1
|
Giansanti P, Samaras P, Bian Y, Meng C, Coluccio A, Frejno M, Jakubowsky H, Dobiasch S, Hazarika RR, Rechenberger J, Calzada-Wack J, Krumm J, Mueller S, Lee CY, Wimberger N, Lautenbacher L, Hassan Z, Chang YC, Falcomatà C, Bayer FP, Bärthel S, Schmidt T, Rad R, Combs SE, The M, Johannes F, Saur D, de Angelis MH, Wilhelm M, Schneider G, Kuster B. Mass spectrometry-based draft of the mouse proteome. Nat Methods 2022; 19:803-811. [PMID: 35710609 PMCID: PMC7613032 DOI: 10.1038/s41592-022-01526-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/17/2022] [Indexed: 01/06/2023]
Abstract
The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.
Collapse
Affiliation(s)
- Piero Giansanti
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Patroklos Samaras
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Yangyang Bian
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Meng
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany
| | - Andrea Coluccio
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Frejno
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Hannah Jakubowsky
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rashmi R Hazarika
- Population epigenetics and epigenomics, Technical University of Munich, Freising, Germany
- Institute of Advanced Study (IAS), Technical University of Munich, Freising, Germany
| | - Julia Rechenberger
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sebastian Mueller
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Chien-Yun Lee
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Nicole Wimberger
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Ludwig Lautenbacher
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Zonera Hassan
- Medical Clinic and Policlinic II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yun-Chien Chang
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Schmidt
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Roland Rad
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Frank Johannes
- Population epigenetics and epigenomics, Technical University of Munich, Freising, Germany
- Institute of Advanced Study (IAS), Technical University of Munich, Freising, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Günter Schneider
- Medical Clinic and Policlinic II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Advanced Study (IAS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Evolution of coastal forests based on a full set of mangrove genomes. Nat Ecol Evol 2022; 6:738-749. [PMID: 35484219 DOI: 10.1038/s41559-022-01744-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
Genomic studies are now poised to explore whole communities of species. The ~70 species of woody plants that anchor the coastal ecosystems of the tropics, collectively referred to as mangroves, are particularly suited to this exploration. In this study, we de novo sequenced the whole genomes of 32 mangroves, which we combined with other sequences of 30 additional species, comprising almost all mangroves globally. These community-wide genomic data will be valuable for ecology, evolution and biodiversity research. While the data revealed 27 independent origins of mangroves, the total phylogeny shows only modest increases in species number, even in coastal areas of active speciation, suggesting that mangrove extinction is common. A possible explanation for common extinction is the frequent sea-level rises and falls (SLRs and SLFs) documented in the geological record. Indeed, near-extinctions of species with extremely small population size (N) often happened during periods of rapid SLR, as revealed by the genome-wide heterozygosity of almost all mangroves. Reduction in N has possibly been further compounded by population fragmentation and the subsequent accumulation of deleterious mutations, thus pushing mangroves even closer to extinction. Crucially, the impact of the next SLR will be exacerbated by human encroachment into these mangrove habitats, potentially altering the ecosystems of tropical coasts irreversibly.
Collapse
|
3
|
Friis G, Vizueta J, Smith EG, Nelson DR, Khraiwesh B, Qudeimat E, Salehi-Ashtiani K, Ortega A, Marshell A, Duarte CM, Burt JA. A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina. G3 (BETHESDA, MD.) 2021; 11:jkaa025. [PMID: 33561229 PMCID: PMC8022769 DOI: 10.1093/g3journal/jkaa025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
The gray mangrove [Avicennia marina (Forsk.) Vierh.] is the most widely distributed mangrove species, ranging throughout the Indo-West Pacific. It presents remarkable levels of geographic variation both in phenotypic traits and habitat, often occupying extreme environments at the edges of its distribution. However, subspecific evolutionary relationships and adaptive mechanisms remain understudied, especially across populations of the West Indian Ocean. High-quality genomic resources accounting for such variability are also sparse. Here we report the first chromosome-level assembly of the genome of A. marina. We used a previously release draft assembly and proximity ligation libraries Chicago and Dovetail HiC for scaffolding, producing a 456,526,188-bp long genome. The largest 32 scaffolds (22.4-10.5 Mb) accounted for 98% of the genome assembly, with the remaining 2% distributed among much shorter 3,759 scaffolds (62.4-1 kb). We annotated 45,032 protein-coding genes using tissue-specific RNA-seq data in combination with de novo gene prediction, from which 34,442 were associated to GO terms. Genome assembly and annotated set of genes yield a 96.7% and 95.1% completeness score, respectively, when compared with the eudicots BUSCO dataset. Furthermore, an FST survey based on resequencing data successfully identified a set of candidate genes potentially involved in local adaptation and revealed patterns of adaptive variability correlating with a temperature gradient in Arabian mangrove populations. Our A. marina genomic assembly provides a highly valuable resource for genome evolution analysis, as well as for identifying functional genes involved in adaptive processes and speciation.
Collapse
Affiliation(s)
- Guillermo Friis
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona 08007, Spain
| | - Edward G Smith
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - David R Nelson
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Basel Khraiwesh
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Enas Qudeimat
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kourosh Salehi-Ashtiani
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Alejandra Ortega
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - John A Burt
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Wang Y, Dai A, Tang T. Weak Effect of Gypsy Retrotransposon Bursts on Sonneratia alba Salt Stress Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:830079. [PMID: 35111190 PMCID: PMC8801733 DOI: 10.3389/fpls.2021.830079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 05/07/2023]
Abstract
Transposable elements (TEs) are an important source of genetic diversity and can be co-opted for the regulation of host genes. However, to what extent the pervasive TE colonization of plant genomes has contributed to stress adaptation remains controversial. Plants inhabiting harsh environments in nature provide a unique opportunity to answer this question. We compared TE compositions and their evolutionary dynamics in the genomes of two mangrove species: the pioneer Sonneratia alba and its less salt-tolerant relative S. caseolaris. Age distribution, strength of purifying selection and the removal rate of LTR (long terminal repeat) retrotransposons were estimated. Phylogenetic analysis of LTR retrotransposons and their distribution in the genome of S. alba were surveyed. Small RNA sequencing and whole-genome bisulfite sequencing was conducted using leaves of S. alba. Expression pattern of LTR retrotransposons and their nearby genes were examined using RNA-seq data of S. alba under different salt treatments. S. alba possesses more TEs than S. caseolaris. Particularly, many more young Gypsy LTR retrotransposons have accumulated in S. alba than in S. caseolaris despite an increase in purifying selection against TE insertions. The top two most abundant Gypsy families in S. alba preferentially insert in gene-poor regions. They are under relaxed epigenetic repression, probably due to the presence of CHROMO domains in their 3'-ends. Although a considerable number of TEs in S. alba showed differential expression under salt stress, only four copies were significantly correlated with their nearby genes in expression levels. One such TE-gene pair involves Abscisic acid 8'-hydroxylase 3 functioning in abscisic acid catabolism. This study sheds light on the evolutionary dynamics and potential function of TEs in an extremophile. Our results suggest that the conclusion on co-option of TEs should be cautious even though activation of TEs by stress might be prevalent.
Collapse
|
5
|
Dong F, Li SH, Chiu CC, Dong L, Yao CT, Yang XJ. Strict allopatric speciation of sky island Pyrrhula erythaca species complex. Mol Phylogenet Evol 2020; 153:106941. [PMID: 32818596 DOI: 10.1016/j.ympev.2020.106941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/01/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
Increasing evidence of post-divergence gene flow between taxa is shifting our understanding on the mode of speciation. A fundamental question arises concerning the circumstances under which strict allopatric speciation still holds true. Sky island populations might undergo reduced gene flow by niche conservatism to highland habitats and follow divergence in an allopatric manner. In this study, we tested this hypothesis in the sky island Grey-headed Bullfinch (Pyrrhula erythaca) species complex via statistical analyses of both genetic and ecological data. Results of coalescent-based analysis of multiple nuclear loci suggested that P. e. owstoni likely colonized Taiwan island during the severe mid-Pleistocene glacial climate followed by strictly allopatric divergence from P. e. erythaca distributed in Himalayas-Hengduan mountains and central North China. Results of ecological niche modeling suggested that their speciation may be attributed to the niche conservatism of these birds and the lack of a suitable ecological corridor during subsequent milder glacial episodes. In addition, we delimited the traditionally defined P. erythaca into two full species, P. erythaca in the Asian mainland and P. owstoni on the island of Taiwan, based on both genetic and behavioural evidences. These results suggest that ecology can have a dynamic role in allowing highland populations to expand their ranges and isolated by habitat barriers to diversify in a strictly allopatric manner.
Collapse
Affiliation(s)
- Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shou-Hsien Li
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Chi-Cheng Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Cheng-Te Yao
- Endemic Species Research Institute, Minsheng East Road, Jiji Township, Nantou County 552, Taiwan.
| | - Xiao-Jun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
6
|
Liu J, Liu Q, Yang Q. mstree: A Multispecies Coalescent Approach for Estimating Ancestral Population Size and Divergence Time during Speciation with Gene Flow. Genome Biol Evol 2020; 12:715-719. [PMID: 32365209 PMCID: PMC7259675 DOI: 10.1093/gbe/evaa087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
Gene flow between species may cause variations in branch length and topology of gene tree, which are beyond the expected variations from ancestral processes. These additional variations make it difficult to estimate parameters during speciation with gene flow, as the pattern of these additional variations differs with the relationship between isolation and migration. As far as we know, most methods rely on the assumption about the relationship between isolation and migration by a given model, such as the isolation-with-migration model, when estimating parameters during speciation with gene flow. In this article, we develop a multispecies coalescent approach which does not rely on any assumption about the relationship between isolation and migration when estimating parameters and is called mstree. mstree is available at https://github.com/liujunfengtop/MStree/ and uses some mathematical inequalities among several factors, which include the species divergence time, the ancestral population size, and the number of gene trees, to estimate parameters during speciation with gene flow. Using simulations, we show that the estimated values of ancestral population sizes and species divergence times are close to the true values when analyzing the simulation data sets, which are generated based on the isolation-with-initial-migration model, secondary contact model, and isolation-with-migration model. Therefore, our method is able to estimate ancestral population sizes and speciation times in the presence of different modes of gene flow and may be helpful to test different theories of speciation.
Collapse
Affiliation(s)
- Junfeng Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qiao Liu
- Department of Automation, Tsinghua University, Beijing, China
| | - Qingzhu Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Dong F, Hung CM, Yang XJ. Secondary contact after allopatric divergence explains avian speciation and high species diversity in the Himalayan-Hengduan Mountains. Mol Phylogenet Evol 2020; 143:106671. [DOI: 10.1016/j.ympev.2019.106671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022]
|
8
|
Barley AJ, Brown JM, Thomson RC. Impact of Model Violations on the Inference of Species Boundaries Under the Multispecies Coalescent. Syst Biol 2018; 67:269-284. [PMID: 28945903 DOI: 10.1093/sysbio/syx073] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
The use of genetic data for identifying species-level lineages across the tree of life has received increasing attention in the field of systematics over the past decade. The multispecies coalescent model provides a framework for understanding the process of lineage divergence and has become widely adopted for delimiting species. However, because these studies lack an explicit assessment of model fit, in many cases, the accuracy of the inferred species boundaries are unknown. This is concerning given the large amount of empirical data and theory that highlight the complexity of the speciation process. Here, we seek to fill this gap by using simulation to characterize the sensitivity of inference under the multispecies coalescent (MSC) to several violations of model assumptions thought to be common in empirical data. We also assess the fit of the MSC model to empirical data in the context of species delimitation. Our results show substantial variation in model fit across data sets. Posterior predictive tests find the poorest model performance in data sets that were hypothesized to be impacted by model violations. We also show that while the inferences assuming the MSC are robust to minor model violations, such inferences can be biased under some biologically plausible scenarios. Taken together, these results suggest that researchers can identify individual data sets in which species delimitation under the MSC is likely to be problematic, thereby highlighting the cases where additional lines of evidence to identify species boundaries are particularly important to collect. Our study supports a growing body of work highlighting the importance of model checking in phylogenetics, and the usefulness of tailoring tests of model fit to assess the reliability of particular inferences. [Populations structure, gene flow, demographic changes, posterior prediction, simulation, genetics.].
Collapse
Affiliation(s)
- Anthony J Barley
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Robert C Thomson
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA
| |
Collapse
|
9
|
Identification and characterization of evolutionarily conserved alternative splicing events in a mangrove genus Sonneratia. Sci Rep 2018. [PMID: 29535339 PMCID: PMC5849712 DOI: 10.1038/s41598-018-22406-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing (AS), which produces multiple mRNA transcripts from a single gene, plays crucial roles in plant growth, development and environmental stress responses. Functional significances of conserved AS events among congeneric species have not been well characterized. In this study, we performed transcriptome sequencing to characterize AS events in four common species of Sonneratia, a mangrove genus excellently adaptive to intertidal zones. 7,248 to 12,623 AS events were identified in approximately 25% to 35% expressed genes in the roots of the four species. The frequency of AS events in Sonneratia was associated with genomic features, including gene expression level and intron/exon number and length. Among the four species, 1,355 evolutionarily conserved AS (ECAS) events were identified from 1,170 genes. Compared with non-ECAS events, ECAS events are of shorter length and less possibility to introduce premature stop codons (PTCs) and frameshifts. Functional annotations of the genes containing ECAS events showed that four of the 26 enriched Gene Ontology (GO) terms are involved in proton transport, signal transduction and carbon metabolism, and 60 genes from another three GO terms are implicated in responses to osmotic, oxidative and heat stresses, which may contribute to the adaptation of Sonneratia species to harsh intertidal environments.
Collapse
|
10
|
Dalquen DA, Zhu T, Yang Z. Maximum Likelihood Implementation of an Isolation-with-Migration Model for Three Species. Syst Biol 2018; 66:379-398. [PMID: 27486180 DOI: 10.1093/sysbio/syw063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 07/08/2016] [Indexed: 01/03/2023] Open
Abstract
We develop a maximum likelihood (ML) method for estimating migration rates between species using genomic sequence data. A species tree is used to accommodate the phylogenetic relationships among three species, allowing for migration between the two sister species, while the third species is used as an out-group. A Markov chain characterization of the genealogical process of coalescence and migration is used to integrate out the migration histories at each locus analytically, whereas Gaussian quadrature is used to integrate over the coalescent times on each genealogical tree numerically. This is an extension of our early implementation of the symmetrical isolation-with-migration model for three species to accommodate arbitrary loci with two or three sequences per locus and to allow asymmetrical migration rates. Our implementation can accommodate tens of thousands of loci, making it feasible to analyze genome-scale data sets to test for gene flow. We calculate the posterior probabilities of gene trees at individual loci to identify genomic regions that are likely to have been transferred between species due to gene flow. We conduct a simulation study to examine the statistical properties of the likelihood ratio test for gene flow between the two in-group species and of the ML estimates of model parameters such as the migration rate. Inclusion of data from a third out-group species is found to increase dramatically the power of the test and the precision of parameter estimation. We compiled and analyzed several genomic data sets from the Drosophila fruit flies. Our analyses suggest no migration from D. melanogaster to D. simulans, and a significant amount of gene flow from D. simulans to D. melanogaster, at the rate of ~0.02 migrant individuals per generation. We discuss the utility of the multispecies coalescent model for species tree estimation, accounting for incomplete lineage sorting and migration.
Collapse
Affiliation(s)
- Daniel A Dalquen
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Tianqi Zhu
- Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.,Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Yang M, He Z, Shi S, Wu CI. Can genomic data alone tell us whether speciation happened with gene flow? Mol Ecol 2017; 26:2845-2849. [PMID: 28345182 DOI: 10.1111/mec.14117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 01/02/2023]
Abstract
The allopatric model, which requires a period of geographical isolation for speciation to complete, has been the standard model in the modern era. Recently, "speciation with gene flow" has been widely discussed in relation to the model of "strict allopatry" and the level of DNA divergence across genomic regions. We wish to caution that genomic data by themselves may only permit the rejection of the simplest form of allopatry. Even a slightly more complex and realistic model that starts with subdivided populations would be impossible to reject by the genomic data alone. To resolve this central issue of speciation, other forms of observations such as the sequencing of reproductive isolation genes or the identification of geographical barrier(s) will be necessary.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Yang Y, Li J, Yang S, Li X, Fang L, Zhong C, Duke NC, Zhou R, Shi S. Effects of Pleistocene sea-level fluctuations on mangrove population dynamics: a lesson from Sonneratia alba. BMC Evol Biol 2017; 17:22. [PMID: 28100168 PMCID: PMC5241957 DOI: 10.1186/s12862-016-0849-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022] Open
Abstract
Background A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation. Results In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes. Conclusion Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0849-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianfang Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuhuan Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinnian Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lu Fang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Dongzhai Harbor National Nature Reserve, Haikou, 571129, China
| | - Norman C Duke
- Trop WATER, James Cook University, Townsville, Quennsland, Australia
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
13
|
Yang Y, Duke NC, Peng F, Li J, Yang S, Zhong C, Zhou R, Shi S. Ancient Geographical Barriers Drive Differentiation among Sonneratia caseolaris Populations and Recent Divergence from S. lanceolata. FRONTIERS IN PLANT SCIENCE 2016; 7:1618. [PMID: 27833634 PMCID: PMC5080369 DOI: 10.3389/fpls.2016.01618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/13/2016] [Indexed: 05/07/2023]
Abstract
Glacial vicariance is thought to influence population dynamics and speciation of many marine organisms. Mangroves, a plant group inhabiting intertidal zones, were also profoundly influenced by Pleistocene glaciations. In this study, we investigated phylogeographic patterns of a widespread mangrove species Sonneratia caseolaris and a narrowly distributed, closely related species S. lanceolata to infer their divergence histories and related it to historical geological events. We sequenced two chloroplast fragments and five nuclear genes for one population of S. lanceolata and 12 populations of S. caseolaris across the Indo-West Pacific (IWP) region to evaluate genetic differentiation and divergence time among them. Phylogenetic analysis based on sequences of nuclear ribosomal internal transcribed spacer and a nuclear gene rpl9 for all Sonneratia species indicate that S. lanceolata individuals are nested within S. caseolaris. We found strong genetic structure among geographic regions (South China Sea, the Indian Ocean, and eastern Australia) inhabited by S. caseolaris. We estimated that divergence between the Indo-Malesia and Australasia populations occurred 4.035 million years ago (MYA), prior to the onset of Pleistocene. BARRIERS analysis suggested that complex geographic features in the IWP region had largely shaped the phylogeographic patterns of S. caseolaris. Furthermore, haplotype analyses provided convincing evidence for secondary contact of the South China Sea and the Indian Ocean lineages at the Indo-Pacific boundary. Demographic history inference under isolation and migration (IM) model detected substantial gene flow from the Sri Lanka populations to the populations in the Java Island. Moreover, multi-locus sequence analysis indicated that S. lanceolata was most closely related to the Indian Ocean populations of S. caseolaris and the divergence time between them was 2.057 MYA, coinciding with the onset of the Pleistocene glaciation. Our results suggest that geographic isolation driven by the Pleistocene ice age resulted in the recent origin of S. lanceolata.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen UniversityGuangzhou, China
| | - Norman C. Duke
- Trop WATER, James Cook University, TownsvilleQLD, Australia
| | - Fangfang Peng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen UniversityGuangzhou, China
| | - Jianfang Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen UniversityGuangzhou, China
| | - Shuhuan Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen UniversityGuangzhou, China
| | - Cairong Zhong
- Hainan Dongzhai Harbor National Nature ReserveHaikou, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen UniversityGuangzhou, China
- *Correspondence: Renchao Zhou, Suhua Shi,
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen UniversityGuangzhou, China
- *Correspondence: Renchao Zhou, Suhua Shi,
| |
Collapse
|
14
|
Yang Y, Yang S, Li J, Deng Y, Zhang Z, Xu S, Guo W, Zhong C, Zhou R, Shi S. Transcriptome analysis of the Holly mangrove Acanthus ilicifolius and its terrestrial relative, Acanthus leucostachyus, provides insights into adaptation to intertidal zones. BMC Genomics 2015; 16:605. [PMID: 26272068 PMCID: PMC4536770 DOI: 10.1186/s12864-015-1813-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/03/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Acanthus is a unique genus consisting of both true mangrove and terrestrial species; thus, it represents an ideal system for studying the origin and adaptive evolution of mangrove plants to intertidal environments. However, little is known regarding the two respects of mangrove species in Acanthus. In this study, we sequenced the transcriptomes of the pooled roots and leaves tissues for a mangrove species, Acanthus ilicifolius, and its terrestrial congener, A. leucostachyus, to illustrate the origin of the mangrove species in this genus and their adaptive evolution to harsh habitats. RESULTS We obtained 73,039 and 69,580 contigs with N50 values of 741 and 1557 bp for A. ilicifolius and A. leucostachyus, respectively. Phylogenetic analyses based on four nuclear segments and three chloroplast fragments revealed that mangroves and terrestrial species in Acanthus fell into different clades, indicating a single origin of the mangrove species in Acanthus. Based on 6634 orthologs, A. ilicifolius and A. leucostachyus were found to be highly divergent, with a peak of synonymous substitution rate (Ks) distribution of 0.145 and an estimated divergence time of approximately 16.8 million years ago (MYA). The transgression in the Early to Middle Miocene may be the major reason for the entry of the mangrove lineage of Acanthus into intertidal environments. Gene ontology (GO) classifications of the full transcriptomes did not show any apparent differences between A. ilicifolius and A. leucostachyus, suggesting the absence of gene components specific to the mangrove transcriptomes. A total of 99 genes in A. ilicifolius were identified with signals of positive selection. Twenty-three of the 99 positively selected genes (PSGs) were found to be involved in salt, heat and ultraviolet stress tolerance, seed germination and embryo development under periodic inundation. These stress-tolerance related PSGs may be crucial for the adaptation of the mangrove species in this genus to stressful marine environments and may contribute to speciation in Acanthus. CONCLUSIONS We characterized the transcriptomes of one mangrove species of Acanthus, A. ilicifolius, and its terrestrial relative, A. leucostachyus, and provided insights into the origin of the mangrove Acanthus species and their adaptive evolution to abiotic stresses in intertidal environments.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuhuan Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jianfang Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yunfei Deng
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China.
| | - Zhang Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Wuxia Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Cairong Zhong
- Hainan Dongzhai Harbor National Nature Reserve, Haikou, 571129, China.
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Liu J, Zhang D, Yang Z. A discrete‐beta model for testing gene flow after speciation. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junfeng Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing 100101 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - De‐Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing 100101 China
- National Center for Mathematics and Interdisciplinary Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Ziheng Yang
- Center for Computational Genomics Beijing Institute of Genomics Chinese Academy of Sciences Beijing 100101 China
- Department of Genetics, Evolution and Environment University College London Gower Street London WC1E 6BT UK
| |
Collapse
|
16
|
Huang CL, Ho CW, Chiang YC, Shigemoto Y, Hsu TW, Hwang CC, Ge XJ, Chen C, Wu TH, Chou CH, Huang HJ, Gojobori T, Osada N, Chiang TY. Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus/sinensis complex (Poaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:834-847. [PMID: 25237766 DOI: 10.1111/tpj.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59 million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M = 3.36 × 10(-9) to 1.20 × 10(-6) , resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M. sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.
Collapse
Affiliation(s)
- Chao-Li Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dong F, Zou FS, Lei FM, Liang W, Li SH, Yang XJ. Testing hypotheses of mitochondrial gene-tree paraphyly: unravelling mitochondrial capture of the Streak-breasted Scimitar Babbler (Pomatorhinus ruficollis) by the Taiwan Scimitar Babbler (Pomatorhinus musicus). Mol Ecol 2014; 23:5855-67. [DOI: 10.1111/mec.12981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Feng Dong
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming 650223 China
| | - Fa-Sheng Zou
- South China Institute of Endangered Animals; Guangzhou 510260 China
| | - Fu-Min Lei
- Key Laboratory of Zoological Systematics and Evolution; Institute of Zoology; Chinese Academy of Sciences; Beijing 100101 China
| | - Wei Liang
- Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology; College of Life Sciences; Hainan Normal University; Haikou 571158 China
| | - Shou-Hsien Li
- Department of Life Science; National Taiwan Normal University; Taipei 116 Taiwan
| | - Xiao-Jun Yang
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming 650223 China
| |
Collapse
|
18
|
Fan Q, Chen S, Li M, Guo W, Jing H, Wu W, Zhou R, Liao W. Molecular evidence for natural hybridization between wild loquat (Eriobotrya japonica) and its relative E. prinoides. BMC PLANT BIOLOGY 2014; 14:275. [PMID: 25300306 PMCID: PMC4196008 DOI: 10.1186/s12870-014-0275-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/03/2014] [Indexed: 05/14/2023]
Abstract
BACKGROUND Interspecific hybridization has long been recognized as a pivotal process in plant evolution and speciation. It occurs fairly common in the genera of the subtribe Pyrinae. In Eriobotrya, a small tree genus of Pyrinae, E. prinoides var. daduheensis has been recognized as either a variety of E. prinoides, a natural hybrid between E. prinoides and E. japonica, or a variety of E. japonica. However, to date, there has been no convincing evidence on its status. RESULTS Four nuclear genes and two chloroplast regions were sequenced in 89 individuals of these three Eriobotrya taxa from two locations where they coexist. A few fixed nucleotide substitutions or gaps were found in each of the investigated nuclear and chloroplast loci between E. japonica and E. prinoides. Of the 35 individuals of E. prinoides var. daduheensis, 33 showed nucleotide additivity of E. japonica and E. prinoides in at least one nuclear gene, and 10 of them harboured nucleotide additivity at all the four nuclear genes. Most haplotypes of E. prinoides var. daduheensis were also shared with those of E. japonica and E. prinoides. In the two chloroplast regions, 28 and 7 individuals were identical with E. japonica and E. prinoides, respectively. CONCLUSIONS Our study provides compelling evidence for a hybrid status for E. prinoides var. daduheensis. Most hybrid individuals are later-generation hybrids. Both E. japonica and E. prinoides can serve as female parent. Differential adaptation might maintain the species boundary of E. prinoides and E. japonica in the face of hybridization and potential introgression.
Collapse
Affiliation(s)
- Qiang Fan
- />Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Sufang Chen
- />Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Mingwan Li
- />Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Wei Guo
- />Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Huijuan Jing
- />Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Wei Wu
- />South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650 China
| | - Renchao Zhou
- />Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Wenbo Liao
- />Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
19
|
Ai B, Gao Y, Zhang X, Tao J, Kang M, Huang H. Comparative transcriptome resources of eleven Primulina species, a group of 'stone plants' from a biodiversity hot spot. Mol Ecol Resour 2014; 15:619-32. [PMID: 25243665 DOI: 10.1111/1755-0998.12333] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/28/2022]
Abstract
The genus Primulina is an emerging model system in studying the drivers and mechanisms of species diversification, for its high species richness and endemism, together with high degree of habitat specialization. In this study, we sequenced transcriptomes for eleven Primulina species across the phylogeny of the genus using the Illumina HiSeq 2000 platform. A total of 336 million clean reads were processed into 355 573 unigenes with a mean length of 1336 bp and an N50 value of 2191 bp after pooling and reassembling twelve individual pre-assembled unigene sets. Of these unigenes, 249 973 (70%) were successfully annotated and 256 601 (72%) were identified as coding sequences (CDSs). We identified a total of 38 279 simple sequence repeats (SSRs) and 367 123 single nucleotide polymorphisms (SNPs). Marker validation assay revealed that 354 (27.3%) of the 1296 SSR and 795 (39.6%) of the 2008 SNP loci showed successful genotyping performance and exhibited expected polymorphism profiles. We screened 834 putative single-copy nuclear genes and proved their high effectiveness in phylogeny construction and estimation of ancestral population parameters. We identified a total of 85 candidate orthologs under positive selection for 46 of the 66 species pairs. This study provided an efficient application of RNA-seq in development of genomic resources for a group of 'stone plants' from south China Karst regions, a biodiversity hot spot of the World. The assembled unigenes with annotations and the massive gene-associated molecular markers would help guide further molecular systematic, population genetic and ecological genomics studies in Primulina and its relatives.
Collapse
Affiliation(s)
- Bin Ai
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
20
|
Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0647-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Fu ZZ, Li YH, Zhang KM, Li Y. Molecular data and ecological niche modeling reveal population dynamics of widespread shrub Forsythia suspensa (Oleaceae) in China's warm-temperate zone in response to climate change during the Pleistocene. BMC Evol Biol 2014; 14:114. [PMID: 24885704 PMCID: PMC4052925 DOI: 10.1186/1471-2148-14-114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/14/2014] [Indexed: 11/27/2022] Open
Abstract
Background Despite its high number of endemic deciduous broad-leaved species in China’s warm-temperate zone, far less attention has been paid to phylogeographic studies in this region. In this work, the phylogeographic history of Forsythia suspensa endemic to China’s warm-temperate zone was investigated to explore the effect of climate change during the Pleistocene on the distribution of this deciduous broad-leaved species in China. Results The cpDNA data revealed seven phylogeographical groups corresponding to geographical regions. By contrast, the nrDNA data supported the samples clustered into three groups, which was inconsistent with separate geographical regions supported by cpDNA data. Ecological niche modeling showed that the climatically suitable area during the cold period was larger than that during the warm period. Conclusions Both molecular data and ecological niche modeling indicated that F. suspensa expanded to nearby low-elevation plains in the glacial periods, and retreated to mountaintops during interglacial warmer stages. This study thus supported that F. suspensa persisted in situ during the glacial of the Pleistocene with enlarged distribution area, contrary to the hypothesis of long distance southward migration or large-scale range contraction.
Collapse
Affiliation(s)
| | | | | | - Yong Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
22
|
Shariff S, Ibrahim NJ, Md-Zain BM, Idris AB, Suhana Y, Roff MN, Yaakop S. Multiplex PCR in determination of Opiinae parasitoids of fruit flies, Bactrocera sp., infesting star fruit and guava. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:7. [PMID: 25373154 PMCID: PMC4199358 DOI: 10.1093/jis/14.1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/11/2012] [Indexed: 06/04/2023]
Abstract
Malaysia is a tropical country that produces commercial fruits, including star fruits, Averrhoa carambola L. (Oxalidales: Oxalidaceae), and guavas, Psidium guajava L. (Myrtales: Myrtaceae). There is a high demand for these fruits, and they are planted for both local consumption and export purposes. Unfortunately, there has been a gradual reduction of these fruits, which has been shown to be related to fruit fly infestation, especially from the Bactrocera species. Most parasitic wasps (Hymenoptera: Braconidae: Opiinae) are known as parasitoids of fruit fly larvae. In this study, star fruits and guavas infested by fruit fry larvae were collected from the Malaysian Agricultural Research and Development Institute. The parasitized larvae were reared under laboratory conditions until the emergence of adult parasitoids. Multiplex PCR was performed to determine the braconid species using two mitochondrial DNA markers, namely cytochrome oxidase subunit I and cytochrome b. Two benefits of using multiplex PCR are the targeted bands can be amplified simultaneously using the same reaction and the identification process of the braconid species can be done accurately and rapidly. The species of fruit flies were confirmed using the COI marker. The results obtained from our study show that Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), Fopius arisanus (Sonan), and Pysttalia incisi (Silvestri) were parasitoids associated with Bactrocera carambolae (Drew and Hancock) (Diptera: Tephritidae) infested star fruits. Fopius arisanus was also the parasitoid associated with Bactrocera papayae (Drew and Hancock) infested guavas. Maximum parsimony was been constructed in Opiinae species to compare tree resolution between these two genes in differentiating among closely related species. The confirmation of the relationship between braconids and fruit fly species is very important, recognized as preliminary data, and highly necessary in biological control programs.
Collapse
Affiliation(s)
- S Shariff
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - N J Ibrahim
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - B M Md-Zain
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - A B Idris
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Y Suhana
- Horticulture Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400 Serdang, Selangor, Malaysia
| | - M N Roff
- Horticulture Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400 Serdang, Selangor, Malaysia
| | - S Yaakop
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
23
|
Fan DM, Yue JP, Nie ZL, Li ZM, Comes HP, Sun H. Phylogeography ofSophora davidii(Leguminosae) across the ‘Tanaka-Kaiyong Line’, an important phytogeographic boundary in Southwest China. Mol Ecol 2013; 22:4270-4288. [DOI: 10.1111/mec.12388] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Deng Mei Fan
- Key Laboratory of Biodiversity and Biogeography; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 China
- Laboratory of Subtropical Biodiversity; Jiangxi Agricultural University; Nanchang Jiangxi 330045 China
| | - Ji Pei Yue
- Key Laboratory of Biodiversity and Biogeography; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 China
| | - Ze Long Nie
- Key Laboratory of Biodiversity and Biogeography; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 China
| | - Zhi Min Li
- School of Life Science; Yunnan Normal University; Kunming 650092 Yunnan China
| | - Hans Peter Comes
- Department of Organismic Biology; University of Salzburg; Hellbrunnerstrasse 34 A-5020 Salzburg Austria
| | - Hang Sun
- Key Laboratory of Biodiversity and Biogeography; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 China
| |
Collapse
|
24
|
Wang Q, Abbott RJ, Yu QS, Lin K, Liu JQ. Pleistocene climate change and the origin of two desert plant species, Pugionium cornutum and Pugionium dolabratum (Brassicaceae), in northwest China. THE NEW PHYTOLOGIST 2013; 199:277-287. [PMID: 23550542 DOI: 10.1111/nph.12241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/22/2013] [Indexed: 05/14/2023]
Abstract
Pleistocene climate change has had an important effect in shaping intraspecific genetic variation in many species; however, its role in driving speciation is less clear. We examined the possibility of a Pleistocene origin of the only two representatives of the genus Pugionium (Brassicaceae), Pugionium cornutum and Pugionium dolabratum, which occupy different desert habitats in northwest China. We surveyed sequence variation for internal transcribed spacer (ITS), three chloroplast (cp) DNA fragments, and eight low-copy nuclear genes among individuals sampled from 11 populations of each species across their geographic ranges. One ITS mutation distinguished the two species, whereas mutations in cpDNA and the eight low-copy nuclear gene sequences were not species-specific. Although interspecific divergence varied greatly among nuclear gene sequences, in each case divergence was estimated to have occurred within the Pleistocene when deserts expanded in northwest China. Our findings point to the importance of Pleistocene climate change, in this case an increase in aridity, as a cause of speciation in Pugionium as a result of divergence in different habitats that formed in association with the expansion of deserts in China.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 6100065, China
| | - Richard J Abbott
- School of Biology, University of St Andrews, Mitchell Building, St Andrews, Fife, KY16 9TH, UK
| | - Qiu-Shi Yu
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, 730000, Gansu, China
| | - Kao Lin
- Laboratory of Evolutionary Genomics, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Quan Liu
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 6100065, China
| |
Collapse
|
25
|
Urashi C, Teshima KM, Minobe S, Koizumi O, Inomata N. Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region. Ecol Evol 2013; 3:2251-61. [PMID: 23919167 PMCID: PMC3728962 DOI: 10.1002/ece3.624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/17/2022] Open
Abstract
Inference of genetic structure and demographic history is fundamental issue in evolutionary biology. We examined the levels and patterns of genetic variation of a widespread mangrove species in the Indo-West Pacific region, Bruguiera gymnorrhiza, using ten nuclear gene regions. Genetic variation of individual populations covering its distribution range was low, but as the entire species it was comparable to other plant species. Genetic differentiation among the investigated populations was high. They could be divided into two genetic clusters: the West and East clusters of the Malay Peninsula. Our results indicated that these two genetic clusters derived from their ancestral population whose effective size of which was much larger compared to the two extant clusters. The point estimate of speciation time between B. gymnorrhiza and Bruguiera sexangula was two times older than that of divergence time between the two clusters. Migration from the West cluster to the East cluster was much higher than the opposite direction but both estimated migration rates were low. The past Sundaland and/or the present Malay Peninsula are likely to prevent gene flow between the West and East clusters and function as a geographical or land barrier.
Collapse
Affiliation(s)
- Chie Urashi
- Department of Environmental Science, International College of Arts and Sciences, Fukuoka Women's University 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan
| | | | | | | | | |
Collapse
|
26
|
Zou XH, Yang Z, Doyle JJ, Ge S. Multilocus estimation of divergence times and ancestral effective population sizes of Oryza species and implications for the rapid diversification of the genus. THE NEW PHYTOLOGIST 2013; 198:1155-1164. [PMID: 23574344 DOI: 10.1111/nph.12230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/08/2013] [Indexed: 06/02/2023]
Abstract
· Despite substantial investigations into Oryza phylogeny and evolution, reliable estimates of the divergence times and ancestral effective population sizes of major lineages in Oryza are challenging. · We sampled sequences of 106 single-copy nuclear genes from all six diploid genomes of Oryza to investigate the divergence times through extensive relaxed molecular clock analyses and estimated the ancestral effective population sizes using maximum likelihood and Bayesian methods. · We estimated that Oryza originated in the middle Miocene (c. 13-15 million years ago; Ma) and obtained an explicit time frame for two rapid diversifications in this genus. The first diversification involving the extant F-/G-genomes and possibly the extinct H-/J-/K-genomes occurred in the middle Miocene immediately after (within < 1 Myr) the origin of Oryza. The second giving rise to the A-/B-/C-genomes happened c. 5-6 Ma. We found that ancestral effective population sizes were much larger than those of extant species in Oryza. · We suggest that the climate fluctuations during the period from the middle Miocene to Pliocene may have contributed to the two rapid diversifications of Oryza species. Such information helps better understand the evolutionary history of Oryza and provides further insights into the pattern and mechanism of diversification in plants in general.
Collapse
Affiliation(s)
- Xin-Hui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ziheng Yang
- Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jeff J Doyle
- Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY, 14853, USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
27
|
Cutter AD, Jovelin R, Dey A. Molecular hyperdiversity and evolution in very large populations. Mol Ecol 2013; 22:2074-95. [PMID: 23506466 PMCID: PMC4065115 DOI: 10.1111/mec.12281] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Abstract
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on noncoding regulatory elements.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
28
|
Huang CC, Hung KH, Wang WK, Ho CW, Huang CL, Hsu TW, Osada N, Hwang CC, Chiang TY. Evolutionary rates of commonly used nuclear and organelle markers of Arabidopsis relatives (Brassicaceae). Gene 2012; 499:194-201. [DOI: 10.1016/j.gene.2012.02.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/31/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
29
|
Zhu T, Yang Z. Maximum Likelihood Implementation of an Isolation-with-Migration Model with Three Species for Testing Speciation with Gene Flow. Mol Biol Evol 2012; 29:3131-42. [DOI: 10.1093/molbev/mss118] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Zhang C, Zhang DX, Zhu T, Yang Z. Evaluation of a Bayesian Coalescent Method of Species Delimitation. Syst Biol 2011; 60:747-61. [PMID: 21876212 DOI: 10.1093/sysbio/syr071] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chi Zhang
- Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xing Zhang
- Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianqi Zhu
- School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Ziheng Yang
- Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
31
|
He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, Greenberg AJ, Hudson RR, Wu CI, Shi S. Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 2011; 7:e1002100. [PMID: 21695282 PMCID: PMC3111475 DOI: 10.1371/journal.pgen.1002100] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/07/2011] [Indexed: 11/19/2022] Open
Abstract
Genealogical patterns in different genomic regions may be different due to the joint influence of gene flow and selection. The existence of two subspecies of cultivated rice provides a unique opportunity for analyzing these effects during domestication. We chose 66 accessions from the three rice taxa (about 22 each from Oryza sativa indica, O. sativa japonica, and O. rufipogon) for whole-genome sequencing. In the search for the signature of selection, we focus on low diversity regions (LDRs) shared by both cultivars. We found that the genealogical histories of these overlapping LDRs are distinct from the genomic background. While indica and japonica genomes generally appear to be of independent origin, many overlapping LDRs may have originated only once, as a result of selection and subsequent introgression. Interestingly, many such LDRs contain only one candidate gene of rice domestication, and several known domestication genes have indeed been “rediscovered” by this approach. In summary, we identified 13 additional candidate genes of domestication. The origin of two cultivated rice Oryza sativa indica and O. sativa japonica has been an interesting topic in evolutionary biology. Through whole-genome sequencing, we show that the rice genome embodies two different evolutionary trajectories. Overall genome-wide pattern supports a history of independent origin of two cultivars from their wild population. However, genomic segments bearing important agronomic traits originated only once in one population and spread across all cultivars through introgression and human selection. Population genetic analysis allows us to pinpoint 13 additional candidate domestication genes.
Collapse
Affiliation(s)
- Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
| | - Weiwei Zhai
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
| | - Yu Wang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Xuemei Lu
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Anthony J. Greenberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Richard R. Hudson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (C-IW); (SS)
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (C-IW); (SS)
| |
Collapse
|
32
|
Zhou R, Ling S, Zhao W, Osada N, Chen S, Zhang M, He Z, Bao H, Zhong C, Zhang B, Lu X, Turissini D, Duke NC, Lu J, Shi S, Wu CI. Population genetics in nonmodel organisms: II. natural selection in marginal habitats revealed by deep sequencing on dual platforms. Mol Biol Evol 2011; 28:2833-42. [PMID: 21504891 DOI: 10.1093/molbev/msr102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Population genetics of species living in marginal habitats could be particularly informative about the genetics of adaptation, but such analyses have not been readily feasible until recently. Sonneratia alba, a mangrove species widely distributed in the Indo-West Pacific, provides a very suitable system for the study of local adaptation. In this study, we analyzed DNA variation by pooling 71 genes from 85-100 individuals for DNA sequencing. For each of the two nearby S. alba populations, we obtained ~2,500 × coverage on the Illumina GA platform and for the Sanya population, an additional 5,400 × coverage on the AB SOLiD platform. For the Sanya sample, although each sequencing method called many putative single nucleotide polymorphisms, the two sets of calls did not overlap, suggesting platform-dependent errors. Conventional sequencing corroborated that each population is monomorphic. The two populations differ by 54 bp of 79,000 sites, but 90% of the variants are found in 10% of the genes. Strong local adaptation and high migration may help to explain the extensive monomorphism shared by the two populations in the presence of a small number of highly differentiated loci.
Collapse
Affiliation(s)
- Renchao Zhou
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ouyang J, Yang G, Zhou R, Chen S, Guo M, Wu W, Huang Y, Shi S. Development and characterization of 18 EST-SSR markers in Sonneratia caseolaris. AMERICAN JOURNAL OF BOTANY 2011; 98:e78-e80. [PMID: 21613152 DOI: 10.3732/ajb.1000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Sonneratia caseolaris, a typical mangrove species, is widely distributed in the Indo-West Pacific region. EST-SSR markers were developed for this species to examine its genetic diversity. METHODS AND RESULTS A total of 18 EST-SSR primer pairs were designed based on the transcriptome sequences of S. caseolaris. Thirteen primer pairs showed polymorphism with one to three alleles per locus when assessed in two populations from China and Australia. The observed heterozygosity and expected heterozygosity ranged from 0 to 0.5000, and 0 to 0.5217 in the Hainan population, and from 0 to 0.2500, and 0 to 0.4891 in the Queensland population, respectively. Thirteen of the 18 primer sets identified in S. caseolaris can be successfully applied to its congener S. alba, and a much lower level of polymorphisms was observed in this widespread species. CONCLUSIONS These polymorphic EST-SSR markers for S. caseolaris are likely to be useful for future genetic diversity studies.
Collapse
Affiliation(s)
- Jianhua Ouyang
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang WK, Ho CW, Hung KH, Wang KH, Huang CC, Araki H, Hwang CC, Hsu TW, Osada N, Chiang TY. Multilocus analysis of genetic divergence between outcrossing Arabidopsis species: evidence of genome-wide admixture. THE NEW PHYTOLOGIST 2010; 188:488-500. [PMID: 20673288 DOI: 10.1111/j.1469-8137.2010.03383.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
• Outcrossing Arabidopsis species that diverged from their inbreeding relative Arabidopsis thaliana 5 million yr ago and display a biogeographical pattern of interspecific sympatry vs intraspecific allopatry provides an ideal model for studying impacts of gene introgression and polyploidization on species diversification. • Flow cytometry analyses detected ploidy polymorphisms of 2× and 4× in Arabidopsis lyrata ssp. kamchatica of Taiwan. Genomic divergence between species/subspecies was estimated based on 98 randomly chosen nuclear genes. Multilocus analyses revealed a mosaic genome in diploid A. l. kamchatica composed of Arabidopsis halleri-like and A. lyrata-like alleles. • Coalescent analyses suggest that the segregation of ancestral polymorphisms alone cannot explain the high inconsistency between gene trees across loci, and that gene introgression via diploid A. l. kamchatica likely distorts the molecular phylogenies of Arabidopsis species. However, not all genes migrated across species freely. Gene ontology analyses suggested that some nonmigrating genes were constrained by natural selection. • High levels of estimated ancestral polymorphisms between A. halleri and A. lyrata suggest that gene flow between these species has not completely ceased since their initial isolation. Polymorphism data of extant populations also imply recent gene flow between the species. Our study reveals that interspecific gene flow affects the genome evolution in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Kuang Wang
- Department of Life Sciences, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gladieux P, Vercken E, Fontaine MC, Hood ME, Jonot O, Couloux A, Giraud T. Maintenance of fungal pathogen species that are specialized to different hosts: allopatric divergence and introgression through secondary contact. Mol Biol Evol 2010; 28:459-71. [PMID: 20837605 DOI: 10.1093/molbev/msq235] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sympatry of species that lack complete prezygotic isolation is ideal for the study of how species can be maintained in the face of potential gene flow. This is particularly important in the context of emerging diseases on new hosts because pathogen adaptation is facilitated by reduced gene flow from ancestral populations. Here, we investigated divergence and gene flow between two closely related fungal species, Microbotryum lychnidis-dioicae and M. silenes-dioicae, causing anther-smut disease on the wide-spread plant species Silene latifolia and S. dioica, respectively. Using model-based clustering algorithms on microsatellite data from samples across Europe, we identified rare disease transmission between the host species and rare pathogen hybrids. Using a coalescent-based approach and an isolation-with-migration model, the age of divergence between the two fungal species was estimated at approximately 4.2 × 10(5) years. Levels of gene flow were low and concentrated in very recent times. In addition, gene flow appeared unidirectional from M. silenes-dioicae to M. lychnidis-dioicae. Altogether, our findings are consistent with a scenario of recurrent introgressive hybridization but at a very low level and through secondary contact following initial divergence in allopatry. Asymmetry in the direction of gene flow mirrors previous findings on introgression between the two host plants. Our study highlights the consequences of bringing closely related pathogens into contact, which is increasing through modern global changes and favors cross-species disease transmission, hybridization, and introgression by pathogens.
Collapse
Affiliation(s)
- Pierre Gladieux
- Laboratoire Ecologie, Systématique et Evolution, Univ Paris Sud, UMR8079, Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lohse K, Sharanowski B, Stone GN. Quantifying the pleistocene history of the oak gall parasitoid Cecidostiba fungosa using twenty intron loci. Evolution 2010; 64:2664-81. [PMID: 20455927 DOI: 10.1111/j.1558-5646.2010.01024.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The longitudinal spread of temperate organisms into refugial populations in Southern Europe is generally assumed to predate the last interglacial. However, few studies have attempted to quantify this process in nonmodel organisms using explicit models and multilocus data. We used sequence data for 20 intron-spanning loci (12 kb per individual) to resolve the history of refugial populations of a widespread western Palaearctic oak gall parasitoid Cecidostiba fungosa (Pteromalidae). Using maximum likelihood and Bayesian methods we assess alternative population tree topologies and estimate divergence times and ancestral population sizes under a model of divergence between three refugia (Middle East, Balkans and Iberia). Both methods support an "Out of the East" history for C. fungosa, matching the pattern previously inferred for their gallwasp hosts. However, coalescent-based estimates of the ages of population divides are much more recent (coinciding with the Eemian interglacial) than nodal ages of single gene trees for C. fungosa and other species. We also find that increasing the sample size from one haploid sequence per refugial population to three only marginally improves parameter estimates. Our results suggest that there is significant information in the minimal samples currently analyzable with maximum likelihood methods, and that similar methods could be applied to multiple species to test alternative models of assemblage evolution.
Collapse
Affiliation(s)
- Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, West Mains Road, United Kingdom.
| | | | | |
Collapse
|
37
|
Zhou R, Qiu S, Zhang M, Guo M, Chen S, Shi S. Sonneratia ovata Backer–A genetically depauperate mangrove species. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Yang Z. A likelihood ratio test of speciation with gene flow using genomic sequence data. Genome Biol Evol 2010; 2:200-11. [PMID: 20624726 PMCID: PMC2997537 DOI: 10.1093/gbe/evq011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2010] [Indexed: 11/12/2022] Open
Abstract
Genomic sequence data may be used to test hypotheses about the process of species formation. In this paper, I implement a likelihood ratio test of variable species divergence times over the genome, which may be considered a test of the null model of allopatric speciation without gene flow against the alternative model of parapatric speciation with gene flow. Two models are implemented in the likelihood framework, which accommodate coalescent events in the ancestral populations in a phylogeny of three species. One model assumes a constant species divergence time over the genome, whereas another allows it to vary. Computer simulation shows that the test has acceptable false positive rate but to achieve reasonable power, hundreds or even thousands of genomic loci may be necessary. The test is applied to genomic data from the human, chimpanzee, and gorilla.
Collapse
Affiliation(s)
- Ziheng Yang
- Galton Laboratory, Department of Biology, University College London, United Kingdom.
| |
Collapse
|
39
|
Wu W, Zhou R, Huang Y, Boufford DE, Shi S. Molecular evidence for natural intergeneric hybridization between Liquidambar and Altingia. JOURNAL OF PLANT RESEARCH 2010; 123:231-9. [PMID: 19941029 DOI: 10.1007/s10265-009-0275-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 10/06/2009] [Indexed: 05/16/2023]
Abstract
Since its establishment, a hybrid origin for Semiliquidambar has been proposed based on morphological intermediacy and sympatric distribution with Altingia and Liquidambar. This hypothesis, however, has lacked convincing molecular evidence. In this study, two nuclear genes, pin2 and cab4, and a chloroplast gene, matK, from Semiliquidambar cathayensis and its putative parental species Liquidambar and Altingia in Jianfengling, Hainan, and Heishiding and Nanling, Guangdong, China, were sequenced to test this hypothesis. Our results showed that L. formosana and L. acalycina were closely related and constituted an inseparable clade in the phylogenetic trees of both pin2 and cab4 genes. Phylogenetic analyses revealed two types of sequences for S. cathayensis, which were clustered with its putative parents, L. formosana-L. acalycina and A. obovata in Jianfengling, and with L. formosana-L. acalycina and A. chinensis in Heishiding and Nanling. The partial chloroplast matK gene sequences showed four nucleotide substitutions between L. formosana and A. obovata in Jianfengling; the sequences of the two individuals of S. cathayensis were identical with those of A. obovata. No diagnostic chloroplast markers including matK and three other chloroplast genes were found to distinguish L. formosana and A. chinensis in Heishiding and Nanling. Molecular data clearly demonstrated that S. cathayensis is of intergeneric hybrid origin between L. formosana-L. acalycina and A. obovata or A. chinensis and that A. obovata functions as the maternal parent in the hybridization event in Jianfengling, Hainan.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Science, Sun Yat-Sen University, Xinggangxi Road No 135, 510275 Guangzhou, China
| | | | | | | | | |
Collapse
|
40
|
Li JW, Yeung CKL, Tsai PW, Lin RC, Yeh CF, Yao CT, Han L, Hung LM, Ding P, Wang Q, Li SH. Rejecting strictly allopatric speciation on a continental island: prolonged postdivergence gene flow between Taiwan (Leucodioptron taewanus, Passeriformes Timaliidae) and Chinese (L. canorum canorum) hwameis. Mol Ecol 2010; 19:494-507. [PMID: 20070521 DOI: 10.1111/j.1365-294x.2009.04494.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allopatry is conventionally considered the geographical mode of speciation for continental island organisms. However, strictly allopatric speciation models that assume the lack of postdivergence gene flow seem oversimplified given the recurrence of land bridges during glacial periods since the late Pliocene. Here, to evaluate whether a continental island endemic, the Taiwan hwamei (Leucodioptron taewanus, Passeriformes Timaliidae) speciated in strict allopatry, we used weighted-regression-based approximate Bayesian computation (ABC) to analyse the genetic polymorphism of 18 neutral nuclear loci (total length: 8500 bp) in Taiwan hwamei and its continental sister species, the Chinese hwamei (L. canorum canorum). The nonallopatry model was found to fit better with observed genetic polymorphism of the two hwamei species (posterior possibility = 0.82). We also recovered unambiguous signals of nontrivial bidirectional postdivergence gene flow (N(e)m >> 1) between Chinese hwamei and Taiwan hwamei until 0.5 Ma. Divergence time was estimated to be 3.5 to 2 million years earlier than that estimated from mitochondrial cytochrome b sequences. Finally, using the inferred nonallopatry model to simulate genetic variation at 24 nuclear genes examined showed that the adiponectin receptor 1 gene may be under divergent adaptation. Our findings imply that the role of geographical barrier may be less prominent for the speciation of continental island endemics, and suggest a shift in speciation studies from simply correlating geographical barrier and genetic divergence to examining factors that facilitate and maintain divergence, e.g. differential selection and sexual selection, especially in the face of interpopulation gene flow.
Collapse
Affiliation(s)
- Jing-Wen Li
- Department of Life Science, National Taiwan Normal University, Taipei 116 Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hickerson MJ, Meyer CP. Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach. BMC Evol Biol 2008; 8:322. [PMID: 19038027 PMCID: PMC2614435 DOI: 10.1186/1471-2148-8-322] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 11/27/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Marine allopatric speciation is an enigma because pelagic larval dispersal can potentially connect disjunct populations thereby preventing reproductive and morphological divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC) that tests two hypotheses of marine allopatric speciation: 1.) "soft vicariance", where a speciation involves fragmentation of a large widespread ancestral species range that was previously connected by long distance gene flow; and 2.) peripatric colonization, where speciations in peripheral archipelagos emerge from sweepstakes colonizations from central source regions. The HABC approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair inferences about biogeographic processes while explicitly allowing for uncertainty in the demographic differences within each taxon-pair. Our method uses comparative phylogeographic data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing pairs of central and peripheral populations. We use the method on two comparative phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian (11 taxon-pairs) and Marquesan archipelagos (7 taxon-pairs). RESULTS Given the Marquesan data, we find strong evidence of simultaneous colonization across all seven cowrie gastropod endemics co-distributed in the Marquesas. In contrast, the lower sample sizes in the Hawaiian data lead to greater uncertainty associated with the Hawaiian estimates. Although, the hyper-parameter estimates point to soft vicariance in a subset of the 11 Hawaiian taxon-pairs, the hyper-prior and hyper-posterior are too similar to make a definitive conclusion. Both results are not inconsistent with what is known about the geologic history of the archipelagos. Simulations verify that our method can successfully distinguish these two histories across a wide range of conditions given sufficient sampling. CONCLUSION Although soft vicariance and colonization are likely to produce similar genetic patterns when a single taxon-pair is used, our hierarchical Bayesian model can potentially detect if either history is a dominant process across co-distributed taxon-pairs. As comparative phylogeographic datasets grow to include > 100 co-distributed taxon-pairs, the HABC approach will be well suited to dissect temporal patterns in community assembly and evolution, thereby providing a bridge linking comparative phylogeography with community ecology.
Collapse
Affiliation(s)
- Michael J Hickerson
- Biology Department, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367-1597, USA
| | - Christopher P Meyer
- Smithsonian Institution, PO Box 37012, MRC 163, Washington, DC 20013-7012, USA
| |
Collapse
|