC, CNRS, IRD, INRA, 75252 Paris, France
| | - George W A Constable
- Department of Mathematical Sciences, The University of Bath, BA2 7AY, United Kingdom
| |
Collapse
|
17
|
Mable BK, Brysting AK, Jørgensen MH, Carbonell AKZ, Kiefer C, Ruiz-Duarte P, Lagesen K, Koch MA. Adding Complexity to Complexity: Gene Family Evolution in Polyploids. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Jany E, Nelles H, Goring DR. The Molecular and Cellular Regulation of Brassicaceae Self-Incompatibility and Self-Pollen Rejection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:1-35. [PMID: 30712670 DOI: 10.1016/bs.ircmb.2018.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In flowering plants, sexual reproduction is actively regulated by cell-cell communication between the male pollen and female pistil, and many species possess self-incompatibility systems for the selective rejection of self-pollen to maintain genetic diversity. The Brassicaceae self-incompatibility pathway acts early on when pollen grains have landed on the stigmatic papillae at the top of the pistil. Extensive studies have revealed that self-pollen rejection in the Brassicaceae is initiated by an S-haplotype-specific interaction between two polymorphic proteins: the pollen S-locus protein 11/S cysteine-rich (SP11/SCR) ligand and the stigma S receptor kinase (SRK). While the different S-haplotypes are typically codominant, there are several examples of dominant-recessive interactions, and a small RNA-based regulation of SP11/SCR expression has been uncovered as a mechanism behind these genetic interactions. Recent research has also added to our understanding of various cellular components in the pathway leading from the SP11/SCR-SRK interaction, including two signaling proteins, the M-locus protein kinase (MLPK) and the ARM-repeat containing 1 (ARC1) E3 ligase, as well as calcium fluxes and induction of autophagy in the stigmatic papillae. Finally, a better understanding of the compatible pollen responses that are targeted by the self-incompatibility pathway is starting to emerge, and this will allow us to more fully understand how the Brassicaceae self-incompatibility pathway causes self-pollen rejection. Here, we provide an overview of the field, highlighting recent contributions to our understanding of Brassicaceae self-incompatibility, and draw comparisons to a recently discovered unilateral incompatibility system.
Collapse
Affiliation(s)
- Eli Jany
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hayley Nelles
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada; Centre for Genome Analysis & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Fujii S, Takayama S. Multilayered dominance hierarchy in plant self-incompatibility. PLANT REPRODUCTION 2018; 31:15-19. [PMID: 29248961 DOI: 10.1007/s00497-017-0319-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/04/2017] [Indexed: 05/27/2023]
Abstract
Epigenetic dominance modifier. In polymorphic loci, complex genetic dominance relationships between alleles are often observed. In plants, control of self-incompatibility (SI) expression via allelic interactions in the Brassicaceae is the best-known example of such mechanisms. Here, with emphasis on two recently published papers, we review the progress toward understanding the dominance regulatory mechanism of SI in the Brassicaceae. Multiple small RNA genes linked to the Self-incompatibility (S) locus were found in both Brassica and Arabidopsis genera. Mono-allelic gene expression of the male determinant of SI, SP11/SCR, from a dominant S-allele is under epigenetic control by such small RNA genes. Possible evolutionary trajectories leading to the formation of multilayered dominance hierarchy in Brassicaceae are discussed. We also identify some remaining questions for future studies.
Collapse
Affiliation(s)
- Sota Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama, 332-0012, Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
20
|
Chantha SC, Herman AC, Castric V, Vekemans X, Marande W, Schoen DJ. The unusual S locus of Leavenworthia is composed of two sets of paralogous loci. THE NEW PHYTOLOGIST 2017; 216:1247-1255. [PMID: 28906557 DOI: 10.1111/nph.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/25/2017] [Indexed: 05/28/2023]
Abstract
The Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences. An SRK-positive Bacterial Artificial Chromosome clone was found to contain complete SRK and SCR sequences located close by one another in the derived genomic position of the Leavenworthia S locus, and in place of the more typical Lal2 and SCRL sequences. These sequences are expressed in stigmas and anthers, respectively, and crossing data show that the SRK/SCR haplotype is functional in self-incompatibility. Population surveys indicate that < 5% of Leavenworthia S loci possess such alleles. An ancestral translocation or recombination event involving SRK/SCR and Lal2/SCRL likely occurred, together with neofunctionalization of Lal2/SCRL, and both haplotype groups now function as Leavenworthia S locus alleles. These findings suggest that S locus alleles can have distinctly different evolutionary origins.
Collapse
Affiliation(s)
- Sier-Ching Chantha
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
| | - Adam C Herman
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
- Department of Plant Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Vincent Castric
- Unité Evo-Eco-Paléo (EEP) - UMR 8198, CNRS/Université de Lille - Sciences et Technologies, Villeneuve d'Ascq Cedex, F-59655, France
| | - Xavier Vekemans
- Unité Evo-Eco-Paléo (EEP) - UMR 8198, CNRS/Université de Lille - Sciences et Technologies, Villeneuve d'Ascq Cedex, F-59655, France
| | - William Marande
- Institut National de la Recherche Agronomique, 31326, Castanet Tolosan Cedex, France
| | - Daniel J Schoen
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
| |
Collapse
|
21
|
What causes mating system shifts in plants? Arabidopsis lyrata as a case study. Heredity (Edinb) 2016; 118:52-63. [PMID: 27804968 PMCID: PMC5176122 DOI: 10.1038/hdy.2016.99] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/24/2023] Open
Abstract
The genetic breakdown of self-incompatibility (SI) and subsequent mating system shifts to inbreeding has intrigued evolutionary geneticists for decades. Most of our knowledge is derived from interspecific comparisons between inbreeding species and their outcrossing relatives, where inferences may be confounded by secondary mutations that arose after the initial loss of SI. Here, we study an intraspecific breakdown of SI and its consequences in North American Arabidopsis lyrata to test whether: (1) particular S-locus haplotypes are associated with the loss of SI and/or the shift to inbreeding; (2) a population bottleneck may have played a role in driving the transition to inbreeding; and (3) the mutation(s) underlying the loss of SI are likely to have occurred at the S-locus. Combining multiple approaches for genotyping, we found that outcrossing populations on average harbour 5 to 9 S-locus receptor kinase (SRK) alleles, but only two, S1 and S19, are shared by most inbreeding populations. Self-compatibility (SC) behaved genetically as a recessive trait, as expected from a loss-of-function mutation. Bulked segregant analysis in SC × SI F2 individuals using deep sequencing confirmed that all SC plants were S1 homozygotes but not all S1 homozygotes were SC. This was also revealed in population surveys, where only a few S1 homozygotes were SC. Together with crossing data, this suggests that there is a recessive factor that causes SC that is physically unlinked to the S-locus. Overall, our results emphasise the value of combining classical genetics with advanced sequencing approaches to resolve long outstanding questions in evolutionary biology.
Collapse
|
22
|
Durand E, Méheust R, Soucaze M, Goubet PM, Gallina S, Poux C, Fobis-Loisy I, Guillon E, Gaude T, Sarazin A, Figeac M, Prat E, Marande W, Bergès H, Vekemans X, Billiard S, Castric V. Dominance hierarchy arising from the evolution of a complex small RNA regulatory network. Science 2014; 346:1200-5. [PMID: 25477454 DOI: 10.1126/science.1259442] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevention of fertilization through self-pollination (or pollination by a close relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility locus (S locus). The many alleles at this locus exhibit a dominance hierarchy that determines which of the two allelic specificities of a heterozygous genotype is expressed at the phenotypic level. Here, we uncover the evolution of how at least 17 small RNA (sRNA)-producing loci and their multiple target sites collectively control the dominance hierarchy among alleles within the gene controlling the pollen S-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of sRNA-target interactions by jointly acting on sRNA genes and their target sites, which has resulted in a complex system of regulation among alleles.
Collapse
Affiliation(s)
- Eléonore Durand
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Raphaël Méheust
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Marion Soucaze
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Pauline M Goubet
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Sophie Gallina
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Céline Poux
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Isabelle Fobis-Loisy
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, F-69364 Lyon, Cedex 07, France
| | - Eline Guillon
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, F-69364 Lyon, Cedex 07, France
| | - Thierry Gaude
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, F-69364 Lyon, Cedex 07, France
| | - Alexis Sarazin
- Department of Biology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland
| | - Martin Figeac
- UDSL Université Lille 2 Droit et Santé, and Plate-forme de génomique fonctionnelle et structurale IFR-114, F-59000 Lille, France
| | - Elisa Prat
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - William Marande
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Xavier Vekemans
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Sylvain Billiard
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | - Vincent Castric
- Laboratoire Génétique et Evolution des Populations Végétales, CNRS UMR 8198, Université Lille 1, F-59655 Villeneuve d'Ascq cedex, France.
| |
Collapse
|
23
|
Self-incompatibility in Brassicaceae: identification and characterization of SRK-like sequences linked to the S-locus in the tribe Biscutelleae. G3-GENES GENOMES GENETICS 2014; 4:983-92. [PMID: 24939184 PMCID: PMC4065267 DOI: 10.1534/g3.114.010843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Self-incompatibility (SI) is a genetic system that prevents self-fertilization in many Angiosperms. Although plants from the Brassicaceae family present an apparently unique SI system that is ancestral to the family, investigations at the S-locus responsible for SI have been mostly limited to two distinct lineages (Brassica and Arabidopsis-Capsella, respectively). Here, we investigated SI in a third deep-branching lineage of Brassicaceae: the tribe Biscutelleae. By coupling sequencing of the SI gene responsible for pollen recognition (SRK) with phenotypic analyses based on controlled pollinations, we identified 20 SRK-like sequences functionally linked to 13 S-haplotypes in 21 individuals of Biscutella neustriaca and 220 seedlings. We found two genetic and phylogenetic features of SI in Biscutelleae that depart from patterns observed in the reference Arabidopsis clade: (1) SRK-like sequences cluster into two main phylogenetic lineages interspersed within the many SRK lineages of Arabidopsis; and (2) some SRK-like sequences are transmitted by linked pairs, suggesting local duplication within the S-locus. Strikingly, these features also were observed in the Brassica clade but probably evolved independently, as the two main SRK clusters in Biscutella are distinct from those in Brassica. In the light of our results and of what has been previously observed in other Brassicaceae, we discuss the ecological and evolutionary implications on SI plant populations of the high diversity and the complex dominance relationships we found at the S-locus in Biscutelleae.
Collapse
|
24
|
Mayo O. Fisher in Adelaide. Biometrics 2014; 70:266-9. [DOI: 10.1111/biom.12154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Oliver Mayo
- CSIRO Animal; Food & Health Sciences; PO Box 10041, Adelaide BC, SA 5000 Australia
| |
Collapse
|
25
|
Kitashiba H, Nasrallah JB. Self-incompatibility in Brassicaceae crops: lessons for interspecific incompatibility. BREEDING SCIENCE 2014; 64:23-37. [PMID: 24987288 PMCID: PMC4031107 DOI: 10.1270/jsbbs.64.23] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/16/2013] [Indexed: 05/23/2023]
Abstract
Most wild plants and some crops of the Brassicaceae express self-incompatibility, which is a mechanism that allows stigmas to recognize and discriminate against "self" pollen, thus preventing self-fertilization and inbreeding. Self-incompatibility in this family is controlled by a single S locus containing two multiallelic genes that encode the stigma-expressed S-locus receptor kinase and its pollen coat-localized ligand, the S-locus cysteine-rich protein. Physical interaction between receptor and ligand encoded in the same S locus activates the receptor and triggers a signaling cascade that results in inhibition of "self" pollen. Sequence information for many S-locus haplotypes in Brassica species has spurred studies of dominance relationships between S haplotypes and of S-locus structure, as well as the development of methods for S genotyping. Furthermore, molecular genetic studies have begun to identify genes that encode putative components of the self-incompatibility signaling pathway. In parallel, standard genetic analysis and QTL analysis of the poorly understood interspecific incompatibility phenomenon have been initiated to identify genes responsible for the inhibition of pollen from other species by the stigma. Herewith, we review recent studies of self-incompatibility and interspecific incompatibility, and we propose a model in which a universal pollen-inhibition pathway is shared by these two incompatibility systems.
Collapse
Affiliation(s)
- Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University,
1-1 Tsutsumidori-Amamiyamachi, Aoba, Sendai, Miyagi 981-8555,
Japan
| | - June B. Nasrallah
- Department of Plant Biology, Cornell University,
Ithaca, NY 14853,
USA
| |
Collapse
|
26
|
Indriolo E, Safavian D, Goring DR. The ARC1 E3 Ligase Promotes Two Different Self-Pollen Avoidance Traits in Arabidopsis. THE PLANT CELL 2014; 26:1525-1543. [PMID: 24748043 PMCID: PMC4036569 DOI: 10.1105/tpc.114.122879] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 05/20/2023]
Abstract
Flowering plants have evolved various strategies for avoiding self-pollen to drive genetic diversity. These strategies include spatially separated sexual organs (herkogamy), timing differences between male pollen release and female pistil receptivity (dichogamy), and self-pollen rejection. Within the Brassicaceae, these outcrossing systems are the evolutionary default state, and many species display these traits, including Arabidopsis lyrata. In contrast to A. lyrata, closely related Arabidopsis thaliana has lost these self-pollen traits and thus represents an excellent system to test genes for reconstructing these evolutionary traits. We previously demonstrated that the ARC1 E3 ligase is required for self-incompatibility in two diverse Brassicaceae species, Brassica napus and A. lyrata, and is frequently deleted in self-compatible species, including A. thaliana. In this study, we examined ARC1's requirement for reconstituting self-incompatibility in A. thaliana and uncovered an important role for ARC1 in promoting a strong and stable pollen rejection response when expressed with two other A. lyrata self-incompatibility factors. Furthermore, we discovered that ARC1 promoted an approach herkogamous phenotype in A. thaliana flowers. Thus, ARC1's expression resulted in two different A. lyrata traits for self-pollen avoidance and highlights the key role that ARC1 plays in the evolution and retention of outcrossing systems.
Collapse
Affiliation(s)
- Emily Indriolo
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Darya Safavian
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto M5S 3B2, Canada
| |
Collapse
|
27
|
Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLoS Biol 2013; 11:e1001560. [PMID: 23690750 PMCID: PMC3653793 DOI: 10.1371/journal.pbio.1001560] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.
Collapse
Affiliation(s)
| | - Adam C. Herman
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Adrian E. Platts
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Xavier Vekemans
- Laboratoire de Génétique et Évolution des Populations Végétale, Unité Mixte de Recherche 8198, Centre National de Recherches Scientifiques–Université Lille 1, Sciences et Technologies, Cité Scientifique, Villeneuve d'Ascq, France
| | - Daniel J. Schoen
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Xing S, Li M, Liu P. Evolution of S-domain receptor-like kinases in land plants and origination of S-locus receptor kinases in Brassicaceae. BMC Evol Biol 2013; 13:69. [PMID: 23510165 PMCID: PMC3616866 DOI: 10.1186/1471-2148-13-69] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/12/2013] [Indexed: 01/31/2023] Open
Abstract
Background The S-domain serine/threonine receptor-like kinases (SRLKs) comprise one of the largest and most rapidly expanding subfamilies in the plant receptor-like/Pelle kinase (RLKs) family. The founding member of this subfamily, the S-locus receptor kinase (SRK), functions as the female determinant of specificity in the self-incompatibility (SI) responses of crucifers. Two classes of proteins resembling the extracellular S domain (designated S-domain receptor-like proteins, SRLPs) or the intracellular kinase domain (designated S-domain receptor-like cytoplasmic kinases, SRLCKs) of SRK are also ubiquitous in land plants, indicating that the SRLKs are composite molecules that originated by domain fusion of the two component proteins. Here, we explored the origin and diversification of SRLKs by phylogenomic methods. Results Based on the distribution patterns of SRLKs and SRLCKs in a reconciled species-domain tree, a maximum parsimony model was then established for simultaneously inferring and dating gene duplication/loss and fusion /fission events in SRLK evolution. Various SRK alleles from crucifer species were then included in our phylogenetic analyses to infer the origination of SRKs by identifying the proper outgroups. Conclusions Two gene fusion events were inferred and the major gene fusion event occurred in the common ancestor of land plants generated almost all of extant SRLKs. The functional diversification of duplicated SRLKs was illustrated by molecular evolution analyses of SRKs. Our findings support that SRKs originated as two ancient haplotypes derived from a pair of tandem duplicate genes through random regulatory neo-/sub- functionalization in the common ancestor of the Brassicaceae.
Collapse
Affiliation(s)
- Shilai Xing
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | |
Collapse
|
29
|
Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLoS Biol 2013. [PMID: 23690750 DOI: 10.1371/journal.pbio.1001560pbiology-d-12-03507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.
Collapse
|
30
|
Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLoS Biol 2013. [PMID: 23690750 DOI: 10.5061/dryad.mq5ct] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.
Collapse
|
31
|
|
32
|
Inbreeding depression in self-incompatible North-American Arabidopsis lyrata: disentangling genomic and S-locus-specific genetic load. Heredity (Edinb) 2012; 110:19-28. [PMID: 22892638 DOI: 10.1038/hdy.2012.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Newly formed selfing lineages may express recessive genetic load and suffer inbreeding depression. This can have a genome-wide genetic basis, or be due to loci linked to genes under balancing selection. Understanding the genetic architecture of inbreeding depression is important in the context of the maintenance of self-incompatibility and understanding the evolutionary dynamics of S-alleles. We addressed this using North-American subspecies of Arabidopsis lyrata. This species is normally self-incompatible and outcrossing, but some populations have undergone a transition to selfing. The goals of this study were to: (1) quantify the strength of inbreeding depression in North-American populations of A. lyrata; and (2) disentangle the relative contribution of S-linked genetic load compared with overall inbreeding depression. We enforced selfing in self-incompatible plants with known S-locus genotype by treatment with CO(2), and compared the performance of selfed vs outcrossed progeny. We found significant inbreeding depression for germination rate (δ=0.33), survival rate to 4 weeks (δ=0.45) and early growth (δ=0.07), but not for flowering rate. For two out of four S-alleles in our design, we detected significant S-linked load reflected by an under-representation of S-locus homozygotes in selfed progeny. The presence or absence of S-linked load could not be explained by the dominance level of S-alleles. Instead, the random nature of the mutation process may explain differences in the recessive deleterious load among lineages.
Collapse
|
33
|
Tsuchimatsu T, Kaiser P, Yew CL, Bachelier JB, Shimizu KK. Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLoS Genet 2012; 8:e1002838. [PMID: 22844253 PMCID: PMC3405996 DOI: 10.1371/journal.pgen.1002838] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/04/2012] [Indexed: 01/01/2023] Open
Abstract
The evolutionary transition from outcrossing to self-fertilization (selfing) through the loss of self-incompatibility (SI) is one of the most prevalent events in flowering plants, and its genetic basis has been a major focus in evolutionary biology. In the Brassicaceae, the SI system consists of male and female specificity genes at the S-locus and of genes involved in the female downstream signaling pathway. During recent decades, much attention has been paid in particular to clarifying the genes responsible for the loss of SI. Here, we investigated the pattern of polymorphism and functionality of the female specificity gene, the S-locus receptor kinase (SRK), in allotetraploid Arabidopsis kamchatica. While its parental species, A. lyrata and A. halleri, are reported to be diploid and mainly self-incompatible, A. kamchatica is self-compatible. We identified five highly diverged SRK haplogroups, found their disomic inheritance and, for the first time in a wild allotetraploid species, surveyed the geographic distribution of SRK at the two homeologous S-loci across the species range. We found intact full-length SRK sequences in many accessions. Through interspecific crosses with the self-incompatible and diploid congener A. halleri, we found that the female components of the SI system, including SRK and the female downstream signaling pathway, are still functional in these accessions. Given the tight linkage and very rare recombination of the male and female components on the S-locus, this result suggests that the degradation of male components was responsible for the loss of SI in A. kamchatica. Recent extensive studies in multiple Brassicaceae species demonstrate that the loss of SI is often derived from mutations in the male component in wild populations, in contrast to cultivated populations. This is consistent with theoretical predictions that mutations disabling male specificity are expected to be more strongly selected than mutations disabling female specificity, or the female downstream signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, Institute of Plant Biology, and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
The S-LOCUS CYSTEINE-RICH PROTEIN (SCR): A Small Peptide with A High Impact on the Evolution of Flowering Plants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-3-642-27603-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
35
|
Goubet PM, Bergès H, Bellec A, Prat E, Helmstetter N, Mangenot S, Gallina S, Holl AC, Fobis-Loisy I, Vekemans X, Castric V. Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS Genet 2012; 8:e1002495. [PMID: 22457631 PMCID: PMC3310759 DOI: 10.1371/journal.pgen.1002495] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/08/2011] [Indexed: 11/22/2022] Open
Abstract
Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae. Self-incompatibility is a common genetic system preventing selfing through recognition and rejection of self-pollen in hermaphroditic flowering plants. In the Brassicaceae family, this system is controlled by a single genomic region, called the S-locus, where many distinct specificities segregate in natural populations. In this study, we obtained genomic sequences comprising the S-locus in two closely related Brassicaceae species, Arabidopsis lyrata and A. halleri, and analyzed their diversity and patterns of molecular evolution. We report compelling evidence that the S-locus presents many similar properties with other genomic regions involved in the determination of mating-types in mammals, insects, plants, or fungi. In particular, in spite of their diversity, these genomic regions all show absence of similarity in intergenic sequences, large depth of genealogies, highly divergent organization, and accumulation of transposable elements. Moreover, some of these features were found to vary according to dominance of the S-locus specificities, suggesting that dominance/recessivity interactions are key drivers of the evolution of this genomic region.
Collapse
Affiliation(s)
- Pauline M. Goubet
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Elisa Prat
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Nicolas Helmstetter
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Sophie Mangenot
- Genoscope, Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - Sophie Gallina
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Anne-Catherine Holl
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Isabelle Fobis-Loisy
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Xavier Vekemans
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Vincent Castric
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
36
|
Guo YL, Zhao X, Lanz C, Weigel D. Evolution of the S-locus region in Arabidopsis relatives. PLANT PHYSIOLOGY 2011; 157:937-46. [PMID: 21810962 PMCID: PMC3192562 DOI: 10.1104/pp.111.174912] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/01/2011] [Indexed: 05/21/2023]
Abstract
The S locus, a single polymorphic locus, is responsible for self-incompatibility (SI) in the Brassicaceae family and many related plant families. Despite its importance, our knowledge of S-locus evolution is largely restricted to the causal genes encoding the S-locus receptor kinase (SRK) receptor and S-locus cysteine-rich protein (SCR) ligand of the SI system. Here, we present high-quality sequences of the genomic region of six S-locus haplotypes: Arabidopsis (Arabidopsis thaliana; one haplotype), Arabidopsis lyrata (four haplotypes), and Capsella rubella (one haplotype). We compared these with reference S-locus haplotypes of the self-compatible Arabidopsis and its SI congener A. lyrata. We subsequently reconstructed the likely genomic organization of the S locus in the most recent common ancestor of Arabidopsis and Capsella. As previously reported, the two SI-determining genes, SCR and SRK, showed a pattern of coevolution. In addition, consistent with previous studies, we found that duplication, gene conversion, and positive selection have been important factors in the evolution of these two genes and appear to contribute to the generation of new recognition specificities. Intriguingly, the inactive pseudo-S-locus haplotype in the self-compatible species C. rubella is likely to be an old S-locus haplotype that only very recently became fixed when C. rubella split off from its SI ancestor, Capsella grandiflora.
Collapse
Affiliation(s)
- Ya-Long Guo
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany.
| | | | | | | |
Collapse
|
37
|
Shimizu KK, Kudoh H, Kobayashi MJ. Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. ANNALS OF BOTANY 2011; 108:777-87. [PMID: 21852275 PMCID: PMC3170158 DOI: 10.1093/aob/mcr180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/18/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND It is essential to understand and predict the effects of changing environments on plants. This review focuses on the sexual reproduction of plants, as previous studies have suggested that this trait is particularly vulnerable to climate change, and because a number of ecologically and evolutionarily relevant genes have been identified. SCOPE It is proposed that studying gene functions in naturally fluctuating conditions, or gene functions in natura, is important to predict responses to changing environments. First, we discuss flowering time, an extensively studied example of phenotypic plasticity. The quantitative approaches of ecological and evolutionary systems biology have been used to analyse the expression of a key flowering gene, FLC, of Arabidopsis halleri in naturally fluctuating environments. Modelling showed that FLC acts as a quantitative tracer of the temperature over the preceding 6 weeks. The predictions of this model were verified experimentally, confirming its applicability to future climate changes. Second, the evolution of self-compatibility as exemplifying an evolutionary response is discussed. Evolutionary genomic and functional analyses have indicated that A. thaliana became self-compatible via a loss-of-function mutation in the male specificity gene, SCR/SP11. Self-compatibility evolved during glacial-interglacial cycles, suggesting its association with mate limitation during migration. Although the evolution of self-compatibility may confer short-term advantages, it is predicted to increase the risk of extinction in the long term because loss-of-function mutations are virtually irreversible. CONCLUSIONS Recent studies of FLC and SCR have identified gene functions in natura that are unlikely to be found in laboratory experiments. The significance of epigenetic changes and the study of non-model species with next-generation DNA sequencers is also discussed.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Institute of Plant Biology, University Research Priority Program in Systems Biology/Functional Genomics & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.
| | | | | |
Collapse
|
38
|
Tedder A, Ansell SW, Lao X, Vogel JC, Mable BK. Sporophytic self-incompatibility genes and mating system variation in Arabis alpina. ANNALS OF BOTANY 2011; 108:699-713. [PMID: 21821832 PMCID: PMC3170156 DOI: 10.1093/aob/mcr157] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Sporophytic self-incompatibility (SI) prevents inbreeding in many members of the Brassicaceae, and has been well documented in a variety of high-profile species. Arabis alpina is currently being developed as a model system for studying the ecological genetics of arctic-alpine environments, and is the focus of numerous studies on population structure and alpine phylogeography. Although it is highly inbreeding throughout most of its range, populations in central Italy have been identified that show inbreeding coefficients (F(IS)) more typical of self-incompatible relatives. The purpose of this study was to establish whether this variation is due to a functioning SI system. METHODS Outcrossing rate estimates were calculated based on 16 allozyme loci and self-compatibility assessed based on controlled pollinations for six Italian populations that have previously been shown to vary in F(IS) values. Putative SRK alleles (the gene controlling the female component of SI in other Brassicaceae) amplified from A. alpina were compared with those published for other species. Linkage of putative SRK alleles and SI phenotypes was assessed using a diallel cross. KEY RESULTS Functional avoidance of inbreeding is demonstrated in three populations of A. alpina, corresponding with previous F(IS) values. The presence is described of 15 putative SRK-like alleles, which show high sequence identity to known alleles from Brassica and Arabidopsis and the high levels of synonymous and nonsynonymous variation typical of genes under balancing selection. Also, orthologues of two other members of the S-receptor kinase gene family, Aly8 (ARK3) and Aly9 (AtS1) are identified. Further to this, co-segregation between some of the putative S-alleles and compatibility phenotypes was demonstrated using a full-sibling cross design. CONCLUSIONS The results strongly suggest that, as with other species in the Brassicaceae, A. alpina has a sporophytic SI system but shows variation in the strength of SI within and between populations.
Collapse
Affiliation(s)
- A. Tedder
- Division of Ecology and Evolutionary Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - S. W. Ansell
- Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - X. Lao
- Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - J. C. Vogel
- Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - B. K. Mable
- Division of Ecology and Evolutionary Biology, University of Glasgow, Glasgow G12 8QQ, UK
- For correspondence. E-mail
| |
Collapse
|
39
|
Brennan AC, Tabah DA, Harris SA, Hiscock SJ. Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates. Heredity (Edinb) 2011; 106:113-23. [PMID: 20372180 PMCID: PMC3183852 DOI: 10.1038/hdy.2010.29] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 11/27/2009] [Accepted: 12/17/2009] [Indexed: 11/08/2022] Open
Abstract
Understanding genetic mechanisms of self-incompatibility (SI) and how they evolve is central to understanding the mating behaviour of most outbreeding angiosperms. Sporophytic SI (SSI) is controlled by a single multi-allelic locus, S, which is expressed in the diploid (sporophyte) plant to determine the SI phenotype of its haploid (gametophyte) pollen. This allows complex patterns of independent S allele dominance interactions in male (pollen) and female (pistil) reproductive tissues. Senecio squalidus is a useful model for studying the genetic regulation and evolution of SSI because of its population history as an alien invasive species in the UK. S. squalidus maintains a small number of S alleles (7-11) with a high frequency of dominance interactions. Some S. squalidus individuals also show partial selfing and/or greater levels of cross-compatibility than expected under SSI. We previously speculated that these might be adaptations to invasiveness. Here we describe a detailed characterization of the regulation of SSI in S. squalidus. Controlled crosses were used to determine the S allele dominance hierarchy of six S alleles and effects of modifiers on cross-compatibility and partial selfing. Complex dominance interactions among S alleles were found with at least three levels of dominance and tissue-specific codominance. Evidence for S gene modifiers that increase selfing and/or cross-compatibility was also found. These empirical findings are discussed in the context of theoretical predictions for maintenance of S allele dominance interactions, and the role of modifier loci in the evolution of SI.
Collapse
Affiliation(s)
- A C Brennan
- School of Biology, University of St Andrews, Fife, UK
| | - D A Tabah
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - S A Harris
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - S J Hiscock
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
40
|
An experimental study of the S-Allee effect in the self-incompatible plant Biscutella neustriaca. CONSERV GENET 2010. [DOI: 10.1007/s10592-010-0055-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Castric V, Bechsgaard JS, Grenier S, Noureddine R, Schierup MH, Vekemans X. Molecular Evolution within and between Self-Incompatibility Specificities. Mol Biol Evol 2009; 27:11-20. [DOI: 10.1093/molbev/msp224] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Llaurens V, Billiard S, Castric V, Vekemans X. EVOLUTION OF DOMINANCE IN SPOROPHYTIC SELF-INCOMPATIBILITY SYSTEMS: I. GENETIC LOAD AND COEVOLUTION OF LEVELS OF DOMINANCE IN POLLEN AND PISTIL. Evolution 2009; 63:2427-37. [DOI: 10.1111/j.1558-5646.2009.00709.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Schoen DJ, Busch JW. THE EVOLUTION OF DOMINANCE IN SPOROPHYTIC SELF-INCOMPATIBILITY SYSTEMS. II. MATE AVAILABILITY AND RECOMBINATION. Evolution 2009; 63:2099-113. [DOI: 10.1111/j.1558-5646.2009.00686.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Abstract
The interplay of balancing selection within a species and rapid gene evolution between species can confound our ability to determine the functional equivalence of interspecific and intergeneric pairs of alleles underlying reproduction. In crucifer plants, mating specificity in the barrier to self-fertilization called self-incompatibility (SI) is controlled by allele-specific interactions between two highly polymorphic and co-evolving proteins, the S-locus receptor kinase (SRK) and its S-locus cysteine rich (SCR) ligand. These proteins have diversified both within and between species such that it is often difficult to determine from sequence information alone if they encode the same or different SI specificity. The self-fertile Arabidopsis thaliana was derived from an obligate outbreeding ancestor by loss of self-incompatibility, often in conjunction with inactivation of SRK or SCR. Nevertheless, some accessions of A. thaliana can express self-incompatibility upon transformation with an SRK-SCR gene pair isolated from its self-incompatible close relative A. lyrata. Here we show that several additional and highly diverged SRK/SCR genes from A. lyrata and another crucifer plant, Capsella grandiflora, confer self-incompatibility in A. thaliana, either as intact genes isolated from genomic libraries or after manipulation to generate chimeric fusions. We describe how the use of this newly developed chimeric protein strategy has allowed us to test the functional equivalence of SRK/SCR gene pairs from different taxa and to assay the functionality of endogenous A. thaliana SRK and SCR sequences.
Collapse
|
45
|
Reininga JM, Nielsen D, Purugganan MD. Functional and geographical differentiation of candidate balanced polymorphisms in Arabidopsis thaliana. Mol Ecol 2009; 18:2844-55. [PMID: 19457201 DOI: 10.1111/j.1365-294x.2009.04206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Molecular population genetic analysis of three chromosomal regions in Arabidopsis thaliana suggested that balancing selection might operate to maintain variation at three novel candidate adaptive trait genes, including SOLUBLE STARCH SYNTHASE I (SSI), PLASTID TRANSCRIPTIONALLY ACTIVE 7(PTAC7), and BELL-LIKE HOMEODOMAIN 10 (BLH10). If balanced polymorphisms are indeed maintained at these loci, then we would expect to observe functional variation underlying the previously detected signatures of selection. We observe multiple replacement polymorphisms within and in the 32 amino acids just upstream of the protein-protein interacting BELL domain at the BLH10 locus. While no clear protein sequence differences are found between allele types in SSI and PTAC7, these two genes show evidence for allele-specific variation in expression levels. Geographical patterns of allelic differentiation seem consistent with population stratification in this species and a significant longitudinal cline was observed at all three candidate loci. These data support a hypothesis of balancing selection at all three candidate loci and provide a basis for more detailed functional work by identifying possible functional differences that might be selectively maintained.
Collapse
Affiliation(s)
- Jennifer M Reininga
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
46
|
Molecular population genetics of the SRK and SCR self-incompatibility genes in the wild plant species Brassica cretica (Brassicaceae). Genetics 2008; 181:985-95. [PMID: 19087967 DOI: 10.1534/genetics.108.090829] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) in plants is a classic example of a trait evolving under strong frequency-dependent selection. As a consequence, population genetic theory predicts that the S locus, which controls SI, should maintain numerous alleles, display a high level of nucleotide diversity, and, in structured populations, show a lower level of among-population differentiation compared to neutral loci. Population-level investigations of DNA sequence variation at the S locus have recently been carried out in the genus Arabidopsis, largely confirming results from theoretical models of S-locus evolutionary dynamics, but no comparable studies have been done in wild Brassica species. In this study, we sequenced parts of the S-locus genes SRK and SCR, two tightly linked genes that are directly involved in the determination of SI specificity in samples from four natural populations of the wild species Brassica cretica. The amount and distribution of nucleotide diversity, as well as the frequency spectrum of putative functional haplotypes, observed at the S locus in B. cretica fit very well with expectations from theoretical models, providing strong evidence for frequency-dependent selection acting on the S locus in a wild Brassica species.
Collapse
|
47
|
Abstract
Self-incompatibility (SI) in the Brassicaceae plant family is controlled by the SRK and SCR genes situated at the S locus. A large number of S haplotypes have been identified, mainly in cultivated species of the Brassica and Raphanus genera, but recently also in wild Arabidopsis species. Here, we used DNA sequences from the SRK and SCR genes of the wild Brassica species Brassica cretica, together with publicly available sequence data from other Brassicaceae species, to investigate the evolutionary relationships among S haplotypes in the Brassicaceae family. The results reveal that wild and cultivated Brassica species have similar levels of SRK diversity, indicating that domestication has had but a minor effect on S-locus diversity in Brassica. Our results also show that a common set of S haplotypes was present in the ancestor of the Brassica and Arabidopsis genera, that only a small number of haplotypes survived in the Brassica lineage after its separation from Arabidopsis, and that diversification within the two Brassica dominance classes occurred after the split between the two lineages. We also found indications that recombination may have occurred between the kinase domain of SRK and the SCR gene in Brassica.
Collapse
|
48
|
Llaurens V, Billiard S, Leducq JB, Castric V, Klein EK, Vekemans X. DOES FREQUENCY-DEPENDENT SELECTION WITH COMPLEX DOMINANCE INTERACTIONS ACCURATELY PREDICT ALLELIC FREQUENCIES AT THE SELF-INCOMPATIBILITY LOCUS INARABIDOPSIS HALLERI? Evolution 2008; 62:2545-57. [DOI: 10.1111/j.1558-5646.2008.00469.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Schierup MH, Bechsgaard JS, Christiansen FB. Selection at work in self-incompatible Arabidopsis lyrata. II. Spatial distribution of S haplotypes in Iceland. Genetics 2008; 180:1051-9. [PMID: 18780752 PMCID: PMC2567355 DOI: 10.1534/genetics.108.088799] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022] Open
Abstract
We survey the distribution of haplotypes at the self-incompatibility (SI) locus of Arabidopsis lyrata (Brassicaceae) at 12 locations spread over the species' natural distribution in Iceland. Previous investigations of the system have identified 34 functionally different S haplotypes maintained by frequency-dependent selection and arranged them into four classes of dominance in their phenotypic expression. On the basis of this model of dominance and the island model of population subdivision, we compare the distribution of S haplotypes with that expected from population genetic theory. We observe 18 different S haplotypes, recessive haplotypes being more common than dominant ones, and dominant ones being shared by fewer populations. As expected, differentiation, although significant, is very low at the S locus even over distances of up to 300 km. The frequency of the most recessive haplotype is slightly larger than expected for a panmictic population, but consistent with a subdivided population with the observed differentiation. Frequencies in nature reflect effects of segregation distortion previously observed in controlled crosses. The dynamics of the S-locus variation are, however, well represented by a 12-island model and our simplified model of dominance interactions.
Collapse
Affiliation(s)
- Mikkel H Schierup
- Department of Ecology and Genetics, Institute of Biology, University of Aarhus, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
50
|
Abstract
Interlocus gene conversion is considered a crucial mechanism for generating novel combinations of polymorphisms in duplicated genes. The importance of gene conversion between duplicated genes has been recognized in the major histocompatibility complex and self-incompatibility genes, which are likely subject to diversifying selection. To theoretically understand the potential role of gene conversion in such situations, forward simulations are performed in various two-locus models. The results show that gene conversion could significantly increase the number of haplotypes when diversifying selection works on both loci. We find that the tract length of gene conversion is an important factor to determine the efficacy of gene conversion: shorter tract lengths can more effectively generate novel haplotypes given the gene conversion rate per site is the same. Similar results are also obtained when one of the duplicated genes is assumed to be a pseudogene. It is suggested that a duplicated gene, even after being silenced, will contribute to increasing the variability in the other locus through gene conversion. Consequently, the fixation probability and longevity of duplicated genes increase under the presence of gene conversion. On the basis of these findings, we propose a new scenario for the preservation of a duplicated gene: when the original donor gene is under diversifying selection, a duplicated copy can be preserved by gene conversion even after it is pseudogenized.
Collapse
|