1
|
Duca M, Malagolini N, Dall'Olio F. The story of the Sd a antigen and of its cognate enzyme B4GALNT2: What is new? Glycoconj J 2023; 40:123-133. [PMID: 36287346 DOI: 10.1007/s10719-022-10089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
Abstract
The structure Siaα2,3(GalNAcβ1,4)Gal- is the epitope of the Sda antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sda is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcβ1,4)Galβ1,4Glc-Cer]. The Sda synthase β1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sda is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galβ1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sda/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.
Collapse
Affiliation(s)
- Martina Duca
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy.
| |
Collapse
|
2
|
Vallier M, Suwandi A, Ehrhardt K, Belheouane M, Berry D, Čepić A, Galeev A, Johnsen JM, Grassl GA, Baines JF. Pathometagenomics reveals susceptibility to intestinal infection by Morganella to be mediated by the blood group-related B4galnt2 gene in wild mice. Gut Microbes 2023; 15:2164448. [PMID: 36683151 PMCID: PMC9872957 DOI: 10.1080/19490976.2022.2164448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious disease is widely considered to be a major driver of evolution. A preponderance of signatures of balancing selection at blood group-related genes is thought to be driven by inherent trade-offs in susceptibility to disease. B4galnt2 is subject to long-term balancing selection in house mice, where two divergent allele classes direct alternative tissue-specific expression of a glycosyltransferase in the intestine versus blood vessels. The blood vessel allele class leads to prolonged bleeding times similar to von Willebrand disease in humans, yet has been maintained for millions of years. Based on in vivo functional studies in inbred lab strains, it is hypothesized that the cost of prolonged bleeding times may be offset by an evolutionary trade-off involving susceptibility to a yet unknown pathogen(s). To identify candidate pathogens for which resistance could be mediated by B4galnt2 genotype, we here employed a novel "pathometagenomic" approach in a wild mouse population, which combines bacterial 16S rRNA gene-based community profiling with histopathology of gut tissue. Through subsequent isolation, genome sequencing and controlled experiments in lab mice, we show that the presence of the blood vessel allele is associated with resistance to a newly identified subspecies of Morganella morganii, a clinically important opportunistic pathogen. Given the increasing importance of zoonotic events, the approach outlined here may find useful application in the detection of emerging diseases in wild animal populations.
Collapse
Affiliation(s)
- Marie Vallier
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - Meriem Belheouane
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Aleksa Čepić
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alibek Galeev
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jill M. Johnsen
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
3
|
Suwandi A, Alvarez KG, Galeev A, Steck N, Riedel CU, Puente JL, Baines JF, Grassl GA. B4galnt2-mediated host glycosylation influences the susceptibility to Citrobacter rodentium infection. Front Microbiol 2022; 13:980495. [PMID: 36033875 PMCID: PMC9403859 DOI: 10.3389/fmicb.2022.980495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Histo-blood group antigens in the intestinal mucosa play important roles in host–microbe interactions and modulate the susceptibility to enteric pathogens. The B4galnt2 gene, expressed in the GI tract of most mammals, including humans, encodes a beta-1,4-N-acetylgalactosaminyltransferase enzyme which catalyzes the last step in the biosynthesis of the Sd(a) and Cad blood group antigens by adding an N-acetylgalactosamine (GalNAc) residue to the precursor molecules. In our study, we found that loss of B4galnt2 expression is associated with increased susceptibility to Citrobacter rodentium infection, a murine model pathogen for human enteropathogenic Escherichia coli. We observed increased histopathological changes upon C. rodentium infection in mice lacking B4galnt2 compared to B4galnt2-expressing wild-type mice. In addition, wild-type mice cleared the C. rodentium infection faster than B4galnt2−/− knockout mice. It is known that C. rodentium uses its type 1 fimbriae adhesive subunit to bind specifically to D-mannose residues on mucosal cells. Flow cytometry analysis of intestinal epithelial cells showed the absence of GalNAc-modified glycans but an increase in mannosylated glycans in B4galnt2-deficient mice compared to B4galnt2-sufficient mice. Adhesion assays using intestinal epithelial organoid-derived monolayers revealed higher C. rodentium adherence to cells lacking B4galnt2 expression compared to wild-type cells which in turn was reduced in the absence of type I fimbriae. In summary, we show that B4galnt2 expression modulates the susceptibility to C. rodentium infection, which is partly mediated by fimbriae-mannose interaction.
Collapse
Affiliation(s)
- Abdulhadi Suwandi
- Institute of Cell Biochemistry, Center of Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Kris Gerard Alvarez
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Alibek Galeev
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Natalie Steck
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - José Luis Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- *Correspondence: Guntram A. Grassl,
| |
Collapse
|
4
|
The Cancer-Associated Antigens Sialyl Lewis a/x and Sd a: Two Opposite Faces of Terminal Glycosylation. Cancers (Basel) 2021; 13:cancers13215273. [PMID: 34771437 PMCID: PMC8582462 DOI: 10.3390/cancers13215273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The glycosyltransferase β1,4-N-acetylgalactosaminyltransferae 2 (B4GALNT2), product of the B4GALNT2 gene is responsible for the biosynthesis of the carbohydrate antigen Sda. Both the enzyme and its cognate antigen display a restricted pattern of tissue expression and modulation in colorectal, gastric, and mammary cancers. In colorectal cancer, B4GALNT2 is generally downregulated, but patients displaying higher expression survive longer. The sialyl Lewisa and sialyl Lewisx antigens are associated with malignancy. Their biosynthesis and that of Sda are mutually exclusive. Forced expression of B4GALNT2 in colorectal cancer cell lines modulates the transcriptome towards lower malignancy, reducing stemness. These effects are independent of B4GALNT2-induced sLea/sLex inhibition. Thus, B4GALNT2 is a marker of better prognosis and a cancer-restraining enzyme in colorectal cancer, with a therapeutic potential. Abstract Terminal carbohydrate structures are particularly relevant in oncology because they can serve as cancer markers and alter the phenotype of cancer cells. The Sda antigen and the sialyl Lewisx and sialyl Lewisa (sLex and sLea) antigens are terminal structures whose biosynthesis is mutually exclusive. In this review, we describe the main features of the Sda antigen in cancer and its relationship with sLex/a antigens. Information was obtained from an extensive literature search and from The Cancer Genome Atlas (TCGA) public database. The Sda biosynthetic enzyme B4GALNT2 undergoes downregulation in colorectal (CRC) and stomach cancer, while it is ectopically expressed by a minority of breast cancer (BRCA) patients. High expression of B4GALNT2 is associated with better prognosis and a less malignant gene expression profile in CRC, while the opposite occurs in BRCA. The regulation of B4GALNT2 expression in CRC is multifactorial, involving gene methylation and miRNA expression. Forced expression of B4GALNT2 inhibited sLea/sLex and reduced malignancy and stemness in cells constitutively expressing sLex/a antigens. However, consistent effects were observed upon B4GALNT2 forced expression and in cells not expressing sLex/a antigens. Thus, B4GALNT2 and the Sda antigen exert a tumor-restraining activity in CRC and probably other gastrointestinal cancers, independently of sLex/a antigens.
Collapse
|
5
|
Galeev A, Suwandi A, Cepic A, Basu M, Baines JF, Grassl GA. The role of the blood group-related glycosyltransferases FUT2 and B4GALNT2 in susceptibility to infectious disease. Int J Med Microbiol 2021; 311:151487. [PMID: 33662872 DOI: 10.1016/j.ijmm.2021.151487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The glycosylation profile of the gastrointestinal tract is an important factor mediating host-microbe interactions. Variation in these glycan structures is often mediated by blood group-related glycosyltransferases, and can lead to wide-ranging differences in susceptibility to both infectious- as well as chronic disease. In this review, we focus on the interplay between host glycosylation, the intestinal microbiota and susceptibility to gastrointestinal pathogens based on studies of two exemplary blood group-related glycosyltransferases that are conserved between mice and humans, namely FUT2 and B4GALNT2. We highlight that differences in susceptibility can arise due to both changes in direct interactions, such as bacterial adhesion, as well as indirect effects mediated by the intestinal microbiota. Although a large body of experimental work exists for direct interactions between host and pathogen, determining the more complex and variable mechanisms underlying three-way interactions involving the intestinal microbiota will be the subject of much-needed future research.
Collapse
Affiliation(s)
- Alibek Galeev
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Aleksa Cepic
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany.
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany.
| |
Collapse
|
6
|
Josenhans C, Müthing J, Elling L, Bartfeld S, Schmidt H. How bacterial pathogens of the gastrointestinal tract use the mucosal glyco-code to harness mucus and microbiota: New ways to study an ancient bag of tricks. Int J Med Microbiol 2020; 310:151392. [DOI: 10.1016/j.ijmm.2020.151392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
|
7
|
Byrne G, Ahmad-Villiers S, Du Z, McGregor C. B4GALNT2 and xenotransplantation: A newly appreciated xenogeneic antigen. Xenotransplantation 2018; 25:e12394. [PMID: 29604134 PMCID: PMC6158069 DOI: 10.1111/xen.12394] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
Analysis of non‐Gal antibody induced after pig‐to‐baboon cardiac xenotransplantation identified the glycan produced by porcine beta‐1,4‐N‐acetyl‐galactosaminyltransferase 2 (B4GALNT2) as an immunogenic xenotransplantation antigen. The porcine B4GALNT2 enzyme is homologous to the human enzyme, which synthesizes the human SDa blood group antigen. Most humans produce low levels of anti‐SDa IgM which polyagglutinates red blood cells from rare individuals with high levels of SDa expression. The SDa glycan is also present on GM2 gangliosides. Clinical GM2 vaccination studies for melanoma patients suggest that a human antibody response to SDa can be induced. Expression of porcine B4GALNT2 in human HEK293 cells results in increased binding of anti‐SDa antibody and increased binding of Dolichos biflorus agglutinin (DBA), a lectin commonly used to detect SDa. In pigs, B4GALNT2 is expressed by vascular endothelial cells and endothelial cells from a wide variety of pig backgrounds stain with DBA, suggesting that porcine vascular expression of B4GALNT2 is not polymorphic. Mutations in B4GALNT2 have been engineered in mice and pigs. In both species, the B4GALNT2‐KO animals are apparently normal and no longer show evidence of SDa antigen expression. Pig tissues with a mutation in B4GALNT2, added to a background of alpha‐1,3‐galactosyltransferase deficient (GGTA1‐KO) and cytidine monophosphate‐N‐acetylneuraminic acid hydroxylase deficient (CMAH‐KO), show reduced antibody binding, confirming the presence of B4GALNT2‐dependent antibodies in both humans and non‐human primates. Preclinical xenotransplantation using B4GALNT2‐deficient donors has recently been reported. Elimination of this source of immunogenic pig antigen should minimize acute injury by preformed anti‐pig antibody and eliminate an induced clinical immune response to this newly appreciated xenotransplantation antigen.
Collapse
Affiliation(s)
- Guerard Byrne
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Christopher McGregor
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Kohl KD, Oakeson KF, Dunn D, Meyerholz DK, Dale C, Weiss RB, Dearing MD. Patterns of host gene expression associated with harboring a foregut microbial community. BMC Genomics 2017; 18:697. [PMID: 28874116 PMCID: PMC5585965 DOI: 10.1186/s12864-017-4101-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Harboring foregut microbial communities is considered a key innovation that allows herbivorous mammals to colonize new ecological niches. However, the functions of these chambers have only been well studied at the molecular level in ruminants. Here, we investigate gene expression in the foregut chamber of herbivorous rodents and ask whether these gene expression patterns are consistent with results in ruminants. We compared gene expression in foregut tissues of two rodent species: Stephen's woodrat (Neotoma stephensi), which harbors a dense foregut microbial community, and the lab rat (Rattus norvegicus), which lacks such a community. RESULTS We found that woodrats have higher abundances of transcripts associated with smooth muscle processes, specifically a higher expression of the smoothelin-like 1 gene, which may assist in contractile properties of this tissue to retain food material in the foregut chamber. The expression of genes associated with keratinization and cornification exhibited a complex pattern of differences between the two species, suggesting distinct molecular mechanisms. Lab rats exhibited higher abundances of transcripts associated with immune function, likely to inhibit microbial growth in the foregut of this species. CONCLUSIONS Some of our results were consistent with previous findings in ruminants (high expression of facilitative glucose transporters, lower expression of B4galnt2), suggestive of possible convergent evolution, while other results were unclear, and perhaps represent novel host-microbe interactions in rodents. Overall, our results suggest that harboring a foregut microbiota is associated with changes to the functions and host-microbe interactions of the foregut tissues.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, Vanderbilt University, 465 21st Ave South, Nashville, TN, 37235, USA.
| | - Kelly F Oakeson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Diane Dunn
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, 84112, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Colin Dale
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, 84112, USA
| | - M Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
9
|
Vallier M, Abou Chakra M, Hindersin L, Linnenbrink M, Traulsen A, Baines JF. Evaluating the maintenance of disease-associated variation at the blood group-related gene B4galnt2 in house mice. BMC Evol Biol 2017; 17:187. [PMID: 28806915 PMCID: PMC5557512 DOI: 10.1186/s12862-017-1035-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/04/2017] [Indexed: 11/16/2022] Open
Abstract
Background B4galnt2 is a blood group-related glycosyltransferase that displays cis-regulatory variation for its tissue-specific expression patterns in house mice. The wild type allele, found e.g. in the C57BL/6 J strain, directs intestinal expression of B4galnt2, which is the pattern observed among vertebrates, including humans. An alternative allele class found in the RIIIS/J strain and other mice instead drives expression in blood vessels, which leads to a phenotype similar to type 1 von Willebrand disease (VWD), a common human bleeding disorder. We previously showed that alternative B4galnt2 alleles are subject to long-term balancing selection in mice and that variation in B4galnt2 expression influences host-microbe interactions in the intestine. This suggests that the costs of prolonged bleeding in RIIIS/J allele-bearing mice might be outweighed by benefits associated with resistance against gastrointestinal pathogens. However, the conditions under which such trade-offs could lead to the long-term maintenance of disease-associated variation at B4galnt2 are unclear. Results To explore the persistence of B4galnt2 alleles in wild populations of house mice, we combined B4galnt2 haplotype frequency data together with a mathematical model based on an evolutionary game framework with a modified Wright-Fisher process. In particular, given the potential for a heterozygote advantage as a possible explanation for balancing selection, we focused on heterozygous mice, which express B4galnt2 in both blood vessels and the gastrointestinal tract. We show that B4galnt2 displays an interesting spatial allelic distribution in Western Europe, likely due to the recent action of natural selection. Moreover, we found that the genotype frequencies observed in nature can be produced by pathogen-driven selection when both heterozygotes and RIIIS/J homozygotes are protected against infection and the fitness cost of bleeding is roughly half that of infection. Conclusion By comparing the results of our models to the patterns of polymorphism at B4galnt2 in natural populations, we are able to recognize the long-term maintenance of the RIIIS/J allele through host-pathogen interactions as a viable hypothesis. Further, our models identify that a putative dominant-, yet unknown protective function of the RIIIS/J allele appears to be more likely than a protective loss of intestinal B4galnt2 expression in RIIIS/J homozygotes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1035-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Vallier
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany.,Institute for Experimental Medicine, Section of Evolutionary Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Maria Abou Chakra
- Max Planck Institute for Evolutionary Biology, Evolutionary Theory, Plön, Germany.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Laura Hindersin
- Max Planck Institute for Evolutionary Biology, Evolutionary Theory, Plön, Germany
| | - Miriam Linnenbrink
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology, Evolutionary Theory, Plön, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany. .,Institute for Experimental Medicine, Section of Evolutionary Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany.
| |
Collapse
|
10
|
Croze M, Wollstein A, Božičević V, Živković D, Stephan W, Hutter S. A genome-wide scan for genes under balancing selection in Drosophila melanogaster. BMC Evol Biol 2017; 17:15. [PMID: 28086750 PMCID: PMC5237213 DOI: 10.1186/s12862-016-0857-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/17/2016] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND In the history of population genetics balancing selection has been considered as an important evolutionary force, yet until today little is known about its abundance and its effect on patterns of genetic diversity. Several well-known examples of balancing selection have been reported from humans, mice, plants, and parasites. However, only very few systematic studies have been carried out to detect genes under balancing selection. We performed a genome scan in Drosophila melanogaster to find signatures of balancing selection in a derived (European) and an ancestral (African) population. We screened a total of 34 genomes searching for regions of high genetic diversity and an excess of SNPs with intermediate frequency. RESULTS In total, we found 183 candidate genes: 141 in the European population and 45 in the African one, with only three genes shared between both populations. Most differences between both populations were observed on the X chromosome, though this might be partly due to false positives. Functionally, we find an overrepresentation of genes involved in neuronal development and circadian rhythm. Furthermore, some of the top genes we identified are involved in innate immunity. CONCLUSION Our results revealed evidence of genes under balancing selection in European and African populations. More candidate genes have been found in the European population. They are involved in several different functions.
Collapse
Affiliation(s)
- Myriam Croze
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| | - Andreas Wollstein
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Vedran Božičević
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Daniel Živković
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.,Center of Food and Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.,Natural History Museum Berlin, 10115, Berlin, Germany
| | - Stephan Hutter
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Fijarczyk A, Dudek K, Babik W. Selective Landscapes in newt Immune Genes Inferred from Patterns of Nucleotide Variation. Genome Biol Evol 2016; 8:3417-3432. [PMID: 27702815 PMCID: PMC5203778 DOI: 10.1093/gbe/evw236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Host–pathogen interactions may result in either directional selection or in pressure for the maintenance of polymorphism at the molecular level. Hence signatures of both positive and balancing selection are expected in immune genes. Because both overall selective pressure and specific targets may differ between species, large-scale population genomic studies are useful in detecting functionally important immune genes and comparing selective landscapes between taxa. Such studies are of particular interest in amphibians, a group threatened worldwide by emerging infectious diseases. Here, we present an analysis of polymorphism and divergence of 634 immune genes in two lineages of Lissotriton newts: L. montandoni and L. vulgaris graecus. Variation in newt immune genes has been shaped predominantly by widespread purifying selection and strong evolutionary constraint, implying long-term importance of these genes for functioning of the immune system. The two evolutionary lineages differ in the overall strength of purifying selection which can partially be explained by demographic history but may also signal differences in long-term pathogen pressure. The prevalent constraint notwithstanding, 23 putative targets of positive selection and 11 putative targets of balancing selection were identified. The latter were detected by composite tests involving the demographic model and further validated in independent population samples. Putative targets of balancing selection encode proteins which may interact closely with pathogens but include also regulators of immune response. The identified candidates will be useful for testing whether genes affected by balancing selection are more prone to interspecific introgression than other genes in the genome.
Collapse
Affiliation(s)
- Anna Fijarczyk
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Wieslaw Babik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Hasenkamp N, Solomon T, Tautz D. Selective sweeps versus introgression - population genetic dynamics of the murine leukemia virus receptor Xpr1 in wild populations of the house mouse (Mus musculus). BMC Evol Biol 2015; 15:248. [PMID: 26555287 PMCID: PMC4641351 DOI: 10.1186/s12862-015-0528-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background The interaction between viruses and their receptors in the host can be expected to lead to an evolutionary arms race resulting in cycles of rapid adaptations. We focus here on the receptor gene Xpr1 (xenotropic and polytropic retrovirus receptor 1) for murine leukemia viruses (MLVs). In a previous screen for selective sweeps in mouse populations we discovered that a population from Germany was almost monomorphic for Xpr1 haplotypes, while a population from France was polymorphic. Results Here we analyze Xpr1 sequences and haplotypes from a broad sample of wild mouse populations of two subspecies, M. m. domesticus and M. m. musculus, to trace the origins of this distinctive polymorphism pattern. We show that the high polymorphism in the population in France is caused by a relatively recent invasion of a haplotype from a population in Iran, rather than a selective sweep in Germany. The invading haplotype codes for a novel receptor variant, which has itself undergone a recent selective sweep in the Iranian population. Conclusions Our data support a scenario in which Xpr1 is frequently subject to positive selection, possibly as a response to resistance development against recurrently emerging infectious viruses. During such an infection cycle, receptor variants that may convey viral resistance can be captured from another population and quickly introgress into populations actively dealing with the infectious virus. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0528-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Terry Solomon
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany. .,Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| |
Collapse
|
13
|
Rausch P, Steck N, Suwandi A, Seidel JA, Künzel S, Bhullar K, Basic M, Bleich A, Johnsen JM, Vallance BA, Baines JF, Grassl GA. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection. PLoS Pathog 2015; 11:e1005008. [PMID: 26133982 PMCID: PMC4489644 DOI: 10.1371/journal.ppat.1005008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022] Open
Abstract
Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.
Collapse
Affiliation(s)
- Philipp Rausch
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Natalie Steck
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Models of Inflammation, Research Center Borstel, Borstel, Germany
| | - Abdulhadi Suwandi
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Janice A. Seidel
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kirandeep Bhullar
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Jill M. Johnsen
- Research Institute, Puget Sound Blood Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John F. Baines
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Guntram A. Grassl
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Models of Inflammation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
14
|
Fijarczyk A, Babik W. Detecting balancing selection in genomes: limits and prospects. Mol Ecol 2015; 24:3529-45. [DOI: 10.1111/mec.13226] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Fijarczyk
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Wiesław Babik
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| |
Collapse
|
15
|
Interspecific introgressive origin of genomic diversity in the house mouse. Proc Natl Acad Sci U S A 2014; 112:196-201. [PMID: 25512534 DOI: 10.1073/pnas.1406298111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We report on a genome-wide scan for introgression between the house mouse (Mus musculus domesticus) and the Algerian mouse (Mus spretus), using samples from the ranges of sympatry and allopatry in Africa and Europe. Our analysis reveals wide variability in introgression signatures along the genomes, as well as across the samples. We find that fewer than half of the autosomes in each genome harbor all detectable introgression, whereas the X chromosome has none. Further, European mice carry more M. spretus alleles than the sympatric African ones. Using the length distribution and sharing patterns of introgressed genomic tracts across the samples, we infer, first, that at least three distinct hybridization events involving M. spretus have occurred, one of which is ancient, and the other two are recent (one presumably due to warfarin rodenticide selection). Second, several of the inferred introgressed tracts contain genes that are likely to confer adaptive advantage. Third, introgressed tracts might contain driver genes that determine the evolutionary fate of those tracts. Further, functional analysis revealed introgressed genes that are essential to fitness, including the Vkorc1 gene, which is implicated in rodenticide resistance, and olfactory receptor genes. Our findings highlight the extent and role of introgression in nature and call for careful analysis and interpretation of house mouse data in evolutionary and genetic studies.
Collapse
|
16
|
Dall'Olio F, Malagolini N, Chiricolo M, Trinchera M, Harduin-Lepers A. The expanding roles of the Sd(a)/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2. Biochim Biophys Acta Gen Subj 2013; 1840:443-53. [PMID: 24112972 DOI: 10.1016/j.bbagen.2013.09.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The histo-blood group antigens are carbohydrate structures present in tissues and body fluids, which contribute to the definition of the individual immunophenotype. One of these, the Sd(a) antigen, is expressed on the surface of erythrocytes and in secretions of the vast majority of the Caucasians and other ethnic groups. SCOPE OF REVIEW We describe the multiple and unsuspected aspects of the biology of the Sd(a) antigen and its biosynthetic enzyme β1,4-N-acetylgalactosaminyltransferase 2 (B4GALNT2) in various physiological and pathological settings. MAJOR CONCLUSIONS The immunodominant sugar of the Sd(a) antigen is a β1,4-linked N-acetylgalactosamine (GalNAc). Its cognate glycosyltransferase B4GALNT2 displays a restricted pattern of tissue expression, is regulated by unknown mechanisms - including promoter methylation, and encodes at least two different proteins, one of which with an unconventionally long cytoplasmic portion. In different settings, the Sd(a) antigen plays multiple and unsuspected roles. 1) In colon cancer, its dramatic down-regulation plays a potential role in the overexpression of sialyl Lewis antigens, increasing metastasis formation. 2) It is involved in the lytic function of murine cytotoxic T lymphocytes. 3) It prevents the development of muscular dystrophy in various dystrophic murine models, when overexpressed in muscular fibers. 4) It regulates the circulating half-life of the von Willebrand factor (vWf), determining the onset of a bleeding disorder in a murine model. GENERAL SIGNIFICANCE The expression of the Sd(a) antigen has a wide impact on the physiology and the pathology of different biological systems.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
17
|
Ségurel L, Gao Z, Przeworski M. Ancestry runs deeper than blood: the evolutionary history of ABO points to cryptic variation of functional importance. Bioessays 2013; 35:862-7. [PMID: 23836453 PMCID: PMC4034584 DOI: 10.1002/bies.201300030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ABO histo-blood group, first discovered over a century ago, is found not only in humans but also in many other primate species, with the same genetic variants maintained for at least 20 million years. Polymorphisms in ABO have been associated with susceptibility to a large number of human diseases, from gastric cancers to immune or artery diseases, but the adaptive phenotypes to which the polymorphism contributes remain unclear. We suggest that variation in ABO has been maintained by frequency-dependent or fluctuating selection pressures, potentially arising from co-evolution with gut pathogens. We further hypothesize that the histo-blood group labels A, B, AB, and O do not offer a full description of variants maintained by natural selection, implying that there are unrecognized, functionally important, antigens beyond the ABO group in humans and other primates.
Collapse
Affiliation(s)
- Laure Ségurel
- Department of Human Genetics, University of Chicago, Chicago, IL, USA; Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
18
|
Hedrick PW. What is the evidence for heterozygote advantage selection? Trends Ecol Evol 2012; 27:698-704. [PMID: 22975220 DOI: 10.1016/j.tree.2012.08.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
Recent genomic data have found that many genes show the signal of selection. How many of these genes are undergoing heterozygote advantage selection is only beginning to be known. Initial genomic surveys have suggested that only a small proportion of loci have polymorphisms maintained by heterozygote advantage and this is consistent with the few examples generated from other approaches within given species. Unless further studies provide large numbers of loci with heterozygote advantage, it appears that loci with heterozygote advantage must be considered only a small minority of all loci in a species. This is not to say that some heterozygote advantage loci do not have important adaptive functions, but that their role in overall evolutionary change might be more of an unusual phenomenon than a major player in adaptation.
Collapse
|
19
|
Staubach F, Künzel S, Baines AC, Yee A, McGee BM, Bäckhed F, Baines JF, Johnsen JM. Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice. ISME JOURNAL 2012; 6:1345-55. [PMID: 22278669 PMCID: PMC3379640 DOI: 10.1038/ismej.2011.204] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the long-term maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis.
Collapse
Affiliation(s)
- Fabian Staubach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | | | | | | | | | | |
Collapse
|