1
|
do Nascimento Moreira C, Crampton WGR, de Andrade Affonso PH, Martins C, Cardoso AL. Genomic landscape of repetitive DNAs in Neotropical electric fishes. Mol Genet Genomics 2025; 300:40. [PMID: 40186627 DOI: 10.1007/s00438-025-02248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
The Neotropical electric fishes of the order Gymnotiformes, known for their unique electrogenic and electrosensory systems, provide exceptional models for investigating ecological and evolutionary questions. While their phylogenetic and cytogenetic diversity is well documented, information about the diversity and evolution of repetitive DNA in gymnotiform genomes remains limited. To understand how repetitive DNA has shaped genome evolution in this group, we conducted bioinformatic analyses on raw sequencing data and genome assemblies from multiple species representing three major families. Our analysis revealed that closely related species share similar patterns of repetitive DNA composition, with Gymnotidae and Apteronotidae exhibiting the highest (16.5%) and lowest (9.4%) proportions of repetitive DNA, respectively. We identified 40 satellite DNA families, with five exclusive to Gymnotidae, twenty-two to Hypopomidae, and six shared between Apteronotidae species. Only one satellite DNA (NEFSat3-18) was conserved across all analyzed species, suggesting rapid evolutionary turnover of these sequences. The evolutionary dynamics of transposable elements varied among families, with Gymnotidae showing recent expansion of LINE elements and DNA transposons, while Apteronotidae displayed more ancient patterns of transposon activity. Analysis of transposable element landscapes revealed that all species experienced at least one burst of transposition during their evolution. Our findings demonstrate that repetitive DNA diversification parallels the evolutionary history of gymnotiform species. We also present a comprehensive dataset of repetitive DNA sequences that can be used as cytogenomic markers in comparative and evolutionary studies.
Collapse
Affiliation(s)
- Camila do Nascimento Moreira
- Instituto de Biociências, Câmpus de Botucatu, Universidade Estadual Paulista (UNESP), R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, 18618 - 689, Brazil
- Centro de Estudos Em Células Tronco, Terapia Celular E Genética Toxicológica, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, 79080 - 190, Brazil
| | | | - Pedro Henrique de Andrade Affonso
- Instituto de Biociências, Câmpus de Botucatu, Universidade Estadual Paulista (UNESP), R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, 18618 - 689, Brazil
| | - Cesar Martins
- Instituto de Biociências, Câmpus de Botucatu, Universidade Estadual Paulista (UNESP), R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, 18618 - 689, Brazil
| | - Adauto Lima Cardoso
- Instituto de Biociências, Câmpus de Botucatu, Universidade Estadual Paulista (UNESP), R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, 18618 - 689, Brazil.
| |
Collapse
|
2
|
Wei KJ, Jiang AM, Jiang S, Huang YJ, Jiang SY, Su XL, Tettey CK, Wang XQ, Tang W, Cheng DJ. New isolate of sweet potato virus 2 from Ipomoea nil: molecular characterization, codon usage bias, and phylogenetic analysis based on complete genome. Virol J 2024; 21:222. [PMID: 39300471 PMCID: PMC11412058 DOI: 10.1186/s12985-024-02500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Viral diseases of sweet potatoes are causing severe crop losses worldwide. More than 30 viruses have been identified to infect sweet potatoes among which the sweet potato latent virus (SPLV), sweet potato mild speckling virus (SPMSV), sweet potato virus G (SPVG) and sweet potato virus 2 (SPV2) have been recognized as distinct species of the genus Potyvirus in the family Potyviridae. The sweet potato virus 2 (SPV2) is a primary pathogen affecting sweet potato crops. METHODS In this study, we detected an SPV2 isolate (named SPV2-LN) in Ipomoea nil in China. The complete genomic sequence of SPV2-LN was obtained using sequencing of small RNAs, RT-PCR, and RACE amplification. The codon usage, phylogeny, recombination analysis and selective pressure analysis were assessed on the SPV2-LN genome. RESULTS The complete genome of SPV2-LN consisted of 10,606 nt (GenBank No. OR842902), encoding 3425 amino acids. There were 28 codons in the SPV2-LN genome with a relative synonymous codon usage (RSCU) value greater than 1, of which 21 end in A/U. Among the 12 proteins of SPV2, P3 and P3N-PIPO exhibited the highest variability in their amino acid sequences, while P1 was the most conserved, with an amino acid sequence identity of 87-95.3%. The phylogenetic analysis showed that 21 SPV2 isolates were clustered into four groups, and SPV2-LN was clustered together with isolate yu-17-47 (MK778808) in group IV. Recombination analysis indicated no major recombination sites in SPV2-LN. Selective pressure analysis showed dN/dS of the 12 proteins of SPV2 were less than 1, indicating that all were undergoing negative selection, except for P1N-PISPO. CONCLUSION This study identified a sweet potato virus, SPV2-LN, in Ipomoea nil. Sequence identities and genome analysis showed high similarity between our isolate and a Chinese isolate, yu-17-47, isolated from sweet potato. These results will provide a theoretical basis for understanding the genetic evolution and viral spread of SPV2.
Collapse
Affiliation(s)
- Kun-Jiang Wei
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Ai-Ming Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Shuo Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Yang-Jian Huang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Song-Yu Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Xiao-Ling Su
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Carlos Kwesi Tettey
- Department of Molecular Biology and Biotechnology, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Xiao-Qiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China.
| | - De-Jie Cheng
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China.
| |
Collapse
|
3
|
Kaliapan K, Mazlin SNA, Chua KO, Rejab NA, Mohd-Yusuf Y. Secreted in Xylem (SIX) genes in Fusarium oxysporum f.sp. cubense (Foc) unravels the potential biomarkers for early detection of Fusarium wilt disease. Arch Microbiol 2024; 206:271. [PMID: 38767679 DOI: 10.1007/s00203-024-03996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Secreted in Xylem (SIX) are small effector proteins released by Fusarium oxysporum f.sp. cubense (Foc) into the plant's xylem sap disrupting the host's defence responses causing Fusarium wilt disease resulting in a significant decline in banana crop yields and economic losses. Notably, different races of Foc possess unique sets of SIX genes responsible for their virulence, however, these genes remain underutilized, despite their potential as biomarkers for early disease detection. Herein, we identified seven SIX genes i.e. SIX1, SIX2, SIX4, SIX6, SIX8a, SIX9a and SIX13 present in Foc Tropical Race 4 (FocTR4), while only SIX9b in Foc Race 1 (Foc1). Analysis of SIX gene expression in infected banana roots revealed differential patterns during infection providing valuable insights into host-pathogen interactions, virulence level, and early detection time points. Additionally, a comprehensive analysis of virulent Foc1_C2HIR and FocTR4_C1HIR isolates yielded informative genomic insights. Hence, these discoveries contribute to our comprehension of potential disease control targets in these plants, as well as enhancing plant diagnostics and breeding programs.
Collapse
Affiliation(s)
- Kausalyaa Kaliapan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Nur Akmar Mazlin
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kah Ooi Chua
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yusmin Mohd-Yusuf
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Glami Lemi Biotechnology Research Centre Universiti Malaya, 71650, Jelebu, Negeri Sembilan, Malaysia.
| |
Collapse
|
4
|
de Oliveira AM, Souza GM, Toma GA, Dos Santos N, Dos Santos RZ, Goes CAG, Deon GA, Setti PG, Porto-Foresti F, Utsunomia R, Gunski RJ, Del Valle Garnero A, Herculano Correa de Oliveira E, Kretschmer R, Cioffi MDB. Satellite DNAs, heterochromatin, and sex chromosomes of the wattled jacana (Charadriiformes; Jacanidae): a species with highly rearranged karyotype. Genome 2024; 67:109-118. [PMID: 38316150 DOI: 10.1139/gen-2023-0082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.
Collapse
Affiliation(s)
- Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | | | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
5
|
Kojima KK. Daidara: A gigantic Gypsy LTR retrotransposon lineage in the springtail Allacma fusca genome. Genes Cells 2023; 28:746-752. [PMID: 37650155 DOI: 10.1111/gtc.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Long terminal repeat (LTR) retrotransposons are the major contributor to genome size expansion, as in the cases of the maize genome or the axolotl genome. Despite their impact on the genome size, the length of each retrotransposon is limited, compared to DNA transposons, which sometimes exceed over 100 kb. The longest LTR retrotransposon known to date is Burro-1 from the planarian Schmidtea medierranea, which is around 35.7 kb long. Here through bioinformatics analysis, a new lineage of gigantic LTR retrotransposons, designated Daidara, is reported from the springtail Allacma fusca genome. Their entire length (25-33 kb) rivals Burro families, while their LTRs are shorter than 1.5 kb, in contrast to other gigantic LTR retrotransposon lineages Burro and Ogre, whose LTRs are around 5 kb long. Daidara encodes three core proteins corresponding to gag, pol, and an additional protein of unknown function. The phylogenetic analysis supports the independent gigantification of Daidara from Burro or Ogre.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, Cupertino, California, USA
| |
Collapse
|
6
|
Kushwaha B, Nagpure NS, Srivastava S, Pandey M, Kumar R, Raizada S, Agarwal S, Singh M, Basheer VS, Kumar RG, Das P, Das SP, Patnaik S, Bit A, Srivastava SK, Vishwakarma AL, Joshi CG, Kumar D, Jena JK. Genome size estimation and its associations with body length, chromosome number and evolution in teleost fishes. Gene 2023; 864:147294. [PMID: 36858189 DOI: 10.1016/j.gene.2023.147294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Precise estimation of genome size (GS) is vital for various genomic studies, such as deciding genome sequencing depth, genome assembly, biodiversity documentation, evolution, genetic disorders studies, duplication events etc. Animal Genome Size Database provides GS of over 2050 fish species, which ranges from 0.35 pg in pufferfish (Tetraodon nigroviridis) to 132.83 pg in marbled lungfish (Protopterus aethiopicus). The GS of majority of the fishes inhabiting waters of Indian subcontinent are still missing. In present study, we estimated GS of 51 freshwater teleost (31 commercially important, 7 vulnerable and 13 ornamental species) that ranged from 0.58 pg in banded gourami (Trichogaster fasciata) to 1.92 pg in scribbled goby (Awaous grammepomus). Substantial variation in GS was observed within the same fish orders (0.64-1.45 pg in cypriniformes, 0.70-1.41 pg in siluriformes and 0.58-1.92 pg in perciformes). We examined the relationship between the GS, chromosome number and body length across all the fishes. Body length was found to be associated with GS, whereas no relationship was noticed between the GS and the chromosome number. The analysis using ancestral information revealed haploid chromosome number 25, 27 and 24 for the most recent common ancestor of cypriniformes, siluriformes and perciformes, respectively. The study led to generation of new records on GS of 43 fish species and revalidated records for 8 species. The finding is valuable resource for further research in the areas of fish genomics, molecular ecology and evolutionary conservation genetics.
Collapse
Affiliation(s)
- Basdeo Kushwaha
- ICAR- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002 Uttar Pradesh, India.
| | - Naresh S Nagpure
- ICAR- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002 Uttar Pradesh, India
| | - Shreya Srivastava
- ICAR- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002 Uttar Pradesh, India
| | - Manmohan Pandey
- ICAR- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002 Uttar Pradesh, India
| | - Ravindra Kumar
- ICAR- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002 Uttar Pradesh, India.
| | - Sudhir Raizada
- ICAR- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002 Uttar Pradesh, India
| | - Suyash Agarwal
- ICAR- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002 Uttar Pradesh, India
| | - Mahender Singh
- ICAR- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002 Uttar Pradesh, India
| | - Valaparamail S Basheer
- PMFGR Division, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, Ernakulam North, P.O. Kochi, 682 018 Kerala, India
| | - Rahul G Kumar
- PMFGR Division, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, Ernakulam North, P.O. Kochi, 682 018 Kerala, India
| | - Paramananda Das
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyanga, Bhubaneswar, 751 002 Odisha, India
| | - Sofia P Das
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyanga, Bhubaneswar, 751 002 Odisha, India
| | - Siddhi Patnaik
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyanga, Bhubaneswar, 751 002 Odisha, India
| | - Amrita Bit
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyanga, Bhubaneswar, 751 002 Odisha, India
| | - Satish Kumar Srivastava
- Experimental Field Centre, ICAR-Directorate of Coldwater Fisheries Research, Champawat, 262 523 Uttarakhand, India
| | - Achchhe L Vishwakarma
- Flow Cytometry Lab, SAIF Division, CSIR-Central Drug Research Institute, Lucknow, 226 031 Uttar Pradesh, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat 388 001, India
| | - Dinesh Kumar
- Centre for Agricultural Bio-informatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110 012, India
| | - Joy K Jena
- ICAR- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002 Uttar Pradesh, India
| |
Collapse
|
7
|
Tolman ER, Beatty CD, Bush J, Kohli M, Moreno CM, Ware JL, Weber KS, Khan R, Maheshwari C, Weisz D, Dudchenko O, Aiden EL, Frandsen PB. A Chromosome-length Assembly of the Black Petaltail (Tanypteryx hageni) Dragonfly. Genome Biol Evol 2023; 15:evad024. [PMID: 36807678 PMCID: PMC9985156 DOI: 10.1093/gbe/evad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/20/2023] Open
Abstract
We present a chromosome-length genome assembly and annotation of the Black Petaltail dragonfly (Tanypteryx hageni). This habitat specialist diverged from its sister species over 70 million years ago, and separated from the most closely related Odonata with a reference genome 150 million years ago. Using PacBio HiFi reads and Hi-C data for scaffolding we produce one of the most high-quality Odonata genomes to date. A scaffold N50 of 206.6 Mb and a single copy BUSCO score of 96.2% indicate high contiguity and completeness.
Collapse
Affiliation(s)
- Ethan R Tolman
- American Museum of Natural History, Department of Invertebrate Zoology, New York, New York
- The City University of New York Graduate Center, New York, New York
| | | | - Jonas Bush
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah
| | - Manpreet Kohli
- American Museum of Natural History, Department of Invertebrate Zoology, New York, New York
- Department of Natural Sciences, Baruch College, New York, New York
| | - Carlos M Moreno
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - Jessica L Ware
- American Museum of Natural History, Department of Invertebrate Zoology, New York, New York
| | | | - Ruqayya Khan
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Chirag Maheshwari
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- The University of Western Australia, UWA School of Agriculture and Environment, Crawley, Washington, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, Texas
- The University of Western Australia, UWA School of Agriculture and Environment, Crawley, Washington, Australia
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong, China
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC
| |
Collapse
|
8
|
Niu J, Li Z, Zhu J, Wu R, Kong L, Niu T, Li X, Cheng X, Li J, Dai L. Genome-wide identification and characterization of the C2 domain family in Sorghum bicolor (L.) and expression profiles in response to saline-alkali stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1695-1711. [PMID: 36387979 PMCID: PMC9636366 DOI: 10.1007/s12298-022-01222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The C2 domain family proteins in plants has been recently shown to be involved in the response to abiotic stress such as salt and drought stress. However, less information on C2 domain family members has been reported in Sorghum bicolor (L.), which is a tolerant cereal crop. To elaborate the mechanism of C2 domain family members in response to abiotic stress, bioinformatic methods were used to analyze this family. The results indicated that 69 C2 domain genes belonging to 5 different groups were first identified within the sorghum genome, and each group possessed various gene structures and conserved functional domains. Second, those C2 family genes were localized on 10 chromosomes 3 tandem repeat genes and 1 pair of repeat gene fragments were detected. The family members further presented a variety of stress responsive cis-elements. Third, in addition to being the major integral component of the membrane, sorghum C2 domain family proteins mainly played roles in response to abiotic and biotic stress with their organic transport and catalytic activity by specific location in the cell on the basis of gene ontology analysis. C2 family genes were differentially expressed in root, shoot or leaf, and shown different expression profiling after saline-alkali stress, which indicated that C2 family members played an important role in response to saline-alkali stress based on the transcription profiles of RNA-seq data and expression analysis by quantitative real-time polymerase chain reaction. Besides, most C2 family members were mainly located in cytoplasmi and nucleus. Weighted gene co-expression network analysis revealed three modules (turquoise, dark magenta and pink) that were associated with stress resistance, respectively. Therefore, the present research provides comprehensive information for further analysis of the molecular function of C2 domain family genes in sorghum. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01222-3.
Collapse
Affiliation(s)
- Jiangshuai Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang Province China
| | - Jiarui Zhu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Rong Wu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Lingxin Kong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Tingli Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xueying Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xinran Cheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Jianying Li
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163319 Heilongjiang Province China
| | - Lingyan Dai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| |
Collapse
|
9
|
Marino A, Kizenko A, Wong WY, Ghiselli F, Simakov O. Repeat Age Decomposition Informs an Ancient Set of Repeats Associated With Coleoid Cephalopod Divergence. Front Genet 2022; 13:793734. [PMID: 35368688 PMCID: PMC8967140 DOI: 10.3389/fgene.2022.793734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
In comparison with other molluscs and bilaterians, the genomes of coleoid cephalopods (squid, cuttlefish, and octopus) sequenced so far show remarkably different genomic organization that presumably marked the early evolution of this taxon. The main driver behind this genomic rearrangement remains unclear. About half of the genome content in coleoids is known to consist of repeat elements; since selfish DNA is one of the powerful drivers of genome evolution, its pervasiveness could be intertwined with the emergence of cephalopod-specific genomic signatures and could have played an important role in the reorganization of the cephalopod genome architecture. However, due to abundant species-specific repeat expansions, it has not been possible so far to identify the ancient shared set of repeats associated with coleoid divergence. By means of an extensive repeat element re-evaluation and annotation combined with network sequence divergence approaches, we are able to identify and characterize the ancient repeat complement shared by at least four coleoid cephalopod species. Surprisingly, instead of the most abundant elements present in extant genomes, lower-copy-number DNA and retroelements were most associated with ancient coleoid radiation. Furthermore, evolutionary analysis of some of the most abundant families shared in Octopus bimaculoides and Euprymna scolopes disclosed within-family patterns of large species-specific expansions while also identifying a smaller shared expansion in the coleoid ancestor. Our study thus reveals the apomorphic nature of retroelement expansion in octopus and a conserved complement composed of several DNA element types and fewer LINE families.
Collapse
Affiliation(s)
- Alba Marino
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- Institute of Evolutionary Science of Montpellier, University of Montpellier, Montpellier, France
| | - Alena Kizenko
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Wai Yee Wong
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Hansen CCR, Westfall KM, Pálsson S. Evaluation of four methods to identify the homozygotic sex chromosome in small populations. BMC Genomics 2022; 23:160. [PMID: 35209843 PMCID: PMC8867824 DOI: 10.1186/s12864-022-08393-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genomes are commonly assembled into a collection of scaffolds and often lack annotations of autosomes, sex chromosomes, and organelle genomes (i.e., mitochondrial and chloroplast). As these chromosome types differ in effective population size and can have highly disparate evolutionary histories, it is imperative to take this information into account when analysing genomic variation. Here we assessed the accuracy of four methods for identifying the homogametic sex chromosome in a small population using two whole genome sequences (WGS) and 133 RAD sequences of white-tailed eagles (Haliaeetus albicilla): i) difference in read depth per scaffold in a male and a female, ii) heterozygosity per scaffold in a male and a female, iii) mapping to the reference genome of a related species (chicken) with annotated sex chromosomes, and iv) analysis of SNP-loadings from a principal components analysis (PCA), based on the low-depth RADseq data. RESULTS The best performing approach was the reference mapping (method iii), which identified 98.12% of the expected homogametic sex chromosome (Z). Read depth per scaffold (method i) identified 86.41% of the homogametic sex chromosome with few false positives. SNP-loading scores (method iv) identified 78.6% of the Z-chromosome and had a false positive discovery rate of more than 10%. Heterozygosity per scaffold (method ii) did not provide clear results due to a lack of diversity in both the Z and autosomal chromosomes, and potential interference from the heterogametic sex chromosome (W). The evaluation of these methods also revealed 10 Mb of putative PAR and gametologous regions. CONCLUSION Identification of the homogametic sex chromosome in a small population is best accomplished by reference mapping or examining differences in read depth between sexes.
Collapse
Affiliation(s)
| | - Kristen M Westfall
- Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland.,Current: Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| | - Snæbjörn Pálsson
- Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
11
|
Dal Grande F, Jamilloux V, Choisne N, Calchera A, Rolshausen G, Petersen M, Schulz M, Nilsson MA, Schmitt I. Transposable Elements in the Genome of the Lichen-Forming Fungus Umbilicaria pustulata and Their Distribution in Different Climate Zones along Elevation. BIOLOGY 2021; 11:biology11010024. [PMID: 35053022 PMCID: PMC8773270 DOI: 10.3390/biology11010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are an important source of genome plasticity across the tree of life. Drift and natural selection are important forces shaping TE distribution and accumulation. Fungi, with their multifaceted phenotypic diversity and relatively small genome size, are ideal models to study the role of TEs in genome evolution and their impact on the host's ecological and life history traits. Here we present an account of all TEs found in a high-quality reference genome of the lichen-forming fungus Umbilicaria pustulata, a macrolichen species comprising two climatic ecotypes: Mediterranean and cold temperate. We trace the occurrence of the newly identified TEs in populations along three elevation gradients using a Pool-Seq approach to identify TE insertions of potential adaptive significance. We found that TEs cover 21.26% of the 32.9 Mbp genome, with LTR Gypsy and Copia clades being the most common TEs. We identified 28 insertions displaying consistent insertion frequency differences between the two host ecotypes across the elevation gradients. Most of the highly differentiated insertions were located near genes, indicating a putative function. This pioneering study of the content and climate niche-specific distribution of TEs in a lichen-forming fungus contributes to understanding the roles of TEs in fungal evolution.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-(0)69-7542-1856
| | - Véronique Jamilloux
- INRAE URGI, Centre de Versailles, Bâtiment 18, Route de Saint Cyr, 78026 Versailles, France; (V.J.); (N.C.)
| | - Nathalie Choisne
- INRAE URGI, Centre de Versailles, Bâtiment 18, Route de Saint Cyr, 78026 Versailles, France; (V.J.); (N.C.)
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
| | - Gregor Rolshausen
- Senckenberg Center for Wildlife Genetics, Clamecystrasse 12, 63571 Gelnhausen, Germany;
| | - Malte Petersen
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany;
| | - Meike Schulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
| | - Maria A. Nilsson
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (A.C.); (M.S.); (M.A.N.); (I.S.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Strasse. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Zhan S, Fang G, Cai M, Kou Z, Xu J, Cao Y, Bai L, Zhang Y, Jiang Y, Luo X, Xu J, Xu X, Zheng L, Yu Z, Yang H, Zhang Z, Wang S, Tomberlin JK, Zhang J, Huang Y. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Res 2020; 30:50-60. [PMID: 31767972 PMCID: PMC6951338 DOI: 10.1038/s41422-019-0252-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 11/09/2022] Open
Abstract
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is renowned for its bioconversion of organic waste into a sustainable source of animal feed. We report a high-quality genome of 1.1 Gb and a consensus set of 16,770 gene models for this beneficial species. Compared to those of other dipteran species, the BSF genome has undergone a substantial expansion in functional modules related to septic adaptation, including immune system factors, olfactory receptors, and cytochrome P450s. We further profiled midgut transcriptomes and associated microbiomes of BSF larvae fed with representative types of organic waste. We find that the pathways related to digestive system and fighting infection are commonly enriched and that Firmicutes bacteria dominate the microbial community in BSF across all diets. To extend its potential practical applications, we further developed an efficient CRISPR/Cas9-based gene editing approach and implemented this to yield flightless and enhanced feeding capacity phenotypes, both of which could expand BSF production capabilities. Our study provides valuable genomic and technical resources for optimizing BSF lines for industrialization.
Collapse
Affiliation(s)
- Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zongqing Kou
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Liang Bai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yixiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmao Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingyu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Zhijian Zhang
- School of Economics, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77845, USA.
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Paço A, Freitas R, Vieira-da-Silva A. Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene. Genes (Basel) 2019; 10:E1014. [PMID: 31817529 PMCID: PMC6947457 DOI: 10.3390/genes10121014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic genomes are rich in repetitive DNA sequences grouped in two classes regarding their genomic organization: tandem repeats and dispersed repeats. In tandem repeats, copies of a short DNA sequence are positioned one after another within the genome, while in dispersed repeats, these copies are randomly distributed. In this review we provide evidence that both tandem and dispersed repeats can have a similar organization, which leads us to suggest an update to their classification based on the sequence features, concretely regarding the presence or absence of retrotransposons/transposon specific domains. In addition, we analyze several studies that show that a repetitive element can be remodeled into repetitive non-coding or coding sequences, suggesting (1) an evolutionary relationship among DNA sequences, and (2) that the evolution of the genomes involved frequent repetitive sequence reshuffling, a process that we have designated as a "DNA remodeling mechanism". The alternative classification of the repetitive DNA sequences here proposed will provide a novel theoretical framework that recognizes the importance of DNA remodeling for the evolution and plasticity of eukaryotic genomes.
Collapse
Affiliation(s)
- Ana Paço
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| | - Renata Freitas
- IBMC-Institute for Molecular and Cell Biology, University of Porto, R. Campo Alegre 823, 4150–180 Porto, Portugal;
- I3S-Institute for Innovation and Health Research, University of Porto, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Vieira-da-Silva
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| |
Collapse
|
14
|
Hjelmen CE, Blackmon H, Holmes VR, Burrus CG, Johnston JS. Genome Size Evolution Differs Between Drosophila Subgenera with Striking Differences in Male and Female Genome Size in Sophophora. G3 (BETHESDA, MD.) 2019; 9:3167-3179. [PMID: 31358560 PMCID: PMC6778784 DOI: 10.1534/g3.119.400560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
Genome size varies across the tree of life, with no clear correlation to organismal complexity or coding sequence, but with differences in non-coding regions. Phylogenetic methods have recently been incorporated to further disentangle this enigma, yet most of these studies have focused on widely diverged species. Few have compared patterns of genome size change in closely related species with known structural differences in the genome. As a consequence, the relationship between genome size and differences in chromosome number or inter-sexual differences attributed to XY systems are largely unstudied. We hypothesize that structural differences associated with chromosome number and X-Y chromosome differentiation, should result in differing rates and patterns of genome size change. In this study, we utilize the subgenera within the Drosophila to ask if patterns and rates of genome size change differ between closely related species with differences in chromosome numbers and states of the XY system. Genome sizes for males and females of 152 species are used to answer these questions (with 92 newly added or updated estimates). While we find no relationship between chromosome number and genome size or chromosome number and inter-sexual differences in genome size, we find evidence for differing patterns of genome size change between the subgenera, and increasing rates of change throughout time. Estimated shifts in rates of change in sex differences in genome size occur more often in Sophophora and correspond to known neo-sex events.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Biology and
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Heath Blackmon
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | | - Crystal G Burrus
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | |
Collapse
|
15
|
Lerat E, Goubert C, Guirao‐Rico S, Merenciano M, Dufour A, Vieira C, González J. Population-specific dynamics and selection patterns of transposable element insertions in European natural populations. Mol Ecol 2019; 28:1506-1522. [PMID: 30506554 PMCID: PMC6849870 DOI: 10.1111/mec.14963] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
Transposable elements (TEs) are ubiquitous sequences in genomes of virtually all species. While TEs have been investigated for several decades, only recently we have the opportunity to study their genome-wide population dynamics. Most of the studies so far have been restricted either to the analysis of the insertions annotated in the reference genome or to the analysis of a limited number of populations. Taking advantage of the European Drosophila population genomics consortium (DrosEU) sequencing data set, we have identified and measured the dynamics of TEs in a large sample of European Drosophila melanogaster natural populations. We showed that the mobilome landscape is population-specific and highly diverse depending on the TE family. In contrast with previous studies based on SNP variants, no geographical structure was observed for TE abundance or TE divergence in European populations. We further identified de novo individual insertions using two available programs and, as expected, most of the insertions were present at low frequencies. Nevertheless, we identified a subset of TEs present at high frequencies and located in genomic regions with a high recombination rate. These TEs are candidates for being the target of positive selection, although neutral processes should be discarded before reaching any conclusion on the type of selection acting on them. Finally, parallel patterns of association between the frequency of TE insertions and several geographical and temporal variables were found between European and North American populations, suggesting that TEs can be potentially implicated in the adaptation of populations across continents.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie EvolutiveUMR 5558Université de Lyon, Université Lyon 1, CNRSVilleurbanneFrance
| | - Clément Goubert
- Molecular Biology and GeneticsCornell UniversityIthacaNew York
| | - Sara Guirao‐Rico
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Anne‐Béatrice Dufour
- Laboratoire de Biométrie et Biologie EvolutiveUMR 5558Université de Lyon, Université Lyon 1, CNRSVilleurbanneFrance
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie EvolutiveUMR 5558Université de Lyon, Université Lyon 1, CNRSVilleurbanneFrance
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| |
Collapse
|
16
|
Bargues N, Lerat E. Evolutionary history of LTR-retrotransposons among 20 Drosophila species. Mob DNA 2017; 8:7. [PMID: 28465726 PMCID: PMC5408442 DOI: 10.1186/s13100-017-0090-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022] Open
Abstract
Background The presence of transposable elements (TEs) in genomes is known to explain in part the variations of genome sizes among eukaryotes. Even among closely related species, the variation of TE amount may be striking, as for example between the two sibling species, Drosophila melanogaster and D. simulans. However, not much is known concerning the TE content and dynamics among other Drosophila species. The sequencing of several Drosophila genomes, covering the two subgenus Sophophora and Drosophila, revealed a large variation of the repeat content among these species but no much information is known concerning their precise TE content. The identification of some consensus sequences of TEs from the various sequenced Drosophila species allowed to get an idea concerning their variety in term of diversity of superfamilies but the used classification remains very elusive and ambiguous. Results We choose to focus on LTR-retrotransposons because they represent the most widely represented class of TEs in the Drosophila genomes. In this work, we describe for the first time the phylogenetic relationship of each LTR-retrotransposon family described in 20 Drosophila species, compute their proportion in their respective genomes and identify several new cases of horizontal transfers. Conclusion All these results allow us to have a clearer view on the evolutionary history of LTR retrotransposons among Drosophila that seems to be mainly driven by vertical transmissions although the implications of horizontal transfers, losses and intra-specific diversification are clearly also at play. Electronic supplementary material The online version of this article (doi:10.1186/s13100-017-0090-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas Bargues
- CNRS, UMR 5558, Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Emmanuelle Lerat
- CNRS, UMR 5558, Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| |
Collapse
|
17
|
He K, Lin K, Wang G, Li F. Genome Sizes of Nine Insect Species Determined by Flow Cytometry and k-mer Analysis. Front Physiol 2016; 7:569. [PMID: 27932995 PMCID: PMC5121235 DOI: 10.3389/fphys.2016.00569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/08/2016] [Indexed: 11/13/2022] Open
Abstract
The flow cytometry method was used to estimate the genome sizes of nine agriculturally important insects, including two coleopterans, five Hemipterans, and two hymenopterans. Among which, the coleopteran Lissorhoptrus oryzophilus (Kuschel) had the largest genome of 981 Mb. The average genome size was 504 Mb, suggesting that insects have a moderate-size genome. Compared with the insects in other orders, hymenopterans had small genomes, which were averagely about ~200 Mb. We found that the genome sizes of four insect species were different between male and female, showing the organismal complexity of insects. The largest difference occurred in the coconut leaf beetle Brontispa longissima (Gestro). The male coconut leaf beetle had a 111 Mb larger genome than females, which might be due to the chromosome number difference between the sexes. The results indicated that insect invasiveness was not related to genome size. We also determined the genome sizes of the small brown planthopper Laodelphax striatellus (Fallén) and the parasitic wasp Macrocentrus cingulum (Brischke) using k-mer analysis with Illunima Solexa sequencing data. There were slight differences in the results from the two methods. k-mer analysis indicated that the genome size of L. striatellus was 500–700 Mb and that of M. cingulum was ~150 Mb. In all, the genome sizes information presented here should be helpful for designing the genome sequencing strategy when necessary.
Collapse
Affiliation(s)
- Kang He
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Kejian Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Fei Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural UniversityNanjing, China; Ministry of Agriculture, Key Lab of Agricultural Entomology and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
18
|
Fantini L, Jeffery NW, Pierossi P, Gregory TR, Nieves M. Qualitative and quantitative analysis of the genomes and chromosomes of spider monkeys (Primates: Atelidae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucía Fantini
- Grupo de Investigación en Biología Evolutiva; Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Ciudad Universitaria; Buenos Aires Argentina
| | - Nicholas W. Jeffery
- Department of Integrative Biology; University of Guelph; Guelph ON N1G 2W1 Canada
| | - Paola Pierossi
- Department of Integrative Biology; University of Guelph; Guelph ON N1G 2W1 Canada
| | - T. Ryan Gregory
- Department of Integrative Biology; University of Guelph; Guelph ON N1G 2W1 Canada
| | - Mariela Nieves
- Grupo de Investigación en Biología Evolutiva; Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Ciudad Universitaria; Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET; Buenos Aires Argentina
| |
Collapse
|
19
|
Rius N, Guillén Y, Delprat A, Kapusta A, Feschotte C, Ruiz A. Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes. BMC Genomics 2016; 17:344. [PMID: 27164953 PMCID: PMC4862133 DOI: 10.1186/s12864-016-2648-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background Many new Drosophila genomes have been sequenced in recent years using new-generation sequencing platforms and assembly methods. Transposable elements (TEs), being repetitive sequences, are often misassembled, especially in the genomes sequenced with short reads. Consequently, the mobile fraction of many of the new genomes has not been analyzed in detail or compared with that of other genomes sequenced with different methods, which could shed light into the understanding of genome and TE evolution. Here we compare the TE content of three genomes: D. buzzatii st-1, j-19, and D. mojavensis. Results We have sequenced a new D. buzzatii genome (j-19) that complements the D. buzzatii reference genome (st-1) already published, and compared their TE contents with that of D. mojavensis. We found an underestimation of TE sequences in Drosophila genus NGS-genomes when compared to Sanger-genomes. To be able to compare genomes sequenced with different technologies, we developed a coverage-based method and applied it to the D. buzzatii st-1 and j-19 genome. Between 10.85 and 11.16 % of the D. buzzatii st-1 genome is made up of TEs, between 7 and 7,5 % of D. buzzatii j-19 genome, while TEs represent 15.35 % of the D. mojavensis genome. Helitrons are the most abundant order in the three genomes. Conclusions TEs in D. buzzatii are less abundant than in D. mojavensis, as expected according to the genome size and TE content positive correlation. However, TEs alone do not explain the genome size difference. TEs accumulate in the dot chromosomes and proximal regions of D. buzzatii and D. mojavensis chromosomes. We also report a significantly higher TE density in D. buzzatii and D. mojavensis X chromosomes, which is not expected under the current models. Our easy-to-use correction method allowed us to identify recently active families in D. buzzatii st-1 belonging to the LTR-retrotransposon superfamily Gypsy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2648-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nuria Rius
- Department de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.
| | - Yolanda Guillén
- Department de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Alejandra Delprat
- Department de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alfredo Ruiz
- Department de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
20
|
Romero-Soriano V, Burlet N, Vela D, Fontdevila A, Vieira C, García Guerreiro MP. Drosophila Females Undergo Genome Expansion after Interspecific Hybridization. Genome Biol Evol 2016; 8:556-61. [PMID: 26872773 PMCID: PMC4824032 DOI: 10.1093/gbe/evw024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genome size (or C-value) can present a wide range of values among eukaryotes. This variation has been attributed to differences in the amplification and deletion of different noncoding repetitive sequences, particularly transposable elements (TEs). TEs can be activated under different stress conditions such as interspecific hybridization events, as described for several species of animals and plants. These massive transposition episodes can lead to considerable genome expansions that could ultimately be involved in hybrid speciation processes. Here, we describe the effects of hybridization and introgression on genome size of Drosophila hybrids. We measured the genome size of two close Drosophila species, Drosophila buzzatii and Drosophila koepferae, their F1 offspring and the offspring from three generations of backcrossed hybrids; where mobilization of up to 28 different TEs was previously detected. We show that hybrid females indeed present a genome expansion, especially in the first backcross, which could likely be explained by transposition events. Hybrid males, which exhibit more variable C-values among individuals of the same generation, do not present an increased genome size. Thus, we demonstrate that the impact of hybridization on genome size can be detected through flow cytometry and is sex-dependent.
Collapse
Affiliation(s)
- Valèria Romero-Soriano
- Departament De Genètica I Microbiologia (Edifici C), Grup De Genòmica, Bioinformàtica I Biologia Evolutiva. Universitat Autònoma De Barcelona, Spain
| | - Nelly Burlet
- Laboratoire De Biométrie Et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Doris Vela
- Laboratorio De Genética Evolutiva, Pontificia Universidad Católica Del Ecuador, Quito, Ecuador
| | - Antonio Fontdevila
- Departament De Genètica I Microbiologia (Edifici C), Grup De Genòmica, Bioinformàtica I Biologia Evolutiva. Universitat Autònoma De Barcelona, Spain
| | - Cristina Vieira
- Laboratoire De Biométrie Et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - María Pilar García Guerreiro
- Departament De Genètica I Microbiologia (Edifici C), Grup De Genòmica, Bioinformàtica I Biologia Evolutiva. Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
21
|
Craddock EM, Gall JG, Jonas M. Hawaiian Drosophila genomes: size variation and evolutionary expansions. Genetica 2016; 144:107-24. [PMID: 26790663 DOI: 10.1007/s10709-016-9882-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/09/2016] [Indexed: 01/24/2023]
Abstract
This paper reports genome sizes of one Hawaiian Scaptomyza and 16 endemic Hawaiian Drosophila species that include five members of the antopocerus species group, one member of the modified mouthpart group, and ten members of the picture wing clade. Genome size expansions have occurred independently multiple times among Hawaiian Drosophila lineages, and have resulted in an over 2.3-fold range of genome sizes among species, with the largest observed in Drosophila cyrtoloma (1C = 0.41 pg). We find evidence that these repeated genome size expansions were likely driven by the addition of significant amounts of heterochromatin and satellite DNA. For example, our data reveal that the addition of seven heterochromatic chromosome arms to the ancestral haploid karyotype, and a remarkable proportion of ~70 % satellite DNA, account for the greatly expanded size of the D. cyrtoloma genome. Moreover, the genomes of 13/17 Hawaiian picture wing species are composed of substantial proportions (22-70 %) of detectable satellites (all but one of which are AT-rich). Our results suggest that in this tightly knit group of recently evolved species, genomes have expanded, in large part, via evolutionary amplifications of satellite DNA sequences in centric and pericentric domains (especially of the X and dot chromosomes), which have resulted in longer acrocentric chromosomes or metacentrics with an added heterochromatic chromosome arm. We discuss possible evolutionary mechanisms that may have shaped these patterns, including rapid fixation of novel expanded genomes during founder-effect speciation.
Collapse
Affiliation(s)
- Elysse M Craddock
- Natural Sciences Building, Purchase College, State University of New York, 735 Anderson Hill Road, Purchase, NY, 10577, USA.
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Mark Jonas
- Natural Sciences Building, Purchase College, State University of New York, 735 Anderson Hill Road, Purchase, NY, 10577, USA
| |
Collapse
|
22
|
Comparisons between Arabidopsis thaliana and Drosophila melanogaster in relation to Coding and Noncoding Sequence Length and Gene Expression. Int J Genomics 2015; 2015:269127. [PMID: 26114098 PMCID: PMC4465843 DOI: 10.1155/2015/269127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022] Open
Abstract
There is a continuing interest in the analysis of gene architecture and gene expression to determine the relationship that may exist. Advances in high-quality sequencing technologies and large-scale resource datasets have increased the understanding of relationships and cross-referencing of expression data to the large genome data. Although a negative correlation between expression level and gene (especially transcript) length has been generally accepted, there have been some conflicting results arising from the literature concerning the impacts of different regions of genes, and the underlying reason is not well understood. The research aims to apply quantile regression techniques for statistical analysis of coding and noncoding sequence length and gene expression data in the plant, Arabidopsis thaliana, and fruit fly, Drosophila melanogaster, to determine if a relationship exists and if there is any variation or similarities between these species. The quantile regression analysis found that the coding sequence length and gene expression correlations varied, and similarities emerged for the noncoding sequence length (5′ and 3′ UTRs) between animal and plant species. In conclusion, the information described in this study provides the basis for further exploration into gene regulation with regard to coding and noncoding sequence length.
Collapse
|
23
|
Vieira C, Fablet M, Lerat E, Boulesteix M, Rebollo R, Burlet N, Akkouche A, Hubert B, Mortada H, Biémont C. A comparative analysis of the amounts and dynamics of transposable elements in natural populations of Drosophila melanogaster and Drosophila simulans. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2012; 113:83-86. [PMID: 22659421 DOI: 10.1016/j.jenvrad.2012.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/23/2012] [Accepted: 04/04/2012] [Indexed: 06/01/2023]
Abstract
Genes are important in defining genetic variability, but they do not constitute the largest component of genomes, which in most organisms contain large amounts of various repeated sequences including transposable elements (TEs), which have been shown to account for most of the genome size. TEs contribute to genetic diversity by their mutational potential as a result of their ability to insert into genes or gene regulator regions, to promote chromosomal rearrangements, and to interfere with gene networks. Also, TEs may be activated by environmental stresses (such as temperature or radiation) that interfere with epigenetic regulation systems, and makes them powerful mutation agents in nature. To understand the relationship between genotype and phenotype, we need to analyze the portions of the genome corresponding to TEs in great detail, and to decipher their relationships with the genes. For this purpose, we carried out comparative analyses of various natural populations of the closely-related species Drosophila melanogaster and Drosophila simulans, which differ with regard to their TE amounts as well as their ecology and population size.
Collapse
Affiliation(s)
- Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cardoso DC, Carvalho CR, Cristiano MP, Soares FAF, Tavares MG. Estimation of nuclear genome size of the genus Mycetophylax Emery, 1913: evidence of no whole-genome duplication in Neoattini. C R Biol 2012. [PMID: 23199629 DOI: 10.1016/j.crvi.2012.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genome size estimates and their evolution can be useful for studying the phylogenetic relationships and taxonomy of a particular group. In the present study, the genome sizes of the three species that comprise the Mycetophylax genus were estimated by flow cytometry (FCM). There was little variation in genome size among them. The mean haploid genome size value of male and female individuals of Mycetophylax morschi was 312.96 Mbp (0.32 pg) and that of Mycetophylax conformis and Mycetophylax simplex females were 312.96 Mbp (0.32 pg) and 381.42 Mbp (0.39 pg), respectively. At first glance, this variation could be related with the heterochromatin content. Our results, together with other previous reports, have contributed to our knowledge about Attini genome size and will be useful to improve the understanding of the evolution of this tribe. It will help select potential model species in Attini for future genomic and sequencing projects.
Collapse
Affiliation(s)
- Danon Clemes Cardoso
- Programa de Pós-graduação em Genética e Melhoramento, Departamento de Biologia Geral, Universidade Federal de Viçosa, Avenue Peter Henry Rolfs, s.n., Minas Gerais, Brazil.
| | | | | | | | | |
Collapse
|
25
|
Rebollo R, Horard B, Begeot F, Delattre M, Gilson E, Vieira C. A snapshot of histone modifications within transposable elements in Drosophila wild type strains. PLoS One 2012; 7:e44253. [PMID: 22962605 PMCID: PMC3433462 DOI: 10.1371/journal.pone.0044253] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/31/2012] [Indexed: 12/19/2022] Open
Abstract
Transposable elements (TEs) are a major source of genetic variability in genomes, creating genetic novelty and driving genome evolution. Analysis of sequenced genomes has revealed considerable diversity in TE families, copy number, and localization between different, closely related species. For instance, although the twin species Drosophila melanogaster and D. simulans share the same TE families, they display different amounts of TEs. Furthermore, previous analyses of wild type derived strains of D. simulans have revealed high polymorphism regarding TE copy number within this species. Several factors may influence the diversity and abundance of TEs in a genome, including molecular mechanisms such as epigenetic factors, which could be a source of variation in TE success. In this paper, we present the first analysis of the epigenetic status of four TE families (roo, tirant, 412 and F) in seven wild type strains of D. melanogaster and D. simulans. Our data shows intra- and inter-specific variations in the histone marks that adorn TE copies. Our results demonstrate that the chromatin state of common TEs varies among TE families, between closely related species and also between wild type strains.
Collapse
Affiliation(s)
- Rita Rebollo
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Institute of Research on Cancer and Aging, CNRS UMR7284/INSERM U1081/UNS Faculté de Médecine, Nice, France
| | - Flora Begeot
- Département de Génétique et Evolution, Université de Genève, Genève, Switzerland
| | - Marion Delattre
- Département de Génétique et Evolution, Université de Genève, Genève, Switzerland
| | - Eric Gilson
- Institute of Research on Cancer and Aging, CNRS UMR7284/INSERM U1081/UNS Faculté de Médecine, Nice, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
- * E-mail:
| |
Collapse
|
26
|
Moss SP, Joyce DA, Humphries S, Tindall KJ, Lunt DH. Comparative analysis of teleost genome sequences reveals an ancient intron size expansion in the zebrafish lineage. Genome Biol Evol 2011; 3:1187-96. [PMID: 21920901 PMCID: PMC3205604 DOI: 10.1093/gbe/evr090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have developed a bioinformatics pipeline for the comparative evolutionary analysis of Ensembl genomes and have used it to analyze the introns of the five available teleost fish genomes. We show our pipeline to be a powerful tool for revealing variation between genomes that may otherwise be overlooked with simple summary statistics. We identify that the zebrafish, Danio rerio, has an unusual distribution of intron sizes, with a greater number of larger introns in general and a notable peak in the frequency of introns of approximately 500 to 2,000 bp compared with the monotonically decreasing frequency distributions of the other fish. We determine that 47% of D. rerio introns are composed of repetitive sequences, although the remainder, over 331 Mb, is not. Because repetitive elements may be the origin of the majority of all noncoding DNA, it is likely that the remaining D. rerio intronic sequence has an ancient repetitive origin and has since accumulated so many mutations that it can no longer be recognized as such. To study such an ancient expansion of repeats in the Danio, lineage will require further comparative analysis of fish genomes incorporating a broader distribution of teleost lineages.
Collapse
|
27
|
Stelzer CP, Riss S, Stadler P. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera). BMC Evol Biol 2011; 11:90. [PMID: 21473744 PMCID: PMC3087684 DOI: 10.1186/1471-2148-11-90] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/07/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. RESULTS We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. CONCLUSIONS Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.
Collapse
Affiliation(s)
- Claus-Peter Stelzer
- Austrian Academy of Sciences, Institute for Limnology, 5310-Mondsee, Austria
| | - Simone Riss
- Austrian Academy of Sciences, Institute for Limnology, 5310-Mondsee, Austria
| | - Peter Stadler
- Austrian Academy of Sciences, Institute for Limnology, 5310-Mondsee, Austria
| |
Collapse
|
28
|
Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes. Gene 2010; 473:100-9. [PMID: 21156200 DOI: 10.1016/j.gene.2010.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/22/2022]
Abstract
Transposable elements (TEs) are indwelling components of genomes, and their dynamics have been a driving force in genome evolution. Although we now have more information concerning their amounts and characteristics in various organisms, we still have little data from overall comparisons of their sequences in very closely-related species. While the Drosophila melanogaster genome has been extensively studied, we have only limited knowledge regarding the precise TE sequences in the genomes of the related species Drosophila simulans, Drosophila sechellia and Drosophila yakuba. In this study we analyzed the number and structure of TE copies in the sequenced genomes of these four species. Our findings show that, unexpectedly, the number of TE insertions in D. simulans is greater than that in D. melanogaster, but that most of the copies in D. simulans are degraded and in small fragments, as in D. sechellia and D. yakuba. This suggests that all three species were invaded by numerous TEs a long time ago, but have since regulated their activity, as the present TE copies are degraded, with very few full-length elements. In contrast, in D. melanogaster, a recent activation of TEs has resulted in a large number of almost-identical TE copies. We have detected variants of some TEs in D. simulans and D. sechellia, that are almost identical to the reference TE sequences in D. melanogaster, suggesting that D. melanogaster has recently been invaded by active TE variants from the other species. Our results indicate that the three species D. simulans, D. sechellia, and D. yakuba seem to be at a different stage of their TE life cycle when compared to D. melanogaster. Moreover, we show that D. melanogaster has been invaded by active TE variants for several TE families likely to come from D. simulans or the ancestor of D. simulans and D. sechellia. The numerous horizontal transfer events implied to explain these results could indicate introgression events between these species.
Collapse
|
29
|
Guo B, Zou M, Gan X, He S. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing. BMC Genomics 2010; 11:396. [PMID: 20569428 PMCID: PMC2996927 DOI: 10.1186/1471-2164-11-396] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 06/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. RESULTS Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which is higher than that in the T. rubripes genome (6.89%) and that in the Te. nigroviridis genome (4.66%). In the repetitive DNA, 76% is retroelements which account for 6% of the sequenced D. holocanthus genome and belong to known families of transposable elements. More than half of retroelements were distributed within genes. In the non-homologous regions, repeat element proportion in D. holocanthus genome increased to 10.6% compared with T. rubripes and increased to 9.19% compared with Te. nigroviridis. A comparison of 10 well-defined orthologous genes showed that the average intron size (566 bp) in D. holocanthus genome is significantly longer than that in the smooth pufferfish genome (435 bp). CONCLUSION Compared with the smooth pufferfish, D. holocanthus has a low gene density and repeat elements rich genome. Genome size variation between D. holocanthus and the smooth pufferfish exhibits as length variation between homologous region and different accumulation of non-homologous sequences. The length difference of intron is consistent with the genome size variation between D. holocanthus and the smooth pufferfish. Different transposable element accumulation is responsible for genome size variation between D. holocanthus and the smooth pufferfish.
Collapse
Affiliation(s)
- Baocheng Guo
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | |
Collapse
|
30
|
Rebollo R, Horard B, Hubert B, Vieira C. Jumping genes and epigenetics: Towards new species. Gene 2010; 454:1-7. [DOI: 10.1016/j.gene.2010.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/06/2010] [Accepted: 01/19/2010] [Indexed: 01/13/2023]
|
31
|
Garnatje T, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Vallès J. Cheirolophus intybaceus (Asteraceae, Centaureinae) o la constància del valor 2C. COLLECTANEA BOTANICA 2009. [DOI: 10.3989/collectbot.2008.v28.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
Patrushev LI, Minkevich IG. The problem of the eukaryotic genome size. BIOCHEMISTRY (MOSCOW) 2009; 73:1519-52. [PMID: 19216716 DOI: 10.1134/s0006297908130117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current state of knowledge concerning the unsolved problem of the huge interspecific eukaryotic genome size variations not correlating with the species phenotypic complexity (C-value enigma also known as C-value paradox) is reviewed. Characteristic features of eukaryotic genome structure and molecular mechanisms that are the basis of genome size changes are examined in connection with the C-value enigma. It is emphasized that endogenous mutagens, including reactive oxygen species, create a constant nuclear environment where any genome evolves. An original quantitative model and general conception are proposed to explain the C-value enigma. In accordance with the theory, the noncoding sequences of the eukaryotic genome provide genes with global and differential protection against chemical mutagens and (in addition to the anti-mutagenesis and DNA repair systems) form a new, third system that protects eukaryotic genetic information. The joint action of these systems controls the spontaneous mutation rate in coding sequences of the eukaryotic genome. It is hypothesized that the genome size is inversely proportional to functional efficiency of the anti-mutagenesis and/or DNA repair systems in a particular biological species. In this connection, a model of eukaryotic genome evolution is proposed.
Collapse
Affiliation(s)
- L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | |
Collapse
|
33
|
Bartolomé C, Bello X, Maside X. Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol 2009; 10:R22. [PMID: 19226459 PMCID: PMC2688281 DOI: 10.1186/gb-2009-10-2-r22] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/18/2009] [Indexed: 11/15/2022] Open
Abstract
A genome-wide comparison of transposable elements reveals evidence for unexpectedly high rates of horizontal transfer between three species of Drosophila Background Horizontal transfer (HT) could play an important role in the long-term persistence of transposable elements (TEs) because it provides them with the possibility to avoid the checking effects of host-silencing mechanisms and natural selection, which would eventually drive their elimination from the genome. However, despite the increasing evidence for HT of TEs, its rate of occurrence among the TE pools of model eukaryotic organisms is still unknown. Results We have extracted and compared the nucleotide sequences of all potentially functional autonomous TEs present in the genomes of Drosophila melanogaster, D. simulans and D. yakuba - 1,436 insertions classified into 141 distinct families - and show that a large fraction of the families found in two or more species display levels of genetic divergence and within-species diversity that are significantly lower than expected by assuming copy-number equilibrium and vertical transmission, and consistent with a recent origin by HT. Long terminal repeat (LTR) retrotransposons form nearly 90% of the HT cases detected. HT footprints are also frequent among DNA transposons (40% of families compared) but rare among non-LTR retroelements (6%). Our results suggest a genomic rate of 0.04 HT events per family per million years between the three species studied, as well as significant variation between major classes of elements. Conclusions The genome-wide patterns of sequence diversity of the active autonomous TEs in the genomes of D. melanogaster, D. simulans and D. yakuba suggest that one-third of the TE families originated by recent HT between these species. This result emphasizes the important role of horizontal transmission in the natural history of Drosophila TEs.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Dpto de Anatomía Patolóxica e Ciencias Forenses, Grupo de Medicina Xenómica-CIBERER, Universidade de Santiago de Compostela, Rúa de San Francisco s/n, Santiago de Compostela, 15782, Spain
| | | | | |
Collapse
|
34
|
|
35
|
Gregory TR, Johnston JS. Genome size diversity in the family Drosophilidae. Heredity (Edinb) 2008; 101:228-38. [DOI: 10.1038/hdy.2008.49] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
36
|
Mugnier N, Gueguen L, Vieira C, Biémont C. The heterochromatic copies of the LTR retrotransposons as a record of the genomic events that have shaped the Drosophila melanogaster genome. Gene 2008; 411:87-93. [PMID: 18281162 DOI: 10.1016/j.gene.2008.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/14/2008] [Accepted: 01/16/2008] [Indexed: 11/29/2022]
Abstract
Transposable elements, which are major components of most genomes, are known to accumulate in heterochromatic regions in which they have progressively diverged in sequence by mutations and internal deletions and insertions (indels) during the course of evolution. They therefore provide a record of the genomic events that have shaped the genomes, some of which could correspond to speciation events. Using the sequence divergence between the long terminal repeats (LTRs), we estimated the date of the insertion events of the LTR retrotransposon copies embedded within the heterochromatin regions of the Drosophila melanogaster genome. We did not detect traces of any specific waves of mobilization of retrotransposons within heterochromatin, apart from a very recent wave, which corresponds to the numerous LTR retrotransposon copies found in euchromatin.
Collapse
Affiliation(s)
- Nathalie Mugnier
- Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Lyon 1, Université de Lyon, 69622 Villeurbanne cedex, France
| | | | | | | |
Collapse
|
37
|
Kron P, Suda J, Husband BC. Applications of Flow Cytometry to Evolutionary and Population Biology. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095504] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul Kron
- Department of Integrative Biology, University of Guelph, Ontario, Canada N1G 2W1; ,
| | - Jan Suda
- Department of Botany, Faculty of Science, Charles University in Prague, CZ-128 01, Czech Republic and Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43, Czech Republic;
| | - Brian C. Husband
- Department of Integrative Biology, University of Guelph, Ontario, Canada N1G 2W1; ,
| |
Collapse
|
38
|
Fablet M, Souames S, Biémont C, Vieira C. Evolutionary pathways of the tirant LTR retrotransposon in the Drosophila melanogaster subgroup of species. J Mol Evol 2007; 64:438-47. [PMID: 17390093 DOI: 10.1007/s00239-006-0108-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 01/08/2007] [Indexed: 02/04/2023]
Abstract
Tirant, a LTR retrotransposon with copies scattered over the chromosome arms of Drosophila melanogaster, is in the process of being lost from the chromosome arms of most natural populations of the sister species D. simulans. In an attempt to clarify the dynamics and evolution of tirant, we have studied the regulatory and reverse transcriptase regions in copies of the nine closely related species of the D. melanogaster subgroup. We show that tirant is mainly vertically transmitted in these species, with the exception of a horizontal transfer event from an ancestor of D. melanogaster to D. teissieri. We propose that, in four of the species (D. melanogaster, D. simulans, D. sechellia, and D. mauritiana), the observed patterns of evolution of the regulatory region vary with genome constraints and with the history and biogeography of the species.
Collapse
Affiliation(s)
- Marie Fablet
- UMR CNRS 5558, Biométrie et Biologie Evolutive, Université de Lyon Université Lyon 1, Villeurbanne, Cedex
| | | | | | | |
Collapse
|
39
|
Imai S, Sasaki T, Shimizu A, Asakawa S, Hori H, Shimizu N. The genome size evolution of medaka (Oryzias latipes) and fugu (Takifugu rubripes). Genes Genet Syst 2007; 82:135-44. [PMID: 17507779 DOI: 10.1266/ggs.82.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evolution of the genome size in eukaryotes is often affected by changes in the noncoding sequences, for which insertions and deletions (indels) of small nucleotide sequences and amplification of repetitive elements are considered responsible. In this study, we compared the genomic DNA sequences of two kinds of fish, medaka (Oryzias latipes) and fugu (Takifugu rubripes), which show two-fold difference in the genome size (800 Mb vs. 400 Mb). We selected a contiguous DNA sequence of 790 kb from the medaka chromosome LG22 (linkage group 22), and made a precise comparison with the sequence (387 kb) of the corresponding region of Takifugu. The sequence of 178 kb in total was aligned common between two fishes, and the remaining sequences (612 kb for medaka and 209 kb for fugu) were found abundant in various repetitive elements including many types of unclassified low copy repeats, all of which accounted for more than a half (54%) of the genome size difference. Furthermore, we identified a significant difference in the length ratio of the unaligned sequences that locate between the aligned sequences (USBAS), particularly after eliminating known repetitive elements. These USBAS with no repetitive elements (USBAS-nr) located within the intron and intergenic region. These results strongly indicated that amplification of repetitive elements and compilation of indels are major driving forces to facilitate changes in the genome size.
Collapse
Affiliation(s)
- Shuichiro Imai
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, University of Texas, Arlington, Texas 76019;
| | - Ellen J. Pritham
- Department of Biology, University of Texas, Arlington, Texas 76019;
| |
Collapse
|